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Abstract

The National Resident Matching program seeks a stable matching of medical stu-

dents to teaching hospitals. With couples, stable matchings need not exist. Neverthe-

less, for any student preferences, we show that each instance of a matching problem

has a ‘nearby’ instance with a stable matching. The nearby instance is obtained by

perturbing the capacities of the hospitals. Given a reported capacity kh for each hos-

pital h, we find a redistribution of the slot capacities, k∗h, satisfying |kh − k∗h| ≤ 2 for

all hospitals h and
∑

h kh ≤
∑

h k
∗
h ≤

∑
h kh + 4, such that a stable matching exists

with respect to k∗.

Keywords: stable matching, complementarities, Scarf’s lemma

JEL classification: C78, D47

1 Introduction

Each year, about 20,000 medical school graduates are matched to teaching hospitals via the

National Resident Match Program (NRMP).1 This service has been in operation since 1952

and its high rates of participation and longevity is ascribed to the fact that the matching

produced is stable (Roth [1984]). Stability means no doctor-hospital pair can improve their

outcomes by matching with each other outside the NRMP. Absent stability, a pair who find

a mutually beneficial match compared to the one delivered by the centralized market will

abandon the market, triggering a chain of exits that may cause the market to collapse.

∗Krannert School of Management, Purdue University, nguye161@purdue.edu
†University of Pennsylvania, rvohra@seas.upenn.edu
1http://www.nrmp.org/wp-content/uploads/2014/04/Main-Match-Results-and-Data-2014.pdf
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When each doctor submits a separate preference list, stable matchings exist and can be

found using the Deferred Acceptance (DA) algorithm (Gale and Shapley [1962]). However,

in the presence of couples who submit joint preference lists over pairs of hospitals, a stable

matching need not exist, which could lead to the unraveling of the centralized market (see

Roth [1984]). Roth and Peranson [1999] proposed a heuristic modification of the DA algo-

rithm to accommodate couples’ preferences. It has, without fail, returned matches that are

stable with respect to reported preferences.

Kojima et al. [2013] and Ashlagi et al. [2014] explain this success within a large market

with random preferences and a vanishingly small proportion of couples. In the same model

Ashlagi et al. [2014] show that as the proportion of couples increases, a stable matching does

not exist with high probability. In the NRMP, the proportion of couples is between 5% and

10%, but elsewhere, the proportion of couples is as high as 40% (see Biró and Klijn [2013]).

Moreover, resident matching is not the only setting with a ‘couples’ problem. Biró et al.

[2013] points to the task of assigning high school teachers in Hungary to pairs of majors.

In this paper we propose an entirely different approach that does not rely on appeals to

scale, randomness or a small proportion of couples.2 To bypass the problem of nonexistence

of a stable matching, we assume that hospital capacity constraints are ‘soft’. In particular,

we show that for any instance of the stable matching problem with couples, our algorithm

finds a stable matching with respect to a ‘nearby’ instance, which is obtained by altering the

initial capacities of the hospitals.

Adjusting the capacities of hospitals is not uncommon. The NRMP allows hospitals to

choose if they wish to be matched with an even or odd number of students. Thus, a hospital

can choose to reduce its capacity by 1. In fact, slots are sometimes reallocated between

hospitals.3 Further, in some specialties where supply outstrips demand, slots go unfilled. In

these cases, hospitals have ‘work arounds’, one of which is to use the money that would have

2Our approach applies to more general complementarities.
3https://www.acponline.org/advocacy/where_we_stand/assets/iii4-redistribution-

graduate-medica-education-slots.pdf
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gone to the unfilled slot to incentivize existing doctors to ‘pick up the slack’.

To formalize the notion of nearby, call a matching α-feasible if the number of slots

allocated by each hospital to doctors differs (up or down) from its actual capacity by at

most α. Our iterative rounding (IR) algorithm returns a 2-feasible stable matching that

neither decreases the total number of slots nor increases it by more than 4 (Theorem 2.1).

This guarantee does not depend on any restriction in the preferences of doctors (single or

otherwise) and is independent of the size of the instance.

Regarding a possible increase of at most 4 slots in total, every additional resident, ac-

cording to the American Medical Association, costs about $100,000 on average. The bulk of

the funding for such positions comes from the US Government via Medicaid. Currently, the

total expenditure on resident training is upward of $10 billions.4

A reduction of up to 2 slots in a small hospital’s capacity could be dramatic. In internal

medicine, for example, the number of slots can be as small as 4 and as large as 30.5 However,

programs with a small number of slots tend to be concentrated in rural areas. Couples

participating in the NRMP are advised to apply to urban areas with many hospitals so as

to increase their chances of obtaining positions close to each other. Our algorithm has the

property that if no couple applies to a rural hospital, then that rural hospital’s capacities

are unchanged (Theorem 2.2).

Preliminary simulations of the IR algorithm suggest that only a very small fraction of

hospitals see a change in their capacities.6 The first set of experiments is based on 200

randomly generated instances involving 270 doctors, 18 hospitals and the proportion of

couples ranging from 10% to 90%.

The total capacity of hospitals is equal to the number of applicants. Hospitals were

4These numbers are from an AMA pamphlet in support of the current approach to funding res-
idency programs. http://savegme.org/wp-content/uploads/2013/01/graduate-medical-education-

action-kit.2-3.pdf
5See http://www.nrmp.org/wp-content/uploads/2015/05/Main-Match-Results-and-Data-

2015_final.pdf.
6A comprehensive test of the IR is beyond the scope of this paper. The results we report are based on

work in progress jointly with Dengwang Tang and Vijay Subramaniam.
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randomly assigned to one of 5 regions in such a way that each region had at least one hospital.

The total number of slots for a hospital in region i (i = 1, 2, . . . , 5) is proportional to 1/i

(i.e. follows a Zipf distribution). Slots within the region are assigned with equal probability

among the hospitals. This is designed to mimic the fact that hospitals in metropolitan areas

have significantly more slots than those in rural areas.

Hospitals have the same randomly generated priority ordering over individual doctors.

Doctors and couples’ preferences are generated to mimic features of reported preferences.

Single doctors’ preferences are based on the ‘popularity’ of the hospitals, and couples are

assumed to prefer hospitals in the same region rather than different regions. Appendix A

describes in more details how these preferences were generated.

The table below provides summary statistics of the proportion of hospitals that see a

change in capacity for varying proportions of couples. The margin of error for the 95%

confidence interval is displayed in brackets.

% hospitals with capacity adjustment (95% confidence interval MoE)

% couples no change +1 position -1 position +2 position -2 position

10% 97.78% (2.04) 1.03% (1.40) 1.14% (1.47) 0.03% (0.24) 0.03% (0.24)

30% 92.61% (3.63) 3.42% (2.52) 3.75%(2.63) 0.19% (0.61) 0.03% (0.24)

50% 85.53% (4.88) 6.53% (3.42) 7.22%(3.59) 0.53% (1.00) 0.19 % (0.61)

70% 80.64% (5.48) 7.89%(3.74) 9.53%(4.07) 1.36% (1.61) 0.58% (1.06)

90% 75.72% (5.94) 9.89%(4.14) 11.86% (4.48) 1.75% (1.82) 0.78 % (1.22)

The proportion of hospitals with a capacity of 3 or less that saw a change in their capacity

is very small. One has to increase the fraction of couples to see this. For example, at 30%

couples, on average at most 2% of hospitals with a capacity of 2 or smaller saw a change in

their capacity.

The second set of experiments are on 1000 instances involving 500 doctors, kindly pro-

vided by Peter Biró. These instances are known to have stable matchings because couples

are endowed with weakly responsive preferences (see Klaus and Klijn [2005]). This is done to
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determine how well the IR algorithm performs on instances where a stable match is known

to exist.7 The IR algorithm always returns an exact stable matching on these instances.

