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1 Introduction

The last financial crisis provides prominent examples of excessive bank and fund leveraging using
short term debt, that ended with collapse, see e.g., Acharya et al. (2011), Brunnermeier (2009),
Duffie (2010), Gorton and Metrick (2012), Financial Crisis Inquiry Commission (2011) and led
to systemic crises. A less recent example is the LTCM demise, see e.g. Rubin et al. (1999).
We provide a new mechanism of asset-based leverage dynamics. It is the lenders’ aggregate
decision that determines how much debt, and consequently leverage, can the firm attain based
on its assets. Our goal is to endogenize the dynamics of the leverage and of the debt capacity of
the asset. The same game of the lenders - the leveraging/deleveraging game– played period after
period generates the entire leverage dynamics. We seek to characterize the level where lenders
push the firm into a deleveraging spiral.

We build a model which is applicable to a variety of debt maturities, e.g., one day, one month,
one quarter. What makes the debt short term is that the maturity of the debt contract matches the
frequency with which the lenders can observe the firm’s performance, and lenders can thus react
to the firm’s shocks.1 As model input we have the fundamental trajectory of log-returns of the firm’s
investment strategy, which is fixed. Every potential lender has a belief about the mean log-return
in the next period. The cross distribution of beliefs is common knowledge, but the real world drift
is not known. Our baseline case is the case of dogmatic agents whose cross distribution of beliefs
is constant. In the last part of the paper we introduce learning, and allow the belief distribution to
change over time.

At any (discrete) time, potential lenders take synchronous decisions whether to finance or not
the borrower’s asset (refinance in the case of existing lenders). They have an option to finance
and the value of this option varies with lenders’ beliefs about the firm’s risk.2 A marginal lender
(as function of the existing leverage) is one for whom the option to lend equates the outside op-
tion (which is riskless cash with zero return). The marginal lender changes in each period, and
determines the debt capacity of the borrower’s asset.

The firm expands (contracts) its asset using the net inflow (outflow) of debt and there may be
transaction costs. We can think of a large leveraged hedge fund (or dealer bank) that pursues a
core strategy. The heterogeneous lenders are the only agents in the model, and they decide the in
and out-flows of debt. Given these flows, the management expands or reduces the asset position.
Therefore, the applicability of our model is for the case when the constraints on leverage imposed
by the lenders are stricter than the constraints that would be imposed the management. For our
purposes, we can think of the firm as a highly optimistic agent, whose self-imposed constraint on
leverage would always be less strict than the constraint imposed by its lenders. The example of
LTCM where the management pursued their core strategy until the fall of the fund naturally comes
to mind. The game continues until either maturity, when the firm is liquidated, or until default,
which occurs if the entire asset cannot cover a net debt outflow. In case of default, the asset is
liquidated and proportionally distributed to outstanding lenders.

Our game-theoretic framework originates in Krishenik et al. (2015), who study a rollover game
for the debt provision to a sovereign borrower. Krishenik et al. (2015) provides an alternative to
the global games setting of Carlsson and Van Damme (1993), Morris and Shin (2001). It is more
amenable to data and more suitable for a dynamic model: heterogenous beliefs about the future
evolution of the fundamentals replace the noisy observations of the fundamentals. Here we keep
the advantages of this framework, while we extend significantly the game. As a novel ingredient,

1Here the lenders do not have exogenous liquidity shocks.
2A potential lender’s option equates in value the interest rate minus a put option valued as in Merton (1974).
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we have the firm’s asset. The debt capacity of one unit of the asset is determined in an equilibrium
of the lender game.

Our leveraging-deleveraging game features complex dependencies that are novel in the liter-
ature. The value of lenders’ options to finance (or refinance) the firm’s asset change with existing
leverage (see Figure 5). When the existing leverage is low, the payoffs of pessimistic lenders de-
crease when others lend as well. There are two sources for this strategic substitutability, totally
absent in previous literature. First, under pessimists’ belief, more debt increases default probabil-
ity (because the firm would become more leveraged for the next period and they expect low asset
returns). Second, in the case of default the firm’s assets would be shared among more lenders,
so the pessimists’ expected recovery rates decrease. (The optimists are indifferent to the other
lenders: under their belief, they hold a default-free contract).

In turn, when the existing leverage is high, then the firm cannot survive unless a large fraction
of the current lenders roll over. Only in this regime the game behaves like a rollover game and
features one-sided strategic complementarity similarly to Goldstein and Pauzner (2005), Krishenik
et al. (2015): payoffs increase sharply with raised debt (up to a point where debt is sufficient for the
firm to remain liquid). The alternation of leveraging and deleveraging phases and the roles played
by pessimists and optimists are reminiscent of a leverage cycle in the collateral equilibrium model
of Geanakoplos (2010), see also Fostel and Geanakoplos (2013) and the references therein for a
review of this literature.

The main contribution of this paper is to endogenize the dynamics of the asset-based lever-
age of a large borrower (and the debt capacity of the asset) and to fully determine the regimes
of this leverage process: we show that asset-based leverage is mean reverting around a long-run
level, and explosive above an instability level. The intuition comes from the changing nature of
the lenders’ game from strategic substitutability to one sided strategic complementarity: When
leverage is below the instability level, the firm is not in danger of default, and the strategic substi-
tutability in the payoff structure acts as a counterbalance on leverage, which is pushed down to
the long-run level. If leverage reaches above the instability level, then it becomes explosive: the
one-sided strategic complementarity leads to spiraling effects that end in default. Default techni-
cally happens when leverage hits a ceiling. Determining the regimes of the leverage yields early
warning indicators of default: when the leverage deviates from the long-run level and reaches
above the instability level, then in expectation it will reach the debt ceiling because of the regime
change from mean-reverting to explosive. We can moreover quantify sustainable debt levels: a
wide mean-reverting regime around the long run level is tantamount to stable short term debt.

We generalize the dynamic debt run literature Carmona et al. (2017), He et al. (2017), He and
Xiong (2012a), Krishenik et al. (2015), Liang et al. (2015, 2014), which is focused on deleveraging
(debt runs). Our game has three main features: it is dynamic, lenders’ decisions are synchronous
and the lenders’ game drives both leveraging and deleveraging. Equally important, we have en-
dogenous recovery rates in default, and these drive the strategic complementarity/substitutability
profile of the game. With the exception of Krishenik et al. (2015), Liang et al. (2014, 2015) who can
allow for synchronous decisions in the global games setting, most other works use a staggered
debt structure and thereby insulate their models from the multiplicity of equilibria. However, it is
valuable to allow for synchronous decisions because short-term debt is the outcome of a maturity
race, see Brunnermeier and Oehmke (2013). Likely, at the end of this race, many of the lenders
will have a similar contract. It is anecdotal that in the recent crisis, large banks saw tens of billions
of liquidity withdrawn in a matter of days, so there were large-scale synchronous decisions. Here
we fully expose our model to equilibria multiplicity.

Since prior works are focused on deleveraging, they find a ”debt run barrier” Liang et al. (2015)
or the ”run threshold” He and Xiong (2012a): if the fundamental process touches these barriers
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or thresholds, then a debt run ensues. Touching the barrier is non-anticipative in these previous
works. The “ceiling” in our model corresponds to these debt-run barriers. However, our analysis
exhibits two other levels that are critical to the understanding of leverage stability: the long run level
and the instability level. Starting from zero debt, leverage reaches its long-run level and there is a
leveraging phase as the firm expands its asset position according to the provided debt. After this
initial leveraging phase, leverage is stable for a while as it mean-reverts: lenders adjust leverage
(as outcome of their game) in response to asset returns. However, above the instability level, it is
no longer possible to mean-revert: existing leverage is too high, and a deleveraging spiral ensues
with the expectation to end in default (leverage is explosive and expected to reach the debt ceiling).

Our analysis thus goes far beyond the default characterization in terms of the barrier (or ceiling
in our case) as we fully characterize the regimes of leverage and we quantify the stability of the
leverage. These do not have a correspondent in the literature. Default becomes anticipative in
our model: leverage is expected to reach the ceiling as soon as it deviates from the long run-level
and crosses the instability level: If leverage ratio tomorrow is an endogenous and, as we prove,
convex3 function of the debt-to-asset ratio today, then its largest fixed point is the start of the spiral
of lender withdrawals in which the leverage ratio switches from being mean-reverting to explosive.
Reaching the instability level is thus an early indicator of default, and the collapse in debt capacity
occurs over the time lag in which the debt-to-asset ratio process increases from the long run level
level to the instability level (and further to the ceiling).

We provide a powerful model that can be calibrated to real data. We provide a “proof of
concept” on how to use the model on real data as we use the financial commercial paper as a
case study of short term debt. The input is the aggregate fundamental returns of the securities
dealers in the US over a 10 year period. Of course, our model is intended for one large firm and
not for a sector, but publicly available data is on the aggregate level. Over this period, the number
of dealers is stationary, and we think of the aggregate as a “representative” dealer. Our model
predicts the leveraging/deleveraging witnessed over this period, and in particular the financial
commercial paper collapse of 2008, see Figure 1. We obtain similar results when using a constant
spread equal to the average spread over the period 2001 − 2005. The difference in the model-
predicted debt using the actual spreads and the constant spread is small during the 2007 − 2008
period, in which the actual spreads strongly increased. This implies that the (short) put option
value for the marginal lender increases very fast after a sequence of negative returns (due to
convexity effects). The implication is that increasing spreads during the deleveraging spiral has
little effect on preventing the debt collapse.

One assumption that leads to the elimination of multiple equilibria is that interest rates are
constant.4 Spreads for short-term debt such as commercial paper did not fluctuate a lot before the
collapse of the commercial paper outstanding notional, see e.g., Kacperczyk and Schnabl (2010)
and Figure 8. The approximation by constant interest rates is thus valid in the mean-reverting
regime of our model, when short term debt provision is stable. More importantly, in light of Figure
1 we do not expect that endogenizing interest rates would have any effect on the leverage regimes.
Once a deleveraging spiral starts, payoffs of pessimistic lenders have little sensitivity to interest
rates, and indeed during the crisis, spread increases did not prevent the debt collapse.

3Convexity holds under the assumption that the belief distribution has light right tails, which a natural assumption.
4Most literature features constant interest rates. Exceptions are Schroth et al. (2014) and the one period-model

Jarrow et al. (2016). Given that it is a rollover game with asynchronous decisions, it is sufficient in Schroth et al. (2014)
to set the interest rates such that maturing lenders have constant value one of their bond. In Jarrow et al. (2016),
the authors study Stackelberg equilibria in a one period game where the firm chooses the optimal interest offered on
debt and its cash holdings strategy and then lenders decide on the total debt. The main difficulty there is that that firm
optimizes under uncertainty about the lenders’ equilibrium, and multiplicity of equilibria cannot be eliminated.
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(a) Financial outstanding commercial paper (data not
used)

(b) (Model) Debt dynamics with real-world spreads
(red) vs. constant spread equal to the average spread
over 2001− 2005 (green). Real-world returns of FINRA
members used as model input is plotted in dashed
black line.

Figure 1: Real world leveraging/deleveraging vs. model predictions.

Our main technical contribution is to provide a refinement that leads to a unique equilibrium.
We are building on the game-theoretic foundations established in Krishenik et al. (2015), where
we show uniqueness of an equilibrium for a rollover game with synchronous decisions by lenders
with heterogenous beliefs. The proof technique there relies on eliminating weakly dominated
strategies. Eliminating weakly dominating strategies is not enough to obtain uniqueness here, but
we can use those results to eliminate the multiplicity of equilibria in which the firm defaults. There
remain two cutoff equilibria in which the firm survives: the presence of default recovery rates leads
to non-monotonous payoffs for a marginal lender with respect to the total debt. When the debt is
high, the marginal lender is pessimistic and her payoff decreases with debt. When the debt is
low, the marginal lender is optimistic and her payoff increases with debt. There are two possible
marginal lenders that have the cutoff expected return zero. The technical innovation in this paper
is the concept of Strongly ε-coalition proof equilibria, and the cutoff equilibrium with the lowest
debt does not survive this refinement: if a small coalition of lenders just below the cutoff could
coordinate to invest, then debt would increase and the entire coalition (along with the marginal
lender) would see increasing payoffs.

Our paper is also related to the literature on optimal capital structure and endogenous bankruptcy,
see e.g. Leland and Toft (1996). There, it is the firm who can choose its amount of debt. Here,
it is lenders who collectively decide on the debt they provide and at the same time they deter-
mine the default condition. We assume that the firm is more optimistic than a large fraction of
the lenders. The ensemble of lenders will impose a stricter constraint on leverage than the firm
would set. (This constraint imposed by lenders comes in the form of the long-run leverage). The
firm’s dynamic optimization problem in the optimal capital structure literature is replaced here by
the lenders’ dynamic game. Our game can be thought of as a “game of timing”, as investigated
in Carmona et al. (2017). They are focused on convergence results for games with finite numbers
of players in a game of timing with strategic complementarities. Here our setup is directly with a
continuum of players and we are focused on refinements that lead to interpretable “barriers” when
the game has both strategic complementarities and substitutabilities.

There is also an important recent literature on the optimal governance in presence of risk
posed by the liability holders. For example, Cheng and Milbradt (2012) study the optimal debt
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maturity. Like other works that focus on the lenders’ debt provision game, here we restrict the
firm from issuing equity. The firm’s optimal capital structure (with exogenous debt capacity risk)
is solved in He and Xiong (2012b). The one period model Jarrow et al. (2016) provides a motive
for optimal cash holdings under heterogeneous lenders: cash allows the firm to increase its debt
capacity and can be a more effective tool than raising the interest rate, in the sense that payoffs
of pessimists are more sensitive to the cash holdings than to the interest rate. We conjecture
that optimizing cash holdings would also affect the leverage dynamics more than interest rates,
but these optimization problems of the firm deserve a full separate treatment. However, under-
standing the regimes of leverage induced by the lenders is a critical step and we expect that these
regimes would perdure: the switch from strategic substitutability to complementarity in the payoffs
of pessimistic lenders will remain a key driver.

The paper is organized as follows. Section 2 presents the model for the firm and introduces
the lenders’ game. Section 3 analyzes the games’ equilibria and gives the uniqueness result.
Section 4 contains the results on the regimes of the endogenous leverage process. Section 5
validates the model empirically by using as input the real world fundamental returns, aggregated
over all FINRA members, and finally Section 6 illustrates the dynamic behavior of our model under
a variety of parameters.

2 The model

We consider a firm that funds itself through short-term debt provided by a continuous lender base.
The lender base is understood as potential lenders, and the size of the lender base tracks the
firm’s size. The actual lending results from a debt provision game. Time is discrete and there is a
finite horizon T . The firm invests all available funding in a portfolio of risky assets with given risk.
Lenders’ beliefs about this risk differ.

2.1 Fundamentals

Fundamental trajectory. We start from a fundamental trajectory of the asset return, observable
on a discrete time grid, t = 1, 2, . . . T , when the lender base can observe the firm’s asset perfor-
mance and can make decisions to invest, withdraw or rollover.5 We denote by log Y1, . . . , log YT the
sequence of fundamental log-returns of the firm’s asset, and we assume that Yt are independent
log-normal random variables with Var[log Yt] = σ2. Under the real-world probability measure P the
expected fundamental log-return is µ: E

[
Yt
]

= eµ.

We assume that there is a proportional cost both to liquidate and to purchase the asset, not
necessarily the same. Liquidating the asset produces a loss equal to a fraction α ∈ [0, 1) of
the traded volume if forced liquidation takes place before t < T . There are no liquidation costs
at time T . The assumption of fixed, proportional, and known liquidation cost is common in the
literature. We denote by α1 ≥ 0 the corresponding cost when there are asset purchases (the
asset is liquidated at time T , so the cost for asset purchases is relevant only for t < T ). The firm’s
cash proceeds from liquidating an amount u of the asset value at time t < T is given by

ft(u) :=

{
u(1− α11t<T ) if u ≥ 0

u(1 + α1) if u < 0.

5The frequency thus corresponds to the minimum between the financiang frequency and the performance reporting
frequency.
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Note that f−1
t (u) = u(

1−11{u≥0, t<T}α+11{u<0}α1

) and we have positive homogeneity: ft(γu) = γft(u)

and f−1
t (γu) = γf−1

t (u) for all u ∈ R and γ ≥ 0.

