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Abstract

We examine the contribution of stock mispricing to expected returns (CMER) within

a financial intermediary equilibrium asset pricing model, where the market price of the

stock deviates from its fundamental price due to frictions in the stock market. The stock’s

expected return consists of two parts: CMER and the risk-premium term determined by

the covariance between the financial intermediaries’ marginal utility of wealth and the

stock return. We derive a model-free formula which enables us to compute CMER from

equity options’ prices. Our approach makes no assumptions on the source and dynamics

of mispricing and it does not rely on a specific asset pricing model. The model predicts

that CMER is positively related to future stock returns, CMER is a model-free alpha,

and the variation of CMER is larger when transaction costs are larger. We document

that these predictions hold for a large cross-section of U.S. common stocks. We also show

that CMER relates to other popular option-implied measures of mispricing and hence we

explain theoretically why these measures have been found to predict stock returns.
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1 Introduction

Frictions on trading stocks (e.g., margins, short selling constraints, transaction costs) may

incur stock mispricing defined as the difference between the market and the fundamental stock

price (Shleifer and Vishny, 1997). In such a case, stock expected returns will reflect the effect of

mispricing, in addition to compensation for exposure to risk factors. We make four contributions

to the growing literature on asset pricing in the presence of mispricing. We take a general

approach by making the minimum number of assumptions to (i) examine how stock mispricing

shows up in an asset pricing setting, (ii) estimate the effect of mispricing to expected stock

returns, (iii) investigate the testable predictions, and (iv) use our setting to provide a theoretical

explanation about why certain option-based measures of mispricing have been previously found

to predict stock returns.

First, we derive a financial intermediary equilibrium asset pricing model in the presence

of stock mispricing caused by stock market frictions. We assume that there are two types of

representative traders, the “market-maker” (i.e., the financial intermediary) who is the liquidity

provider and the “end-user” (e.g., retail investor) whose demand is exogenously given. In this

model, an additional term, the contribution of mispricing to expected returns (CMER), appears

on top of the covariance risk premium term:

EP
t [Rt,t+1]−R0

t,t+1 = CMERt,t+1 −
CovPt (m∗t,t+1, Rt,t+1)

EP
t [m

∗
t,t+1]

, (1)

where Rt,t+1 and R0
t,t+1 are the gross return of the stock and the risk-free bond from time t to

t+ 1, respectively and m∗t,t+1 is the intertemporal marginal rate of substitution (IMRS) of the

financial intermediary under asset’s mispricing; m∗t,t+1 is defined via the first-order condition of

the financial intermediary’s consumption-portfolio choice problem, where the market frictions

impose constraints on her portfolio allocations.1

1Note that the decomposition of expected returns in equation (1) arises because of the way we define mis-
pricing which is distinct from papers where mispricing is defined as the difference between two prices of the
same asset calculated with two different respective IMRS; one is the market-maker’s IMRS that is affected
by demand pressure from the end-user, and the other is the representative agent’s IMRS, where the effect of
demand pressure is absent (e.g., De Long et al. (1990), Greenwood (2005), Gabaix et al. (2007), Vayanos and
Woolley (2013); see for a survey Gromb and Vayanos (2010)). Our definition of mispricing is different; we only
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Equation (1) shows that CMER can be viewed as the true alpha, i.e., it is a part of the

expected excess return, which cannot be explained by the covariance risk premium term; the

latter is calculated as the covariance between the asset return and the true (i.e., model-free)

IMRS, which is proportional to the financial intermediary’s marginal utility of wealth. There-

fore, CMER does not represent compensation for risk and hence it should not be interpreted

as a priced factor. Rather, it reflects the stock’s out-/under-performance due to the exis-

tence of market frictions. We show that CMERt,t+1 is proportional to the expected change in

stock’s mispricing over the period [t, t + 1]. Therefore, CMERt,t+1 does not reflect the level

of mispricing, i.e., whether the stock is currently overpriced or underpriced. Our model does

not pin down the sign of CMER, rather it lets it to be determined empirically. Our theo-

retical model yields three testable predictions. First, CMER predicts future excess returns.

Second, equation (1) implies the intercept of the regression of “CMER-adjusted excess returns”

Rt,t+1 − R0
t,t+1 − CMERt,t+1 on a set of risk factors that proxy the covariance risk premium

term should be zero. Third, we extend He and Modest (1995) and show that for any given

stock, the range of possible CMER values increases as the size of transaction costs increases.

Our second contribution has to do with providing a simple formula to calculate CMER.

The formula uses the market prices of a pair of European call and put options with the same

strike price and maturity and their underlying stock price. CMER is computed as the scaled

difference between the European call market price and the price of a synthetic European call

obtained in the case where the put-call parity would hold. Hence, intuitively, a non-zero CMER

conveys information about stock mispricing because it reflects the violation of put-call parity

due to stock mispricing.2 Our asset pricing model and the formula to estimate CMER are

model-free in the sense that we make no assumptions on the source and time series dynamics of

mispricing, nor on the functional form of IMRS. Most interestingly, our model-free formula for

CMER enables us to calculate the true alpha and hence it bypasses the problem of estimating

consider the market-maker’s IMRS that is affected by demand pressure, and the mispricing is a result of binding
constraints on asset allocations like in Gârleanu and Pedersen (2011). Our definition yields the decomposition
of expected returns in equation (1) and subsequently enables the derivation of a formula to estimate CMER.

2A non-zero CMER indicates that the law of one price (i.e., assets with identical payoffs should have the
same price) does not hold. Note that even though the law of one price does not hold, our model is arbitrage-free
because the presence of frictions does not allow executable arbitrage strategies to exist.
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alpha with respect to a specific asset pricing model which may be mis-specified.

Third, we estimate CMER for a large cross-section of U.S. common stocks over January 1996

to April 2016. We find that CMER is sizable; it takes both positive and negative values, ranging

from -14% to 11% per year in a 5th to 95th percentile range. We confirm the three theoretical

predictions of the model. We document that CMER predicts stock returns cross-sectionally. We

find that a long-short portfolio of the CMER-sorted value-weighted decile portfolios, where we

long the portfolio of stocks with the highest CMER and short the portfolio of the lowest CMER,

yields a positive average return of 164 bps per month (19.7% per year), which is statistically

significant (t-stat: 5.76). Risk-adjusted returns with respect to standard asset pricing models

are also economically and statistically significant. For example, Carhart (1997) four-factor

model’s alpha of the long-short portfolio is 186 bps per month (22.3% per year) and its t-

statistic is 6.56. These results document that mispricing contributes to U.S. stocks’ expected

returns. Our findings are robust to non-synchronous trading in the stock and equity option

markets, the portfolio construction method (equally- and value-weighted portfolios), possible

outliers in the estimated CMER and over alternative time periods. In line with the model’s

second prediction, we find that when we regress the CMER-adjusted excess return (defined as

the excess return minus the estimated CMER) on a set of risk-factors employed in standard

asset pricing models, the intercepts of CMER-sorted portfolios and that of the spread portfolio

are insignificant. In line with the third theoretical prediction, we find that the variation of

CMER is greater for stocks which are subject to larger market frictions and it increases during

market distress periods.

Fourth, we establish the theoretical relation between CMER and three option-implied me-

asures which have also been documented to predict stock returns cross-sectionally: Manaster

and Rendleman’s (1982) implied stock price, the implied volatility spread (IVS, i.e., the dif-

ference between call and put implied volatilities) (e.g., Bali and Hovakimian, 2009, Cremers

and Weinbaum, 2010), and Goncalves-Pinto et al.’s (2017) DOTS measure constructed from

the stock price implied by the put-call parity. These measures do not rely on a formal defini-

tion of the fundamental price, rather they are based on the implicit assumption that the asset

price implied from market option prices proxies the fundamental price and that IVS reflects
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expectations on the future direction of stock prices. Instead, we found CMER theoretically by

setting the fundamental price and stock mispricing within a formal asset pricing model. Hence,

the fact that we establish a relation between CMER and these three measures allows us to

explain theoretically why these measures have been found to predict stock returns. In particu-

lar, we show that (i) Manaster and Rendleman’s (1982) measure coincides with the discounted

value of CMER only in the case where the stock return follows a normal distribution under

the risk-neutral probability measure, (ii) IVS is approximately proportional to CMER once the

former is scaled by the sensitivity of the option’s price to volatility (vega), and (iii) DOTS

equals the sum of the discounted value of CMER and an additional term that depends on the

early exercise premium of the call and put American options. Given that CMER measures

the expected change in mispricing, the derived relations show that Manaster and Rendleman’s

(1982) and Goncalves-Pinto et al.’s (2017) measures are a function of the expected change in

mispricing rather than the level of mispricing as commonly believed. The theoretical relations

between CMER and the option-implied measures imply that CMER should perform at least

as well as the other measures as a cross-sectional predictor of stock returns. We verify this

testable hypothesis empirically.

Our study contributes to four streams of literature. The first is the growing literature on as-

set pricing models with mispricing caused by market frictions. Early studies by He and Modest

(1995) and Luttmer (1996) examine whether the equity-risk premium puzzle may be solved

by taking market frictions and associated mispricing into account. More recently, a strand of

this literature develops asset pricing models by assuming specific frictions such as liquidity risk

(Acharya and Pedersen (2005)), market and funding liquidity constraints (Brunnermeier and

Pedersen (2009)), margin constraints (Gârleanu and Pedersen (2011)), margin and leverage

constraints (Frazzini and Pedersen (2014)) and exclusion of strategies with unlimited losses

(Jarrow (2016)). Another strand of this literature develops asset pricing models by using a re-

duced form model to model mispricing (e.g., Brennan and Wang (2010) and Hou et al. (2016)).