Biró et al. [2013] report that their implementation of the Roth and Peranson algorithm fre-

quently fails to terminate in a stable matching on these instances when a high proportion of

couples are present. In their experiments, with at least 175 couples, the Roth and Peranson

algorithm fails to find a stable matching in at least 90% of the 1000 instances.8

Unlike all prior algorithms employed in matching problems (with the exception of Biró

et al. [2013]), our algorithm does not use the DA algorithm introduced in Gale and Shapley

[1962]. It employs, instead, a combination of Scarf’s lemma (Scarf [1967]) and the iterative

rounding method, developed in Lau et al. [2011] and Nguyen et al. [2016]. In the first stage,

Scarf’s lemma is used to extend the notion of stability to fractional matchings as well as to

identify a fractional matching that is stable.9 In the second stage, this fractional matching

is carefully rounded into an actual matching such that stability is preserved.10

Below, we discuss the related literature. In Section 2, we give a formal definition of the

stable matching problem with couples. Section 3 states Scarf’s lemma and formulates the

matching problem in a way to invoke the lemma. Section 4 outlines the IR in this context.

Section 5 concludes. Proofs are given in the Appendix.

Related work. Roth [1984] establishes the non-existence of a stable matching when some

agents are couples. Subsequently, the more general problem of matching in the presence of

complementarities has become an important topic. See Biró and Klijn [2013] for a brief

survey. The literature has taken four approaches to circumventing the problem of non-

existence.

7The Roth and Peranson algorithm is not guaranteed to find a stable matching if one exists.
8The need to deal with a large proportion of couples arises in settings like assigning teachers to pairs of

courses in Hungary (see Biró et al. [2013]).
9Biró et al. [2013] also use Scarf’s lemma and in their simulations report how often the matching returned

is integral.
10Our approach, while constructive, relies on Scarf’s lemma, which is PPAD complete, Kintali [2008].

Thus, it has a worst-case complexity equivalent to that of computing a fixed point. This is not a barrier
to implementation. For example, building on Budish [2011], a course allocation scheme that relies on a
fixed-point computation has been proposed and implemented at the Wharton School.
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• Restrict couple’s preferences to ensure the existence of a stable matching (Cantala

[2004], Klaus and Klijn [2005], Pycia [2012], and Sethuraman et al. [2006].)

These restrictions rule out very many plausible preferences.

• Argue that instances of non-existence are rare in large markets.

Kojima et al. [2013] and Ashlagi et al. [2014] show that in a setting where applicant

preferences are drawn independently from a distribution, as the size of the market

increases and the proportion of couples approaches 0, the Roth and Peranson algorithm

terminates in a stable matching. But, Ashlagi et al. [2014] shows that when the

proportion of couples is positive, the probability that no stable matching exists is

bounded away from 0 even when the market’s size increases. The results of Azevedo

and Hatfield [2015] as well as Che et al. [2015] imply that stable matchings with

complementaries exist with a continuum of agents on one side.

• Ignore the indivisibility of agents and provide interpretations of ‘fractional’ stable

matchings (Dean et al. [2006], Aharoni and Holzman [1998], Aharoni and Fleiner [2003],

Király and Pap [2008], and Biro and Fleiner [2016]).

Dean et al. [2006] is closest to this paper. It solves a restricted instance of the stable

matching problem with couples. In that instance, couples prefer to be together, rather

than apart, and a hospital must accept either both members of the couple or none.

This restriction considerably simplifies the problem because each blocking constraint

only involves the preferences of a single hospital. In fact, in practice, many sources

advise couples not to apply to the same specialty at a hospital to avoid being sched-

uled in such a way that they do not see each other. Dean et al. [2006] adapt the DA

algorithm to identify a stable matching that is 2-feasible. They are unable to bound

the aggregate increase in capacity.

• Modify the notion of stability (Klijn and Masso [2003], Jiang and Tan [2014], and

Manlove et al. [2016].)
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The modifications need not capture the original spirit of the notion of stability.

2 Matching with Couples and Main Result

In this section we describe the standard matching model with couples, that is studied, for

example, in Roth [1984] and Kojima et al. [2013]. Let H be the set of hospitals, D1 be the

set of single doctors, and D2 the set of couples. Let D be the set of all doctors listed as

individuals. Denote the outside option of each doctor, couple and hospital by ∅.

Each single doctor in D has a strict preference ordering over H and her outside option.

Each couple in D has a strict preference ordering over ordered pairs of hospitals as well as

their outside option. The need for ordered pairs arises because couples will have preferences

over which member is assigned to which hospital. We say a hospital or an ordered pair of

hospitals is acceptable to a single doctor or a couple, if they are ranked above the outside

option in the doctor and couple’s preference, respectively.

Each hospital h ∈ H has a fixed capacity kh > 0. The preference of a hospital h over

subsets of doctors is assumed to be responsive. This means that h has a strict priority

ordering �h over elements of D and its outside option. A doctor ranked above the outside

option by the priority ordering is said to be acceptable for hospital h.11

A matching µ is an assignment of each single doctor to a hospital or his/her outside

option, an assignment of couples to at most two positions (in the same or different hospitals)

or their outside option, such that the total number of doctors assigned to any hospital h

does not exceed its capacity kh.

A matching satisfies individual rationality if all hospitals receive only acceptable doctors,

and all doctors and couples are assigned to acceptable choices.

A matching µ can be ‘blocked’ in three different ways. First, by a pair (d, h) such that

d ∈ D1 prefers h to µ(d) and h would select d possibly over a doctor currently assigned to

it. Second, by a couple, c ∈ D2 and a hospital h such that the couple prefers to be assigned

11To avoid trivialities we assume that there is at least one acceptable doctor for each hospital.
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to h over their current assignments and h would accept them, possibly over some of its

current assignments. Third, by a couple and two distinct hospitals. In this case, the couple

would prefer to be assigned to the two hospitals (one to each) over their current assignment

and each of the hospitals would accept a member of the couple over at least one of their

current assignment. A matching µ is stable with respect to a capacity vector k if µ

is individually rational and cannot be blocked in any of the three ways just described. A

formal definition and further discussion of stability appear in Appendix B and D, where we

show that our approach actually finds a matching satisfying a stronger stability condition

than the standard one described above.

Our main result is the following:

Theorem 2.1 Suppose each doctor in D1 has a strict preference ordering over the elements

of H ∪ {∅}, each couple in D2 has a strict preference ordering over H ∪ {∅} ×H ∪ {∅}, and

each hospital has responsive preferences. Then, for any reported capacity vector k, the IR

algorithm returns a k∗ and a stable matching with respect to k∗, such that maxh∈H |kh−k∗h| ≤

2. Furthermore,
∑

h∈H kh ≤
∑

h∈H k
∗
h ≤

∑
h∈H kh + 4.

We don’t know if the bound on individual hospitals can be improved to maxh∈H |kh−k∗h| ≤ 1.

In appendix G.1 we outline why our method cannot yield such a result.

Recall from Section 1 that our preliminary simulations show that only a small fraction of

hospitals see changes in capacity. Furthermore, if one restricts the preferences of the couples,

some hospitals will see no change in capacity. To illustrate, note that couples participating

in the NRMP are usually advised to avoid isolated hospitals so as to increase their chances

of obtaining positions close to each other. These isolated hospitals usually have fewer slots

and the theorem below says that their capacities will not be altered.

Theorem 2.2 Let HR be the set of hospitals that receive no applications from couples, then,

the IR algorithm can be modified so that in addition to the guarantees in Theorem 2.1, k∗h = kh

for all h ∈ HR.
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In the remainder of the paper, we provide the proof of Theorem 2.1. The proof of Theorem 2.2

is based on similar ideas and may be found in Appendix H.

3 Scarf’s Lemma and Fractional Stable Matching

To state Scarf’s lemma, we need the following definition which is closely related to the notion

of stability.

Definition 3.1 Let Q be an n×m nonnegative matrix with at least one non-zero entry in

each row and q ∈ Rn
+. Associated with each row i ∈ {1, .., n} of Q is a strict order �i over the

set of columns j for which Qi,j > 0. A vector x ≥ 0 satisfying Qx ≤ q dominates column j

of Q if there exists a row i such that
∑m

j=1Qijxj = qi and k �i j for all k ∈ {1, ..,m} such

that Qi,k > 0 and xk > 0. In this case, we also say x dominates column j at row i.

To interpret this definition it is helpful to consider the case when Q is a 0-1 matrix.

Associate each row of Q with an agent and interpret each column to be the characteristic

vector of a coalition of agents. Hence, Qij = 1 means that agent i is in the jth coalition.