Lenders’ beliefs and maximum exposure to the firm. We assume that the lenders scale
the maximum exposure to the firm linearly with the firm’s size. We do not track the evolution of the
lenders’ wealth and in particular they consume any interest they may receive. Their decision is not
driven by their own liquidity shocks but rather by their valuation of the option to finance the asset.
Repo lending resembles most this setting: the lender only funds up to the value of the asset and
the question in the case of a single lender is her “haircut” choice, namely the percentage of loan
per asset value. With heterogenous lenders we will not consider the individual haircuts imposed
by the lenders. Rather, we will have a notion of aggregate haircut, as some potential lenders will
fully finance and other will not finance the asset at all. The fraction of lenders that finance the
asset will give the haircut. If all lenders choose to finance the asset then there is no haircut at all:
the raised debt is the same value as the firms’ asset.

We start with a distribution Φ0 on the set of beliefs B := R and we draw randomly and in-
dependently of everything else the belief b0(a) of agent a from the distribution Φ0, known by all
agents. At each time step t, we allow (but not oblige) lenders to update their beliefs, and let Φt the
belief distribution at time t. Letting Vt the size of the firm’s asset at time t, the financing that can
be provided by agents with belief higher than b is

VtΦt(b). (1)

The linear scaling assumption that will allow us to preserve the homogeneity of the model
and describe the evolution of the firm in terms of a single state variable. It can be relaxed to more
sophisticated dependencies at the expense of an increase in dimension of the state space. We
prefer the linear dependence assumption because it implies homogeneity in firms’ trajectories,
which is reasonable given our setup with proportional transaction costs and no price impact. The
resulting balance sheets scale linearly with the initial capital at any time: two firms with the same
characteristics, i.e., asset returns and belief distribution among their lenders, will have the same
trajectories up to a scaling factor.

An agent with belief b at time t measures risk using a probability measure Pb under which
the fundamental log-return log Yt is independent of everything else, with Varb[log Yt] = σ2 and
Eb
[
Yt
]

= eb. There are two interpretations of the notion of beliefs.

Differentiated beliefs as differences of opinion. Under the first interpretation, agents are
risk neutral and their differentiated beliefs stem from differences of opinion as in Hong and Stein
(2003). The initial belief distribution Φ0 is the prior at time 0. Depending how strong is the agents’
prior, the belief distribution Φt is updated faster or slower (and possibly not updated for dogmatic
agents). We will analyze the effects of learning.

Differentiated beliefs as differentiated “pricing measures”. The second interpretation of
belief is in the sense of the “pricing measure” of risk.

An agent with belief b will evaluate at time t any payoff φ at t + 1 using E[Sbφ(Yt+1)] =
Eb[φ(Yt+1)], where Sb is a stochastic discount factor and encodes the agents’ subjective risk aver-
sion. Using the stochastic discount factor is equivalent to discounting payoffs under the risk neutral
expectation but with the modified drift b of the return (and not the real world return µ). Under the
measure Pb, the agent is risk averse and puts additional weight on negative outcomes. The larger
the difference µ− b, the larger the subjective risk aversion of the agent.

Under this interpretation, the distribution Φ0 = Φ may stay constant over time.
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Interest rate. The lenders have as outside option a risk-free rate set to zero without loss of
generality. The interest rate is constant r, and is interpreted as a spread. The firm (the firm’s
management) takes all credit that is provided to it and invests in the asset. The firm is assumed to
act under a highly optimistic belief about the asset, so that under its belief it is optimal to invest as
much funds in this strategy as possible (recall that there there is no price impact in our model, just
transaction costs). The equity maximization problem of the firm has been solved in the one-period
case in Jarrow et al. (2016). They find that in the case of non-atomistic lenders, a sufficiently
optimistic firm (e.g., a fund expecting high returns from its strategy) will place all available funds in
the asset. This setting bears some resemblance to the manager in Hart and Moore (1995), whose
“empire-building tendencies are sufficiently strong that it will always undertake the new investment
if it can”. There, the manager’s financing is constraint by the maturity structure of the debt. Here,
the belief distribution will play a critical role. When sufficiently many lenders are less optimistic
than the firm, the ensemble of lenders will impose a stricter constraint on leverage than the firm
would set. It is this endogenous leverage imposed by lenders with heterogenous beliefs that we
seek to determine.

For notational convenience, we drop the time subscript from the belief distribution Φ until we
explicitly treat the learning case.

Debt capacity. Collectively the agents will choose at time t a marginal belief b∗t and all agents
with belief higher than b∗t will invest fully and those with lower belief do not invest at all. That the
agents choose collectively a strategy that is characterized by a marginal belief is quite trivial and
well established in the literature. The challenge that we will face is to eliminate the multiplicity
of such possible marginal beliefs, and establish b∗t as a one-to-one map of leverage to marginal
belief.

The quantity
Φ(b∗t ) (2)

is the debt capacity at time t of one unit of the firm’s asset.
The following assumptions essentially mean that the belief distribution (across beliefs) is not

heavy-tailed. It is log-convex, i.e., not more heavy than the exponential distribution. This excludes
the possibility that highly optimistic lenders would concentrate a large fraction of the capital and
could keep the firm liquid independently of its performance.

Assumption 2.1. We assume that the belief distribution function Φ(b) admits a density φ(b).
Moreover, we shall assume that Φ is log-convex, i.e., b 7→ φ(b)

Φ(b) is increasing on the interval
(−∞,Φ−1(0)). Here Φ−1(0) ∈ R ∪ {∞}, the supremum of the support of φ(·), is the maximal
belief.

Remark 2.2. Assumption 2.1 is satisfied for a wide variety of distributions φ(·), including exponen-
tial right tails, normal, or a uniform distribution. In the case with learning, this assumption must be
verified at all times. We will consider the case of conjugate priors, which ensures that the updated
distributions stay in the same class.

2.2 Dynamics under given lenders’ strategy

The lenders choose an investment strategy π = (πt)t=0,...,T given by the functions

πt : R× [0,∞)t → [0, 1], (3)
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for t < T and πT ≡ 0, i.e., there is no investment at time T . In words, a lender with belief b lends a
fraction πt(b, Y1, . . . , Yt) of her capital to the firm when the sequence of returns is (Y1, . . . , Yt).

Using (1) the debt capacity at time t under investment strategy π is given by

Dπ
t =

∫
B
πt(b)V

π
t Φ(db), (4)

with V π
t the asset value at time t under given strategy of the lenders.

Asset value and dynamics under given strategy of the lenders. Fix an investment strategy
π of the lenders. At time 0, the firm starts with the initial asset value V π

0 = V0 > 0 and initial debt
Dπ
−1 = 0. At each time t = 0, 1, ..., T − 1, the firm starts with the asset value V π

t . It accepts all debt
Dπ
t that is offered to it, due at time t + 1 and bearing interest rate r. The firm then pays back its

maturing debt plus interest Dπ
t−1(1 + r).

If (1+r)Dπ
t−1−Dπ

t < 0, then the firm has a debt inflow, which it will use to expand the asset. If
(1 + r)Dπ

t−1 −Dπ
t ≥ 0, then the firm has a debt outflow, and liquidates the minimum fraction of the

asset in order to cover this outflow. If liquidating the entire asset cannot cover this outflow, then the
firm defaults. In summary, at time t the firm needs to liquidate an amount f−1

t

(
(1 + r)Dπ

t−1 −Dπ
t

)
of its asset, in order to cover a debt outflow of (1 + r)Dπ

t−1 − Dπ
t . The asset value after the debt

flow at time t is given by

V π
t − f−1

t

(
(1 + r)Dπ

t−1 −Dπ
t

)
. (5)

This leads to an asset value before the debt flow at time t+ 1 which includes the fundamental
log-return log Yt+1

V π
t+1 =

(
V π
t − f−1

t

(
(1 + r)Dπ

t−1 −Dπ
t

))
Yt+1. (6)

We define the default time τπ of the firm as the first time t when the value of its asset after
the debt flow becomes negative (i.e, liquidating the entire asset cannot cover the debt outflow),

τπ = min
{
t = 1, ..., T

∣∣V π
t − f−1

t

(
(1 + r)Dπ

t−1 −Dπ
t

)
< 0
}

= min
{
t = 1, ..., T

∣∣ ft(V π
t ) < (1 + r)Dπ

t−1 −Dπ
t

}
. (7)

Alternatively we can write the default event in terms of the fundamental trajectory {τπ > t} =
{(Y1, ..., Yt) ∈ Γt(π)} with

Γt(π) :=
{

(y1, ..., yt)
∣∣ (1 + r)V π

k−1(y1, ..., yk−1)− V π
k (y1, ..., yk) ≤ ft

(
V π
k (y1, ..., yk)

)
∀k ≤ t

}
.

We call Γt(π) the survival set of the investment strategy π.
Default relates to insolvency in a complex way6: At the horizon, all lenders must be paid back,

so default is equivalent to insolvency. Before maturity however, the default event depends on the
lenders’ decisions, which in turn are based on their subjective valuation of lending to the firm (and
the future default risk and recovery rate risk).

Remark 2.3. Note that liquidation costs (different for asset purchases and asset liquidations) are
not the primary source of asymmetry between inflows and outflows. Outflows will play a much
more important role in the firm dynamics than inflows even in absence of any transaction costs,
because default can only occur under a debt outflow scenario. We will show that asset purchase
costs will not affect the long-run leverage level. This is because debt capacity is driven by default
risk and in the default scenario only liquidation costs matter.

6The definition of insolvency is that the value of the asset is smaller than the value of the debt.
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We will refer to
ft(V

π
t ) +Dπ

t − (1 + r)Dπ
t−1 (8)

as the liquidity capacity, and the default time can be expressed as the first time the liquidity
capacity becomes 0.

On the set {τπ = t+ 1}, the asset is completely liquidated at time t+ 1 and the firm stops its
operations. Note that τπ = t+ 1 implies Dπ

t > 0 (there cannot be default in absence of debt).

Lenders’ recovery rates. We assume that if the firm defaults at time t+1, all debt provided by
new lenders (that is, debt provided by lenders that had not invested at time t) is immediately paid
back in full by the firm, and all debt provided by old lenders is paid back partially as determined
by the recovery rate. This assumption is not to be interpreted as seniority of the new lenders, but
rather that any inflow from the new lenders can be reversed. The debt provided by old lenders, on
the other hand, has been invested in the asset. So upon default, the asset position is liquidated
and distributed to the old lenders. The assumption that new lenders are not diluted by using the
fresh cash to increase the recovery rates of the old lenders simplifies the analysis a lot. It is also
innocuous in our setting: It cannot be that the firm is in a situation of default and there is a net
inflow of lenders. That would mean that there was negative performance of the asset (otherwise
there would be no default) and at the same time there were more lenders than before. This is
impossible under any reasonable belief updating rule.

It follows directly from (6) that on the set {τπ = t+ 1}, the recovery rate for the debt provided
at time t (by the old lenders) is given by

ft
(V πt+1

Dπt

)
= f

(
V πt
Dπt
− f−1

t

(
(1 + r)

Dπt−1

Dπt
− 1
)))

Yt+1. (9)

Finally we assume that at time T , all debt must be payed back, that is, πT (·, ·) ≡ 0 and Dπ
T = 0.

Remark 2.4. It follows recursively from V π
0 = V0 and plugging (4) into (6) that the dependence of

V π
t on π is only through π0, ..., πt−1.

A key quantity in the subsequent analysis will be played by the firm’s leverage (or debt-to-
asset) ratio before the debt flow

Xπ
t =

Dπ
t−1

V π
t

, t = 1, ..., T ∧ τπ,

with the convention Xπ
t =∞ for t > τπ.

Below, we introduce rigorously the lender game and the payoffs. It is worth summarizing at
this point the sequence of actions and point out the inter-temporal entanglement of the lenders’
decisions that we will study in the sequel, see Figure 2. In equilibrium, the strategy will have a
marginal lender b∗t , to be determined as a function of debt-to-asset.

2.3 Lenders’ game

The lenders choose the strategy (πt)t=0,...,T in (3). Note in particular that all lenders with the same
belief play the same strategy, so we classify lenders according to their beliefs and we refer to
lender b to any lender with belief b.

Payoff functions. Let π be a strategy and t ≤ τπ. We denote by Gπ,bt the payoff of lender b
under strategy π. The payoff has two branches.
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Figure 2: Sequence of actions and inter-temporal entanglement (arrows point to the dependence
of current payoffs on current and future debt provision.

• On {τπ > t} (survival), lender b’s expected return per dollar from lending at time t is7

Rπ,bt := Eb
[
11{τπ>t+1}(1 + r) + 11{τπ=t+1}ft

(V πt+1

Dπt

) ∣∣ (Y1, ..., Yt)
]
− 1

= r − Eb
[
11{τπ=t+1}

(
1 + r − ft

(V πt+1

Dπt

)) ∣∣ (Y1, ..., Yt)
]
, (10)

and the payoff at time t is πt(b, Y1, ..., Yt)R
π,b
t .

• On the set {τπ = t} (default), the payoff (per dollar invested) of any old lender at time t is
given by ft

( V πt
Dπt−1

)
− 1.

Tradeoff and the lenders’ short put option. The expected return per dollar invested highlights
the tradeoff of a lender with belief b. On one side, she earns the interest r. On the other side, she
bears the expected default cost. Her default cost depends on the other lenders’ decisions both
in the current period (the asset would be divided by the total amount of debt in case of default),
and in the next period (because they determine the default time). The dependence on the belief
is highly non-linear, and any lender sees a strictly positive expected default cost. In fact, lenders’
investment is akin them being short a put option on the (risky) recovery rate ft

(V πt+1

Dπt

)
. The higher

their belief, the lower their expected default cost.
At the core of our paper is the valuation of the put option at a marginal belief. The higher the

valuation, the worse the payoff because lenders are short this option. Figure 3 plots the put option
surface as a function of the marginal belief and of the firms’ leverage. Here we are interested in a
preview of the monotonicity properties, the specifics of the option valuation are detailed below in
Proposition 3.3 and the analysis is in Appendix A.2.

The parameters we used for the plots are typical to those we use in the numerical results
section.8 Note that when the marginal belief is too high and the firm too leveraged, then the firm
cannot survive (because the capital above that marginal belief is insufficient). In this case the put
option is valued at the maximum 1 + r and the lender’s payoff is r− (1 + r) = −1, i.e., she expects
full loss of her capital.

7Note that Rπ,bt is a deterministic function of (Y1, ..., Yt).
8The valuation is reminiscent of Merton’s model: the debt-holders are short a put option on the firms’s assets. Here

the lenders have differentiated values of this put option.
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(a) Value of the put option (b) The marginal lender is such that her value of the put option
is equal to r (the intersecting plane) (r = 1% in this example).

Figure 3: (Preview) Value of the put option by a marginal lender as a function of the marginal belief
and the firm’s current leverage. For high leverage, payoffs are non-monotonous as a function of
the marginal belief. This monotonicity are shown rigorously using option valuation techniques, see
Proposition 3.3, the analysis in the Appendix A.2.

Figure 3b shows how the marginal lender is determined in equilibrium by equating the put
option value with the outside option r. The curve where the option surface intersects the plane
gives the marginal lender’s belief as a function of the firm’s leverage. This curve is further detailed
in Figure 4.

Figure 4 illustrates that for high enough values of the debt-to-asset there are two possible
marginal lenders (and correspondingly two possible debt capacity values). This is a result of the
non-monotonous relation between belief and the value of the put option as shown in Figure 3a.
The detailed analysis in Section 3 will demonstrate that only the one with the highest debt is a
viable equilibrium.

Pessimistic lenders transform a sequence of mild negative returns into large liquidity
shocks. Consider a sequence of mild negative returns. Because of the convexity illustrated in
Figure 4, the marginal lender will increase fast in response to the negative returns (which increase
the leverage). The convexity effect is more pronounced when the leverage is high. High leverage
is attained when pessimistic lenders are drawn in, for example after when asset returns are high
and the firm builds equity. However, pessimists are the fastest to withdraw because the value of
their put option (and expected default costs) increase most under negative returns. This leads
to spiraling effects and a predictable collapse in debt capacity. The spiraling effects also depend
on our belief distribution assumption: after a sequence of withdrawals only the highly optimistic
lenders stay, and they do not concentrate a large fraction of the capital mass.

Spiraling effects happen when the dependence of the marginal belief on leverage is stronger
(higher convexity). When this dependence is weaker (lower convexity), then the firm will be able
to recover from a sequence of negative returns. Deleveraging in not so pronounced in this case:
the marginal belief does not change too much, and the outflows are sufficiently small. At the same
time, lower convexity comes along with lower leverage and a higher equity ratio. Combined, these
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Figure 4: (Preview) Firm’s leverage and marginal lender’s belief. For high leverage, there are two
marginal lenders corresponding to two equilibria. The rigorous analysis of the monotonicity under
different regimes of leverage is given in Appendix A.2, see Corollary A.2.

two effects allow the firm to absorb the deleveraging. These weaker and stronger convexity effects
concur to the existence of a mean-revering and an explosive leverage, that we will demonstrate in
Section 4.