These models make no assumption on the source of mispricing yet, they make assumptions on

the dynamics of mispricing and the specification of the IMRS to estimate the mispricing term.3

3Brennan and Wang (2010) assume that the logarithm of mispricing follows a zero-mean first-order autore-
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Our paper is closely related to Brennan and Wang (2010) and Hou et al. (2016) in that we

do not specify the source of mispricing either. However, we make no assumptions neither on

the dynamics of mispricing nor on the IMRS to derive our asset pricing model (equation (1))

and the formula to estimate CMER. Our model also differs in that it is agnostic about the

sign of the contribution of mispricing to expected returns and it lets it to be determined by

the data. Instead, Brennan and Wang (2010), and Hou et al.’s (2016) baseline model find that

their mispricing term contributes positively to expected returns. In Section 5, we show that

this is due to their assumptions on the process that the mispricing term follows over time. Our

paper also complements studies which find that the severity of constraints (Hou and Moskowitz

(2005)) and the uncertainty regarding future constraints (Engelberg et al. (2017)) affect stocks’

returns.

Our research is also pertaining to studies that investigate the informational content of

market option prices to predict future stock returns (see e.g., Xing et al. (2010), Yan (2011),

Chang et al. (2013), Conrad et al. (2013), An et al. (2014), Stilger et al. (2017), and Giamouridis

and Skiadopoulos (2011) and Christoffersen et al. (2013) for reviews); their motivation is that

market option prices are formed by informed traders to exploit the sophistication and leverage

encountered in option products and hence information is first revealed in the option market

and subsequently diffuses to the stock market (Easley et al. (1998)). In particular, given our

formula to estimate CMER, our paper is related to studies which document that measures

which capture the violation of put-call parity (e.g., Ofek et al. (2004), Bali and Hovakimian

(2009), Cremers and Weinbaum (2010), Muravyev et al. (2016)) and option-implied stock prices

(Manaster and Rendleman (1982), Goncalves-Pinto et al. (2017)) forecast future stock returns.

We complement this strand of research by proposing a new option-implied measure CMER

to predict stock returns, which is derived under a formal asset pricing model. Moreover, we

establish the relation of CMER to the above option-implied measures and thus we provide a

theoretical explanation to why these measures have been documented to predict future stock

returns.

gressive process and the fundamental return is given by Fama and French (1993) three-factor model. In their
baseline analysis, Hou et al. (2016) assume that mispricing follows an independently distributed process and
observed returns are serially uncorrelated.
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Our paper is also related to Stambaugh et al. (2015), who sort individual stocks into portfo-

lios based on their “alpha” proxied by the average ranking of each stock across eleven anomalies.

We also sort stocks into portfolios according to CMER, which is the true alpha since there is

no need to assume a specific asset pricing models nor employ specific anomaly variables.

Finally, our study is related to the growing literature on financial intermediaries and asset

pricing. Financial intermediaries (e.g., major investment banks) account for most of the trading

volume in markets and hence they could be regarded as the marginal investor in lieu of the

household; the latter is considered to be the marginal investor in the standard representative

agent models. Adrian et al. (2014) and He et al. (2017) find that the financial intermediaries’

marginal utility of wealth serves as a pricing kernel for a broad cross-section of financial assets.

Our theoretical model lies in this strand of literature because the covariance risk premium

is determined by the financial intermediaries’ IMRS, which is proportional to their marginal

utility of wealth. On the other hand, CMER, which is a part of the expected return, is not

attributed to the risk-premium that financial intermediaries demand, yet it plays an important

role in explaining the cross-section of individual equities’ returns.

The rest of this paper is organized as follows. In Section 2, we provide the asset pricing mo-

del under mispricing and the model-free formula to proxy CMER. We also discuss the testable

predictions of the model. Section 3 describes the data we use in the empirical analysis, and

the way we implement our formula to compute CMER. In Section 4, we conduct a portfolio

analysis to test the testable predictions of the model. In Section 5, we discuss the relation bet-

ween CMER and other option-implied mispricing measures proposed by the previous literature.

Section 6 concludes.

2 Theoretical framework

2.1 Mispricing and the intertemporal marginal rate of substitution

In this section, we derive an equilibrium asset pricing model that takes the existence of mis-

pricing in asset prices into account. We consider a market where there is a risky asset (the
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stock), the risk-free bond, and European call and put options written on the stock. We assume

that mispricing exists in the stock market; in Appendix C, we also consider the case where

mispricing exists in both the stock and option markets.

We assume that the time horizon is finite and discrete, indexed by t = 0, 1, 2, . . . , T . Let

R0
t,t+1 denote the gross return of the one-period risk-free bond from time t to t+ 1. We denote

the stock price by St and its dividend payment at time t by Dt. We also assume that on each

date t, there are one-period European call and put options written on the stock maturing at

time t + 1. We assume options are traded at a set of strikes Kt. The time t call (put) option

price with strike price K ∈ Kt is denoted by Ct(K) (Pt(K)).

We assume that there are two types of representative traders, the “market-maker” and

the “end-user.” The market-maker sets her optimal consumption and asset allocations by

maximizing her expected lifetime utility. On the other hand, we follow Gârleanu et al. (2009) to

assume that the end-user’s demand for financial assets is exogenously given. These assumptions

are in line with recent models on frictions where the “focus is on the frictions and behavior of

intermediaries” and end-user is not “central to the vision” (Cochrane 2011, page 1069).

Let θ0t , θ
S
t , θct (K) and θpt (K) be the market-maker’s position on the risk-free bond, the stock,

the call and put options, respectively and let θt be the vector of these thetas. The market-maker

solves the following portfolio-consumption problem,

max
{cj ,θj}

T∑
j=t

βj−tEP
t [u(cj)], (2)

where EP
t is the conditional expectation under the physical (real world) measure P given the

information up to time t, β is the subjective discount factor, u(c) is the time-separable utility

function. The market-maker chooses a consumption stream {cj}j≥t and portfolio allocations

{θt}j≥t subject to the following conditions. First, the the market-maker’s wealth at time t, Wt,

changes over time as follows:

Wt+1 = θ0tR
0
t,t+1 + θSt (St+1 +Dt+1) +

∑
K∈Kt

[
θct (K)(St+1 −K)+ + θpt (K)(K − St+1)

+
]
, (3)
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where (x)+ = max(x, 0). Next, the consumption at time t is given by

ct = Wt − θ0t − θSt St −
∑
K∈Kt

[
θct (K)Ct(K) + θpt (K)Pt(K)

]
. (4)

In equations (3)–(4), we normalize the price of the one-period bond at time t to unity and view

R0
t,t+1 as its payoff at time t + 1. Finally and most importantly, to introduce mispricing, we

assume that frictions exist. These frictions are incurred by the existence of market constraints

on the portfolio allocation of the market-maker. Even though we do not specify the types

of frictions, we assume that there are L types of constraints on portfolio allocation of the

market-maker:

glt(θt) ≥ 0, l = 1, 2, . . . , L. (5)

Let V (Wt) be the value function of the constrained maximization problem (2) subject to

equations (3)–(5). Then, the Bellman equation is given by

V (Wt) = max
ct,θt

{
u(ct) + βEP

t [V (Wt+1)]
}

s.t. equations (3)–(5). (6)

Given equations (3), (4) and the constraints in (5), the first-order condition of the maximization

problem given by the Bellman equation (6) regarding the allocation on the stock θSt yields

St = EP
t [m

∗
t,t+1(St+1 +Dt+1)] +

L∑
l=1

λlt
∂glt(θt)

∂θSt
, (7)

where m∗t,t+1 = βV ′(Wt+1)/u
′(ct) is the intertemporal marginal rate of substitution (IMRS)

between time t and t + 1, and λlt is the Lagrange multiplier of l-th constraint of equation

(5).4 Equation (7) shows that if some of constraints are binding, then the current stock price

deviates from the IMRS-discounted expected future cum-dividend stock price. On the other

4Dividing the both sides of equation (7) by St shows that the standard asset pricing formula 1 =
EP
t [m∗t,t+1Rt,t+1] which holds in frictionless markets, does not hold in the case of markets with frictions due

to the Lagrange multipliers term; this result has also been derived by He and Modest (1995). Note also that
the standard envelop condition u′(ct) = V ′(Wt) does not necessarily hold in general in our model. Indeed, the

envelop theorem for constrained maximization problem is given by V ′(Wt) = u′(ct)
(

1 +
∑L

l=1 λ
l
t(∂g

l
t/∂Wt)

)
.
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hand, equation (7) boils down to the first-order condition of the standard frictionless portfolio-

consumption problem in the case where there are no frictions.

We solve equation (7) iteratively and use the law of the iterated conditional expectations

to obtain,

St = EP
t

[
T∑

j=t+1

m∗t,jDj

]
+

L∑
l=1

λlt
∂glt(θt)

∂θSt
+

T∑
j=t+1

EP
t

[
m∗t,j

(
L∑
l=1

λlj
∂glt(θj)

∂θSj

)]
, (8)

where

m∗t,j = βj−t
V ′(Wt+1)

u′(ct)
× . . . V

′(Wj)

u′(cj−1)
(9)

is the multi-period IMRS. Equation (8) shows that the current stock price is the sum of the

expected value of the future dividend payments discounted by IMRS, and the additional two

terms which are functions of the Lagrange multipliers of the constraints, λl. Given equation

(8), we define the fundamental price of the stock, Ft, as the first term in the right hand side of

equation (8), i.e.,

Ft = EP
t

[
T∑

j=t+1

m∗t,jDj

]
, (10)

and we define stock mispricing Mt at time t as the difference between the stock price given by

equation (8) and the fundamental stock price, Mt := St − Ft. In other words, Mt represents

the deviation of the stock price from the expected future dividends discounted by the IMRS.

Such a deviation can occur when some of the constraints on the portfolio allocation (market

frictions, given by equation (5)), are binding today or are expected to be binding in the future

as equation (8) shows.

We assume that the risk-free bond market and the option market are frictionless, i.e., any

one of L constraint functions glt(θt) does not depend on θ0t , θ
c
t (K) and θpt (K). In Appendix C,

we empirically demonstrate that our empirical findings do not qualitatively change even when

we relax the frictionless option market assumption.