Then, �i can be interpreted as agent i’s preference ordering over all the columns/coalitions

of Q that contain agent i. Each non-zero component of a vector x such that Qx ≤ q

corresponds to a coalition. To interpret domination, consider a coalition, S, not selected by

x. If x dominates this coalition it means that there is at least one agent, i ∈ S, who strictly

prefers all of the coalitions in the support of x that includes it, over S.

We use the following version of Scarf’s lemma, which can be found in Király and Pap

[2008] as well as an unpublished paper of Scarf [1965]:

Lemma 3.1 (Scarf [1967]) Let Q be an n × m nonnegative matrix and q ∈ Rn
+. Then,

there exists an extreme point of {x ∈ Rm
+ : Qx ≤ q} that dominates every column of Q.

Scarf [1967] gives an algorithm for finding a dominating extreme point.

To understand the connection of domination to stability, it is helpful to consider an

example.
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Example 1 Consider an instance with two hospitals (h1, h2), each with capacity 1, two

single doctors (d1, d2), and no couples. This is the setting of Gale and Shapley [1962]. The

preferences are as follows: d1 �h1 d2; d1 �h2 d2; h2 �d1 h1;h2 �d2 h1.

We will describe the set of feasible matchings as the solution to a system of inequalities.

The constraint matrix of this system will be the matrix Q that will be used when invoking

Scarf ’s lemma.

Introduce variables x(di,hj) ∈ {0, 1} for i ∈ {1, 2}; j ∈ {1, 2} where x(di,hj) = 1 if and only

if di is assigned to hj and zero otherwise. In the 4×4 matrix, Q, below, each row corresponds

to an agent (a hospital or a doctor), and each column corresponds to a doctor-hospital pair.

An entry Qij of the matrix Q is 1 if and only if the agent corresponding to row i is a member

of the coalition corresponding to column j. Otherwise, Qij = 0. Qx ≤ q models the capacity

constraints of the hospital and the constraints that each doctor can be assigned to at most

one hospital. In this example q = 1. For each row i of Q, the strict order on the set of

columns j for which Qij 6= 0 is the same as the preference ordering of agent i. Specifically,

we have the following system:



(d1,h1) (d1,h2) (d2,h1) (d2,h2)

h1 1 0 1 0

h2 0 1 0 1

d1 1 1 0 0

d2 0 0 1 1


· x ≤



1

1

1

1


; order :

column1 � column3

column2 � column4

column2 � column1

column4 � column3.

Every integer solution to Qx ≤ 1 corresponds to a matching and vice versa. Notice,

x = (1, 0, 0, 1)T corresponds to the matching (d1, h1); (d2, h2). It is not stable because it

is blocked by (d1, h2). In the language of Scarf ’s lemma, x = (1, 0, 0, 1)T is not a dominating

solution because x does not dominate the column corresponding to (d1, h2). The solution

x = (0, 1, 1, 0)T is a dominating solution and corresponds to a stable matching.

By the Birkhoff-von Neumann theorem, every non-negative extreme point of the system
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Qx ≤ 1 is integral. Therefore, it follows by Scarf ’s lemma that a stable matching exists. It is

easy to see that the conclusion generalizes to more than two single doctors and unit-capacity

hospitals.

We now show how to apply Scarf’s lemma to the problem of matching with couples.

For each single doctor d and hospital h, that are mutually acceptable, let x(d,h) = 1 if d is

assigned to h and 0 otherwise. Similarly, for each couple c ∈ D2 and distinct h, h′ ∈ H, such

that (h, h′) is acceptable to c and the first and second member of c are acceptable to h and

h′, respectively, let x(c,h,h′) = 1 if the first member of c is assigned to h and the second is

assigned to h′. Let x(c,h,h′) = 0 otherwise.12 Finally, for a couple c and a hospital h that are

mutually acceptable, let x(c,h,h) = 1 if both members of the couple are assigned to hospital

h ∈ H and 0 otherwise. Every 0-1 solution to the following system is a feasible matching

and vice versa.∑
d∈D1

x(d,h) +
∑
c∈D2

∑
h′ 6=h

x(c,h,h′) +
∑
c∈D2

∑
h′ 6=h

x(c,h′,h) +
∑
c∈D2

2x(c,h,h) ≤ kh ∀h ∈ H (1)

∑
h∈H

x(d,h) ≤ 1 ∀d ∈ D1 (2)

∑
h,h′∈H

x(c,h,h′) ≤ 1 ∀c ∈ D2 (3)

Let Q be the matrix whose entries are the coefficients of the system (1-2-3). In (1-2-

3), each agent (single doctor, couple and hospital) is represented by a single row. Each

column/variable corresponds to a coalition of agents (an assignment of a single doctor to a

hospital or a couple to a pair of hospital slots, that are mutually acceptable).

We need each of the rows in (1-2-3) to have an ordering over the columns that are in the

support of that row. This is clearly true for the rows associated with a single doctor and a

couple as we can just use their preference ordering over the hospitals (and pairs of hospitals

in the case of couples).

12Note that x(c,h,h′) does not represent the same thing as x(c,h′,h).
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It is not true for the rows associated with hospitals. To apply Scarf’s lemma, each hospital

h must have an ordering over columns associated with coalitions involving either a single

doctor or a couple and the hospital h. We use hospital h’s priority ordering, �h, to generate

an ordering �∗h with the property that domination with respect �∗h corresponds to stability

in the sense defined.

Hospital h will order these columns based on its ranking of the corresponding doctors

assigned to h. If the column corresponds to an assignment of both members of a couple to h,

then, h’s ranking of this column depends on the ranking the ‘worst’ member of the couple, as

determined by �h. Under this ordering there can be ties between columns that correspond

to different ways a couple is assigned. For example, one member is assigned to h, while the

other is assigned elsewhere. To break the ties between these columns, h uses the preference

ordering of the couple. We denote by �∗h this new ordering. We illustrate the construction

of �∗h in the following example. A formal definition of �∗h is given in Appendix C.

Example 2 Suppose two hospitals h, h′, one couple c = (d1, d2), and a single doctor, d3.

The priority ordering of h is d1 �h d3 �h d2. Consider the order of hospital h for the columns

corresponding to x(c,h,h′), x(c,h′,h), x(c,h,h), and x(d3,h). In the coalition (c, h, h′), d1 is assigned

to h; in (c, h′, h), d2 is assigned to h; in (d3, h), d3 is assigned to h, and in (c, h, h) both d1

and d2 are assigned to h. The ordering �∗h ranks (c, h, h) based on h’s priority ordering of

the worst member, which is d2. Thus,

(c, h, h′) �∗h (d3, h) �∗h (c, h′, h) ∼ (c, h, h).

The tie between (c, h′, h) and (c, h, h) is broken based on the preference ordering of c. Namely,

(c, h′, h) �∗h (c, h, h) if and only if (h, h′) �c (h, h).

Under the ordering �∗h , we obtain the following result. Its proof is given in Appendix E.

12



Lemma 3.2 Let x̄ be a dominating solution of (1-2-3). If x̄ is integral, then x̄ is a stable

matching for the matching with couples problem.

If the extreme points of (1-2-3) are integral, then, by Scarf’s lemma, one of these is

dominating. By Lemma 3.2, this matching will be stable. Unfortunately, (1-2-3) is not an

integral polytope. The example below, from Klaus and Klijn [2005], shows that there need

be no integral dominating extreme point when couples are present. This explains the need

for the rounding step in our algorithm discussed in Section 4.

Example 3 We have two hospitals (h1, h2) each with capacity 1, one couple (d1, d2) and

one single doctor (d3). The preferences of each are listed below:

h1: d1 �h1� d3 �h1 ∅ �h1 d2 h2: d3 �h2� d2 �h2 ∅ �h2 d1

c = {d1, d2}: (h1, h2) �(d1,d2) (∅, ∅) d3: h1 �d3 h2.

System (1-2-3) for this example appears below. Not all possible variables are included because

some assignments can be ruled out from the preferences alone. It is straightforward to verify

that every integer solution to the system below corresponds to a matching of doctors and

couples to hospitals.



(c,h1h2) (d3,h1) (d3,h2)

h1 1 1 0

h2 1 0 1

c=d1d2 1 0 0

d3 0 1 1


· x ≤



1

1

1

1


; order :

column1 � column2

column3 � column1

column1

column2 � column3

The preference list of hospitals, single doctors, and couples gives us an order for each

row of the matrix over the columns whose corresponding entries are positive. There is no

ordering for the third row as this row contains a single non-zero entry.