In contrast to debt financing, with equity financing only optimists invest. Moreover, since there
is no put option, a model with equity financing would behave differently: no spiraling effects would
happen unless we introduce a shift in the belief distribution, or asymmetric information that is
revealed through returns.

Equilibrium definition. In a Nash equilibrium, no lender can increase her payoff by changing
her strategies, if the other lenders keep theirs.

Definition 2.5 (Nash equilibrium). By convention, any strategy is a Nash equilibrium at time T . A
strategy π∗ is called a Nash equilibrium at time t < T if for each belief b ∈ B and each strategy π
which satisfies πs = π∗s for all s < t and πt(b′) = π∗t (b

′) for b′ 6= b we have Gπ
∗,b
t ≥ Gπ,bt . A strategy

is said to be Nash equilibrium (equilibrium for short) if it is a Nash equilibrium at all times.

We now consider the two branches (survival and default) of the payoff Gt. Because the
lenders are infinitesimally small, a unilateral deviation of lender b at time t cannot change if the
firm defaults or not at that time and nor can it change b’s payoff in the case of default (determined
by the recovery rate). Therefore, any strategy which leads to default is automatically a Nash
equilibrium. For strategies that do not lead to default, the Nash equilibrium condition translates
into a cutoff property for the expected return Rt: lenders invest if and only if their expected return
is positive. We therefore have the following equivalent definition of Nash equilibria.

Definition 2.6 (Nash equilibrium characterization). A strategy π∗ is called a Nash equilibrium at
time t < T if for every fundamental trajectory (Y1, ..., Yt) we have that either:

• (Y1, ..., Yt) /∈ Γt(π
∗) (the firm defaults at time t) , or

• (Y1, ..., Yt) ∈ Γt(π
∗) (the firm survives at time t) and for each belief b ∈ B

π∗t (b, Y1, ..., Yt) =

{
1 if Rπ

∗,b
t > 0,

0 if Rπ
∗,b
t < 0.

(11)
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Remark 2.7. If π∗ is a Nash equilibrium and (Y1, ..., Yt) ∈ Γt(π
∗), then Dπ∗

t > 0. Suppose Dπ∗
t = 0.

Then there cannot be default at time t + 1, so Rπ,bt = r > 0, for all b. Therefore, all lenders would
invest, in contradiction to Dπ∗

t = 0.

As soon as the firm attains high enough leverage, there are infinitely many Nash equilibria
in which the firm defaults. For example πt ≡ 0 pushes the firm to default at time t as soon as
Dt−1(1 + r) − ft(Vt) > 0.9 In this case, there is an infinity of strategies πt with

∫
B πt(b)V

π
t Φ(db) <

Dt−1(1 + r)− ft(Vt), and all these are Nash equilibria which lead to default.10

If the Nash equilibria in which the firm defaults coexist with Nash equilibria in which the firm
survives, then these equilibria with default can be eliminated by removing weakly dominated strate-
gies as in Krishenik et al. (2015), see Appendix A.5 for the definition and intuition behind weakly
dominated strategies. We assume that lenders will not play weakly dominated strategies at time
t. In contrast to Krishenik et al. (2015), elimination of dominated strategies is not sufficient here
to prove uniqueness because there may be two Nash equilibria in which the firm survives. This is
due to the presence of recovery rates, which induce the non-monotonicity in the expected return
as a function of the belief of the marginal lender, see Figures 3b and 4.

We extend the solution concept ”Strongly coalition proof” introduced by Milgrom and Roberts
(1996). Such an equilibrium is proof to any deviations by coalitions which are stable in the sense
that they are Nash equilibria themselves all else fixed outside the coalition. We will show in Theo-
rem 3.6 that the first Nash equilibrium (with higher debt) is ”Strongly coalition proof”. The “Strongly
coalition proof” is a stronger requirement than ”Coalition proof” in the sense of Bernheim et al.
(1987), see the discussion in Milgrom and Roberts (1996). Therefore the first Nash equilibrium is
automatically “Coalition proof”.

We introduce the weaker condition “Strongly ε-coalition proofness”, in which we require sta-
bility with respect to deviations of coalitions that are Nash equilibria and in addition are arbitrar-
ily small. If an equilibrium is not “Strongly ε-coalition proof”, it automatically implies that is not
“Strongly coalition proof”. We will show in Theorem 3.7 that the Nash equilibrium with lower debt
is not “Strongly ε-coalition proof” for any ε > 0 (and hence it is not “Strongly coalition proof”).
Note the importance of “for all ε > 0”: it would be easy to show that a large group of lenders can
be better off by jointly deviating from the second equilibrium. But our results are much stronger:
no matter how small (but positive) the size, we can always find a stable lender coalition of that
small size that can be better off by jointly deviating from the second equilibrium.11 Therefore it is
reasonable to exclude this second equilibrium.

Definition 2.8 (Strongly ε-coalition proofness). Let ε > 0. A Nash equilibrium π∗ is said to be
strongly ε-coalition proof at time T by convention, and at time t < T if:
For each interval of lenders [b0, b1] ⊆ B with b1 − b0 < ε and each strategy π which satisfies

1. πs(·, ·) = π∗s(·, ·) for all s 6= t

2. πt(b′, ·) = π∗t (b
′, ·) for all b′ ∈ B\[b0, b1]

9This condition means that the early liquidation of the entire asset cannot cover existing debt plus interest, which is
the typical case of a leveraged firm.

10Note that there may be infinitely many strategies π with survival, i.e.,
∫
B πt(b)V

π
t Φ(db) ≥ Dt−1(1 + r)− ft(Vt), but

these are not Nash equilibria in general. Only if one finds a marginal lender whose value of the put option is equal to r
(see Figure 3b), then we have a Nash equilibrium.

11For a game with a continuum of players it is very natural to consider coalitions of an arbitrarily small but positive
fraction ε > 0 of all lenders: a player has zero mass in the continuum limit, whereas in any approximating game with
finite but large number of players she would have a small but positive mass. Convergence results for finite games in the
spirit of Carmona et al. (2017) are left for future research.
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3. (Stability of the coalition: all else fixed, the coalition plays a Nash equilibrium)

πt(b, Y1, ..., Yt) =

{
1 if Rπ,bt > 0,

0 if Rπ,bt < 0,
for each b ∈ [b0, b1] and (Y1, ..., Yt) ∈ Γt(π), (12)

we have that the coalition is “worse off”:

a) Γt(π) ⊆ Γt(π
∗) (the survival set decreases), and

b) Rπ
∗,b
t ≥ Rπ,bt for all (Y1, ..., Yt) ∈ Γt(π) and b ∈ [b0, b1] (return decrease on trajectories with

survival).

A strategy is called Strongly ε-coalition proof if it is Strongly ε-coalition proof at all times t.

The solution concept strongly coalition proof is the same as strongly∞-coalition proof.

3 Nash equilibria for the lenders’ game

The goal of this section is to determine the set of equilibria of the lenders’ game. That Nash
equilibria in which the firm survives are of cut-off type is straightforward (see Lemma A.3).

The subtlety is to show that the marginal belief is uniquely determined as a function of the
firm’s debt-to-asset ratio Xπ

t . We will also need to show that the survival set Γt(π) can be also
expressed in terms of the debt-to-asset. As already previewed in Figure 4, the are two possible
marginal belief functions. This will be proved rigorously in Section 3.1 below. Note that in this
case the number of corresponding equilibria grows exponentially with the number of periods: one
marginal belief function tomorrow yields two possible marginal belief functions today, and so on.
We will prove uniqueness of an ε-coalition proof equilibrium and only then the leverage Xπ

t will be
a proper state variable.

Definition 3.1 (Strategy with marginal belief function). A strategy π is said to have the marginal
belief function βt(·) : [0,∞]→ B at time t if

πt(b) = 11{b≥βt(Xπ
t )} on Γt(π). (13)

If a Nash equilibrium has a marginal belief function βt(·) at time t, then its corresponding
marginal belief function βt(·) satisfies

R
π,βt(Xπ

t )
t = 0. (14)

Let now π be a strategy with marginal belief function βt(·) at time t as in (13). By (4), the debt
of the firm at time t on the set {τπ > t} is given by

Dπ
t = V π

t Φ(βt(X
π
t )), (15)

which is strictly positive. Recall that the liquidity capacity at time t of the firm is given by (8). On the
set {τπ > t}, the ratio of the liquidity capacity of the firm and the asset can be written as λt(Xπ

t )
as defined below.

Definition 3.2 (Liquidity capacity function). Let λt : [0,∞]→ [0,∞] defined as

λt(x) := 1− α11{t<T} + Φ(βt(x))− (1 + r)x. (16)
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It now follows from (7) that
τπ > t ⇒ λt(X

π
t ) ≥ 0. (17)

The converse is not a priori true since on the default set {τπ = t}, the new debt is not given by
(15)12. We will show below that we do have equivalence and the function λt is uniquely determined
if π is a ε-coalition proof Nash equilibrium in which agents do not use weakly dominated strategies.
The proof will be by backward induction and will use the following results as a building block.

3.1 One-period building block for the equilibrium

In this section we give explicit formulas for the lenders’ expected return Rπt , akin those of option
prices in the Black and Scholes model. These formulas allow us to study analytically the mono-
tonicity (at time t) of the expected return of the marginal lender as a function of her belief, that we
illustrated in Figure 4. This analysis will be part of the induction step in our proof of the uniqueness
theorem 3.7.

Assume13 that we have equivalence in (17) for time t+ 1, i.e.,

τπ = t+ 1 ⇔ λt+1(Xπ
t+1) < 0 (18)

and, moreover, that the marginal belief function βt(·) is increasing and consequently λt(·) is de-
creasing. Then, on the set {τπ > t}, by (6) we have that the default event can be expressed as
the discounted asset return being below a discounted strike kt, where the discount rate is equal to
the belief variable b

τπ = t+ 1⇔ λt+1

( Dπt
V πt+1

)
< 0,

⇔ Dπt
V πt+1

> λ−1
t+1(0),

⇔ Dπt

V πt

(
1−f−1

t

(
(1+r)

Dπt−1
V πt
−D

π
t

V πt

))
Yt+1

> λ−1
t+1(0),

⇔ Yt+1e
−b <

e−b
Dπt
V πt

λ−1
t+1(0)

(
1−f−1

t

(
(1+r)

Dπt−1
V πt
−D

π
t

V πt

)) =: kt
(
b,
Dπt
V πt
,
Dπt−1

V πt

)
. (19)

Since we have log-normal returns, we can use the Black and Scholes machinery to express
the expected return (similar to a short put position) as a function of Xπ

t .

Proposition 3.3. Let π a strategy with a marginal belief function βt+1(·) at time t + 1, for some
t < T which satisfies (18). Then on the set {τπ > t} the expected return under belief b satisfies

Rπ,bt = ht

(
kt
(
b,
Dπt
V πt
, Xπ

t

))
(20)

with

ht(K) = r − (1 + r)N
(
− d2(K)

)
+

1− α
λ−1
t+1(0)K

N
(
− d1(K)

)
,

d1,2(K) =
− logK ± 1

2σ
2

σ
.

12The firm’s equity typically cannot cover the liquidation costs for its entire asset. In such case the strategy in which
no one lends π ≡ 0 is a trivial Nash equilibrium. However, if the debt-to-asset is not too large, such equilibrium will not
survive the elimination of weakly dominated strategies.

13These assumptions on the monotonicity properties at time t+ 1 will be part of the induction hypothesis in the proof
of the uniqueness theorem.
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(a) Put option surface (debt-to-asset = 0.8) shows
strategic substitutability.

(b) Put option surface (debt-to-asset = 0.9) shows
strategic complementarity

Figure 5: Lenders’ put option value as a function of belief and concurrent debt (expressed as
percentage of lenders’ capital). Payoffs are given by r minus the value of the put option. When
current leverage is lower (left), pessimists’s put option value increases (and their payoff decreases)
with the amount of concurrent debt. When current leverage is higher (right), pessimists’s put option
value decreases (and their payoff increases) with the amount of concurrent debt up to a certain
point.

Suppose moreover that βt+1(·) is strictly increasing. Then the function ht(K) is strictly decreasing
in K > 0 and satisfies limK→0 ht(K) = r and limK→∞ ht(K) = −1.

By (20) and (15), the expected return at time t on the set {τπ > t} under belief b for a strategy
π as in Proposition 3.3 is given by

Rπ,bt = ht

(
kt
(
b,Φ(βt(X

π
t )), Xπ

t

))
,

which is clearly increasing14 with b.
Strategic substitutability and complementarity. Having established the expected return, we
are ready to plot the payoffs that arise in our leverage/deleveraging game, namely we plot in
Figure 5 the surface (b,Φ) → ht

(
kt
(
b,Φ, Xt

))
for two different values of the current leverage Xt.

These plots illustrate the complex dependencies in our payoff structure. There is a change from
global strategic substitutability to one-sided strategic complementarity as leverage increases. The
sources of these properties are novel in the literature, as discussed in the introduction.

3.2 Existence and uniqueness results

In this section we show that there exists a strongly coalition proof equilibrium, namely the strategy
π̂ given in Definition 3.4. We also show that any other Nash equilibrium in which the firm would
survive with lower debt is not proof to arbitrarily small deviations, in the sense that no matter how
small (but positive) the size, we can always find a stable lender coalition of that size that can be
better off by jointly deviating from that equilibrium.

14This is not to be confused with b → ht
(
kt
(
b,Φ(b), Xπ

t

))
which is the return under a marginal belief and is non-

monotonous, as in Figure 3.
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From Proposition 3.3, the equation (14) takes the form

ht

(
kt
(
βt(X

π
t ),Φ(βt(X

π
t )), Xπ

t

))
= 0. (21)

In Appendix A.2 we show that this equation will have two solutions in the marginal belief function βt.
In the proof of Theorem 3.7, we will show that the larger solution cannot correspond to the marginal
belief function in an ε-coalition proof equilibrium. Indeed, at the larger solution, the marginal lender
is optimistic about the firm’s asset and higher debt will increase her expected payoff, since the firm
will expand the asset. Therefore, slightly less optimistic potential lenders than the marginal one
will join a coalition and invest, leading to positive returns for themselves and the former marginal
one.

On the other hand, the equilibrium corresponding to the smaller solution of the equation,
denoted β̂t, is not only ε-coalition proof, but coalition proof for any coalition size. This equilibrium
is defined by the marginal belief functions β̂t, which satisfy the assumptions of Proposition 3.3 and
(21).

Definition 3.4. a) Let π̂ the equilibrium with marginal belief functions β̂t(·), defiened backward
recursively for t = T, ..., 0 as follows. Set β̂T (·) ≡ ∞. Given the function β̂t+1(·) for t < T , let

λ̂t+1(x) = 1− α11{t+1<T} + Φ(β̂t+1(x))− (1 + r)x,

ĥt(K) = r − (1 + r)N
(
− d2(K)

)
+ 1−α

λ̂−1
t+1(0)K

N
(
− d1(K)

)
,

k̂t(b, q, x) = e−bq

λ−1
t+1(0)

(
1−f−1

t

(
(1+r)x−q

)) ,
and then let β̂t(x) denote the smallest solution of the equation

ĥt

(
k̂t

(
β̂t(x),Φ(β̂t(x)), x

))
= 0 (22)

for all x ≥ 0 for which there exists a solution, and β̂t(x) =∞ otherwise.

The definition of the previous functions uses tacitly that λ̂−1
t+1(0) is well defined. This is indeed

the case, by virtue of the following result.

Proposition 3.5. The function β̂t(·) is increasing. Moreover, under the condition

φ′(·) ≤ Φ(·) + 2φ(·) (23)

the function β̂t(·) is strictly convex.

Together with the log-concavity assumption, we have the condition −φ(·)2

Φ(·) ≤ φ′(·) ≤ Φ(·) +

2φ(·). Condition (23) is technical and allows us to control the left tail of the belief distribution. It
is for example satisfied for the normal left tails, and also for any distribution in which φ′ ≤ 0, such
as the case when the density increases with the pessimism level. While the log-concavity controls
the right tails (the capital of the optimists should decrease fast enough), the control of the left tails
ensures on the contrary that the pessimists hold most of the capital.

Notation. In the sequel, we denote by π(s) any strategy which will have the marginal belief func-
tions β̂t(·) from time s on, t ≥ s and its survival sets are given by

Γt(π
(s)) =

{
yt
∣∣ λ̂t(Xπ(s)

t (yt)
)
≥ 0
}
. (24)
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In particular, we have π(0) = π̂. This strategy is uniquely determined from time s on, while it is a
generic strategy before time s. Any strategy satisfying these conditions is said to be of the form
π(s). It is immediate to see that this strategy is a Nash equilibrium, so the proof is mainly focused
on strongly coalition proofness.