Finally, a remark on the definition of the fundamental price is in order. Our definition of the

fundamental price does not coincide with the hypothetical asset price that would prevail in the
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frictionless market. This is because the discount rate, IMRS, is a function of the consumption

and wealth, which are determined by the market-maker’s constrained maximization problem.

In other words, our definition of the fundamental price turns off only the direct effect of market

frictions on asset prices as this is reflected by the shadow prices of the constraints, yet the

IMRS of the financial intermediary per se is derived under the market with frictions. This is in

line with Gârleanu and Pedersen’s (2011) margin CCAPM, where the covariance risk premium

term is defined as the covariance between the asset return and the consumption growth, the

latter being determined by the margin-constrained optimization problem.

2.2 The asset pricing model with mispricing

The following Theorem provides the asset pricing model with stock mispricing, that is, how the

stock’s expected excess return EP
t [Rt,t+1]−R0

t,t+1, where Rt,t+1 = (St+1 +Dt+1)/St is the stock

return, is determined when stock mispricing exists.

Theorem 2.1 (Asset pricing model with mispricing) Under stock mispricing, the follo-

wing asset pricing model holds:

EP
t [Rt,t+1]−R0

t,t+1 = CMERt,t+1 −
CovPt (m∗t,t+1, Rt,t+1)

EP
t [m

∗
t,t+1]

, (11)

where CMERt,t+1 is the contribution of the mispricing to the expected return from t to t + 1,

defined as

CMERt,t+1 =
R0
t,t+1

St
EP
t

[
m∗t,t+1Mt+1 −Mt

]
. (12)

Proof: See Appendix A.1. 2

We can interpret CMER in three ways. First, equation (12) shows that CMER reflects the

scaled expected change in stock mispricing from time t to t+ 1, rather than the current level of

stock mispricing.5 The change in mispricing, rather than the level of mispricing, appears in the

5In the case where there are frictions in the risk-free bond market, an additional term 1/EP
t [m∗t,t+1]−R0

t,t+1

appears in the definition of CMER (equation (12)). However, this additional term is common across all individual
stocks and hence it does not affect our subsequent tests of CMER as a cross-sectional predictor of stock returns.
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expect excess return formula because the expected return –the expected change in the stock

price scaled by the current stock price– is the sum of the expected change in the mispricing part

and the expected change in the fundamental price scaled by the current stock price. Second,

we can interpret CMER as the “true” alpha because it is a part of the expected excess return,

which cannot be explained by the covariance risk premium term, where the covariance risk-

premium term is calculated as the covariance between the asset return and the true IMRS; we

use no specific model to proxy IMRS and hence alpha is not affected by any mis-specification

bias. Therefore, CMER does not represent a risk premium. Rather, it reflects the out-/under-

performance due to the existence of market frictions. In the next subsection, we discuss another

interpretation of CMER once we reveal the relation between CMER and option prices. Finally,

equation (11)) echoes the model of Gârleanu and Pedersen (2011). In their model, a similar

asset pricing equation appears where a mispricing term appears on top of the covariance risk

premium term. Our model differs though in that we make no assumption about the source of

frictions nor the functional form of IMRS.

2.3 Estimation of CMER using market option prices

Equation (12) shows that CMER is a function of the mispricing variable M and the IMRS. Since

these variables are not observable, equation (12) cannot be used to estimate CMER; it serves

only to define and interpret CMER. We develop a formula which allows to calculate CMER

by using equity options’ market prices as inputs. To this end, we assume that the option

market is frictionless. In Appendix C, we relax this assumption; we repeat the subsequent

empirical analysis and we find that results are qualitatively similar to the ones obtained under

frictionless option markets. We also assume that the dividend payment in the next period Dt+1

is deterministic given the information up to time t. This assumption is plausible when the time

length between t and t+ 1 is short, say, one-month, because the near future dividend payments

are usually pre-announced. Under this setting, we obtain the following result.
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Theorem 2.2 For any strike K, the following equation holds:

CMERt,t+1 =
R0
t,t+1

St
(Ct(K)− C̃t(K)), where (13)

C̃t(K) = Pt(K) + St −
K +Dt+1

R0
t,t+1

, (14)

Proof: See Appendix A.2.6 2

Theorem 2.2 provides the formula to estimate CMER because the right hand side of (13)

is observable as long as a pair of European call and put options with the same maturity and

strike is available. In Section 3.2, we explain how we compute CMER.

We can interpret C̃t(K) as a hypothetical call option price converted from the put option

price via the standard put-call parity in the case where put-call parity would hold; due to

market constraints, this may not be the case (i.e., C̃t 6= Ct in general). Therefore, equation

(13) provides another interpretation of CMER; CMER is proportional to the degree of the

violation of the put-call parity, Ct(K)− C̃t(K) scaled by the ratio of the gross risk-free return

to the current stock price. In particular, CMER is zero if and only if the put-call parity holds.

Positive (negative) CMER is equivalent to Ct(K) > C̃t(K) (Ct(K) < C̃t(K)), meaning that

the call is relatively more expensive (cheaper) than the put given the put-call parity.

Two remarks are in order. First, we explain why option prices may convey information

about the underlying stock mispricing. Intuitively, we expect that the estimated CMER will

convey information about stock mispricing because the violation of put-call parity stems from

mispricing in the underlying stock and/or in the option market. Given that equations (13)

and (14) are derived assuming frictionless option markets, a non-zero CMER is a result of

mispricing only in the stock market. In Appendix C, we find that CMER is still related

to stock mispricing even when we relax the assumption of frictionless option markets. This

suggests that mispricing in the option market is of second order importance regarding the

6Note that the proof of Theorem 2.2 relies on the implicit assumption that both the stock and options are
priced by the same IMRS. This is in line with the empirical evidence in He et al. (2017), who find that financial
intermediaries are the marginal investor in a number of markets, including the stock market and the derivatives
market.
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ability of the CMER-formula shown in Theorem 2.2 to capture stock mispricing. Second, as

Cremers and Weinbaum (2010) show, the violation of the put-call parity is equivalent to the

non-zero implied volatility spread (IVS). In line with this, in Section 5.2 we show that the right

hand side of (13) can be approximated using IVS.

2.4 Testable hypotheses

Our model yields three testable hypotheses regarding the relation of CMER, expected asset

returns and frictions.

Hypothesis 1: The asset’s expected return is increasing with CMER.

Equation (11) shows that the greater CMER is, the greater the asset’s expected returns.

Therefore, we expect that when we sort stocks based on the estimated CMER in portfolios, the

post-ranking portfolios’ average return and CMER will be positively related.

Hypothesis 2: When the “CMER-adjusted excess return” Rt,t+1−R0
t,t+1−CMERt,t+1 is

regressed on a set of risk-factors that represent the covariance risk premium term, the intercept

should be zero.

Again, this hypothesis is implied by Equation (12). Finally, we have the following hypothesis

regarding the relation between CMER and transaction costs.

Hypothesis 3: Higher transaction costs imply a wider range of CMER values.

To prove this hypothesis, we follow He and Modest (1995) and assume that there is a

proportional transaction cost ρ > 0 (i.e., ρSt is charged as transaction costs when traders buy

or sell the stock); without the loss of generality, no other types of frictions are assumed. Then,

under our asset pricing model, the following Proposition holds.

Proposition 2.1 The following expression holds:

− 2ρ

1 + ρ
R0
t,t+1 ≤ CMERt,t+1 ≤

2ρ

1− ρ
R0
t,t+1. (15)
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Proof: See Appendix A.3. 2

Proposition 2.1 yields the third testable implication: stocks which exhibit higher transaction

costs may take more extreme CMER values. We will test this hypothesis via three alternative

routes. First, we will eyeball the times series evolution of the CMER’s variation and discuss

it in the light of major market events. We expect that the more distressed the market is, the

greater the CMER’s variation. Second, we will examine the relation of CMER with firm and

stock characteristics; this will be done by sorting stocks in portfolios according to their CMER

values. We expect that the portfolios which are subject to greater frictions will exhibit more

extreme CMER values. Third, we will investigate the performance of spread portfolios formed

by a dependent bivariate sorting exercise. In particular, we will first sort stocks in portfolios by

their respective transaction cost proxy. Then, within any given portfolio, we will sort stocks in

portfolios based on their respective CMER and we will calculate the spread portfolios’ returns.

We expect that the average return of the spread portfolios will increase as a function of the

transaction cost proxy. This is because the higher transaction costs are, the more extreme

CMER is expected to be and hence the greater the expected return of the spread portfolios

due to Hypothesis 1. We discuss these in Sections 3.3 and 4.3.

3 Data and estimation strategy

3.1 Data sources

We obtain option implied volatility data from the OptionMetrics Ivy DB database (OM) via

the Wharton Research Data Services. Even though options on the U.S. individual equities

are American style, OM extracts the Black and Scholes (1973) implied volatilities (BS-IV)

by deducting the early exercise premium from the American option market price as this is

calculated by the Cox et al. (1979) binomial tree model. We obtain the risk-free rate and

dividend payment history from the OM database to calculate the present value of dividend

payments over the option’s life time. Our dataset spans January 1996 to April 2016 (244

months). We retain option data on each end of month trading day. Then, we remove BS-IVs if
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the recorded bid price is non-positive, the IV is missing, and the open interest is non-positive.

We discard data with time to maturity shorter than 8 days or longer than 270 days. We keep

option data only when the moneyness K/St is between 0.9 and 1.1 to ensure that the most

liquid option contracts are considered.

Stock returns are obtained from the Center for Research in Security prices (CRSP). In

line with the literature, our stock universe consists of all U.S. common stocks (CRSP share

codes 10 and 11). We obtain the time-series of risk factors in the CAPM, Fama and French

(1993) 3-factor model (FF3), Carhart (1997) 4-factor model (FFC), and Fama and French

(2015) 5-factor model (FF5) from Kenneth French’s online data library. We obtain the factors

in Stambaugh and Yuan (2017) 4-factor mispricing factor model from Yu Yuan’s website. In

addition, we construct various stock characteristics variables (e.g., size, book-to-market, bid-

ask spread) based on the CRSP and the Compustat database. For the definition and the data

source of the various stock characteristics variables, see Appendix B.