It is straightforward to check that this system does not have an integral dominating solu-

tion. Its only dominating extreme point solution is (1/2, 1/2, 1/2)T .

13



4 Iterative Rounding Algorithm

This section introduces the IR algorithm used to obtain a near-feasible stable matching

from a fractional dominating solution. The IR algorithm starts from a dominating extreme

point (which may be fractional) and iteratively rounds it into a dominating integral solution.

This will produce a stable matching of doctors to hospitals that may violate the capacity

constraints of some of the hospitals. Our main result shows that the violation is not too

large.

Let x̄ be a dominating extreme point of (1-2-3). Under allocation x̄, some hospitals can

be under-demanded. However, we can, with the introduction of dummy doctors, assume

without loss that positions at every hospital are fully allocated. See Appendix F.2 for a

formal proof. For economy of exposition, let H be the constraint matrix associated with

hospital constraints (1). Then, (1) can be expressed as Hx̄ = k.

The IR algorithm will round x̄ into an integral x∗ such that Hx∗ = k∗, where k∗ is close

to k. For the matching corresponding to x∗ to be stable with respect to k∗, we need x∗ to

satisfy the properties in the following lemma whose proof is given in Appendix F.1.

Lemma 4.1 Let x̄ be a fractional dominating extreme point of (1-2-3) and x∗ ≥ 0 be an

integral solution satisfying:

(i). For a single doctor d and a hospital h, if x̄(d,h) = 0 then x∗(d,h) = 0. Similarly, for a

couple c and hospitals h, h′, if x̄(c,h,h′) = 0 then x∗(c,h,h′) = 0.

(ii). For a single doctor d, if
∑

h x̄(d,h) = 1, then
∑

h x
∗
(d,h) = 1. Similarly, for any couple c,

if
∑

h,h′ x̄(c,h,h′) = 1, then
∑

h,h′ x∗(c,h,h′) = 1.

Let k∗ = Hx∗; then, x∗ is a stable matching with respect to k∗.

Property (i) ensures that the support of x∗ is contained within the support of x̄ and

therefore, x∗ will also be dominating. Property (ii) ensures that if a single doctor or couple

is fully assigned under x̄, then they are fully assigned under x∗. Both are needed to ensure

that the rounded solution x∗ continues to be a dominating solution with respect to the new
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hospital capacities. Recall that in the definition of domination, all components of x̄ are

dominated via a binding constraint. Property (ii) ensures that if a constraint corresponding

to a doctor or a couple binds under x̄, then it continues to bind under x∗.

Before describing the IR algorithm that rounds a dominating solution x̄ to an x∗ satisfying

Lemma 4.1, we provide some intuition. All integral (0-1) components of x̄ will remain fixed.

The fractional components of x̄ are rounded up to 1 or down to 0. This may lead to the

violation of the capacity constraints. The extent of the violation for a given hospital h

depends on the number of fractional components of x̄ associated with h. The essence of the

argument is that there must be a hospital with only a small number, two in fact, of fractional

components of x̄ associated with it. How can that be? If it were not so, every hospital

capacity constraint must contain within its support at least three fractional components of

x̄. However, each component of x̄ appears in at most two hospital constraints. The nub of

the argument is that there are simply not enough fractional components to go around.

This shows that we can ensure that the capacity of at least one hospital is not violated

by more than 2. How can we guarantee this for all hospitals? We treat the already rounded

variables as constants, ignore the capacity constraint of the one hospital whose capacity

is violated and resolve the linear program. By the argument above, there will be another

hospital with a small number of fractional components. The algorithm continues until all

components are integral.

The Algorithm: To describe the IR algorithm for our matching problem, let x̄ be a dom-

inating extreme point of (1-2-3), and let D0, D1 be the matrices that correspond to the

constraints of (2)-(3) that are binding, slack under x̄, respectively. To maintain property (ii)

of Lemma 4.1, x̄ is iteratively rounded into x∗ so that all intermediate solutions satisfy

D0 · x = 1;D1 · x ≤ 1;x ≥ 0. (4)

We maintain D0 · x = 1 so that condition (ii) of Lemma 4.1 holds. Condition (i) of Lemma

4.1 is maintained because all zero components of x̄ remain zero. It is an important feature
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of the algorithm that whenever any component of x̄ becomes integral, it remains fixed at

that value.

To limit the aggregate capacity of hospitals we impose an additional constraint on ag-

gregate capacity:
∑

d,h x(d,h) +
∑

c,h,h′ 2x(c,h,h′) ≤
∑

h kh. We write this constraint in matrix

form as a · x ≤∑
h kh, where a(d,h) = 1; a(c,h,h′) = a(c,h,h) = 2.

Denote by Hh the row vector of H corresponding to h ∈ H. The IR starts with x̄ that

satisfies (2)-(3) as well as the following:

Hh · x̄ = kh for all hospital h and a · x̄ ≤
∑
h

kh. (5)

The constraints of (5) will gradually be discarded during the execution of the algorithm.

Call a constraint in (5) active if it has not yet been eliminated.

The IR algorithm is described in Figure 1 in which we use the following notation. For a

vector x, denote by dxe the vector whose ith component is dxie. Similarly, bxc is the vector

whose ith component is bxic. Thus, the ith component of dxe − bxc is 1 if the corresponding

component of x is fractional and 0 otherwise.

We use the instance from example 3 to illustrate the IR algorithm.

Example 4 From example 3, we know that x̄ = (1/2, 1/2, 1/2)T is the only dominating

extreme point. The couple is assigned to (h1, h2) with weight 1/2 and the single doctor 3 is

assigned to h1, h2 with weight 1/2, each.

Beginning with x̄, we see that the constraint corresponding to doctor d3 binds. The con-

straints corresponding to h1, h2 and the aggregate constraint all bind. Each hospital capacity

constraint satisfies the elimination criteria. Eliminate the capacity constraint associated with

h1. The active constraints now consist of the aggregate constraint and the capacity constraint

of h2. None of the variables is integral. Thus, in Step 2, we solve the following linear program

to get a new extreme point.
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Step 0 Start from x := x̄ a dominating solution satisfying (4) and (5).
Initialize the active constraints to be all the constraints in (5).

Step 1 If x is integral, stop; otherwise, among the active constraints that bind at the solution
x, we eliminate one of them. The rule for selecting which constraint to eliminate is
described:

– Choose any binding hospital constraint, Hh · x = kh, such that Hh · (dxe − bxc) ≤ 3
and eliminate it.

– If no binding hospital constraint can be eliminated, check if there are at most 2
non-binding constraints among (4) such that each contains at least one fractional
variable. If so, eliminate the aggregate capacity constraint.

If no constraint can be found to eliminate, stop, x must be integral. If a constraint is
eliminated, denote by Ax ≤ b the system of remaining (active) constraints in (5).

Step 2 Find an extreme point z̄ to maximize the number of slots allocated:

max a · z : zi = xi if xi is either 0 or 1(fix the integral components)

D0 · z = 1;D1 · z ≤ 1; z ≥ 0 (doctor/couple constraints as in (4))

Az ≤ b (active hospital constraints).

Step 3 Update x to be the extreme point solution z̄ found in step 2. Update D0 to include
the new constraints from (4) that become binding at z̄ from step 2. Update D1 to remove
the new constraints from (4) that become binding at z̄ from step 2. Return to step 1.

Figure 1: IR algorithm
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max 2x(c,h1h2) + x(d3,h1) + x(d3,h2)

st : x(d3,h1) + x(d3,h2) = 1 (doctor d3’s constraint to maintain (ii) in Lemma 4.1)

x(c,h1h2) ≤ 1 (constraint for couple c)

x(c,h1h2) + x(d3,h2) = 1 (constraint for hospital h2)

2x(c,h1h2) + x(d3,h1) + x(d3,h2) ≤ 2 (aggregate constraint)

The solution is again x(c,h1h2) = 1
2
; x(d3,h1) = 1

2
; x(d3,h2) = 1

2
.