Theorem 3.6 (Existence). Any strategy of form π(t) is a strongly coalition proof Nash equilibrium
at time t. In particular π̂ is a strongly coalition proof Nash equilibrium.

The following uniqueness result states that any other Nash equilibrium than π̂ can be blocked
by deviations of arbitrarily small groups of lenders, i.e., it is not strongly ε-coalition proof for any
ε > 0 (and in particular this makes π̂ the unique strongly coalition proof equilibrium).

Theorem 3.7 (Uniqueness). Let π be a Strongly ε-coalition proof Nash equilibrium for an ε > 0
and assume that no agent uses weakly dominated strategies. Then we have that π = π̂.

Our existence and uniqueness results have critical implications for leverage stability. Indeed,
because the second Nash equilibrium (with lower debt) can be blocked by any small stable coali-
tion it can be reasonably excluded, and lenders will select the equilibrium that gives the firm the
higher leverage. The convexity effects of the marginal belief as function of leverage are properties
of the equilibrium π̂ and underlie the existence of explosive regimes of leverage that we discuss in
Section 4.

The proof of the uniqueness result is by induction: we show successively that π = π(t+1) leads
to π = π(t), for all t = T − 1, ..., 0 and thus we uniquely identify π as the equilibrium with marginal
belief β̂ at all times, namely we have that π = π̂.

We rely on the one period building block in the previous section. At step s < T we use the
induction hypothesis that π = π(t+1). The one period building block gives analytical formulas for
the expected return as a function of the belief of the marginal lender, conditional on survival at
time t. Using the elimination of weakly dominated strategies, we can establish if the fundamental
trajectory yt leads to default or not: the firm survives if and only if there exists a marginal lender
with zero expected return. Technically, this means that there is a solution to equation (22).

However, conditional on survival there may be two marginal lenders with zero expected return,
and they correspond to the solutions of the equation (22). Note the necessity of using backward
induction: assuming that we have removed uncertainty about the future strategies, we can use
equation (22) to define a Nash equilibrium in the current period. Using the ε-coalition proof re-
finement, we eliminate the largest solution to the equation in the current period, and complete the
induction step since the smallest equation gives the belief function β̂t which defines the strategy
π(t).

The proof relies on many results that fit together in a highly complex structure. As a final detail
of the complex structure, we note that the assumptions of Proposition 3.3 in the building block hold
due to the induction hypothesis. When π = πt+1, by virtue of Proposition 3.5, we have that β̂t+1(·)
is increasing.

3.3 Ceiling

By eliminating the multiplicity of equilibria, we eliminate the uncertainty about the value of the
ceiling, since each equilibrium has its own ceiling associated to it, see Figure 6. With multiple
equilibria, default cannot be determined by the value of the debt-to-asset.

This unique equilibrium is characterized by the highest value for the ceiling. Removing uncer-
tainty about the ceiling means that default becomes measurable with respect to the observation
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Figure 6: The debt ceiling is associated to the equilibrium π̂, with belief function given in Definition
3.4 as the smallest solution to (22). A second equilibrium has belief function given by the largest
solution to (22). When the debt-to-asset is at the lower ceiling, there is uncertainty about which
equilibrium will be selected and about the firm’s survival (it would survive under equilibrium one,
but not under equilibrium two).

of the debt-to-asset. Indeed, from (24) it now follows that the company defaults as soon as the
debt-to-asset ratio Xt = Dt−1

Vt
exceeds the value λ̂−1

t (0), which henceforth we shall refer to as the
firm’s ceiling. The next result shows that the ceiling can be written explicitly in terms of a suitable
deterministic function mt(·) given in equation (38) in the appendix.

Proposition 3.8. The ceiling for the debt-to-asset ratio is given by

λ̂−1
t (0) = m−1

t

( 1

ĥ−1
t (0)

)
. (25)

The debt ceiling gives the default condition. In the next section, we determine the regimes of
leverage. We also give a measure of stability when the debt is in the mean reverting regime.

4 Debt dynamics and debt stability

For the remainder of the paper, we assume that lenders select the unique strongly coalition proof
equilibrium π̂ at all times t = 0, 1, ..., T − 1 and we drop the superscript π̂ from our notation of the
processes D, V and X. We also drop the hat from the functions λ̂t(·), ĥt(·) and k̂t(·) in Definition
3.4. The debt-to-asset is a state variable, whose dynamics and stability can be characterized.

We consider that the debt-to-asset is below the debt ceiling that we established in the previous
period, i.e, Xt ≤ λ−1

t (0), and we characterize its dynamics. At the debt ceiling, the firm defaults.
We can write the debt-to-asset ratio in the next period as a function of the debt-to-asset ratio in

20



the current period, starting from (6):

Xt+1 =
Dt

Vt

(
1− f−1

t

(
(1 + r)Dt−1

Vt
− Dt

Vt

))
Yt+1

=
λ−1
t+1(0)kt

(
βt(Xt),

Dt
Vt
, Dt−1

Vt

)
eβt(Xt)

Yt+1

= λ−1
t+1(0)h−1

t (0)eβt(Xt)
1

Yt+1
, (26)

where in the second line we used the definition of kt in Definition 3.4 and (15), and in the last line
we used (43).

Our notion of stability is that there exists a level xt strictly below the debt ceiling λ−1
t (0), such

that the process Xt is mean-reverting to the level xt under the real-world measure P as long as
the process stays below an instability level xt, with xt < xt ≤ λ−1

t (0).
Stability measure. Of course, since our model is in discrete time, the process Xt can jump

from the long-run level over the instability level in one period. The probability of such jump is
a necessary addendum to characterization of the stability of the process in terms of the various
regimes. We define the stability measure (for debt with a mean-reverting regime) as a (condional)
probability to stay below the instability level xt in one period if one forces leverage to start the
long-run level xt:

1− P[Xt+1 > xt | Xt = xt]

We define this measure using a conditional probability because we think of the assessment of
the entire mean reverting regime. If the stability measure is too low, then even if the process is
in the mean-reverting regime, it can very easily ”escape” in the explosive regime. Clearly, the
stability measure increases the difference between the instability level and the long run level.
The existence of the mean-reverting regime and the stability measure together determine the
sustainability of debt.

Definition 4.1. Let p ∈ [0, 1]. We say that debt-to-asset has a mean-reverting regime [0, xt) (with
stability measure 1− p) if for each t there exist 0 < xt < xt ≤ λ−1

t (0) such that

E
[
Xt+1

∣∣ (Y1, ..., Yt)
]
> Xt, ∀ Xt ∈ (0, xt) ∪ (xt, λ

−1
t (0)]

E
[
Xt+1

∣∣ (Y1, ..., Yt)
]
< Xt, ∀ Xt ∈ (xt, xt).

and P[Xt+1 > xt |Xt = xt] < p. We call xt the long-run level, xt the instability level and (xt, λ
−1
t (0)]

the explosive regime. If debt-to-asset does not have a mean-reverting regime, then it is said to be
explosive.

In the mean-reverting regime (if any) Xt reverts to the long-run level xt as long as it stays
below the instability level xt. Clearly, the definition uses the expected return of the asset under the
real-world (”oracle”) measure. We now let the real-world expected return eµ = E[Yt]. Using the
dynamics of Xt above, we can compute the drift function of the process Xt as

at(Xt) := E
[
Xt+1

∣∣ (Y1, ..., Yt)
]

= λ−1
t+1(0)h−1

t (0)eβt(Xt)e−µ+σ2
. (27)

Remark 4.2 (Drift invariance under the belief of the marginal lender). Similarly to computing the
drift of the process Xt under the real world measure, we can compute the drift under the belief
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of the marginal lender. At any time before default, the marginal lender’s expectation of the future
debt-to-asset is constant and given by

Eβt(Xt)
[
Xt+1

∣∣ (Y1, ..., Yt)
]

= λ−1
t+1(0)h−1

t (0)eσ
2
.

The continuum of lenders adjust debt in each period such that the expectation of the future
leverage from the perspective of the marginal lender is invariant. In turn, a marginal lender exists
(and there is no default) as long as this adjustment of debt is possible.

This also explains why the instability level xt can be different from the debt ceiling λ−1
t (0).

Indeed, when debt-to-asset reaches the instability level an ”oracle” can detect that the process is
explosive and expected to reach the debt ceiling. But the default does not happen yet, because a
marginal lender can be found and under her belief the debt-to-asset is not explosive yet. As we will
later show, when agents learn, then the instability level and the debt ceiling coincide: xt = λ−1

t (0).
In this case, the expectation of any lender becomes close to the “oracle”’s expectation. Therefore,
all lenders can detect when the debt-to-asset becomes explosive and default happens at this point.

We now assume that the belief distribution function satisfies (23). Then by Proposition 3.5
we have that the function βt(·) is increasing and convex, and so is the drift function at(·). We can
then fully characterize the regimes of the debt-to-asset process using the fixed points of the drift
function at(x) = λ−1

t+1(0)h−1
t (0)eβt(x)e−µ+σ2

, which incorporates all model parameters.

Proposition 4.3. The debt provision has a mean-reverting regime if and only if for each t the drift
function at(·) either has two fixed points 0 < xt < xt < λ−1

t (0) or a unique fixed point 0 < xt < λ−1
t (0),

in which case we set by convention xt := λ−1
t (0). The stability measure is given by N (σ2 + 1

σ log
xt
xt

).
Moreover, if xt < Xt < λ−1

t (0), then we have E
[
Xt+1

∣∣ (Y1, ..., Yt)
]
> Xt.

If the drift function does not have a fixed point, the debt-to-asset process is always explosive. If
there exist xt, xt as in the proposition, then the debt-to-asset process is a mean-reverting process,
as long as it does not exceed xt. We give its stability measure:

P[Xt+1 < xt | Xt = xt] = P
[ xt

Yt+1e−µ+σ2 < xt
]

= P
[
Yt+1 >

xte
µ−σ2

xt

]
= N (

σ

2
+

1

σ
log

xt
xt

). (28)

The larger the distance between the long-run level and the instability level (in relation to the asset
volatility), the larger the stability measure of the debt when it is in the mean reverting regime. When
the stability measure is low, the debt-to-asset behaves for all practical purposes as an explosive
process. If there is no fixed point of the drift function, then the debt only has an explosive regime.

Figure 7 illustrates the different regimes of the debt-to-asset. If the debt-to-asset process
is in the mean reverting regime, but below xt, the firm will leverage as it has high equity. A
firm whose debt-to-asset is in the region [xt, xt] successfully deleverages by selling assets and
repaying withdrawing lenders. In the explosive regime, it is not possible (under typical returns) to
return to the mean reverting level, and the debt-to-asset is instead moving away from xt towards
the debt ceiling, at which point the firm defaults.

Around the long-run leverage level, a positive fundamental return decreases the debt-to-asset
ratio. Then, lenders increase leverage and push back the ratio to its long-run leverage. This is
achieved by a decrease of the marginal belief, i.e., more pessimists invest. After a sequence of
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Figure 7: The expected future debt-to-asset as a function of the current debt-to-asset. Regimes of
the debt-to-asset.

positive fundamental returns, the marginal belief is low. However, pessimists are the fastest to
exit because their payoffs decrease the fastest under negative fundamental returns. If the debt-to-
asset goes into the explosive regime because of negative fundamental returns, pessimists exit and
would require higher and higher returns to reenter, which will not occur on a typical sample path of
the exogenous fundamental returns. The explosive regime happens due to a spiral of withdrawals
by pessimists.

We end this section by showing that the mean reverting level xt is the level where the net inflow
is zero (in expectation). Such characterization fully justifies calling this level “long-run level” (even
if the long-run level is not a constant and may change in time). Suppose that (1 + r)e−µ+σ2

= 1,
i.e., E( 1

Yt
) = 1

1+r : the expectation of the discount factor on the asset side is the same as the
expectation of the discount factor on the debt side. Note that in this case, the asset grows faster
than the debt (eµ = (1 + r)eσ

2
> (1 + r)). Intuitively, if the debt-to-asset process is mean reverting

to the level xt, then at this point the net debt inflow is zero, i.e. Dt = Dt−1(1 + r) if Xt were
deterministic and equal to xt15. This writes Φ(β(xt)) = xt(1 + r).

Proposition 4.4. Suppose that (1+r)e−µ+σ2
= 1 and that there exists a fixed point 0 < xt < λ−1

t (0)
such that at(xt) = xt. Then Φ(β(xt)) = xt(1 + r), and Dt = Dt−1(1 + r) if Xt = xt. Moreover, for
x > xt, β(x) does not depend on the asset purchase cost α1.

The proof of the Proposition 4.4 relies on the study of the dependence of the drift function on
the asset purchase cost.

Remark 4.5. The proposition states that the long-run leverage xt is solution to the equation
Φ(β(xt)) = xt(1 + r). This is a direct computation that does not rely on the fixed point of the
drift function at(·). It sets instead the much simpler condition of zero net inflow. Because xt is so-
lution to this equation and because β(x) does not depend on the asset purchase costs for x > xt,
it follows that the long-run level xt does not depend on the asset purchase costs.

The important implication is that asset purchase costs can only change the speed of lever-
aging: the higher the asset purchase costs, the higher the speed to reach the long-run leverage
level (the proof shows that α1 → at(·) is increasing). But asset purchase costs do not change
the long-run level and nor do they change the value of the drift function above the long-run level.

15Of course, since Xt is stochastic, on a typical path Xt will oscillate around xt
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Figure 8: Spread (absolute value) between 3-Month AA Financial Commercial Paper and Effective
Federal Funds Rate.

Above that level, we are in a deleveraging phase, so only the liquidation costs are relevant and not
the asset purchase costs (see Figure 7).

5 Model dynamics under real world returns

We illustrate the dynamics of debt capacity in our model when the input is the series of real world
asset returns. Notably, we do not use any data on outstanding debt. We use both a variable
interest rate given by the actual spreads between short term debt rates and t-bill rates and a
constant interest rate, given by the average spread over the period 2001− 2005.16

We do not single out a firm, but we use aggregate data. We use the US Securities Industry
Financial Results available at http://www.sifma.org/research/statistics.aspx for 40 quar-
ters, from 2001 to 2010. The data contains “ Aggregated income statement, selected balance
sheet, and employment data on the U.S. domestic broker-dealer operations of all FINRA mem-
ber firms doing a public business derived from their Financial and Operational Combined Uniform
Single (FOCUS) Report filings”.17 Specifically, we let the fundamental returns Y (0) = 1 and

Y (t) =
Aggregate Revenue FINRA Memberst

Aggregate Revenue FINRA Memberst−1

, t = 1, .., 40. We divide the data into two parts,

and only use the first part, 2001 to 2005, to estimate the asset mean and the asset volatility. This is
to ensure that model parameters are not calibrated using data during the financial crisis. We use
the 3-Month Treasury Bill: Secondary Market Rate as a proxy for the risk-free rate (the outside
option). 18 We use the ”3-Month AA Financial Commercial Paper Rate”19 to calibrate the interest
rate offered to the lenders. The spread is plotted in Figure 8.

In summary, the calibrated model parameters are the following

• T = 40 periods, and δ = 1/4 for the time length of one period.

• Asset return mean µ = 7% and volatility σ = 20%.

• The outside interest rate is set to the 3-Month Treasury Bill (quarterly data series 2001−2010,
average spread 2001− 2005 is 18 bp).

16We use the constant spread to insulate the model predictions from any information included in the actual spreads.
Even under constant spread, the model predicts the collapse in debt capacity observed in the real world data.

17FINRA is responsible for regulating every US broker-dealer. The number of FINRA members in the time frame we
consider averages 4000.

18Monthly data is available at https://fred.stlouisfed.org/series/TB3MS. We aggregate monthly data to obtain
quarterly data. The outside option has been set to zero in the model exposition, but here we use the actual interest rate
data to be consistent with using the returns of the asset as input.

19Monthly data is available at https://fred.stlouisfed.org/series/DCPF3M
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• The interest rate is set to the 3-Month AA Financial Commercial Paper Rate.

The remaining parameters of the model could be calibrated if data was available. At this point,
there is no data that would allow us to infer the belief distribution. We hope that our results would
make a strong case for such data collection. We denote the variance of the belief distribution by
σb. We let Φ(b) = (1−N ((b− µ)/σb)).

Results are robust to variations in the parameters of this distribution, as we let σb ∈ [0.15, 0.4].
Likewise, we will vary the liquidation cost β ∈ [0.08, 0.2] for our ”aggregate” asset, but such costs
can be estimated if the model was applied to a specific firm.