3.2 Computation of CMER: Choice of strikes and maturities

Theorem 2.2 shows that we can estimate CMER from the market prices of European call and

put equity options with the same maturity and strike. However, we cannot apply this formula

to the U.S. individual equity options data because these are American options. We circumvent

this obstacle by backing Ct(K) and C̃t(K) from the call and put BS-IV, IV c
t (K) and IV p

t (K),

provided by OM. These are extracted from American options whose prices have been adjusted

for the early exercise premium; the Black-Scholes option pricing formula for the case where

the underlying asset pays discrete dividends is used to establish the mapping from BS-IVs to

Ct(K) and C̃t(K).

CMER depends on the strike and maturity of the option employed to calculate the right hand

side of equation (13). We deal with the choice of these two parameters as follows. Regarding

the choice of strike, on each end-of-month date t and for each traded option maturity T , we

calculate the right hand side of equation (13) for each strike K, at which both IV c
t (K) and

IV p
t (K) are available and denote it as CMERt,T (K). Then, we take the weighted average of
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them across strikes:

CMERAV E
t,T =

∑
K∈K

ω(K) CMERt,T (K), (16)

where K is a set of strike prices with valid IV c
t and IV p

t and ω(K) is a weight. We follow the

previous literature on option implied measures to use the open interest of the corresponding

options as the weight ω(K) (see e.g., Cremers and Weinbaum (2010)). This weighted average

procedure is in line with the previous literature to reduce possible measurement error issues in

the empirical options data. As a robustness check, we also compute the forward-at-the-money

(ATM) CMERATM
t,T for a given maturity T, defined as

CMERATM
t,T = CMERt,T (K∗), (17)

where K∗ is the traded strike price closest to the “forward price” ft,T = R0
t,T (St−PV Dt,T ) and

PV Dt,T is the present value of dividend payments over the period [t+ 1, T ].

Regarding the choice of the options’ maturity to be used for the calculation of CMER, we

proceed as follows. In the subsequent empirical analysis, we will conduct monthly frequency

portfolio analysis, where at the end-of-each-month, we sort stocks based on the estimated

CMER and we will examine certain properties of the post-ranking monthly returns. Therefore,

the horizon of the estimated CMER should correspond to the horizon of expected excess returns.

To this end, first we multiply each estimated CMER by 30/DTM , where DTM denotes days-

to-maturity. Then, we construct the 30-day constant maturity CMER (CM CMER) by linearly

interpolating the two traded maturities surrounding the 30-day maturity. The estimated CMER

is treated as missing if the 30-day maturity is not bracketed by two traded maturities. As a

robustness check, we also use the estimated CMER from the closest to 30-days to-maturity

options (CLS CMER) as an alternative to the 30-day constant maturity CMER. It is expected

that the CMER computed under this approach becomes noisier as a predictor of the future

monthly stock return when the closest to the 30-day traded maturity is distant from the 30-

days to maturity target. To minimize this risk, we calculate this proxy only when the closest

options’ maturity is between 15-day and 45-day, otherwise we treat CMER as missing.
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In sum, we have two ways to estimate CMER at each maturity, averaged across strikes

(AVE) versus closest to forward-ATM (ATM), and two ways on the choice of maturities, linearly

interpolation 30-day constant maturity CMER (CM) versus closest to 30-day (CLS). Thus,

there are in total four corresponding cases to analyze labeled, AVE-CM CMER, ATM-CM

CMER, AVE-CLS CMER, and ATM-CLS CMER, respectively. We use the AVE-CM CMER

as the baseline estimated CMER for the purposes of our subsequent analysis, yet this is highly

correlated with the other three CMER measures.

3.3 CMER: Summary statistics

Table 1, Panel A, reports the summary statistics of the estimated CMER on the end of each

month for the four ways of estimating CMER. We can see that there is about 333,000 stock-

month CMER observations for the case of the AVE-CM and ATM-CM CMER, whereas this

number increases to about 347,000 observations for the case of the AVE-CLS and ATM-CLS

CMER. Since there are 244 months in our data period, there are one average about 1,370 (1,420)

stocks in each month in the case of AVE-/ATM-CM CMER (AVE-/ATM-CLS CMER) case;

this is a sufficient number to form well diversified decile portfolios in the subsequent analysis.

The mean and the median of the estimated CMER are about -0.1% and -0.04% per month

(30-day), respectively. Results are similar across the four construction methods of CMER. The

distribution of CMER is skewed to the left and it is highly leptkurtic. The estimated CMER is

sizeable; it takes both positive and negative values, ranging from -1.24% to 0.89 % per month

(-14% to 11% per year) in a 5th to 95th percentile range of AVE-CM CMER. It also has fairly

large variations; the standard deviation is about 1% and the interquartile range (IQR, the

difference between 75th and 25th percentile points) is between 47–60 bps depending on the

CMER construction method. This magnitude of variation is relatively large compared to the

long-run average U.S. equity risk premium, which is about 6% per year, or 50 bps per month

(see e.g., Mehra (2012)). The percentage of the positive observations of CMER is about 45% in

any of the four construction methods of CMER, which means that CMER takes negative values

more often that positive values. Table 1, Panel B, reports that the four ways of computing
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CMER are almost perfectly correlated. Therefore, the subsequent analysis is expected to be

robust to the choice of the method to estimate 30-day CMER.

[Table 1 about here.]

Figure 1 shows the monthly time-series of the median CMER. The median time-series have

typically been taking negative values until the recent financial crisis. Since the median CMER

is negative, it means that there are more stocks with negative CMER than positive CMER (the

proportion of positive CMER had been around 38% until 2006). This observation is consistent

with Ofek et al. (2004) who study the violation of the put-call parity. They examine the sign

of Ct(K)− C̃t(K), which is the same as that of CMERt,t+1.
7 By using data from July 1999 to

November 2001, Ofek et al. (2004) show that Ct(K) − C̃t(K) is positive for one third of their

sample, very close to our result of 37% during the same period. However, after the financial

crisis, the median of the estimated CMER starts to take both positive and negative values and

its variability has increased.

[Figure 1 about here.]

Figure 2 shows the interquartile range (IQR) of AVE-CM CMER. We prefer this statistic

to measure the dispersion of the estimated CMER to the standard deviation because the dis-

tribution of CMER is highly skewed and leptokurtic. As we have discussed in Section 2.4, the

degree of the dispersion in CMER is determined by the size of transaction costs and hence

by the degree of market frictions (Hypothesis 2). The time-series fluctuations in the IQR are

in line with the theoretical predictions: most of the spikes in the IQR corresponds to market

turmoils, such as Russian default and LTCM crisis (August–September 1998), the collapse of

Lehman Brothers and ensuing market meltdown (September–November 2008), European debt

crisis (November 2011, uncertainty was the highest around the general election in Greece), and

7Precisely speaking, Ofek et al. (2004) calculate the put-call parity implied stock price S∗t := Ct(K) −
Pt(K) + K/R0

t,t+1 for non-dividend paying stocks and investigate the signs of the ratio log(St/S
∗
t ) and its

predictive power for future returns. From the definition of C̃t (equation (14)), it follows that Ct(K) − C̃t(K)
and log(St/S

∗
t ) have the same sign, that is, Ofek et al. (2004) effectively study the sign of CMERt,t+1.
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the Chinese stock market turmoil (June 2015–January 2016).8

[Figure 2 about here.]

4 Testable predictions: Empirical evidence

In this section, we examine the testable predictions (Hypotheses 1,2, and 3) of our CMER asset

pricing model discussed in Section 2.4.

4.1 Predictive power of CMER for future returns

First, we test Hypothesis 1 that CMER predicts future stock returns; stocks with higher CMER

should earn a higher expected return compared to stocks with a lower CMER. To this end, we

examine whether CMER predicts equity returns cross-sectionally by taking a portfolio con-

struction approach. We sort stocks in decile portfolios by using the estimated CMER as a

sorting criterion. Portfolio 1 contains the stocks with the lowest CMER and Portfolio 10 the

stocks with the greatest CMER. We form portfolios at the end-of-each month. Then, we calcu-

late the post-ranking returns of each portfolio and the return of the zero-cost long-short spread

portfolio, where we go long in the portfolio with the highest CMER stocks and short in the

portfolio with the lowest CMER stocks. Our testable hypothesis suggests that this zero-cost

long-short portfolio will earn a positive average return.

Table 2 reports the results for both the value-weighted and equally-weighted decile portfolios

cases, where we use the AVE-CM CMER as a sorting variable. In line with the model’s

prediction, we can see that there is a monotonically increasing relation between the portfolios’

average returns and CMER. Moreover, the average return of the long-short value-weighted

spread portfolio is 1.64% per month (20% per year). This value is economically significant

and also statistically significant (t-stat; 5.77). We also calculate the risk-adjusted returns, in

8This is in line with the literature that the degree of market frictions intensify during market distress periods.
Gârleanu and Pedersen (2011) and Nagel (2012) find that the margin and liquidity constraints, respectively
become tighter during market turmoil periods. Hou et al. (2016) find that their microstructure friction measure
takes greater values during recessions and market distress periods.
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terms of alpha with respect to the CAPM and Carhart (1997) four-factor (FFC) model.9 Both

CAPM- and FFC-alpha are economically and statistically significant; αCAPM is 1.70% and

αFFC is 1.86% per month and their t-statistics are above five. These results shows that the

estimated CMER predicts future stock returns.

The equally-weighted portfolio earns an even more significant average return compared to

the value-weighted portfolio; the average return is 1.73% per month (21% per year) and αCAPM

and αFFC are 1.76% and 1.81% per month, respectively and t-statistics are above nine. Even

though the equally-weighted result is stronger than the value-weighted result, in the subsequent

analysis, we focus on the value-weighted results for two reasons. First, a number of studies

recommends the value-weighted portfolio construction over the equally-weighted construction.10

Moreover, as the value-weighted construction tends to result in lower alphas and t-statistics,

our judgment on the existence of the CMER term will be more conservative and hence more

credible.