With this solution, the IR algorithm goes to the next iteration. Hospital h2’s capacity

constraint binds and satisfies the elimination criteria. Eliminate it. In the next iteration we

solve the following linear program.

max 2x(c,h1h2) + x(d3,h1) + x(d3,h2)

st : x(d3,h1) + x(d3,h2) = 1 (doctor d3’s constraint to maintain (ii) in Lemma 4.1)

x(c,h1h2) ≤ 1 (constraint for couple c)

2x(c,h1h2) + x(d3,h1) + x(d3,h2) ≤ 2 (aggregate constraint)

The solution is x(c,h1h2) = 1
2
; x(d3,h1) = 1; x(d3,h2) = 0. Now, variables x(d3,h1) and x(d3,h2)

are integral and fixed. x(c,h1h2) is the only variable, and x(c,h1h2) ≤ 1 is the only constraint.

Solving this, we obtain the final solution x(c,h1h2) = x(d3,h1) = 1; x(d3,h2) = 0. While integral,

it only violates the discarded constraint associated with hospital h1 by exactly 1.

Remark. The decision to eliminate the capacity constraint associated with h1 was arbi-

trary. We could have eliminated the constraint corresponding to h2 instead. The resulting

solution would have violated hospital 2’s capacity constraint instead. This flexibility allows

one to prioritize one hospital over another based on the relative ‘softness’ of their capacity

constraints. The IR algorithm can also prioritize hospitals through the choice of objective

function in Step 2 of the algorithm. See Appendix H.2 for a more detailed discussion.

Example 4 also shows that in order to obtain a stable matching without reducing any
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hospital’s capacity, we need to add a new position to hospital h1. Thus, the total number

of slots increases by 1. Imagine an economy consisting of n identical copies of this example.

If we would like to obtain a stable matching by adjusting the capacity of hospitals so that

no hospital suffers a reduction, then, we need to add at least n slots. The bound of 4 on

aggregate capacity we deliver in Theorem 2.1 is obtained by shuffling positions between

hospitals. Some hospitals will get more and some will get fewer positions, but in aggregate

we don’t add more than 4 positions, independent of the size of the market.

Proof of Theorem 2.1. Let x∗ be the outcome of the IR algorithm. We show that

x∗ satisfies Lemma 4.1 and that the new hospital capacity vector, k∗ := Hx∗, is not too far

from k.

First, in Step 2, a variable of x̄ at zero remains at zero throughout the algorithm. Hence,

the first property in Lemma 4.1 is maintained. Second, in Step 2, we always maintain the

doctor/couple constraints (4), so the second property in Lemma 4.1 is also satisfied.

At Step 2 of the IR algorithm, both z and x are feasible for the same linear program,

but z was selected to maximize az, therefore, a · z ≥ a · x. This guarantees that we never

reduce the number of slots available. If the aggregate constraint is never eliminated during

the course of the algorithm, then, trivially, the aggregate capacity never increases. If the

aggregate constraint is eliminated, it means at most two constraints from (4) do not bind and

contain fractional variables. Each of these constraints corresponds to either a single doctor

or a couple. These are the only single doctors or couples not yet fully allocated. Collectively

they would occupy at most 4 slots. Hence, in the worst case we will need to add 4 additional

slots to accommodate them.

We argue that the error bound for each hospital is at most 2. Consider, first, any hospital

whose corresponding hospital constraint Hh · x = kh was eliminated at some stage during

the execution of the algorithm. Therefore, Hh · (dxe − bxc) ≤ 3. This implies

Hh · (dxe − x) +Hh · (x− bxc) ≤ 3. (6)
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We have two cases. First, if either Hh · (dxe− x) or Hh · (x−bxc) is 0, then all the variables

that appear in this constraint are integral. According to the algorithm, these variables will

be fixed at their current values. Thus, the corresponding hospital constraint will never be

violated.

In the second case, both Hh · (dxe − x) and Hh · (x − bxc) are strictly greater than 0.

Because Hh · x = kh, it follows that Hh · x is integral. As Hh · dxe, and Hh · bxc are integral

as well, Hh · (dxe − x) ≥ 1 and Hh · (x − bxc) ≥ 1. But because of (6), this would imply

that Hh · (dxe − x) = Hh · dxe − kh ≤ 2 and Hh · (x − bxc) = kh − Hh · bxc ≤ 2. Thus,

after eliminating this hospital constraint, at worst, we might violate its right hand side by

at most 2.

To verify that the algorithm terminates, we must show that at Step 1, if no integral

solution is found, there is a binding constraint to be eliminated. Suppose the current solution

is x, and the algorithm has not yet terminated. If no binding hospital constraints remain,

x is an extreme point of (4) (equivalently (2), (3)). The corresponding constraint matrix is

totally unimodular (see Vohra [2005] for a definition) because every variable appears in at

most one constraint. Therefore, x is integral. This contradicts the fact that the algorithm has

not yet terminated. Hence, there must be at least one active binding constraint in (5) that

satisfies the condition for elimination. If none, we use a counting argument to show that this

would contradict the extreme point property of x. This argument is given in Appendix G.

5 Conclusion

A key goal in the design of centralized matching markets is to eliminate the incentive for par-

ticipants to contract outside of the market. This is formalized as stability and is considered

crucial for the long-term sustainability of a market. In the presence of complementarities,

stable matchings need not exist. Others have responded to this challenge by restricting pref-

erences or weakening the notion of stability. We, instead, weaken ‘feasibility’ and establish
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the existence of near-feasible stable matchings in the presence of complementarities.
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Appendix

A Preferences

Doctor’s preferences over hospitals are based on a model fitted from Israeli hospital preference

data (see Kelner [2015]). We first generate a number ph representing the ‘popularity’ of a

hospital h, where ph = 0.99K(0.8)Xh + 0.01 × 18, Xh is an integer chosen i.i.d. uniformly

from 1 to 18, and K is the total number of slots, which is equal to the number of doctors.

Preferences of each single doctor are generated by selecting hospitals iteratively at random

without replacement. At each iteration, the probability of selecting hospital h from among

those that remain is proportional to ph.

To generate the preferences of the couples, we assume that couples would like to be

allocated to hospitals in the same region rather than different regions. So, we choose lotteries

over ordered pairs of hospitals with the property that pairs in the same region are favored

over pairs in different regions.

Choose λ ∈ (0, 1) and set

νh,h′ =

λphph
′ if hospital h, h′ are in the same region,

(1− λ)phph′ otherwise.

(7)
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Preferences of each couple are generated by selecting ordered pairs of hospitals iteratively

at random without replacement. At each iteration, the probability of selecting the ordered

pair (h, h′) from among the ordered pairs that remain is proportional to νh,h′ .

When λ is close to 1, hospitals in the same region are more likely to be at the top of a

couple’s preference ordering. If λ < 0.5, then couples prefer not to be in the same region.

For the results reported we set λ = 0.7.

To generate the preferences of a couple over all hospital pairs including the outside option,

we order all pairs of form (h1, ∅) or (∅, h2) uniformly at random. Finally we construct the

full preference ordering so that it is ‘unemployment-averse’, i.e.

(h1, h2) � (h3, ∅) � (∅, ∅)

(h1, h2) � (∅, h3) � (∅, ∅)
(8)

for any h1, h2, h3 ∈ H.

B Stability

Let H be the set of hospitals, D1 the set of single doctors, and D2 the set of couples. Each

couple c ∈ D2 is denoted c = (f,m) where fc and mc are the first and second member of c,

respectively. The set of all doctors, D, is given by D1 ∪ {mc|c ∈ D2} ∪ {fc|c ∈ D2}.
Each single doctor d ∈ D1 has a strict preference ordering �d over H ∪ {∅} where ∅

denotes the outside option for each doctor. If h �d ∅, we say that hospital h is acceptable

for d. Each couple c ∈ D2 has a strict preference ordering �c over H ∪ {∅} ×H ∪ {∅}–i.e.,

over pairs of hospitals, including the outside option.

Each hospital h ∈ H has a fixed capacity kh > 0. The preference of a hospital h over

subsets of D is summarized by h’s choice function chh(.) : 2D → 2D. While a choice function

can be associated with every strict preference ordering over subsets of D, the converse is not

true. The information contained in a choice function is only sufficient to recover a partial

order over the subsets of D. Therefore, it isn’t always possible to say whether a hospital

prefers a couple over some pair of single doctors.