Figure 1a shows the real world dynamics of the debt, specifically the financial outstanding
commercial paper, available at https://fred.stlouisfed.org/series/FINCP. This data is not
used, but plotted there to compare against the dynamics resulting from our model. Figure 1b
shows the dynamics of debt predicted by our model (the corresponding critical belief, debt-to-
asset and the regimes of the debt-to-asset are shown in Figure 9). 20

In particular, as shown in Figure 1b our model predicts the collapse of the financial outstanding
commercial paper in Q1 2008, just before the actual event in Q3 2008 after the fall of Lehman.
The model predicts this collapse both when we use the real world spread series and when we use
the constant spreads. The constant spread is the average spread over the period 2001− 2005 and
thus does not include any information about spreads in the crisis period. The collapse is therefore
not driven by spreads, but by the debt-to-asset moving away from long-run level to the instability
level.

The difference in debt under the actual spreads and under the average spread is minimal.
Moreover, as shown in Figures 9a - 9b, the long-run level and the instability level given by the
model change little when using the actual spreads vs. the average spread. As implied by our the-
ory, debt collapses as leverage has a big deviation from the long-run level towards the instability
level. The only difference from using the actual spreads is the more accurate calculation of the
debt-to-asset Xt. Since spreads vary when the debt-to-asset was well above the mean-reverting
level, it is not surprising that they have very little influence on the outcome of the deleveraging
game: the pessimists’ payoffs are too low at this level of leverage, and they are not very sensitive
to the interest rate. Debt does not recover in our model after the collapse. Because of the con-
vexity of their short put option, the pessimists would have required much higher positive returns to
compensate the negative returns in order to stay with the firm.

In the Appendix A.7, we demonstrate robustness of the model behavior under the real-world
return data for a variety of parameters.

6 Comparative dynamics

In the following sections, we illustrate the dynamic behavior of our model under a variety of param-
eters and a variety of simulated paths of the fundamental trajectory. We assume that the beliefs
are normally distributed around the true mean µ, with variance σb.

Model parameter values in the baseline case. We fix a time horizon of 10 years, and set
δ = 1/4 for the length of one period, i.e., T = 40. This means that lenders observe the firm’s
performance quarterly, and the short-term debt has is rolled over on a quarterly basis. We set
σb = 0.2. The asset and money market parameters are given by an annualized volatility σ = 6%,
an annualized expected asset return µ = 3%, and an annualized short-term interest rate of r = 1%,
both in excess of the risk-free rate. The parameter values µ and σ for the log return distribution are

20The parameters we use here are: σb = 0.2, β = 0.1 (liquidation cost).
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(a) (Model) Debt-to-asset dynamics with real-world
spreads.

(b) (Model) Debt-to-asset dynamics with constant
spread.

Figure 9: Debt collapses as leverage has a big deviation from the long-run level towards the
instability level.

typical values for a diversified bond asset. If the firm is a large bank, the TED spread can be seen
as a proxy for r. Its long term mean has been around 0.3%, but the spread has varied considerably
over time, averaging between 1% and 2% during periods of financial distress such as in 2008 and
2009.

To make the analysis easy to follow, there is an overlapping case in each pair of consecutive
figures, which show the drift function at(x) of the debt-to-asset process for different parameters.

We start by analyzing the impact of the liquidation cost α and the asset purchase cost α1. We
illustrate numerically Proposition 4.4 in Figure 10a. We set the liquidation cost α = 0. We verify
the points in Remark 4.5: 1) The drift function increases with the asset purchase cost (because
the marginal belief function increases with the asset purchase cost); 2) The long run level (the
first fixed point of the drift function) is the same for different asset purchase costs, and the drift
functions coincide above this level. Asset purchase costs have no impact on long-run levels of
the leverage. Of course, since asset purchase costs do lower the asset value, it means that debt
levels are lower so that the long-run leverage is invariant with the purchase costs; 3) Below the
first fixed point of the drift function, i.e., in the leveraging phase, the drift function increases with
purchase costs. Leveraging towards the long-run level is faster when purchase costs are higher.

In the sequel, we set the asset purchase cost to zero. Figure 10b shows the effect of liqui-
dation costs on the drift function. Unlike asset purchase costs, liquidation costs affect the long
run level for the debt-to-asset ratio. One can see that: 1) The first fixed point of the drift function
is lower if liquidation costs are higher. This means that under higher liquidation costs, lenders
impose a lower long-run leverage level; 2) With zero liquidation costs, the ceiling is one. This
means that insolvency and default coincide under zero liquidation costs: the firm defaults when
the debt-to-asset reaches one (its equity is zero). In contrast, when liquidation costs are higher,
the ceiling is below one and the firm defaults while it is solvent (its equity is non zero);

In the next two figures we analyze the role of the belief distribution and the exposure con-
straint. We set the liquidation cost α = 0.08. In Figure 11a we investigate the effect of the variance
of the belief distribution σb on the debt regimes. Larger heterogeneity of the beliefs translates
in both a lower long run leverage and in a higher ceiling. The instability level is the same for
all levels of belief heterogeneity. This means that the stability measure (given in (28)) increases
with the belief heterogeneity as the ratio xt

xt
between the instability level and the long run level is
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(a) Liquidation cost α is zero.

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

x

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

d
ri
ft

 a
1
(x

) 
o

f 
a

s
s
e

t-
to

-d
e

b
t 

x

α = 0

α = 0.08

Long run level

Instability level

Ceiling

(b) Asset purchase cost α1 is zero.

Figure 10: The effect of the asset purchase cost (left) and the liquidation cost (right) on long-run
level, instability level and ceiling. Levels are read where vertical lines intersect the diagonal.

higher. When agents are less certain about the true mean of the asset returns, they impose a
precautionary lower long-run leverage on the firm. At the same time the ceiling is higher so they
allow the firm’s debt-to-asset process to spend a longer time in the explosive regime which makes
the early warning indicator more effective. More belief heterogeneity makes debt more stable.
Under more heterogeneity, capital decreases slower as we go towards more optimistic beliefs.21

As we approach a point mass, the debt provision is most unstable: Assume that the marginal
lender is slightly below the real world mean. Then a very small increase in the marginal lender is
accompanied by a large loss of lender capital.

Next, in Figure 11b, we vary the maximum exposure constraint: lenders scale their maximum
exposure to the borrower by γVt. We set the variance of the belief distribution σb = 0.15. Recall
that the debt capacity of one unit of the firm’s asset is bounded from above by γ, see(2). Therefore
γ is an upper limit on the long run leverage level: we verify that the long run leverage levels are
below the respective values for γ.

As expected, the ceiling increases with γ, as lenders are less constrained. However, it is not
the ceiling that drives debt stability but the ratio between the instability level and the long run level,
see (28). More constraints on lenders’ maximum exposure makes debt more stable. Indeed, the
instability level is the same for all γ considered, while the long run leverage level decreases as γ
decreases. When the lenders are more constrained, they impose a precautionary lower long-run
leverage on the firm. When lenders are less constrained, they allow for higher long-run leverage
of the firm. Debt is more unstable when lenders’ constraints relax.

Finally, we show that existence of an explosive regime depends on liquidation costs. In Figure
12, we show that under zero liquidation costs the debt-to-asset ratio is mean-reverting, and there
is no explosive regime (both for γ = 1.2 > 1 and for γ = 0.8 < 1). Of course, the mean reverting
regime is more stable in the sense of (28) when γ is smaller.

21Around the mean (|x− µ| < σb√
2
) the gaussian density decreases with the variance σb.
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(a) The effect of the belief variance σb.
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Figure 11: The effect of the belief distribution and exposure constraint on long-run level, instability
level and ceiling. Dashed vertical lines mark the long run average. Dotted vertical lines mark the
ceiling.
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Figure 12: Effect of lenders’ vs. effect of liquidation costs.
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6.1 Debt dynamics

We now investigate the dynamics of the balance sheet. For the following simulations we set
σb = 0.2, and α = 0.08. For these parameters, the debt process has both a mean reverting and
an explosive regime. We assume that the company starts with an initial asset value of V0 = 1.
The company’s expected equity at the time horizon T under the (real-world) probability measure is
given by E

[(
VT −DT−1(1 + r)

)
11{τ>T}

]
. We find this value by Monte Carlo simulation to be around

2.1. By raising short-term debt, the company therefore raises its annual expected rate of return
on its initial equity from the fundamental asset’s return of 3% to the rate of 1

10 log 2.1 = 7.4%. This
increase in the expected return rate comes at the expense of introducing default risk; the Monte
Carlo simulation yields a default probability under the real-world measure of around 0.01 over the
10-year period. The corresponding annualized default probability p satisfies (1 − p)10 = 1 − 0.01,
that is approximately p = 0.1%. The expected value of one unit of the fundamental asset at the
time horizon is 1.35, while the expected equity is 2.1. The Monte Carlo results indicate that only
a small fraction of the paths end with default. In the vast majority of paths, for the considered
parameters, the debt-to-asset process stays in the mean-reverting regime for the entire period.

In the figures below, we plot on the left-hand side the sample paths of the cumulative asset
return (or the value of one unit of fundamental asset over time) Ft = Y1, ..., Yt along with the
resulting debt process Dt, the equity process Vt−Dt−1(1 + r). On the right hand side, we plot the
debt-to-asset process (which reflects the marginal belief, also plotted).

Figure 13 below shows a typical sample in which the debt-to-asset process stays in the mean-
reverting regime for the entire period. Figure 14 below selects one of the paths with default, and
shows that on that path the debt-to-asset switches from the mean-reverting regime to the explosive
regime.

Steady state dynamics. For identification of the regimes of the debt-to-asset, we plot the
long-run level xt, the instability level xt and the ceiling. These quantities are deterministic, and
of course coincide in Figures 13b and 14b. We require to be sufficiently far away from the time
horizon to ensure that the system is in the “steady state” and that time to maturity is not a driver of
the debt provision stability (the debt capacity is trivially equal to zero at maturity, because all debt
is repaid at the horizon).

For time-independent spreads, risk free rate and belief distribution, the long-run level xt, the
instability level xt and the ceiling for the debt-to-asset ratio are also time-independent when the
system is away from the time horizon. For the parameters we considered, the dynamics is in
steady state for all but the last two (out of forty) periods.

Studying the stability of the debt-to-asset process necessitates sufficiently many periods to
be far away from the time horizon. When we refer to the collapse in debt capacity, we refer to the
collapse in debt capacity that occurs in ”steady state” and not at maturity, as illustrated in Figure
14a. 22

6.2 Hysteresis of the debt process

Zero liquidation costs. We set α = 0 to insulate the model from the asymmetry in the transaction
costs. We utilize the multi-period structure of our model to demonstrate the path properties of the

22Our model cannot be built directly in steady state: a fixed time horizon is necessary because the arguments to
eliminate the multiplicity of Nash equilibria are based on backward induction, as well as the non-trivial analysis of the
monotonicity properties of the marginal lender’s belief as a function of the debt-to-asset. In a companion working paper,
available upon request, we prove convergence of marginal lender’s belief functions as the time to the horizon increases.
Achieving this convergence corresponds to the “steady state”.

29



0 1 2 3 4 5 6 7 8 9 10

time (years)

0

1

2

3

4

5

6

asset unit value Y
1
 ... Y

t

debt  D
t

equity V
t
 - D

t-1
(1+r)

(a) A typical trajectory of the asset unit value and asso-
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hibit a stationary behavior. In grey the mean reverting
regime (0, xt), with xt the instability level.

Figure 13: Debt dynamics with mean reverting leverage. The dynamics is in “steady state” (the
long-run level, the instability level and the ceiling are time-independent) for all but the last two
periods ( t ∈ [9.5, 10])
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(a) A sample trajectory of asset unit value and associ-
ated balance sheet dynamics in which the firm defaults
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(b) After a sequence of negative fundamental returns,
the debt-to-asset ratio leaves reaches the instability
level. After this the debt capacity collapses, ultimately
leading to the firm’s default. In grey the mean reverting
regime (0, xt), with xt the instability level.

Figure 14: Debt dynamics with default. The dynamics is in “steady state” (the long-run level, the
instability level and the ceiling are time independent) for all but the last two periods (t ∈ [9.5, 10]).
Default happens while in ”steady state”, as the debt-to-asset switches from the mean reverting
regime to the explosive regime as it crosses the instability level.
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Figure 15: Debt process dynamics for zero liquidation cost (α = 0). The diagrams show sample
trajectories for the same model parameters with zero (above) and nonzero (below) realized volatil-
ity. The cumulative fundamental returns are the same at even times, but the realized volatility
causes a downward drift in the debt process.

short-term debt dynamics. Debt presents a hysteresis phenomenon: paths of the fundamental
return with different realized volatilities but with the same cumulative return lead to fundamentally
different values for the debt.

To illustrate the dependence of the debt process on the realized volatility of the fundamental
return process, we chose an annualized volatility of 20%, an annualized expected asset (excess)
return of 3%, the exposure constraint γ = 0.8 and the standard deviation of the belief distribution
σb = 0.2. In Figure 15, we compare the evolution of the debt process Dt for two trajectories with
the same realized fundamental return FT at maturity T (and in fact the same fundamental return
in any even period), but with different realized volatility. The trajectory in the first example is given
by Yt = eR for all t, and in the second example it is given by Yt = eR+σ for t odd and Yt = eR−σ

for t even. The results do not depend on the level of the fundamental value Ft = Y1 · · ·Yt; The
qualitative behavior in the second case remains unchanged if we have Yt = eR−σ for t odd and
Yt = eR+σ for t even.

In Figure 15 a downward trend in debt caused by the realized volatility and which is absent
in the case of zero realized volatility. The problem of debt maturity choice has been studied in He
and Milbradt (2016). Complementary to this work, our results indicate that a critical ingredient in
the debt maturity choice is the response of the lenders’ game to the realized volatility.
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7 Bayesian updating of beliefs

So far we have treated the case when the belief distribution does not change over time. We now
extend the analysis to a Bayesian setup. Each agent believes that the return Yt+1 is log-normal,
with a random drift ν.23 The conditional law of the log-return given ν is log Yt+1|ν ∼ N (ν, σ2). In
the Bayesian setting, the differentiated beliefs become differentiated priors: An agent with belief b
at time t has the prior ν ∼ N (b, σ2

prior,t).
We are in the setting of conjugate priors: 1

σ2
prior,t+1

= 1
σ2
prior,t

+ 1
σ2 . Letting σprior,0 = σprior, we

have after t observations

σ2
prior,t =

σ2
prior

1 + t
σ2
prior

σ2

, (29)

i.e., the variance of the agents’ prior decreases to zero with time. The (inverse of the) parameter
σprior gives the strength of the prior and drives how fast the agents learn. The larger σprior, the
weaker the prior and the faster the updating of the agents’ beliefs. In the case when σprior → 0,
the agents have strong priors, and their prior and posterior distributions coincide. This is the case
of dogmatic beliefs pervasive in the literature.

We now determine the distribution of beliefs Φt. An agent with belief b0 at time zero will have
a posterior distribution after t observations

ν | log Y1, . . . , log Yt ∼ N

 tσ2
prior

σ2 + tσ2
prior

Ȳt +
σ2

σ2 + tσ2
prior

b0︸ ︷︷ ︸
Belief at time t

, σ2
prior,t

 , (30)

with Ȳt the average of the observations, Ȳt =
∑t
i=1 log Yi

t . We now account for the heterogeneity in
the beliefs. If b0 ∼ Φ0 = N (µ, σ2

b ), then from (30) the distribution over the beliefs at time t is

Φt = N

(
tσ2
prior

σ2 + tσ2
prior

Ȳt +
σ2

σ2 + tσ2
prior

µ,
( σ2

σ2 + tσ2
prior

)2
σ2
b

)
.

The standard deviation of the cross-distribution of beliefs Φt decreases to zero at speed
σ2
prior

σ2 .
Thanks to the law of large numbers, Ȳt → µ and the distribution Φt converges to a point mass
around the true mean of the log-return µ. Of course the speed of convergence is controlled by
σprior (and in extremis σprior → 0 we are in the dogmatic case and Φt = Φ0).

The mean of the belief distribution Φt is
tσ2
prior

σ2+tσ2
prior

Ȳt + σ2

σ2+tσ2
prior

µ. It depends on the observed

log-return, but it converges to µ as the number of observations increases. The dependence on Ȳt
complicates the algebra a lot. In particular one cannot express the expected return of an agent
with belief b at time t as in proposition 3.3, since Ȳt will become an additional state variable.

Assumption 7.1. We will assume that the real world drift per period µ is small compared to the
variance of the belief distribution σb: µ� σb.