[Table 2 about here.]

Next, we examine whether this performance stems from the first day of the post-ranking

period or from a longer period, i.e. we examine whether the predictive ability of CMER is short-

lived. First, we investigate to what extent the performance is attributed to the first trading

day. We estimate the return of the AVE-CM CMER-sorted deciles portfolios by skipping the

first trading day after the portfolio formation day and compare the result to the benchmark

result, where stocks are traded immediately after the portfolio formation.11 Table 3 shows

9For all portfolio sort exercises in this Section, we also estimate alphas with respect to the Fama and
French (1993) three-factor model, Fama and French (2015) five-factor model, and Stambaugh and Yuan (2017)
mispricing-factor model. Results are qualitatively similar and hence we do not report them due to space
limitations.

10For example, Hou et al. (2017) recommend the value-weighted portfolio construction because equally-
weighted portfolios exaggerate anomalies in microcap stocks, which are difficult to exploit in practice due to
high transaction costs and illiquidity. Asparouhova et al. (2013) find that microstructure frictions can bias
upward the cross-sectional monthly mean of equally-weighted returns. Based on a similar reasoning, Bali et al.
(2016) state that “value-weighting is most appropriate when the entities in the analysis are stocks” (Bali et al.
(2016)), footnote 1, Chapter 5).

11To obtain the monthly returns, where the first trading day is skipped, we divide the gross monthly return
provided by the CRSP monthly stock file by the gross daily return on the first trading-day, which we obtain
from the CRSP daily stock file.
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that the average return of the spread portfolio decreases 102 bps (from 164 to 62 bps) and

αFFC decreases 100 basis points once we skip the first trading day after the portfolio formation

date. Albeit the average return and αFFC decreases significantly compared to the ones obtained

from the full post-ranking period, they are still significant. This result implies that about 60%

(50%) of the average monthly return (the risk-adjusted return) is attributed to the first day

of the post-ranking month, yet CMER retains its predictive power beyond the first day of the

post-ranking period.

[Table 3 about here.]

Next, we examine further how the predictive power of CMER decays over the post-ranking

period. Table 3, Panel B, reports the results in the case where we repeat the above empirical

analysis by skipping the first five trading days. We can see that the average return and αFFC

decreases to 51 bps (65 bps) when we skip the first trading week (five trading days), yet the

average return (αFFC) is still significant at a 5% (1%) significance level. Table 3, Panel C,

reports the results when we skip the first seven trading days. We can see that in this case both

the average return and αFFC become insignificant. These results suggest that the predictive

power of CMER disappears seven trading days after the portfolio formation date.

4.2 Alpha of the CMER-adjusted excess returns

Next, we examine Hypothesis 2 that the intercept of the regression of the “CMER-adjusted

excess returns:” Rt,t+1−R0
t,t+1−CMERt,t+1 on a set of risk factors that describes the market-

maker’s IMRS, should not be statistically different from zero. To test this hypothesis, we need

to specify an asset pricing model, i.e., a set of specific risk factors. Note that this gives rise to

a joint hypothesis problem. In the case where the intercept is statistically different from zero,

it can be the case that our hypothesis does not hold, but also it can be the case that the set

of risk factors does not describe the IMRS well. To overcome this difficulty, we estimate the

intercepts for five asset pricing models, the CAPM, Fama and French (1993) three-factor model,

Carhart (1997) four-factor model, Fama and French (2015) five-factor model, and Stambaugh
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and Yuan (2017) mispricing factor model. If the intercept is zero regardless of the choice of

widely accepted asset pricing models, this would reinforce the validity of Hypothesis 2.

Table 4, Panel A, reports the intercepts of regressions, where we regress the CMER-adjusted

excess returns, Rt,t+1 − R0
t,t+1 − CMERt,t+1, of the value-weighted decile portfolios and the

spread portfolio. We can see that all intercepts are statistically insignificant at a 5% significance

level. This suggests that the estimated CMER represents the true alpha of the decile portfolios.

On the other hand, the intercepts of the spread portfolios are still statistically significantly

different from zero when we use the CAPM as the benchmark asset pricing model. These

results may be driven by outliers of the estimated CMER (which are in the two extreme

portfolios by the definition of outliers). To examine this possibility, we repeat our analysis

by discarding CMER values below 1st percentile point or above 99th percentile point of the

CMER distribution across all stocks. Then, we sort stocks by the estimated CMER. Table 4,

Panel B, reports the results. All intercepts now become insignificant at a 5% level. In Panel

C, we conduct a further robustness test and report the result from a quintile portfolio sort

analysis (without the truncation of outlier CMER). A quintile portfolio sort is expected to be

more robust to outliers because the formed portfolios contain more stocks and thus they are

more diversified. We can see that intercept is not statistically different from zero in all cases.

In sum, the intercepts of the spread portfolio are insignificant, irrespective of the choice of the

asset pricing model.12 Overall, these results validate our second hypothesis.

[Table 4 about here.]

4.3 Characteristics of CMER-sorted portfolios

Next, we provide two alternative ways to test Hypothesis 3 as discussed in Section 2.4. First, we

examine the relation between the estimated CMER and various firm and stock characteristics.

Table 5 reports these characteristics for the CMER-sorted value-weighted decile portfolios,

12Note that this does not imply that all considered models price the cross-section of U.S. equities equally well
and hence it does not contradict previous studies which document that the pricing performance of these models
differs. Our results show that all models price the particular cross-section of the CMER-sorted decile portfolios
and their spread portfolio equally well.
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where we use the AVE-CM CMER as a sorting variable. Hypothesis 3 suggests that stocks

with higher transaction costs are likely to exhibit more extreme CMER values. Our results

confirm this conjecture. We can see U-shaped relations between the relative bid-ask spread

(BAS), Amihud’s (2002) illiquidity measure, stock price level, and the estimated CMER, that

is, stocks with extreme estimated CMER values tend to have a wider bid-ask spread, greater

illiquidity and lower stock prices. There is an inverse U-shaped relation between CMER and the

SIZE (the logarithm of the market equity). This is also consistent with Hypothesis 3; smaller

size stocks are subject to larger market frictions and hence larger transaction costs (see e.g.,

Hasbrouck (2009) and Hou et al. (2016)). We also observe a U-shaped relation between the

estimated CMER and the idiosyncratic volatility (IVOL) and the beta; stocks with extreme

CMER value tend to have larger idiosyncratic risk and systemic risk. These relations are again

consistent with Hypothesis 3 because a higher riskiness can be interpreted as a larger market

friction in the sense that the higher riskiness of a stock discourages traders to trade the stock

(see e.g., Stambaugh et al. (2015)). We also see that there is a U-shaped relation between

CMER and variables which measure short-selling costs, i.e., the relative short interest (RSI)

(see Asquith et al. (2005)), and the estimated shorting fee (ESF) of Boehme et al. (2006). This

is again consistent with Hypothesis 3 because short-selling costs are part of transaction costs.

Finally, we also find a U-shaped relation between the book-to-market ratio (B/M) and the

estimated CMER.

[Table 5 about here.]

Second, we examine Hypothesis 3 by analysis based on dependent bivariate sort as discussed

in Section 2.4; the variation of CMER will be greater within a group of stocks that is subject to

larger transaction costs and market frictions. The CMER-spread portfolio formed from stocks

with larger CMER variation is expected to earn a higher average return because larger CMER

variation means that the expected relative out-performance (under-performance) of the stocks

in the long (short) leg is more pronounced. Therefore, in the case where we sort stocks first

by a transaction costs-related variable and then by the estimated CMER, the CMER-spread

portfolios’ average returns will be higher for a higher transaction costs’ bin. To confirm this
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conjecture, we conduct bivariate dependent sorts first by a friction-related variable, then by

the estimated CMER. Table 6, Panel A, reports the bivariate dependent sort, first by the

bid-ask spread, then by CMER. The result verifies our conjecture. The average CMER of

the CMER-sorted spread portfolio increases with the level of the relative bid-ask spread. The

average return and αFFC of the CMER-sorted spread portfolios also increase with the level of

the bid-ask spread. We find a similar pattern in the CMER-sorted portfolios in Table 6, Panel

B, where we use the SIZE as an alternative sorting proxy for transaction costs. In general, the

average CMER, average return, and αFFC of the CMER-sorted spread portfolios decrease in

the level of SIZE.13

[Table 6 about here.]

4.4 Robustness checks

In this subsection, we report a number of robustness checks. First, we examine whether our

baseline results may differ across the four possible ways of constructing CMER. We also inves-

tigate whether results are driven by outliers, stock reversals, non-synchronous trading in the

option and underlying market. We also conduct Fama and MacBeth (1973) regression tests to

see whether CMER is related to stock returns.

First, we examine whether the average return and αFFC of the decile spread portfolio differ

across the four CMER proxies. Table 7, Panel A, reports the results. We can see that the

average return and αFFC are statistically and economically significant for any of the four ways

of computing CMER in both the value-weighted and equally-weighted cases. In addition, we

can see that CMER computed by the AVE-CM method delivers the highest average return and

alpha. This may be due to the fact that AVE-CM CMER reduces any measurement errors in

CMER at each strike by averaging them and hence the signal to sort stocks in portfolios has

greater predictive power. It may also be the case that 30-day constant maturity CMER gives

cleaner signals for future out-/under-performance in the succeeding month than CMER at the

traded maturity closest to 30-day.

13We obtain similar results which confirm our third hypothesis when we use idiosyncratic volatility, or Ami-
hud’s (2002) illiquidity measure as a proxy for transaction costs.
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[Table 7 about here.]