We assume, as is standard in the literature, that chh(.) is responsive. This means that
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h has a strict priority ordering �h over elements of D ∪ {∅}. If ∅ �h d, we say d is not

acceptable to h. For any set D∗ ⊂ D, hospital h’s choice from that subset, chh(D∗), consists

of the (up to) kh highest priority doctors among the acceptable doctors in D∗. Formally,

d ∈ chh(D∗) if and only if d ∈ D∗; d �h ∅ and there exists no set D′ ⊂ D∗ \ {d}, such that

|D′| = kh and d′ �h d for all d′ ∈ D′.
A matching µ is an assignment of each single doctor to a hospital or his/her outside

option, an assignment of couples to at most two positions (in the same or different hospitals)

or their outside option, such that the total number of doctors assigned to any hospital h does

not exceed its capacity kh. Given matching µ, let µh denote the subset of doctors matched

to h; µd and µfc , µmc denote the position(s) that the single doctor d, and the female and

male members of the couple c obtain in the matching, respectively.

We say µ is individually rational if chh(µh) = µh for any hospital h; µd �d ∅ for any

single doctor d and (µfc , µmc) �c (∅, µmc); (µfc , µmc) �c (µfc , ∅); (µfc , µmc) �c (∅, ∅) for any

couple c.

Roth and Sotomayor [1992], we list the ways in which different small coalitions can block

a matching µ.

Definition B.1 The following are called blocking coalitions for a matching µ.

1. A pair d ∈ D1 and h ∈ H can block µ if h �d µ(d) and d ∈ chh(µ(h) ∪ d).

2. A triple (c, h, h′) ∈ D2×(H∪{∅})×(H∪{∅}) with h 6= h′ can block µ if (h, h′) �c µ(c),

fc ∈ chh(µ(h) ∪ fc) when h 6= ∅ and mc ∈ chh′(µ(h′) ∪mc) when h′ 6= ∅.

3. A pair (c, h) ∈ D2 ×H can block µ if (h, h) �c µ(c) and (fc,mc) ⊆ chh(µ(h) ∪ c).

C Construction of �∗h
Definition C.1 Hospital h’s priority ordering over the individual doctors, �h, and the

preferences of the couples {�c: c ∈ D2} is used to construct a strict ordering, �∗h, over the

the coalitions representing the assignment of a doctor or a couple to at least one position at

h–namely, coalitions of the form (d, h), (c, hh′), (c, h′h), and (c, hh).
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Denote a generic instance of one of these coalitions by (·, h) . For each coalition (·, h), let

d(·, h) be the doctor assigned to h. If (·, h) represents the assignment of both members of a

couple to h, let d(·, h) denote the least preferred member of the couple according to �h. Then,

�∗h is defined as follows. For two different coalitions (a, h) 6= (b, h), if d(a, h) �h d(b, h), then

(a, h) �∗h (b, h). If d(a, h) = d(b, h), then (a, h) and (b, h) represent two different assignments

of a couple c, in which case, (a, h) �∗h (b, h) if and only if (a, h) �c (b, h).

D Discussion of Stability

Under responsive choice functions, Definition B.1 can have an undesirable implication. The

following example suggested by a referee illustrates this.

Suppose two single doctors d, d′, a couple c = (f,m) and a hospital h with capacity 2.

Recall, that for the couple c and hospital h to block a matching we require {f,m} ⊂
chh(µ(h) ∪ {f,m}), thus it is a stable matching for h to hire (d, d′), who are in 2nd and

4th positions, while the hospital may actually prefer the couple, whose members are ranked

1st and 3rd.

Because �∗ is defined based on the least preferred member of a couple, the stable match-

ing we construct actually satisfies a stronger notion of stability. In particular, replace item 3

in Definition B.1, with the following:

3′. A pair (c, h) ∈ D2 ×H can block µ if (h, h) �c µ(c)

and both fc ⊆ chh(µ(h) ∪ fc) and mc ⊆ chh(µ(h) ∪mc).

Under this definition, the matching in which µ(h) = {d, d′} is not stable because it is blocked

by (c, h).

The ordering �∗ in Definition C.1 is not a primitive of the model but a technical device

introduced to invoke Scarf’s lemma. We prove domination with respect to �∗ and show in

Lemma 3.2 that this corresponds to stability with respect to Definition B.1.

The same referee points out that domination with respect to �∗ can be restrictive. Specif-

ically, change the hospital’s priority ordering in the previous example to f �h d �h d
′ �h m.

The hospital’s modified ranking is d �∗h d′ �∗h c. The only dominating extreme point will
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assign {d, d′} to h. This might be considered restrictive because it is possible that the hos-

pital will prefer the couple c to the pair (d, d′). However, to evaluate such choices, one needs

to extend the standard model because hospitals are not endowed with orderings over pairs

of doctors. This is beyond the scope of this paper.

E Proof of Lemma 3.2

The proof is by contradiction. Let x̄ be an integral dominating solution of (1-2-3), and

assume that the corresponding assignment µ in the residency matching with couples is not

stable. This means that at least one of the three items below is true.

1. A pair d ∈ D1 and h ∈ H blocks µ because h �d µ(s) and d ∈ chh(µ(h) ∪ d).

2. A triple (c, h, h′) ∈ D2 × H × H with h 6= h′ blocks µ because (h, h′) �c µ(c), fc ∈
chh(µ(h) ∪ fc) and mc ∈ chh′(µ(h′) ∪mc).

3. A pair (c, h) ∈ D2 × H blocks µ because (h, h) �c µ(c) and (fc,mc) ⊆ chh(µ(h) ∪
{fc,mc}).

The first type of blocking coalition corresponds to the column associated with variable (d, h).

Now, because chh(.) is a responsive choice function over individual doctors, d ∈ chh(µ(h)∪d)

implies that d is among the best kh candidates among µ(h) ∪ d. Therefore, x̄ does not

dominate column (d, h): this is a contradiction because x̄ is a dominating solution.

The second type of blocking coalition corresponds to column (c, h, h′). Following the

same argument, the blocking coalition implies that fc is among the best kh candidates among

µ(h)∪fc (similar for mc and h′.) Together with the tie-breaking rule of �∗h, this implies that

x̄ does not dominate the column (c, h, h′).

In the third type of blocking coalition, the pair (fc,mc) and a hospital h correspond to

a column (c, h, h). Because (fc,mc) ⊆ chh(µ(h) ∪ c), both fc and mc are among the kh best

candidates, even when we consider the order �∗ for the columns, because both members are

still ranked highly among µh ∪ {fc,mc}. In the matching µ, the couple c is not assigned to

h, thus, either h’s capacity is not fully allocated, or a doctor worse than both fc and mc is

assigned to h. Both cases imply that x̄ does not dominate column (c, h, h).
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F Maintaining Stability in Rounding

F.1 Proof of Lemma 4.1

First of all, x∗ is a feasible matching with respect to capacities k∗. Because x̄ only contains

assignments of mutually acceptable hospital-doctors, so does x∗. Thus, x∗ is individually

rational. Given that x̄ dominates all columns of Q, and x∗ is obtained from x̄, we show that

under the new capacity vector k∗, x∗ dominates all columns of Q.

Consider the column associated with the assignment of couple c0 to hospital h1 and h2,

(c0, h1, h2). (A similar argument will apply to the other columns). x̄ dominates (c0, h1, h2)

either at the constraint corresponding to c0 or at h1 ∈ H or at h2 ∈ H.

Suppose first x̄ dominates (c0, h1, h2) at c0. Then
∑

h,h′ x̄(c0,h,h′) = 1, and couple c0 does

not like the allocation h1, h2 strictly more than any of the assignments that they obtained

under x̄. Now because x∗ is a 0− 1 vector rounded from x̄ that satisfies Lemma 4.1:

(i.) x∗(c0,h,h′) > 0 ⇒ x̄(c0,h,h′) > 0

(ii.)
∑

h,h′ x̄(c0,h,h′) = 1 ⇒ ∑
h,h′ x∗(c0,h,h′) = 1.

These imply that c0 (weakly) prefers the assignments that they gets in x∗ more than (h1, h2)

(we use ‘weakly prefers’ because it is possible that x∗(c0,h1,h2)
= 1).