This assumption is verified when the size of the period is small, and in the numerical results
we will take δ = 1/252, i.e., daily frequency. Under this assumption, the fluctuation of the mean

23To be precise, the drift must be adjusted by the volatility and is ν + σ2

2
.
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of Φt around the true mean µ is small compared to the decrease in the variance of the belief
distribution. We then have the following approximation

Φt ≈ N

(
µ,
( σ2

σ2 + tσ2
prior

)2
σ2
b

)
. (31)

For this approximate distribution in which the variance is time-dependent the entire analysis
goes through as above, with minor modifications for the form of the expected payoff, see Appendix
A.8.

We now analyze numerically debt stability under learning. The firm we have in mind is a fund
or a dealer bank. The speed of learning is driven by the standard deviation of the prior σprior.
We compare the case of dogmatic agents (σprior = 0) with the cases when σprior = 0.05 and
σprior = 0.1 under different values of the exposure constraint γ. We consider here a shorter time
horizon and a daily rollover and observation of the firm’s asset: T = 1 and δ = 1/252. The asset
volatility is σ = 0.25

√
δ, the average log-return is µ = 0.1δ. The standard deviation of the initial

belief distribution is σb = 0.25 and thus we are under Assumption 7.1. The liquidation cost is
α = 0.1.

Learning makes debt more unstable. Figures 19, 20 and 21 show the debt dynamics for
γ = 1 and varying σprior ∈ {0, 0.05, 0.1}. In all cases, the trajectory of the exogenous return Yt is
the same. In the dogmatic case, the long run level of the debt is lowest. Moreover, the instability
level is lower than the debt ceiling. Thus, default has an early indicator.

When agents learn, σprior = 0.05, the long run level increases with time (and with the number
of observations). When agents learn, they allow the firm to have a higher long run leverage.
Importantly, the instability level becomes indistinguishable from the debt ceiling, meaning that
default does not have any early indicators.

These effects are exacerbated in the case σprior = 0.1: the long run leverage increases faster
with learning. As the long run level becomes closer to the debt ceiling, the stability measure for
the debt decreases. This collapse in debt is in contrast to the case with no learning where the debt
recovers. The same results hold for γ = 0.9 (Figures 22 - 23) and γ = 1.1 (Figures 24 - 25).

Learning increases the long-run level of the debt-to-asset. The continuum of agents behave
in equilibrium as one risk-averse agent whose risk aversion is captured by the variance of the
belief distribution. As this variance decreases by learning, the continuum of agents allows to firm
to mean-revert around higher and higher levels of leverage. Because the distance between the
long-run level and the instability level decreases, the measure of debt stability decreases (see
(28)).

At the same time, learning makes any early indicators of default disappear. The intuition is
clear: if all agents had the same belief, there could not be an early indicator of default. Indeed,
as soon as the firm would cross the instability level, there would be an agreement that debt is
explosive and is expected to reach the debt ceiling. Therefore, all lenders would run immediately
when the instability level is crossed. By definition then the instability level and the debt ceiling
would coincide. With learning, as the variance of the agents’ beliefs decreases, the instability level
and the debt ceiling coincide after several observations. In the dogmatic case the instability level is
distinct from the debt ceiling because the marginal lender has a different belief than the real world
drift of the asset (if such a marginal lender can be found). The leverage is not explosive under
the marginal lenders’ belief (by Remark 4.2 a marginal lender has a constant expected leverage).
The early warning indicator is possible because of the difference in the expectation of the marginal
lender and the real world expectation of the future leverage.

So learning has two opposite effects: it makes lenders “smarter” in detecting when leverage
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becomes explosive, but at the same time it makes them (in aggregate) less risk averse and they
allow the firm a much higher long-run leverage level. Overall, learning makes the endogenous
leverage process more unstable.

8 Conclusions

We have endogenized the short-term debt by showing uniqueness of a Nash equilibrium in lever-
aging/deleveraging games with heterogenous lenders. We have shown that the debt-to-asset has
a mean-reverting and an explosive regime that we fully determine.

We constructed a parsimonious dynamic model that quantifies short term debt stability. The
characteristics of the firm’s asset can be estimated from data. The same is true the frequency.
Much work remains to be done in particular to retrieve from data the belief distribution, which is
the critical driver of our results. Our work makes the case to collect additional data that would
allow us to calibrate the of lender’s belief distribution, which we have shown is a critical driver of
debt stability. In an empirical study, we have used as an input to the model the actual fundamental
returns of the aggregate assets of FINRA members (security dealers). Our model, without using
any debt data, predicts the collapse of the short term debt just before the actual event in Q3 2008.
This prediction is robust.

We have extended the model to the case when agents learn the distribution of the asset
return. Learning increases the long run leverage, and at the same time makes debt more unstable.
As agents learn the true mean of the asset return, the early indicator of default disappears.

We have shown that short-term debt has trajectory properties and it can develop negative
drift even in absence of long-term volatility. This hysteresis phenomenon suggests to adjust the
frequency of rollover to the volatility of the asset, so that the debt-to-asset process can mean-
revert. Then short-term debt is stable and can be used effectively.

Having shown the existence of an instability level for the debt-to-asset ratio, perhaps the most
important practical implication emerging out of our study is the timing for intervention strategies.
Such strategies would involve changing the firm’s portfolio in conjunction with a signal to influ-
ence the lenders’ belief distribution. These strategies would need to be implemented as soon as
leverage approaches the instability level.
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A Appendix

All proofs are given in this appendix.

A.1 Proof of Proposition 3.3.

We consider the expected return per dollar from holding the firm’s debt at time t for the period
[t, t+ 1] on the set {τπ > t}, given in (10). Let Ft = σ(Y1, ..., Yt).

Under the measure Pb we have that log Yt+1 ∼ N
(
b− 1

2σ
2, σ2

)
is independent of Ft. Therefore

(9) and a change of measure yield

Rπ,bt = r − Eb
[
11{τπ=t+1}

(
1 + r − ft

(V πt+1

Dπt

)) ∣∣Ft]
= r − (1 + r)Eb

[
11{τπ=t+1}

∣∣Ft]+ f
(
V πt
Dπt
− f−1

t

(
(1 + r)

Dπt−1

Dπt
− 1
))

Eb
[
11{τπ=t+1}Yt+1

∣∣Ft]
= r − (1 + r)Pb

[
τπ = t+ 1

∣∣Ft]+ f
(
V πt
Dπt
− f−1

t

(
(1 + r)

Dπt−1

Dπt
− 1
))

Pb+σ2[
τπ = t+ 1

∣∣Ft]eb,
(32)

where the quantity Dπt−1

Dπt
is well defined by, see Remark 2.7. Recall that, from (19), the default

event {τπ = t+ 1} is equal to
{
Yt+1e

−b < kt
(
b,
Dπt
V πt
,
Dπt−1

V πt

)}
. Set kt = kt

(
b,
Dπt
V πt
,
Dπt−1

V πt

)
. On {τπ > t}

we have
f
(
V πt
Dπt
− f−1

t

(
(1 + r)

Dπt−1

Dπt
− 1
))

= f
(

1
λ−1
t+1(0)ebkt

)
= 1−α

λ−1
t+1(0)ebkt

,

since kt > 0 on {τπ > t} and λ−1
t+1(0) > 0 (see below). Hence (32) reads

Rπ,bt = r − (1 + r)N
(
− d2(kt)

)
+ f

(
V πt
Dπt
− f−1

t

(
(1 + r)

Dπt−1

Dπt
− 1
))
N
(
− d1(kt)

)
eb

= r − (1 + r)N
(
− d2(kt)

)
+ 1−α

λ−1
t+1(0)kt

N
(
− d1(kt)

)
= ht(kt).

Finally we compute, using that ϕ
(
− d1(K)

)
= ϕ

(
− d2(K)

)
K, where ϕ denotes the gaussian

kernel,

h′t(K) = − 1−α
λ−1
t+1(0)K2

N
(
− d1(K)

)
+ 1−α

λ−1
t+1(0)K

ϕ
(
− d1(K)

)
1
Kσ

− (1 + r)ϕ
(
− d2(K)

)
1
Kσ

= − 1−α
λ−1
t+1(0)K2

N
(
− d1(K)

)
−
(
1 + r − 1−α

λ−1
t+1(0)

)
ϕ
(
− d2(K)

)
1
Kσ . (33)

Since βt+1(·) is strictly increasing, λt+1 and λ−1
t+1 are strictly decreasing. By directly plugging

in (16), we have

λt+1

(
1−α
1+r

)
≥ 0,

so we obtain
1−α
1+r ≤ λ

−1
t+1(0). (34)

It follows from (33) that h′t(K) < 0. The limits for K → 0 and K → ∞ follow easily from the
behavior of N .
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A.2 Properties of the strike as a function of the marginal belief

Recall from Proposition 3.3 that ht(K) is strictly increasing in K−1 with ht(K) → −1 for K−1 → 0

and ht(K) → r for K−1 → ∞. In the following, in order to find the solutions to Rπ,βt(X
π
t )

t = 0 we
shall analyze the behavior of the function kt

(
b,Φ(b), Xπ

t

)−1 of the marginal belief b = βt(X
π
t ) for a

given value of Xπ
t .

We now introduce two functions. The first is an upper bound for the marginal belief, or equiv-
alently a lower bound on the necessary debt, that guarantees that the firm survives at time t,
provided that π is a cutoff strategy at time t. We find it by observing that (7) and (15) yield

τπ > t ⇔ 1 ≥ f−1
t

(
(1 + r)Xπ

t − Φ(βt(X
π
t ))
)

⇔ 1 ≥
(
(1 + r)Xπ

t − Φ(βt(X
π
t ))
)
(1− α)−1

⇔ βt(X
π
t ) ≤ Φ−1

(
(1 + r)Xπ

t − (1− α)
)

=: b̄t(X
π
t ) (35)

with the convention Φ−1(x) = Φ−1(0) for x < 0 and Φ−1(x) = −∞ for x ≥ Φ(−∞). Hence

b̄t(X
π
t ) =

{
Φ−1(0) if Xπ

t ∈
[
0, 1−α

1+r

)
Φ−1

(
(1 + r)Xπ

t − (1− α)
)

if Xπ
t ∈

[
1−α
1+r ,

1−α+Φ(−∞)
1+r

]
.

If Xπ
t >

1−α+Φ(−∞)
1+r , the company defaults under any marginal belief.

The second function is defined piecewise on the sets
[
0, 1−α

1+r

)
and

S1 :=
{
x
∣∣x ≥ 1−α

1+r and 1
φ(Φ−1((1+r)x))

+ 1
(1+r)x >

1
1−α

}
,

S2 :=
{
x
∣∣x ≥ 1−α

1+r and 1
1+α1

≤ 1
φ(Φ−1((1+r)x))

+ 1
(1+r)x ≤

1
1−α

}
,

S3 :=
{
x
∣∣x ≥ 1−α

1+r and 1
φ(Φ−1((1+r)x))

+ 1
(1+r)x <

1
1+α1

}
.

It can be expressed via the function Ψ(b) =
1+

φ(b)
Φ(b)

Φ(b) (which is increasing for b ∈ (−∞,Φ−1(0))) as

βmaxt (Xπ
t ) :=


Φ−1(0) if Xπ

t ∈
[
0, 1−α

1+r

)
Ψ−1

(
1

(1+r)Xt−(1−α)

)
if Xπ

t ∈ S1

Φ−1
(
(1 + r)Xt

)
if Xπ

t ∈ S2

Ψ−1
(

1
(1+r)Xt−(1+α1)

)
if Xπ

t ∈ S3

and is shown below to maximize the return of a marginal lender.
The function βmaxt (·) is decreasing on [0,∞). To see this, first note that βmaxt (·) is decreasing

inside each of the sets [0, 1−α
1+r ), S1, S2, and S3. The monotonicity then follows by checking that

βmaxt (·) is continuous at the contact point of [0, 1−α
1+r ) and S1, of S1 and S2, and of S2 and S3.

Proposition A.1. Let π be a cutoff strategy at time t + 1 for some t < T which satisfies (18). For
any Xπ

t < 1−α+Φ(−∞)
1+r , the inverse strike function b 7→ kt

(
b,Φ(b), Xπ

t

)−1 is strictly increasing for
b < βmaxt (Xπ

t ) and strictly decreasing for b > βmaxt (Xπ
t ). It satisfies

limb→−∞ kt
(
b,Φ(b), Xπ

t

)−1
= 0, (36)

limb→b̄t(Xπ
t ) kt

(
b,Φ(b), Xπ

t

)−1
= 0 if Xπ

t ∈
(

1−α
1+r ,

1−α+Φ(−∞)
1+r

)
, (37)
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and its maximal value is given by

mt(X
π
t ) := kt

(
βmaxt (Xπ

t ),Φ
(
βmaxt (Xπ

t )
)
, Xπ

t

)−1
(38)

=



∞ if Xπ
t ∈

[
0, 1−α

1+r

)
eβ
max
t (Xπt )

Φ(βmaxt (Xπ
t ))

(
1− 1

1−α
(
(1 + r)Xt − Φ(βmaxt (Xπ

t ))
))
λ−1
t+1(0) if Xπ

t ∈ S1

eβ
max
t (Xπt )

(1+r)Xt
λ−1
t+1(0) if Xπ

t ∈ S2

eβ
max
t (Xπt )

Φ(βmaxt (Xπ
t ))

(
1− 1

1+α1

(
(1 + r)Xt − Φ(βmaxt (Xπ

t ))
))
λ−1
t+1(0) if Xπ

t ∈ S3.

The maximal value function mt(X
π
t ) is decreasing in Xπ

t .

Proof of Proposition A.1. For simplicity of notation, we shall write Xt = Xπ
t in this proof. We shall

write b̄t and βmaxt for b̄t(Xt) and βmaxt (Xt).
From the definition of kt in Proposition 3.3, we find

kt
(
b,Φ(b), Xt

)−1
=
(

1− f−1
t

(
(1 + r)Xt − Φ(b)

)) ebλ−1
t+1(0)

Φ(b) . (39)

To prove the statement of the proposition, by (39) it suffices to discuss the function

gt(b) :=
(

1− f−1
t

(
(1 + r)Xt − Φ(b)

))
eb

Φ(b)

=
eb

Φ(b)

(
1− ψ(b)

(
(1 + r)Xt − Φ(b)

))
where we defined ψ(b) :=

(
1 − 11{b≥b̃t}α + 11{b<b̃t}α1

)−1 and b̃t := Φ−1
(
(1 + r)Xt

)
. Note that

b̃t < b̄t. Clearly we have gt(b) → 0 for b→ −∞, whence (36). To see (37), note Xt >
1−α
1+r

implies Φ
(
b̄t(X

π
t )
)

= (1 + r)Xt − (1− α) > 0. Now (39) and the equivalence kt
(
b,Φ(b), Xt

)−1 ≥ 0
⇔ b ≤ b̄t(Xt) imply (37) and gt(b) > 0 for all b < b̄t(Xt).

To obtain the maximizer of gt(b), we first compute

g′t(b) =
eb

Φ(b)

(
1 +

φ(b)

Φ(b)

)(
1− ψ(b)

(
(1 + r)Xt − Φ(b)

))
− eb

Φ(b)
ψ(b)φ(b)

=
eb

Φ(b)

((
1 +

φ(b)

Φ(b)

)(
1− ψ(b)(1 + r)Xt

)
+ ψ(b)Φ(b)

)
.

In particular we find

g′t(b̃t−) = eb̃t
((

1 + φ(b̃t)

Φ(b̃t)

)(
1

(1+r)Xt
− 1

1+α1

)
+ 1

1+α1

)
,

g′t(b̃t+) = eb̃t
((

1 + φ(b̃t)

Φ(b̃t)

)(
1

(1+r)Xt
− 1

1−α
)

+ 1
1−α

)
and we note that

g′t(b̃t−) ≥ g′t(b̃t+). (40)

We now consider the following cases.

Case 1) (1 + r)Xt < 1− α.
In this case b̄t = Φ−1(0), g′t(b) > 0 for all b ∈ (−∞,Φ−1(0)) and gt

(
(−∞,Φ−1(0))

)
= (0,∞).

38



Case 2) 1− α ≤ (1 + r)Xt and g′t(b̃t+) > 0. The latter inequality is equivalent to

1
Φ(b̃t)

(
1 + φ(b̃t)

Φ(b̃t)

)(
1− (1+r)Xt

1−α
)

+ 1
1−α = 1

Φ(b̃t)

(
1 + φ(b̃t)

(1+r)Xt

)
− φ(b̃t)

Φ(b̃t)
1

1−α > 0

and hence to 1
φ(Φ−1((1+r)Xt))

+ 1
(1+r)Xt

> 1
1−α , that is Xt ∈ S1.