Second, regarding the effect of extreme CMER values, we check whether the predictive power

of CMER is driven by few stocks that have extreme CMER value. We perform two alternative

robustness tests based on two respective ways of forming portfolios. First, we remove stocks

whose CMER is below 1st percentile point or above 99th percentile point. Second, we form

quintile rather than decile portfolios; each quintile portfolio has twice as many stocks compared

to decile portfolios, portfolio returns are more robust to the effect of outliers. Table 7, Panel

B, reports the average returns and alphas of the long-short portfolio. The first two columns

reports the average return and the risk-adjusted return of the decile spread portfolio, where we

remove stocks whose CMER is below 1st percentile point or above 99th percentile point. Two

spread portfolios are formed as the difference of Portfolio 10 minus Portfolio 1, and Portfolio

9 minus Portfolio 2, respectively. By construction, the latter spread portfolio contains stocks

which have less extreme CMER values. We can see that albeit the average return and alpha

decrease compared to the full sample results, results are still economically and statistically

significant. The third and fourth column of Table 8 show the analogous results for the CMER-

sorted quintile portfolios. Again, the average and risk-adjusted returns are economically and

statistically significant.

Third, the predictability of CMER may be a manifestation of the short-term reversal effect of

Jegadeesh and Titman (1993), which is typically attributed to mispricing due to microstructural

frictions (see Chapter 12 of Bali et al. (2016)). To examine this conjecture, we conduct a 5× 5

dependent bivariate sort, where we first sort stocks according to the previous month return

Rt−1,t, and then sort by the AVE-CM CMER. Hence, we can see whether CMER has predictive

power after the previous month return is controlled. The first five columns of Table 8 reports

the average returns of the 25 bivariate-sorted portfolios. The sixth to last columns report the

average return, αFFC , and the average CMER of the long-short portfolios of CMER, after

controlling the previous month return. Overall, the spread portfolios’ risk-adjusted returns

(seventh column) are still statistically and economically significant after controlling the previous

month return. This suggests that the predictive power of CMER is not subsumed by the short-
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term reversal phenomenon.

[Table 8 about here.]

Fourth, we examine whether our results on the documented predictive ability of CMER

are of use to real time investors in the presence of non-synchronous trading in the option and

the underlying stock market (Battalio and Schultz (2006)). The CBOE option market closes

after the underlying stock market. Consequently, in real time, the CMER value computed from

option closing prices may not be available to investors on the close of the stock market. As a

result, in real time it may be the case that the investor cannot exploit the CMER signal since

the stock market has closed and hence he cannot trade stocks.14 In this case, inevitably, the

investor will trade stocks at the open of the next day. To examine whether the calculated at

the end-of-day CMER may be of use to an investor, we calculate post-ranking returns using the

open-to-close monthly stock return, where the open stock price is that of the day that follows

the estimation of CMER.

Table 9, Panel A, reports the portfolio analysis results, where the open-to-close return is

used. The average return of the spread portfolio is 1.60% per month and it is almost the same

as the average return obtained from the baseline analysis using close-to-close returns, 1.64%.

αFFC is 1.83%, which is again almost the same as the corresponding alpha in the close-to-close

return case, 1.86%. This result implies that the predictive power of the estimated CMER

prevails even in the presence of non-synchronous trading in the stock and option market; the

predictive power of CMER does not change overnight. On the other hand, given that the

predictive performance of CMER deteriorates (yet it remains significant) once we skip the first

trading days, the predictive power of CMER starts to decay from the intra-day trading on the

first trading date after the CMER observation date.

[Table 9 about here.]

14The underlying market closes at 4:00 p.m. (EST). Prior to June 23, 1997, the closing time for CBOE options
on individual stocks was 4:10 p.m. (EST). However, on June 23, 1997, CBOE changed the closing time for
options on individual stocks to 4:02 p.m. (EST), i.e. only two minutes after the closing of the underlying stock
market. This change minimizes the potential non-synchronicity bias during our sample period. Nevertheless,
in the absence of intra-day option prices, it is not known whether the CMER estimates were available in real
time before the stock market close.
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Fifth, we examine whether results are robust in the case where we exclude stocks with small

prices. Table 9, Panel B, reports the portfolio analysis results, where we exclude stocks whose

price level is lower than $10. This filtering criteria removes about 10% of stocks compared to the

baseline analysis.15 We can see that the average return and the alphas of the spread portfolio

decrease when we remove the low priced stocks. However, the returns are still highly statistically

and economically significant. This is in contrast with the literature on the predictability of

mispricing-related variables, where the predictability mainly stems from small, low priced stocks

which are more susceptible to mispricing.16

Sixth, we examine whether the predictive cross-sectional power of CMER prevails in the

case where we use different breakpoints to form the decile portfoliosTable 9, Panel C, reports

the portfolio sort result, where we form decile portfolios based on the NYSE breakpoints.17

Hou et al. (2017) recommend using only NYSE stocks to compute breakpoints rather than

using all stocks. This is because the latter method allows smaller and more volatile NASDAQ

stocks to have a greater relative importance in the extreme decile portfolios and amplifies asset

pricing anomalies. We can see that the predictive ability of CMER is robust irrespective to the

breakpoint method. The average return and alpha of the spread portfolio are still significant,

albeit smaller compared to these obtained in the baseline analysis.

Seventh, we examine whether the predictive power of CMER still exists over two sub-

periods. We divide our initial sample period into January 1996– December 2006 and January

2007–April 2016. We choose December 2006 as a splitting point for the following two reasons:

first, 2007 is the onset of the financial crisis and hence market frictions have increased in the

period thereafter. This may have an effect on the cross-section of CMER values as Figures 1

15Typically, the threshold price level is set to $1 or $5. We adopt a greater threshold price level because there
is a negligible number of stocks whose price level is below $5; these stocks do not have a liquid option market
and thus they had been already excluded from our CMER sample by the option filtering criteria.

16For example, Hou et al. (2016) report that the predictive power of their FRIC measure, which captures the
degree of microstructural frictions effect on expected return, decreases considerably when penny stocks (stock
price ≤ $1 or $5) are excluded.

17To form CMER-sorted decile portfolios, we need to determine nine breakpoints, b1 < b2 < · · · < b9 such
that a stock with CMER value CMERi belongs to j-th portfolio when bj−1 < CMERi ≤ bj . In the baseline
analysis, bj are calculated as 10th, . . . , 90th percentile of the CMER of all stocks. In the NYSE breakpoint
method, these percentiles are calculated using only NYSE stocks, and then we form decile portfolios using both
NYSE and non-NYSE stocks.
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and 2 have indicated. Second, December 2006 coincides with the period where the academic

research, which demonstrates that the option-implied measures extracted from individual equity

options predict the cross-section of future stock returns, has appeared.18 McLean and Pontiff

(2016) find that the publication of academic research on asset pricing anomalies eliminates the

predictability of variables which manifest asset pricing anomalies. Panels A and B of Table 10

report the results. The spread portfolio’s average return and αFFC decrease by 68 bps and 119

bps, respectively, from the earlier to the more recent sub-sample. However, the average return

and alpha of the spread portfolio are still statistically and economically significant.

[Table 10 about here.]

Finally, we complement the portfolio sorts with Fama and MacBeth (1973) (FM) regressions

where we regress stock returns on stock’s characteristics including the estimated CMER. These

regressions provide additional robustness checks for our results since they employ all firms

without imposing portfolio breakpoints and allow for control variables (see Hou et al. (2016)).

For each month t (t = 1, 2, ..., T ), we estimate the following cross-sectional regression across

individual stocks indicated by i (i = 1, 2, ..., n):

Rt,t+1 = α + β′Xi,t, (18)

where Xi,t is a vector that contains characteristics variables of individual stocks. Then, we

calculate the time-series average and the HAC-adjusted t-statistics of the estimated T cross-

sectional intercept α and the β coefficients. To ensure that our estimates are not driven by

extreme values, we truncate variables in Xi,t at a 1% threshold level.

Table 11 reports the result. Model (1) shows that the estimated CMER is highly positively

related to the stock returns. In Model (2), we include various control variables including market

beta, SIZE, log of Book-to-market ratio, momentum (Rt−12,t−1). We also include the previous

month return Rt−1,t, idiosyncratic volatility (IVOL), asset growth rate and profitability since

18For instance, Cremers and Weinbaum (2010) and Bali and Hovakimian (2009) working paper versions
appeared on the SSRN website in March 2007 and November 2007, respectively.
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it is well-known that these variables have predictive power for future stock returns (see e.g.,

Jegadeesh and Titman (1993) for the short-term reversal, Ang et al. (2006) for IVOL, and Hou

et al. (2015) for asset growth and profitability). The coefficient of the estimated CMER is still

positive and highly statistically significant even after controlling for these variables. In Model

(3), we further add three liquidity related variables, Amihud’s (2002) illiquidity measure, the

relative bid-ask spread and the turnover rate. The estimated coefficient of CMER is virtually

unchanged from Model (2).

In columns (4) to (9), we report results from conducting analysis on two separate sub-

samples. First, as we have discussed above (Table 9, Panel C), NASDAQ stocks are smaller and

more volatile than NYSE and AMEX stocks. Hence, the FM regression results may be driven

by the NASDAQ stocks (see Hou et al. (2016)). To examine this possibility, we repeat the FM

regression by splitting our sample into NYSE/AMEX stocks and NASDAQ stocks. Columns (4)

and (5) report respective results. The coefficients of CMER are still highly significant regardless

of whether we use only NYSE/AMEX stocks or NASDAQ stocks. Next, as we have seen in

Table 5, CMER and various firm and stock characteristics exhibit (inverse) U-shaped relations.

Therefore, it might be the case that this non-linear structure affects the FM regression results.

To address this issue, we split our initial sample based on the sign of CMER; we split our sample

into two parts where the splitting points is a zero CMER value. Hence, the two parts roughly

correspond to the left and right part of the U-shaped relations so that each subsample has a

monotonic relation between CMER and the firm and stock characteristics. This would be closer

to the structure of the FM regressions. Columns (6) and (7) demonstrate that the coefficient

of CMER is larger for negative CMER samples, but the coefficient of CMER is significant for

both subsamples. Finally, we split our sample into January 1996–December 2006 and January

2007–April 2016 as before and we re-apply the FM regressions. We can see from the last two

columns that the estimated coefficient on CMER becomes slightly smaller in the latter period,

but they are highly statistically significant in both sub-periods.