Next, suppose x̄ dominates (c0, h1, h2) at h1 (a similar argument will apply to h2). This

implies that the capacity of hospital h1 binds: Hh1x̄ = kh1 . Furthermore, h1 weakly prefers

all columns in which the corresponding component of x̄ is positive to (c0, h1, h2). Now

because of property (i) in Lemma 4.1, a component of x∗ can be positive only when the

corresponding component of x̄ is positive. Thus, x̄ dominates (c0, h1, h2) when we change

the capacity at h1 to be k∗h1
:= Hh1x

∗.

F.2 When a hospital’s capacity constraints do not bind

Given a fractional dominating solution x̄, let H0 be the set of hospitals for which (1) does

not bind. Denote the total slack in these non-binding constraints by K (not necessarily

integral).
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Introduce dKe dummy single doctors d1, . . . , ddKe. Choose a strict ordering over the

hospitals in H0, and assign it to each of the dummy doctors. The remaining hospitals will

be ranked below ∅ by all the dummy doctors. Augment the priority ordering of hospitals in

H0 by appending d1 � . . . � ddKe to the bottom of these hospitals’ orderings but above ∅.
The priority ordering of hospitals not in H0 is augmented by appending d1 � . . . � ddKe to

the bottom of these hospitals’ preference above ∅.
Extend x̄ to include the dummy doctors so that all slots in H0 are filled. We can do this

by going through the list of dummy doctors from d1 to ddKe and assigning each doctor to the

best position available. Because we are working with a fractional assignment, a doctor can

be split between different positions. Let ¯̄x be the resulting assignment. It is straightforward

to see that ¯̄x is a dominating solution of the instance with dummy doctors, and this solution

fully allocates all positions. Let x∗∗ be an integral solution obtained by rounding ¯̄x according

to the IR algorithm. Let k∗∗ be the new capacity of the hospitals–that is, k∗∗ := H · x∗∗.
According to Lemma 4.1, x∗∗ is a stable solution with respect to k∗∗, and our algorithm

bounds the difference between k∗∗ and k.

We show that after eliminating the variables corresponding to dummy doctors from x∗∗,

the resulting assignment, x∗, is stable with respect to k∗∗. This is true because under x̄,

the constraints (1) corresponding to hospitals in H0 do not bind. Hence, x̄ dominates all

columns of the constraint matrix Q either at a couple/doctor constraint or at a hospital h

constraint where h /∈ H0. As dummy doctors are never assigned to hospitals outside of H0,

it follows that for all h /∈ H0, Hh · x∗∗ = Hh · x∗. Hence,

k∗∗h = Hh · x∗∗ = Hh · x∗ = k∗ for h /∈ H0.

With these observations, and following the same argument as in Section F.1, we obtain that

x∗ is stable with respect to k∗∗.

G Termination of the IR algorithm
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To show that the IR algorithm terminates with an integral solution, we prove that if it has

not yet terminated, we can always eliminate a constraint. It relies on the following lemma

(Lemma 2.1.4, page 14, Lau et al. [2011]).

Lemma G.1 (Rank Lemma) Let P = {x : Ax ≥ b, x ≥ 0} and let x be an extreme point

of P such that xj > 0 for every i. Then, the maximal number of linearly independent binding

constraints of the form Aix = bi for some row i of A equals the number of variables.

We reformulate Lemma G.1 below, to apply in our setting.

Lemma G.2 Let x be an extreme point of Q = {x : Qx = q, 0 ≤ x ≤ 1}. Let J be the

index set of non-integral components of x. Let Q|J be the submatrix of Q consisting of the

columns indexed by J . Then, the number of non-integral components of x, |J |, is equal to

the maximum number of linearly independent rows of Q|J .

To prove Lemma G.2, let I be the index set of integral components of x, that is xj is

either 0 or 1 for all j ∈ I. We can rewrite Qx = Q|J ·x|J +Q|I ·x|I = q. Let q′ := Q|J ·x|J =

q − Q|I · x|I , and consider Q|J = {y ∈ R|J | : Q|J · y = q′, y ≥ 0}. The solution x|J is an

extreme point of Q|J and all of its components are strictly positive. Applying Lemma G.1

to Q|J and x|J we obtain Lemma G.2.

To see how to use this lemma in our proof, let D∗,A∗ be the submatrices of D and A,

respectively, corresponding to the binding constraints of the linear program in Step 1. Thus,

x is an extreme solution of


D∗
A∗

x =

 1

b∗

 ; 0 ≤ x ≤ 1

 . Let J be the index of a non-

integral component of x. Assume, for a contradiction, that we cannot eliminate any binding

constraints. Credit every component of x|J with one token. Subsequently, we redistribute

these tokens to the constraints (rows) of

D∗|J
A∗|J

 in such a way that each constraint will

get at least 1 token. We show this to be possible because each column of the matrix has a

relatively small number of non-zero entries. This redistribution shows that the number of

binding constraints is at most the number of non-integral components. Furthermore, we show

that equality arises only when the binding constraints are linearly dependent. This implies

that the maximum number of linearly independent constraints is less than the number of

non-integral components, which contradicts Lemma G.2.
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Token distribution

To complete the proof we show that if the algorithm has not yet terminated, we can always

find a constraint to eliminate. Suppose, for a contradiction, we are at an iteration where no

constraint can be eliminated and each component of x|J is fractional. Endow each fractional

component of x|J with 1 token and redistribute that token among the constraints in (4) and

(5) as follows:

• The 1 token associated with the variable x(c,h,h′) is apportioned as follows: a 1
4

tokens

to each of the constraints Hh · x = kh and Hh′ · x = kh′ (if h = h′, then Hh · x = kh

gets 1
2

tokens) and the remaining 1
2

token assigned to the couple c constraint–that is,∑
h,h′ x(c,h,h′) ≤ 1.

• The one token associated with the variable x(d,h) is apportioned as follows: a 1
4

tokens

to the constraints Hh · x = kh; the remaining 3
4

tokens are allotted to the doctor d

constraint–that is,
∑

h x(d,h) ≤ 1.

We now argue that each binding constraint in (4) and (5) receives at least one token. Consider

a binding constraint Hh · x = kh associated with hospital h. By the assumption that no

constraint can be eliminated, we know that Hh · (dxe − bxc) ≥ 4. Keep in mind that

dxie − bxic = 1 if xi is non-integral, and 0 otherwise. According to the token distribution

scheme, a non-integral component of x gives the hospital h constraint 1
4

or 1
2

tokens if the

corresponding assignment requires 1 or 2 slots from h, respectively. Thus, the number of

tokens constraint Hh · x = kh gets is at least

1

4
Hh · (dxe − bxc) ≥ 1.

Next, consider a binding constraint corresponding to couple c. As this constraint binds–

that is,
∑

h,h′ x(c,h,h′) = 1–and it contains at least 1 non-integral variable, it must contain

at least 2. Each of the fractional variables contributes 1
2

a token, thus this constraint also

obtains at least 1 token.

Similarly, for the constraint corresponding to a single doctor d. If this constraint binds

and contains at least one non-integral variable, it must contains at least 2. Therefore, it also
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gets at least 2× 3
4
≥ 1 token.

The total number of tokens distributed cannot exceed the number of fractional com-

ponents of x|J which is |J |. By Lemma G.2, total number of tokens received by binding

constraints in (4) and (5) is at least the number of such binding constraints, |J | − 1. This is

because the aggregate capacity constraint may bind. We have two cases.

Case 1: The aggregate capacity constraint has not yet been eliminated.

We know that the total number of tokens allocated to binding constraints in (4) and (5) is

at least |J | − 1. Because the aggregate constraint has not yet been eliminated, there are

at least three non binding doctor/ couple constraints that contain fractional variables. Ac-

cording to the token distribution scheme, we gave to these constraints at least 3× 1
2

tokens.

Hence, the total number of tokens assigned to constraints in (4) and (5), binding or not, is

at least |J |+ 1
2
. This exceeds the the total number of tokens to be distributed, a contradiction.

Case 2: The aggregate constraint was eliminated at some earlier iteration.