In this case g′t(b̃t−) ≥ g′t(b̃t+) > 0. We then have for all b < b̃t

g′t(b)
Φ(b)
eb

=
(

1 + φ(b)
Φ(b)

)(
1− ψ(b)(1 + r)Xt

)
+ ψ(b)Φ(b)

which is greater than zero if 1 + α1 − (1 + r)Xt > 0, and if 1 + α1 − (1 + r)Xt ≤ 0

g′t(b)
Φ(b)
eb

=
(

1 + φ(b)
Φ(b)

)(
1− ψ(b)(1 + r)Xt

)
+ ψ(b)Φ(b)

≥
(

1 + φ(b̃t)

Φ(b̃t)

)(
1− ψ(b)(1 + r)Xt

)
+ ψ(b)Φ(b̃t) = g′t(b̃t−)Φ(b̃t)

eb̃t
> 0

because φ(b)
Φ(b) is increasing. So gt(b) is increasing for b < b̃t.

Moreover g′t(b)
Φ(b)
eb

is strictly decreasing for b > b̃t. Since g′t(b̃t+) > 0 and g′t(b) is negative for
b→ b̄t, the function gt(b) achieves a unique maximum at some βmaxt ∈ (b̃t, b̄t) and is increasing for
b < βmaxt and decreasing for b > βmaxt .

From g′t(β
max
t ) = 0 we obtain

(
1 +

φ(βmaxt )
Φ(βmaxt )

)(
1−

(
1−α

)−1
(1 + r)Xt

)
+
(
1−α

)−1
Φ(βmaxt ) = 0

and hence

1 +
φ(βmaxt )
Φ(βmaxt )

Φ(βmaxt )
=

1

(1 + r)Xt − (1− α)

and hence βmaxt = Ψ−1
(

1
(1+r)Xt−(1−α)

)
and

gt(β
max
t ) =

eβ
max
t

Φ(βmaxt )

(
1−

(
1− α

)−1(
(1 + r)Xt − Φ(βmaxt )

))
.

Moreover, g′t(βmaxt ) = 0 implies

d

dXt
gt(β

max
t ) =

∂

∂Xt
gt(β

max
t ) + g′t(β

max
t )

d

dXt
βmaxt =

∂

∂Xt
gt(β

max
t ) < 0. (41)

Case 3) 1 − α ≤ (1 + r)Xt and g′t(b̃t−) ≥ 0 ≥ g′t(b̃t+). Similarly as in the previous case,
we check that the latter inequality is equivalent to 1

1+α1
≤ 1

φ(Φ−1((1+r)Xt))
+ 1

(1+r)Xt
≤ 1

1−α , that is
Xt ∈ S2.

We then have g′t(b) > 0 for all b < b̃t; this is clear if (1+r)Xt ≤ 1+α1, and if (1+r)Xt > 1+α1

it follows from

g′t(b)
Φ(b)
eb

=
(

1 + φ(b)
Φ(b)

)(
1− ψ(b)(1 + r)Xt

)
+ ψ(b)Φ(b)

>
(

1 + φ(b̃t)

Φ(b̃t)

)(
1− ψ(b)(1 + r)Xt

)
+ ψ(b)Φ(b̃t) = g′t(b̃t−)Φ(b̃t)

eb̃t
≥ 0.

Since g′t(b̃t+) ≤ 0 and g′t(b)
Φ(b)
eb

is strictly decreasing for b > b̃t, the function gt(b) is decreasing
for b > b̃t and thus achieves its unique maximum at βmaxt = b̃t. Also

Φ(βmaxt ) = (1 + r)Xt.
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and hence βmaxt = Φ−1
(
(1 + r)Xt

)
. We have βmaxt < b̄t, and

gt(β
max
t ) =

eβ
max
t

Φ(βmaxt )
=

eβ
max
t

(1 + r)Xt
.

Case 4) 1− α ≤ (1 + r)Xt and g′t(b̃t−) < 0. Similarly as in the previous cases, we check that
the latter inequality is equivalent to 1

φ(Φ−1((1+r)Xt))
+ 1

(1+r)Xt
< 1

1+α1
, that is Xt ∈ S3.

In this case g′t(b̃t+) ≤ g′t(b̃t−) < 0. We then have for all b > b̃t

g′t(b)
Φ(b)
eb

=
(

1 + φ(b)
Φ(b)

)(
1− 1

1−α(1 + r)Xt

)
+ 1

1−αΦ(b)

≤
(

1 + φ(b̃t)

Φ(b̃t)

)(
1− 1

1−α(1 + r)Xt

)
+ 1

1−αΦ(b̃t) = g′t(b̃t+)Φ(b̃t)

eb̃t
< 0.

So gt(b) is decreasing for b > b̃t.
We thus have βmaxt := sup

{
b
∣∣ g′t(b) ≥ 0

}
< b̃t. Also βmaxt > −∞ since g′t(b) is increasing for b

sufficiently small. We then have for all b < βmaxt

g′t(b)
Φ(b)
eb

=
(

1 + φ(b)
Φ(b)

)(
1− ψ(b)(1 + r)Xt

)
+ ψ(b)Φ(b)

>
(

1 +
φ(βmaxt )
Φ(βmaxt )

)(
1− ψ(b)(1 + r)Xt

)
+ ψ(b)Φ(βmaxt ) = g′t(β

max
t )

Φ(βmaxt )

eβ
max
t

= 0,

so the unique maximum of gt(b) is achieved for some βmaxt < b̃t.
From g′t(β

max
t ) = 0 we obtain

(
1 +

φ(βmaxt )
Φ(βmaxt )

)(
1−ψ(b)(1 + r)Xt

)
+ψ(b)Φ(βmaxt ) = 0 and hence

1 +
φ(βmaxt )
Φ(βmaxt )

Φ(βmaxt )
=

1

(1 + r)Xt − (1 + α1)

and hence βmaxt = Ψ−1
(

1
(1+r)Xt−(1+α1)

)
and

gt(β
max
t ) =

eβ
max
t

Φ(βmaxt )

(
1−

(
1 + α1

)−1(
(1 + r)Xt − Φ(βmaxt )

))
.

Moreover, g′t(βmaxt ) = 0 implies

d

dXt
gt(β

max
t ) =

∂

∂Xt
gt(β

max
t ) + g′t(β

max
t )

d

dXt
βmaxt =

∂

∂Xt
gt(β

max
t ) < 0. (42)

Combining cases 1) to 4) proves the behavior of b 7→ kt
(
b,Φ(b), Xt

)−1.
To show the monotonicity of the maximum value functionmt(·), first note thatmt(·) is decreas-

ing on the sets S1 and S3 (by (41) and (42)) and on S2 (since βmaxt (·) is decreasing). The overall
monotonicity of mt(·) then follows from the continuity of βmaxt (·), and the resulting continuity of
mt(·), at the contact point of [0, 1−α

1+r ) and S1, of S1 and S2, and of S2 and S3.

Combining the behavior of the strike above and Proposition 3.3 we obtain the following corol-
lary.

Corollary A.2. The function b 7→ ht

(
kt
(
b,Φ(b), Xt

))
is strictly increasing for b < βmaxt (Xπ

t ) and
strictly decreasing for b > βmaxt (Xπ

t ). Moreover

limb→−∞ ht

(
kt
(
b,Φ(b), Xπ

t

)−1
)

= −1,

limb→b̄t(Xπ
t ) ht

(
kt
(
b,Φ(b), Xπ

t

)−1
)

= −1 if Xπ
t ∈

(
1−α
1+r ,

1−α+Φ(−∞)
1+r

)
,
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In particular, equation (22)
ht

(
kt
(
βt,Φ(βt), Xt

))
= 0.

wither has no roots or one root −∞ < β̂t < ∞ = β̄t on Xπ
t ∈

[
0, 1−α

1+r

)
, and has two roots

−∞ < β̂t < βt < β̄t on Xπ
t ∈

(
1−α
1+r ,

1−α+Φ(−∞)
1+r

)
.

A.3 Proof of Proposition 3.5

We prove the statement by backward induction. At time t = T the claim is trivial. Let now t < T .
By the induction hypothesis, λ−1

t+1(0) is well defined. Let x such that (22) has a solution. By (39)
we have from the definition of βt

1
λ−1
t+1(0)h−1

t (0)
= kt

(
βt(x),Φ

(
βt(x)

)
, x
)−1

1
λ−1
t+1(0)

=: g
(
βt(x), x

)
(43)

with
g
(
b, x
)

=
(

1− f−1
t

(
(1 + r)x− Φ(b)

))
eb

Φ(b)

and since βt(x) is the smallest solution to (22), we have ∂
∂bg
(
βt(x), x

)
> 0 by the monotonic-

ity property of the function b 7→ kt
(
b,Φ(b), Xπ

t

)−1, see Proposition A.1. Clearly we also have
∂
∂xg
(
b, x
)
< 0. Taking d

dx in (43), we obtain

0 =
∂

∂b
g
(
βt(x), x

) ∂
∂x
βt(x) +

∂

∂x
g
(
βt(x), x

)
,

which implies d
dxβt(x) > 0.

To show convexity, we set

ψ(b, x) :=
(
1− 11{b≥Φ−1((1+r)x)}α+ 11{b<Φ−1((1+r)x)}α1

)−1 (44)

and compute

d

dx
βt(x) = − ∂

∂x
g
(
βt(x), x

)/ ∂
∂b
g
(
βt(x), x

)
=

(1 + r) eβt(x)

Φ(βt(x))ψ(βt(x), x)

eβt(x)

Φ(βt(x))

((
1 + φ(βt(x))

Φ(βt(x))

)(
1− ψ(βt(x), x)(1 + r)x

)
+ ψ(βt(x), x)Φ(βt(x))

)
=

1 + r(
1 + φ(βt(x))

Φ(βt(x))

)(
ψ(βt(x), x)−1 − (1 + r)x

)
+ Φ(βt(x))

.

We have to show that the denominator of the last expression is decreasing in x. This is clear if
ψ(βt(x), x)−1 − (1 + r)x ≤ 0 (since Φ is log-convex). If ψ(βt(x), x)−1 − (1 + r)x > 0, note that for
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all x with (1 + r)x− Φ(βt(x)) 6= 0

d
dx

((
1 + φ(βt(x))

Φ(βt(x))

)(
ψ(βt(x), x)−1 − (1 + r)x

)
+ Φ(βt(x))

)
= ∂
∂b

( φ(βt(x))
Φ(βt(x))

)
β′t(x)

(
ψ(βt(x), x)−1 − (1 + r)x

)
−
(
1 + φ(βt(x))

Φ(βt(x))

)
(1 + r)− φ(βt(x))β′t(x)

=(1 + r)
∂
∂b

(
φ(βt(x))
Φ(βt(x))

)(
ψ(βt(x),x)−1−(1+r)x

)
−φ(βt(x))(

1+
φ(βt(x))
Φ(βt(x))

)(
ψ(βt(x),x)−1−(1+r)x

)
+Φ(βt(x))

−
(
1 + φ(βt(x))

Φ(βt(x))

)
(1 + r)

=(1 + r)

(
∂
∂b

(
φ(βt(x))
Φ(βt(x))

)
−
(

1+
φ(βt(x))
Φ(βt(x))

)2)(
ψ(βt(x),x)−1−(1+r)x

)
−
(

1+
φ(βt(x))
Φ(βt(x))

)
Φ(βt(x))−φ(βt(x))(

1+
φ(βt(x))
Φ(βt(x))

)(
ψ(βt(x),x)−1−(1+r)x

)
+Φ(βt(x))

=(1 + r)

(
φ′(βt(x))
Φ(βt(x))

−1−2
φ(βt(x))
Φ(βt(x))

)(
ψ(βt(x),x)−1−(1+r)x

)
−
(

1+2
φ(βt(x))
Φ(βt(x))

)
Φ(βt(x))(

1+
φ(βt(x))
Φ(βt(x))

)(
ψ(βt(x),x)−1−(1+r)x

)
+Φ(βt(x))

< 0

by (23).

A.4 Proof of Theorem 3.6

Using that Rπ,bt is monotone increasing in the belief b, we easily check the following lemma, which
states that a stable coalition at time t will necessarily have a monotonicity property. For those
paths in which the firm survives, if a member of the coalition invests, then the members of the
coalition with higher beliefs will fully invest their available capital.

Lemma A.3. Consider a strategy π and (y1, ..., yt) ∈ Γt(π). Then for any stable coalition B ⊆ B (in
the sense of Definition 2.8) we have

πt(b, y1, ..., yt) = 1, ∀b ∈ B, b ≥ inf{b | πt(b, y1, ..., yt) > 0}.

We now proceed to the proof of the theorem.
Step 1) We prove that π(t) is a Nash equilibrium at time t, by backward induction on t = T, ..., 0.

The assertion is clear for t = T . Let now t < T . Since π(t) is of the form π(t+1), it follows from the
induction hypothesis that π(t) is a Nash equilibrium at time t+ 1. By the monotonicity of b→ Rπ

(t),b
t

and the definition of β̂t(·), we have

Rπ
(t),b
t > 0 ⇔ b > β̂t

(
xπ

(t)

t (y1, ..., yt)
)

Rπ
(t),b
t < 0 ⇔ b < β̂t

(
xπ

(t)

t (y1, ..., yt)
)
.

Therefore π(t)
t (b, ·) = 11

{Rπ
(t),b
t (·)>0}

and we automatically verify the second part of Definition 2.6.

Step 2) We now show that π(t) is strongly coalition proof at time t as in Definition 2.8. Let
B ⊆ B and π̃ a strategy which satisfies π̃s(·, ·) = π

(t)
s (·, ·) for all s 6= t, and π̃t(b′, ·) = π

(t)
t (b′, ·) for

all b′ ∈ B\B, and is stable. Fix (y1, ..., yt) ∈ [0,∞)t. Note that xπ
(t)

t (y1, ..., yt) = xπ̃t (y1, ..., yt) =: xt.
We consider the following cases, which correspond to points a) and b) in Definition 2.8.

a) (y1, ..., yt) /∈ Γt(π
(t)). We need to show that yt /∈ Γt(π̃). Assume for a contradiction that

yt ∈ Γt(π̃). Then there must exist a lender with belief bmin ∈ B with bmin < β̂t(xt) who invests
(since otherwise the liquidity capacity ft(V π̃

t ) + Dπ̃
t − (1 + r)Dπ̃

t−1 under π̃ would be less than the
liquidity capacity ft(V π(t)

t )+Dπ(t)

t − (1+r)Dπ(t)

t−1 under π(t), which is negative by (7)). Since the firm

42



survives at time t under π̃, by Lemma A.3, it follows that under π̃ all lenders inB with belief b ≥ bmin
fully invest. By (21), any lender b ∈ B with b < β̂t(xt) has negative expected return Rπ̃,bt . Hence
any such lender has an incentive to withdraw from the coalition, and so the coalition is not stable
in contradiction to our assumption. Hence yt /∈ Γt(π̃), and thus we showed that Γt(π̃) ⊆ Γt(π

(t)).
b) (y1, ..., yt) ∈ Γt(π̃). Since the firm survives at time t under π̃, then by Lemma A.3 there

exists β̃t such that under π̃ all lenders in B with belief b ≥ β̃t fully invest. So we can consider
two cases. If β̃t ≤ β̂t(xt), then all lenders in [β̃t, β̂t(xt)] have negative expected return, so the
coalition is not stable. Hence the marginal belief β̃t under π̃ is above β̂t(xt). Then all lenders in
[β̂t(xt), β̃t]∩B have zero return for the period [t, t+ 1] under π̃, but positive expected return for the
period [t, t+ 1] under π(t), and thus Rπ

(t),b
t ≥ Rπ̃,bt .

A.5 Weakly dominated strategies

The intuition behind weakly dominated strategies is as follows. Consider a lender who chooses
her strategy under uncertainty about the other lenders’ strategy, with the only assumption that if
the firm survives, then the other lenders’ strategy is an equilibrium. Strategy B is said to be weakly
dominated by strategy A if A gives the lender a strictly better payoff than strategy B, no matter what
the other lenders’ equilibrium turns out to be, and moreover, she is indifferent between strategy
A and strategy B if the outcome of the game will lead to the default of the firm. Given that in
games with a continuum of players no change of one player’s strategy will prompt the others to
change their strategy, this definition is natural and the more usual iterated elimination of dominated
strategies is not necessary.

We first note that the payoff at time t of any lender is the same for those strategies which lead
to the default of the firm. Indeed, for a new lender, in case of default she will receive back her
investment in full, whatever this investment is, so her payoff is zero. Similarly, an old lender will
receive the firm’s proceeds in proportion to her old investment, so she is indifferent among those
strategies leading to default at time t. It suffices to define weakly dominated strategies as those for
which there exists a lender who can find another strategy which gives her a strictly better payoff
in all equilibria with survival of the firm. The “weak” dominance refers to the indifference to those
strategies in which the firm defaults.