[Table 11 about here.]
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5 Relation to option-implied measures of mispricing

In this section, we discuss the relation of CMER with three option-implied measures of mis-

pricing, which have been documented to predict stock returns cross-sectionally by the previous

literature: the option-implied stock price of Manaster and Rendleman (1982), the implied vo-

latility spread (IVS) (e.g., Bali and Hovakimian (2009) and Cremers and Weinbaum (2010)),

and DOTS measure. Moreover, we discuss how CMER relates to the mispricing term suggested

by Brennan and Wang’s (2010) (BW) mispricing risk premium (MPR) and Hou et al.’s (2016)

(HKW) FRIC measure.

5.1 Manaster and Rendleman’s (1982) measure

Manaster and Rendleman (1982) define the implied stock price S∗t as the parameter that mi-

nimizes the sum of squared errors between observed option prices and the “theoretical” option

prices given by the Black and Scholes (1973) model. They assume that S∗t proxies the current

fundamental price and hence they propose the following proportional error of the stock ∆t as

a proxy of the current mispricing:

∆t =
S∗t − St
St

. (19)

Using the relation between IMRS and the Q-probability measure (Aı̈t-Sahalia and Lo

(1998)), we have

EP
t [m

∗
t,t+1Xt+1] =

1

R0
t,t+1

EQ
t [Xt+1], (20)

where Xt+1 is any payoff at time t + 1. The following Proposition shows the relation between

∆t and CMER:

Proposition 5.1 When St+1 follows a log-normal distribution under the Q-measure, the fol-

lowing relation holds:

∆t =
1

R0
t,t+1

CMERt. (21)

Proof: See Appendix A.4. 2

Two remarks on Proposition 5.1 are in order. First, this Proposition shows that ∆t does
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not measure the current mispricing. Rather, ∆t is the discounted value of CMER, which is

the expected change in mispricing. Second, ∆t measures the discounted CMER only if the

risk-neutral distribution of the asset return is normal. The empirical evidence shows that the

risk-neutral distribution of returns is not normal (e.g., Kostakis et al. (2011) and references

therein). In such a case ∆t will be a biased estimate of CMER; Manaster and Rendleman

(1982) also document a weak cross-sectional predictive performance of ∆t.
19

5.2 Relation to IVS and DOTS

Previous literature has documented that IVS, defined as the difference between the BS-IV of the

call and put options with the same strike and maturity, predicts future stock returns (see e.g.,

Bali and Hovakimian (2009), Cremers and Weinbaum (2010)). In addition, Goncalves-Pinto

et al. (2017) find that their proposed option-implied measure, DOTS, also predicts the cross-

section of future stock returns and that DOTS is highly correlated with IVS. In this subsection,

we show that both IVS and DOTS are approximately proportional to CMER. We begin by

providing the following Proposition which establishes the relation between CMER and IVS.

Proposition 5.2 Let IV c
t (K) and IV p

t (K) be the Black-Scholes call and put implied volatilities

(BS-IVs), respectively. Then, the following approximate equation holds.

CMERt(K) ≈
R0
t,t+1Vt(K)

St
(IV c

t (K)− IV p
t (K)), (22)

where Vt(K) is the Black-Scholes vega evaluated at a strike K and a volatility equal to (IV c
t (K)+

IV p
t (K))/2.

Proof: See Appendix A.5. 2

Next, we show the relation between CMER and Goncalves-Pinto et al.’s (2017) DOTS

19We estimate Manaster and Rendleman’s (1982) S∗t by minimizing the squared sum of the difference between
European option prices converted from the OM BS-IVs and Black and Scholes (1973) theoretical prices, and
then we calculate ∆t. We do not find a significant average and risk-adjusted returns of ∆t-sorted decile spread
portfolio. This implies that the Manaster and Rendleman’s (1982) measure does not predict stock returns
cross-sectionally, as expected.
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measure. DOTS is calculated from a pair of American call and put option prices as

DOTSt(K) :=
SU
t (K)+SL

t (K)

2
− St

St
, (23)

where SUt (K) = Cask
t (K) − P bid

t (K) + K + Dt+1/R
0
t,t+1 and SLt (K) = Cbid

t (K) − P ask
t (K) +

K/R0
t,t+1 are the no-arbitrage bounds for the stock price (i.e. SLt ≤ St ≤ SUt ) calculated from

the bid and ask prices of American call and put options (Cbid, P bid, Cask, and P ask) with strike

K. Goncalves-Pinto et al. (2017) assume that the mid-price of the American option-implied

bounds SUt and SLt proxies the true value of the stock price.

Proposition 5.3 Let ηct and ηpt be the early exercise premium of the American call and put

option, respectively. Then, the following relation holds:

DOTSt(K) =
CMERt,t+1(K)

R0
t,t+1

+ ut, ut =
1

St

[
ηct −

Dt+1

2R0
t,t+1

−
(
ηpt −

K(R0
t,t+1 − 1)

2R0
t,t+1

)]
. (24)

Proof: See Appendix A.6. 2

Proposition 5.3 shows that DOTS is the discounted observable part of CMER plus an

additional term ut which is a function of the early exercise premium of the American call and

put options. The extent to which CMER will be highly correlated with DOTS will depend on

the size of ut.

Propositions 5.2 and 5.3 explain theoretically the empirically documented predictive power

of IVS and DOTS for future stock returns; they are approximately proportional to CMER,

which is a part of expected stock returns when mispricing exists. Therefore, IVS and DOTS

ought to predict future stock returns, too. Moreover, these results explain formally Goncalves-

Pinto et al.’s (2017) finding that DOTS and IVS are highly correlated. However, the empirical

performance of CMER, IVS and DOTS as a cross-sectional predictor of stock returns may differ

since IVS and DOTS are proxies of CMER; the strength of the predictive power will depend

on the size of approximation errors in equation (22) in the case of IVS and on the size of ut

in the case of DOTS. The predictive power of IVS also depends on the impact of omitting the

vega scaling factor. DOTS is constructed from options which have different time-to-maturities
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which may not correspond to the 30-days return horizon and this may also incur biases.

We compare the cross-sectional predictive ability of AVE-CM CMER to that of IVS and

DOTS. We follow Bali and Hovakimian (2009) and calculate IVS by taking the average of

the IVS of available pairs of call and put options across different strikes and maturities (see

Appendix B for the detailed construction method of IVS). We construct DOTS in line with

Goncalves-Pinto et al. (2017). Table 12 reports the average returns, and alphas for the spread

portfolios formed on AVE-CM CMER, IVS and DOTS. We can see that the CMER-sorted

spread portfolio earns greater alphas by 45–49 bps (27–42 bps) compared to the IVS-sorted

(DOTS-sorted) portfolio. The difference between CMER and DOTS alphas is smaller than

that between CMER and IVS. This result is expected because DOTS is not subject to the vega

scaling point encountered in IVS, and the additional term in ut in over our sample period is

small.20 In sum, in line with the previous literature and Propositions 5.2 and 5.3, both IVS

and DOTS predict stock returns, yet CMER outperforms them. This is expected since CMER

is part of the expected stock return as our formal asset pricing model shows whereas the other

two measures are approximations of CMER.

[Table 12 about here.]

5.3 Relation to BW and HKW’s mispricing model

Brennan and Wang (2010) (BW hereafter) and Hou et al. (2016) (HKW) propose asset pricing

models, where they employ a reduced form mispricing model to study how the existence of

mispricing affects asset returns. The two studies show that the existence of mispricing results

in what they call the mispricing risk premium (MRP) and the FRIC measure, respectively.

First, we shortly overview their main theoretical results. BW and HKW’s model have a similar

structure. Specifically, they define mispricing by the following equation.

St = FtZt in BW and St = Ft(1 + ϕt) in HKW, (25)

20We calculate ut as DOTSt(K)−CMERt,t+1(K)/R0
t,t+1 and find that the monthly time series of the median

of ut is close to the half of the net risk-free rate, which is close to zero over our sample period.
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where St and Ft are the market price and the fundamental price of the stock, respectively. In

short, in these two models, the stock price is described as St = Ftµt with µt = Zt in BW and

µt = 1+ϕt in HKW. We call µt as the mispricing multiple. BW and HKW assume the following

time-series structure for the mispricing multiple µt.

(BW:) zt = ρzt−1 + εt where εt is an i.i.d. normal term and zt = logZt = log µt,(26)

(HKW:) ϕt follows a zero-mean i.i.d. process, where 1 + ϕt = µt. (27)

In addition, both BW and HKW assume that the fundamental price and the mispricing multiple

are independent. In analogy to this assumption, we assume that IMRS m∗t,t+1 is independent

of the future mispricing Mt+1. To simplify the subsequent discussions, we also assume that the

stock pays no dividends.21 Under these assumptions, we obtain the following result.

Proposition 5.4 Let RF
t,t+1 = Ft+1/Ft be the fundamental return. Then, the following equation

holds:

EP[Rt,t+1] = B + EP[RF
t,t+1], (28)

where B captures the effect of stock mispricing to the expected return and it is given by

B ≈


BBW = (1− ρ)σ2

z > 0 under the specification (26),

BHKW = σ2
ϕ > 0 under the specification (27),

(29)

where σ2
z is the unconditional variance of the log mispricing process zt in equation (26) and

σ2
ϕ is the unconditional variance of ϕt in equation (27).22 BW call BBW the mispricing risk

premium (MRP) and HKW calls BHKW the FRIC measure.

Furthermore, B in equation (28) satisfies the following approximate relation:

B ≈ EP[CMERt,t+1]. (30)

21This assumption does not alter the conclusion on BW and HWK because BW report that the effect from
dividend payments to their mispricing term is negligible and HKW assume that stocks pays no dividends.