By the extreme point property of x|J , the |J | binding constraints belong to (4) and (5). Each

one of the binding constraint receives at least one token. Hence, none can receive strictly

more than one token. This means no constraint in (2) can bind. Similarly, no non-binding

constraint can receive any tokens. Hence, in x|J , all variables associated with single doctors

take the value zero. Furthermore, if x(c, h, h′) > 0, the capacity constraints associated with

h and h′ must bind. If we apply these observations to the system (1, 2, 3), the relevant

binding constraints have the form:

∑
c∈D2

∑
h′ 6=h

x(c,h,h′) +
∑
c∈D2

∑
h′ 6=h

x(c,h′,h) +
∑

c∈D2∪{∅}

2x(c,h,h) = kh (9)

∑
h,h′∈H∪{∅}

x(c,h,h′) = 1 (10)

If we add up the binding constraints of the form (10) we get the sum of the binding constraints

of the form (9). This violates the assumption that the binding constraints must be linearly

independent. Hence, if we add up the binding constraints in (3) we get the sum of the
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binding constraints in (1). This violates the assumption of linear independence.

G.1 Tightness

We outline why the token argument we used cannot be modified to give an improved bound.

We will allow the quantity of tokens allocated to hospital h to depend on h.13 For each

hospital h let rh = Hh · (dxe − bxc). As before, suppose we are at an iteration where no

constraint can be eliminated and each component of x|J is fractional. Endow each fractional

component of x|J with 1 token and redistribute the tokens among the constraints in (1-2-3)

as follows:

• The 1 token associated with the variable x(c,h,h′) is apportioned as follows: 1
rh

tokens

to each of the constraints Hh ·x = kh and Hh′ ·x = kh′ (if h = h′, then Hh ·x = kh gets

2
rh

tokens) and the remaining 1− 2
rh

token assigned to the couple c constraint–that is,∑
h,h′ x(c,h,h′) ≤ 1.

• The 1 token associated with the variable x(d,h) is apportioned as follows: 1
rh

tokens to

the constraints Hh · x = kh; the remaining 1 − 1
rh

tokens are allotted to the doctor d

constraint–that is,
∑

h x(d,h) ≤ 1.

It is straightforward to see that the number of tokens allocated to each hospital h is at

least
Hh · (dxe − bxc)

rh
= 1.

Now, consider the number of tokens allocated to a single doctor d constraint. There must be

at least two hospitals h and h′ such that x(d, h), x(d, h′) > 0. Hence, the number of tokens

allocated to this constraint is at least 1 − 1
rh

+ 1 − 1
rh′
. We need this sum to be at least 1.

Hence, rh, rh′ ≥ 2. A similar argument for a couples, c, constraint requires that

1− 2

rh
+ 1− 2

rh′
≥ 1 ⇒ rh, rh′ ≥ 4.

13The same conclusion will be reached even if we allow the quantity of tokens to depend on both the
hospital and the identity of the doctors.
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Hence, for our token argument to work we need rh ≥ 4 for all hospitals h which is precisely

what we have assumed.

H Additional Results

H.1 Proof of Theorem 2.2

Let HR be the set of rural hospitals, to which we assume no couple applies. Let HU be the

remaining (urban) hospitals. The main change in the IR algorithm is that we never drop

any constraint corresponding to h ∈ HR. Thus, at each iteration

Hhx = kh for all h ∈ HR.

The modified version of the IR algorithm, called IR1, is described in Figure 2.

To show that the IR1 algorithm returns a near-feasible stable matching that does not

violate the capacity of h ∈ HR, we follow the proof of Theorem 2.1. It is enough to show

that if IR1 algorithm has not terminated, we can always find an active constraint to delete.

First, because the IR1 algorithm always maintains a solution satisfying the capacity

constraints of rural hospitals, the aggregate constraint can be rewritten in terms of urban

hospitals only. Namely,

∑
d,h:h∈HU

x(d,h) +
∑

c,h,h′:h,h′∈HU

2x(c,h,h′) ≤
∑
h∈HU

kh.

Absent from this constraint is any variable x(c,h,h′) where among the pair (h, h′), one is

urban and the other is rural because of our assumption that only single doctors apply to

rural hospitals.

Second, we modify the token distribution scheme by changing how the token associated

with x(d,h) for h ∈ HR is allocated. Namely, assign 1
2

a token to the constraint Hh · x = kh;

the remaining 1/2 token is given to the doctor d constraint–that is,
∑

h x(d,h) ≤ 1. For the

other variables, the token distribution remains the same as in Section G.

Each urban hospital constraint receives at least 1 token. To see why, observe that if a
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Step 0 Start from x := x̄ a dominating solution satisfying (4) and (5).
Initialize the active constraints to be the constraints:
Hh · x = kh for h ∈ HU and the aggregate constraint a · x ≤∑

kh

Step 1 If x is integral, stop; otherwise, among the active constraints that bind at the solution
x, we eliminate one of them. The rule for selecting the constraint to eliminate is described:

– Choose any binding urban hospital constraint,Hh·x = kh, such thatHh·(dxe−bxc) ≤
3 and eliminate it.

– If no urban hospital constraint can be eliminated, check if there are at most 2 non-
binding constraints among (4) such that each contains at least one fractional variable.
If so, eliminate the aggregate capacity constraint.

If no constraint can be found to eliminate, stop, x must be integral. If a constraint is
eliminated, denote by Ax ≤ b the system of remaining (active) constraints in (5).

Step 2 Find an extreme point z to maximize the number of jobs allocated:

max a · z : zi = xi if xi is either 0 or 1(fix the integral components)

D0 · z = 1;D1 · z ≤ 1; z ≥ 0 (doctor/couple constraints as in (4))

Hhx = kh for all h ∈ HR(rural hospital constraints)

Az ≤ b (active hospital constraints.)

Step 3 Update x to be the extreme point solution z∗ found in step 2. Update D0 to include
the new constraints from (4) that become binding at z∗ from step 2. Update D1 to remove
the new constraints from (4) that become binding at z∗ from step 2. Return to step 1.

Figure 2: IR1 algorithm
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hospital constraint contains a non-integral variable, it must contain at least two of them.

Each non-integral variable contributes 1/2 a token to the relevant constraint. Thus, the

relevant constraint obtains at least 1 token.

Each couple constraint has at least two non-integral variables or none. When none, we

can ignore this constraint because it does not affect any non-integral variables. As before,

the number of tokens allocated to a couple constraint is at least 1.

Each fractional variable in in a single doctor constraint contributes either 1/2 or 3/4 of

a token depending on whether the corresponding hospital is rural or urban. Thus, such a

constraint also receives at least 1 token and strictly more than that if one of the variables is

associated with an urban hospital.

Hence, as in case 1 in Section G, we can always eliminate one active constraint if the

IR1 algorithm has not terminated. When there are no active constraints left (as in case 2

of Section G), the remaining constraints and variables are associated with the single doctors

and rural hospitals only. This corresponds to the standard linear program of a many-to-one

matching without couples. An extreme point of this linear program is integral.

H.2 Using different objective functions to prioritize hospitals

The IR algorithm described in Figure 1 uses an objective function, a · x, to maximize the

number of jobs allocated. Termination of the IR algorithm does not depend on this specific

choice of objective function. The IR algorithm works for any linear objective function, c · x.

This can be used to reflect the fact that assigning extra slots to one hospital may be cheaper

than allocating them to another.

In particular, replacing max a·x with any linear objective function c·x, the IR algorithm in

Figure 1, starting from the fractional stable matching x̄, will terminate in a 2-feasible stable

matching in which the aggregate capacity does not increase by more than 4. Furthermore,

c · x∗ ≥ c · x̄.

Because the choice of the linear objective function, c is arbitrary, we can round x̄ in any

“direction”. This implies the following result. (See Figure 3 for an illustration.)

Claim H.1 The fractional stable matching x̄ can be expressed as a lottery over 2-feasible
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stable matchings that do not violate the aggregate constraint by more than 4.

c

x̄

x∗

Figure 3: Fractional stable matching can be expressed as a lottery over near-feasible stable
matchings

Claim H.1 is true because otherwise, x̄ lies outside the convex hull of the near-feasible

stable matchings, and therefore we can separate x̄ from these near-feasible stable matchings

with a linear function.

Claim H.1 provides a randomized algorithm to round x̄ so that it is ex-ante feasible (but

ex-post is 2-feasible).
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