Definition A.4 (Weak dominance). Let t < T . We say that a strategy π is weakly dominated
on a trajectory with default at time t, (y1, ..., yt) ∈ Γt−1(π) \ Γt(π)24 if there exists a belief b and a
strategy ξ for this belief such that

ξRπ
∗,b
t > πt(b)R

π∗,b
t

for any Nash equilibrium π∗ at time t with (y1, ..., yt) ∈ Γt(π
∗).

A.6 Proof of Theorem 3.7.

We prove the statement by backward recursion on t. Fix ε > 0. Clearly the statement is true for
t = T with marginal belief function

β̂T (·) ≡ ∞

since πT (b, ·) ≡ 0 for all b.

24This reads (y1, ..., yt) /∈ Γt(π) and (y1, ..., yt−1) ∈ Γt−1(π).
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For the induction step, let t < T , and assume that the statement is true for t + 1. Let π be
a ε-coalition proof Nash equilibrium at time t in which agents do not use dominated strategies.
By the induction hypothesis, we have that π is a cutoff strategy at time t + 1 with marginal belief
function β̂t+1(·), and

τπ > t+ 1 ⇔ λ̂t+1(Xπ
t+1) ≥ 0.

We will now show that π is a cutoff strategy at time t with marginal belief function β̂t(·)
Step 1) Suppose that (Y1, ..., Yt) ∈ Γt(π), that is we are in the set {τπ > t}. Then by (11) we

have

πt(b, Y1, ..., Yt) =

{
1 if Rπ,bt > 0,

0 if Rπ,bt < 0.
(45)

Moreover, the monotonicity of b→ Rπ,b implies that there exists a unique value b∗t satisfying

Rπ,bt > 0 ⇔ b > b∗t

Rπ,bt < 0 ⇔ b < b∗t
(46)

and by (20) (using Proposition 3.3 with λt+1(·) = λ̂t+1(·) and the associated functions ĥt, k̂t and
β̂t) we have

ĥt

(
k̂t

(
b∗t ,

Dπt
V πt
, Xπ

t

))
= 0. (47)

Combining (45) and (46) we obtain
Dπ
t = V π

t Φ(b∗t ).

Plugging this into (47) yields

ĥt

(
k̂t

(
b∗t ,Φ(b∗t ), X

π
t

))
= 0. (48)

By definition of β̂t(·), we also have

ĥt

(
k̂t

(
β̂t(X

π
t ),Φ(β̂t(X

π
t )), Xπ

t

))
= 0.

Suppose, for a contradiction, that the marginal belief b∗t defined in (46) is not equal to the
smallest solution β̂t(Xπ

t ) of equation (48). Then by Corollary A.2, we have b∗t > βmaxt (Xπ
t ), and

ĥt

(
k̂t
(
b,Φ(b), Xπ

t

))
> ĥt

(
k̂t
(
b∗t ,Φ(b∗t ), X

π
t

))
= ĥt

(
k̂t

(
β̂t(X

π
t ),Φ(βt(X

π
t )), Xπ

t

))
= 0,

∀b ∈ B :=
(
b∗t − ε, b∗t

)
∩
(
β̂t(X

π
t ), b∗t

)
.

It follows that if all lenders b ∈ (b∗t − ε, b∗t ) choose to fully invest, then these lenders have a
strictly positive expected return, since in this case the total debt is given by V π

t Φ(b∗t − ε) and we
have

ĥt

(
k̂t

(
b,Φ(b∗t − ε), Xπ

t

))
> ĥt

(
k̂t

(
b∗t − ε,Φ(b∗t − ε), Xπ

t

))
> 0, ∀b ∈ B.

Note that the set B is non-empty whenever ε is sufficiently small.
Then compared to π, all lenders b in the coalition B are strictly better off by choosing to fully

invest, given that all other lenders in B \ B keep their investment strategy in the equilibrium π.
Moreover, the above inequality shows that the ε-coalition is stable since no lender in B has an
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incentive to unilaterally reduce the maximum investment. Therefore, π is not ε-coalition proof, in
contradiction to our assumption.

This proves that b∗t = β̂t(X
π
t ). Together with (45) and (46) we obtain that π is a cutoff strategy

at time t with marginal belief function β̂t(·).
Step 2) It remains to show τπ > t ⇔ λ̂t(X

π
t ) ≥ 0 and for this it is sufficient to show “⇐”.

So we assume that λ̂t(Xπ
t ) ≥ 0 and we suppose for a contradiction, that τπ = t, i.e.,

(Y1, ..., Yt) /∈ Γt(π).

Then it follows that the liquidity capacity is negative, and thus by (8),

1− α11{t<T} +
Dπ
t

V π
t

− (1 + r)Xπ
t < 0.

It follows that
πt(b, Y1, ..., Yt) < 1

for some b > β̄t(X
π
t ), where β̄t(X

π
t ) defined in (35) is the upper bound on the marginal be-

lief which guarantees survival at time t (otherwise we would have Dπt
V πt
≥ Φ(β̄t(X

π
t )) and thus

1− α11{t<T} +
Dπt
V πt
− (1 + r)Xπ

t ≥ 1− α11{t<T} + Φ(β̄t(X
π
t ))− (1 + r)Xπ

t = 0). Therefore the set

B :=
{
b > β̄t(X

π
t )
∣∣πt(b, Y1, ..., Yt) < 1

}
is non-empty.

We now check the conditions of Definition A.4 and show that strategy of any b ∈ B is weakly
dominated on the fundamental trajectory (Y1, ..., Yt) /∈ Γt(π). By (11), any Nash equilibrium in
which the firms survives is a cutoff strategy with an associated marginal belief function βt. Corol-
lary A.2 and λ̂t(Xπ

t ) ≥ 0 then imply that βt ∈ [β̂t, β̄t].
The set of equilibria in which the firm survives is thus included in the set of cutoff equilibria π∗

with marginal belief function at time t βt ∈ [β̂t, β̄t]. A direct verification of Definition A.4 shows that
any strategy of the lenders b in B is weakly dominated on the trajectory (Y1, ..., Yt) by the following
strategy

ξ = 1 ∀b ∈ B.

This follows since for any b ∈ B we have b > β̂t. Then, for any cutoff equilibrium π∗ with marginal
belief function at time t βt ∈ [β̂t(Xt), β̄t] (the set of marginal beliefs [β̂t(Xt), β̄t] is a superset
of the set of Nash equilibria in which firm survives) we have Rπ

∗,b
t > Rπ

∗,βt
t = 0. Therefore

ξRπ
∗,b
t > πt(b)R

π∗b ,b
t , since in this case full investment maximizes the payoff under belief b. Then π

has weakly dominated strategies in contradiction to our assumption.

Proof of Proposition 3.8.
We have τ > t if and only if

ht

(
kt
(
βt,Φ(βt), Xt

))
= 0. (49)

has a solution βt < ∞. The reverse implication follows from Corollary A.2 since in this case
βt < β̄t, which is the upper bound on the marginal belief that guarantees survival. Conversely, if
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τ > t, the marginal belief must satisfy (49) with βt <∞, using Remark 2.7. We obtain

τ > t ⇔ (49) has a solution βt <∞

⇔ ht

(
kt

(
βmaxt (Xt),Φ

(
βmaxt (Xt)

)
, Xt

))
≥ 0

⇔ ht
(

1
mt(Xt)

)
≥ 0

⇔ 1
mt(Xt)

≤ h−1
t (0)

⇔ mt(Xt) ≥ 1
h−1
t (0)

where we used Proposition A.1 for the second equivalence. Hence we showed (25).

Proof of Proposition 4.4. We prove the statement by backward induction. We let the liquidation
cost α and we vary the asset purchase α1 > 0. We let β(α1) the marginal belief function under the
asset purchase cost α1, and λ(α1) the liquidity capacity function. From (43), the marginal belief
function solves

1

(λ
(α1)
t+1 )−1(0)h−1

t (0)
= g
(
α1, β

(α1)
t (x), x

)
(50)

with
g
(
α1, b, x

)
=
(

1− ψ(α1, (1 + r)x− Φ(b))
(
(1 + r)x− Φ(b)

))
eb

Φ(b) ,

see (44) for the definition of ψ. We now show by induction that (λ
(α1)
t+1 )−1(0) is independent of α1

and that β(α1)
t (x) is independent of α1 for x > xt. The claim is clearly true for t = T . We now let

t < T and assume that the claim is true for t + 1. Note that the function ht is independent of α1,
so the lefthand side of (50) is independent of α1.

For fixed b and x, g
(
α1, b, x

)
is decreasing in α1. Since ∂

∂bg
(
α1, β

(α1)
t (x), x

)
> 0, we have

that α1 → β
(α1)
t (x) is increasing. Let now xα1

t such that (1 + r)xα1
t = Φ(β

(α1)
t (xα1

t )). Such a
point exists and is unique because β(α1) is increasing and Φ is decreasing, and the limits are
Φ(β

(α1)
t (0)) > 0 and Φ(β

(α1)
t (∞)) = 0. Note now that for all α1 > 0, and x > xα1

t we have that
(1 + r)x > Φ(β

(α1)
t (x)). Therefore, in a neighborhood of β(α1)

t (x), we have that (1 + r)x > Φ(b),
i.e., there are only liquidations, and not asset purchases. Thus the solution β(α1)

t (x) to (50) does
not depend on α1 for x > xα1

t . Therefore, the fixed points xα1
t coincide for all α1, and we denote

the common value x0
t : for all α1 > 0, (1 + r)x0

t = Φ(β
(α1)
t (x0

t )), and β(α1)
t (x) = β0

t (x) for x > x0
t .

From (16) it is immediate to see that λα1
t (x) > 0 for x < x0

t . Since β
(α1)
t (x) = β0

t (x), for
x > x0

t , it follows that λα1
t (x) = λ0

t (x) (the liquidity capacity function does not depend on the asset
purchase cost for x > x0

t ), and so (λ
(α1)
t )−1(0) is independent of α1. This completes the induction

step.
It remains now to show that the point x0

t is the smallest fixed point of at(x) = x. We can
write, from the first line of (26) that a(x) = Φ(β(x))

1−f−1
t

(
(1+r)x−Φ(β(x))

)e−µ+σ2
. We then have a(x0

t ) =

Φ(β(x0
t ))e

−µ+σ2
= (1 + r)e−µ+σ2

x0
t = x0

t , under the assumption that (1 + r)e−µ+σ2
= 1, so x0

t is a
fixed point of the drift function.

Suppose that x0
t is not the smallest fixed point of the drift function aα1(·). Then, the smallest

fixed point depends on α1. Given (27) and the monotonicity of α1 → βα1(x), it follows that α1 →
aα1(x) is increasing. So the smallest fixed point of the drift function, xα1

t , is increasing as a function
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Figure 16: (Model) Debt dynamics under real-world returns. γ = 0.6, β = 0.1, σb = 0.2.

of α1. In words, the long-run level increases with the asset purchase costs. We now exploit the
fact that xα1

t is an long-run level to prove the contradiction.
We have that xα1

t < x0
t and let Xt ∈ (xα1

t , x
0
t ). At the same time, since x0

t is the first point
where there are debt outflows, it follows that at Xt there are debt inflows. Under cost α1, the
process will revert to the lower level xα1

t , so it will decrease.
Let ε = Dt −Dt−1(1 + r) > 0. Then the next period’s asset position is Vt+1 = (Vt + ε1)Yt, with

ε1 = ε′

1+α1
. Therefore, E[ Dt

Vt+1
− Dt−1

Vt
] = εe−µ+σ2

Vt−ε1Dt−1

Vt(Vt+ε)
< 0, because the asset to debt ratio will

revert to a smaller level than Xt. Therefore, we have that Xt = Dt−1

Vt
> (1 + α1)e−µ+σ2

= 1+α1
1+r .

Given that Xt < x0
t , it follows that 1+α1

1+r < x0
t , and (because (1 + r)x < Φ(β(x)) for x < x0

t )
1 + α1 = (1 + r)1+α1

1+r < Φ(β(1+α1
1+r )). It now suffices to take α1 → ∞ and use that the right hand

side of the inequality decreases in α1 to violate the inequality and obtain the desired contradiction.
Therefore x0

t is the smallest fixed point of the drift function.

A.7 Robustness of predictions under real-world fundamental returns

In this section, we plot additional dynamics for the debt under the real-world return data, as we
vary of parameters.

In these plots we set γ = 0.6. We note that the long-run level of leverage is lower than for the
case γ = 0.7 in Section 5. Debt reaches a maximum of approximately 2. In unreported results,
as we let γ = 1, the maximum debt and the long-run leverage increases. We also note that more
heterogeneity of the belief distribution (captured by the standard deviation σb) makes the long-run
level lower, and thus the maximum debt is lower in this case. The long-run level (and the maximum
debt) is also lower when the liquidation costs increase. Despite variations in the actual level of debt
and the long run leverage, all paths look qualitatively similar. In particular, the prediction of the debt
collapse is robust.

A.8 Expected payoffs with learning

We let k̄t = k̄t
(Dπt
V πt
,
Dπt−1

V πt

)
=

Dπt
V πt

λ−1
t+1(0)

(
1−f−1

t

(
(1+r)

Dπt−1
V πt
−D

π
t

V πt

)) as in (19).

In the Bayesian setting, agent b believes that the real world drift of the asset return has a prior
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Figure 17: (Model) Debt dynamics under real-world returns. γ = 0.6, β = 0.1, σb = 0.15.

Figure 18: (Model) Debt dynamics under real-world returns. γ = 0.6, β = 0.15, σb = 0.15.
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distribution centered around b. We thus integrate the payoff in (20) with respect to the prior:

Rπ,bt =

∫
ν

1√
2πσprior,t

e
− (ν−b)2

2σ2
prior,t ht

(
e−ν k̄t

)
dν

= r − (1 + r)

∫
ν

1√
2πσprior,t

e
− (ν−b)2

2σ2
prior,tN

(
− d2(e−ν k̄t)

)
dν

+

∫
ν

1√
2πσprior,t

e
− (ν−b)2

2σ2
prior,t

1− α
λ−1
t+1(0)e−ν k̄t

N
(
− d1(e−ν k̄t)

)
dν

= r − (1 + r)N
(
− d2(e−bk̄t)/

√
1 +

σ2
prior,t

σ2

)
+

1− α
λ−1
t+1(0)k̄t

eb+σ
2
prior,t/2N

((
− d1(e−bk̄t)−

σ2
prior,t

σ

)
/

√
1 +

σ2
prior,t

σ2

)

= r − (1 + r)N
(
− d2(kt)/

√
1 +

σ2
prior,t

σ2

)
+

1− α
λ−1
t+1(0)kt

eσ
2
prior,t/2N

((
− d1(kt)−

σ2
prior,t

σ

)
/

√
1 +

σ2
prior,t

σ2

)
. (51)

We can write the expected return using

hupdatedt (K) := r − (1 + r)N
(
− d2(K)/

√
1 +

σ2
prior,t

σ2

)
+

1− α
λ−1
t+1(0)kt

eσ
2
prior,t/2N

((
− d1(K)−

σ2
prior,t

σ

)
/

√
1 +

σ2
prior,t

σ2

)
. (52)

In the particular case of dogmatic beliefs (σprior,t = 0) we recover the exact form of (20). The
recursion in Definition 3.4 goes through (using hupdatedt ) and the marginal belief βt is obtained as
the smallest solution to the equation

hupdatedt

(
kt
(
βt(X

π
t ),Φt(βt(X

π
t )), Xπ

t

))
= 0, (53)

where the time dependent belief distribution Φt is given in (31).
The marginal belief βt corresponds to the unique equilibrium, as all proofs in Section 3.2 go

through. The drift of the debt-to-asset is then given by (27). Proposition 4.3 gives the long-run
level, the instability level as in the case without learning. We can now use computed levels for the
leverage and demonstrate in Figures 19-25 the decrease in stability with the speed of learning.
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Figure 19: Debt and leverage dynamics: σprior = 0 (dogmatic), γ = 1.
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Figure 20: Debt and leverage dynamics: σprior = 0.05, γ = 1.
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Figure 21: Debt and leverage dynamics: σprior = 0.1, γ = 1.
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Figure 22: Debt and leverage dynamics: σprior = 0 (dogmatic case), γ = 0.9.
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Figure 23: Debt and leverage dynamics: σprior = 0.05, γ = 0.9.
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Figure 24: Debt and leverage dynamics: σprior = 0, γ = 1.1.
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Figure 25: Debt and leverage dynamics: σprior = 0.05, γ = 1.1.
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