22Equation (28) is a modified version of BW’s (HKW’s) original equation (6) (equation 8). Note that in BW
paper, B is decomposed into four components Bi (i = 1, 2, 3, 4).
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Proof: See Appendix A.7 2

Proposition 5.4 shows that the unconditional mean of CMER is approximately equal to MRP

or FRIC measure in the BW and HWK setting, respectively, which are shown to be positive

in equation (29). This means that the unconditional average of CMER should be positive

under the BW or HWK’s assumptions. The positivity of Bi is a consequence of the time-series

specifications of the mispricing multiple µt in equations (26) and (27) as well as the assumption

that the mispricing multiple and the fundamental price are independent. On the other hand,

the mean of our model-free estimated CMER is negative (Table 1). This discrepancy implies

that the BW/HWK assumptions are not supported by the data.

6 Conclusion

We examine the contribution of mispricing to expected returns (CMER) within a general as-

set pricing setting. To this end, we employ a financial intermediary-based equilibrium asset

pricing model in the presence of stock mispricing due to market frictions. The model contains

CMER, on top of the typical covariance risk-premium term calculated as the covariance be-

tween the market-maker’s intertemporal marginal rate of substitution (IMRS) and the stock

return. CMER reflects the expected change in mispricing over a time period. It does not re-

flect compensation for risk, rather it is the alpha of the stock, i.e., it reflects whether the stock

outperforms/under-performs. Moreover, it is the true alpha in the sense that it is a part of

expected excess returns that cannot be explained by the covariance risk premium term, where

the covariance is taken between the agent’s model-free IMRS and the stock return. We derive a

model-free option-based formula to estimate CMER. The formula relates CMER to the degree

of the violation of put-call parity due to stock mispricing. In contrast to the previous literature,

we make no assumptions on the source and dynamics of mispricing as well as on the form of

IMRS in order to derive our model and CMER formula.

We estimate CMER for a large cross-section of U.S. common stocks and we confirm the

testable predictions of our model. Four are our main findings. First, CMER is sizable. This
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implies that expected changes in mispricing are part of expected returns. Second, we find that

CMER predicts future stock returns cross-sectionally. Third, we find that the regressions of the

CMER-adjusted excess return Rt,t+1 − R0
t,t+1 − CMERt,t+1 of CMER-sorted decile portfolios

on a set of standard risk-factors yield non-significant intercepts. Fourth, we document that the

cross-section of CMER becomes more dispersed when transaction costs and market frictions

are larger.

Finally, we use our asset pricing model and show the theoretical relation between CMER

and other option-implied measures of stock mispricing including Manaster and Rendleman’s

(1982) option-implied measure, the implied volatility spread, and Goncalves-Pinto et al.’s (2017)

DOTS measure. These relations provide a theoretical explanation to the previously empirically

documented predictive ability of these option-implied measures for future stock returns.
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A Proofs for Section 2 and Section 5

A.1 Proof of Theorem 2.1

First, we prove the following lemma.

Lemma A.1 Let RF
t,t+1 = (Ft+1 + Dt+1)/Ft be the fundamental return of the stock. The fun-

damental return RF
t,t+1 satisfies the following equation:

1 = EP
t [m

∗
t,t+1R

F
t,t+1]. (A.1)

(Proof of Lemma A.1)

From equation (9), IMRS satisfies m∗t,j = m∗t,t+1m
∗
t+1,j for any j > t+ 1. Application of the

law of iterated conditional expectations yields

Ft =
T∑

j=t+1

EP
t [m

∗
t,jDj] = EP

t

[
m∗t,t+1

(
Dt+1 +

T∑
j=t+2

m∗t+1,jDj

)]
= EP

t [m
∗
t,t+1(Dt+1 + Ft+1)].

(A.2)

We divide both sides of equation (A.2) by Ft and use the definition of the fundamental return

to obtain equation (A.1). 2

Now, we prove Theorem 2.1. By applying the covariance formula Covt(X, Y ) = Et[XY ] −

Et[X]Et[Y ] to CovPt (m∗t,t+1, Rt,t+1), we obtain the following identity:

EP
t [Rt,t+1] = −

CovPt (m∗t,t+1, Rt,t+1)

EP
t [m

∗
t,t+1]

+R0
t,t+1EP

t [mt,t+1Rt,t+1]. (A.3)

The definition of the stock return Rt,t+1 and the fundamental return RF
t,t+1 yields

Rt,t+1 =
Ft
St

Ft+1 +Dt+1

Ft
+
Mt+1

St
=

(
1− Mt

St

)
RF
t,t+1+

Mt+1

St
= RF

t,t+1+
Mt+1 −RF

t,t+1Mt

St
. (A.4)

The second term in the right hand side of equation (A.3) can be transformed as follows by
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using equation (A.4) and Lemma A.1,

R0
t,t+1EP

t [m
∗
t,t+1Rt,t+1] = R0

t,t+1EP
t [m

∗
t,t+1R

F
t,t+1] +

R0
t,t+1

St
EP
t [m

∗
t,t+1(Mt+1 −RF

t,t+1Mt)]

= R0
t,t+1 +

R0
t,t+1

St

(
EP
t [m

∗
t,t+1Ms −Mt]

)
= R0

t,t+1 + CMERt.

(A.5)

Substitution of (A.5) into (A.3) completes the proof of equation (11). 2

A.2 Proof of Theorem 2.2

Under the assumption that there are no market frictions relevant to the risk-free bond and

options trading, the risk-free bond price (reciprocal of the gross risk-free rate) and option prices

at time t are given by the expected payoff at time t + 1 discounted by IMRS. In particular, it

follows that 1/R0
t,t+1 = EP

t [m
∗
t,t+1·1], Ct(K) = EP

t [m
∗
t,t+1(St+1−K)+] and Pt(K) = EP

t [m
∗
t,t+1(K−

St+1)
+]. Since Ct(K) − Pt(K) = EP

t [m
∗
t,t+1(St+1 − K)], we can transform Ct(K) − C̃t(K) as

follows:

Ct(K)− C̃t(K) = Ct(K)− Pt(K)− St +
K +Dt+1

R0
t,t+1

= EP
t [m

∗
t,t+1(St+1 −K)]− St +

K +Dt+1

R0
t,t+1

= EP
t [m

∗
t,t+1(St+1 +Dt+1)]− St = EP

t [m
∗
t,t+1Mt+1 −Mt],

(A.6)

where we use EP
t [m

∗
t,t+1(Ft+1 + Dt+1)] − Ft = 0 (equation (A.2)) to derive the last equation.

Equation (A.6) shows that R0
t,t+1(Ct(K)− C̃t(K))/St equals CMERt,t+1. 2

A.3 Proof of Proposition 2.1

Under the assumption that the proportional transaction cost ρ is the only market frictions, He

and Modest (1995) derive the following inequalities:

1− ρ
1 + ρ

≤ EP
t [m

∗
t,t+1Rt,t+1] ≤

1 + ρ

1− ρ
. (A.7)
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The expectation term in the middle of the inequalities posed by (A.7) relates to CMER as

follows:

EP
t [m

∗
t,t+1Rt,t+1] =

EP
t [m

∗
t,t+1(St+1 +Dt+t)− St]

St
+ 1 =

EP
t [m

∗
t,t+1Mt+1 −Mt]

St
+ 1

=
1

R0
t,t+1

CMERt,t+1 + 1.

(A.8)

The second equality follows from EP
t [m

∗
t,t+1(Ft+1 + Dt+1) − Ft] = 0 (equation (A.2)) and the

third equality follows from equation (12). Substituting equation (A.8) to (A.7) and rearranging

terms yields

− 2ρ

1 + ρ
R0
t,t+1 ≤ CMERt,t+1 ≤

2ρ

1− ρ
R0
t,t+1. (A.9)

2

A.4 Proof of Proposition 5.1

Let τ be the time length between t and t+ 1 measured in yearly basis. Given r = log(R0
t,t+1)/τ

and PV Dt,t+1 = Dt+1/R
0
t,t+1, Manaster and Rendleman (1982) assume that Q-distribution of

St+1 follows

St+1 ∼ LN (log(S∗t − PV Dt,t+1) + rτ + (σ∗)2τ/2, σ∗
√
τ), (A.10)

where LN denotes the log-normal distribution, and the two parameters S∗t and σ∗ are obtained

by fitting the theoretical option prices under equation (A.10) to observed option prices. We

can calculate the Q-expected value of St+1 as follows

EQ
t [St+1] = (S∗t − PV Dt,t+1)e

rτ ⇔ S∗t =
EQ
t [St+1 +Dt+1]

R0
t,t+1

= EP
t [m

∗
t,t+1(St+1 +Dt+1)], (A.11)

where we used equation (20) to obtain the last equality. Therefore, we obtain ∆t is equal to

CMERt/R
0
t,t+1. 2
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A.5 Proof of Proposition 5.2

Let BScall(IV ) be Black-Scholes call option function viewed as a function of the volatility

parameter. Then, by the definition of the call BS-IV and the Black-Scholes European call

option price formula, Ct(K) = BScall(IV
c
t (K)). Let BSput(IV ) be the Black-Scholes European

put option price formula so that Pt(K) = BSput(IV
p
t (K)). Then, it follows that

C̃t(K) = BSput(IV
p
t (K)) + St −

K +Dt+1

R0
t,t+1

= BScall(IV
p
t (K)), (A.12)

because the pair of the Black-Scholes European call and put option prices with the same vo-

latility satisfies the put-call parity. This shows that Ct(K) − C̃t(K) = BScall(IV
c
t (K)) −

BScall(IV
p
t (K)). Therefore, a first-order Taylor series approximation of BScall(IV

c(K)) −

BScall(IV
c(K)) around the mid volatility point (IV c

t (K) + IV p
t (K))/2 yields

Ct(K)− C̃t(K) = BScall(IV
c
t (K))−BScall(IV p

t (K)) ≈ Vt(K)(IV c
t (K)− IV p

t (K)), (A.13)

where Vt(K) is the Black-Scholes vega, ∂BScall(σ)/∂σ, evaluated at (IV c
t (K) + IV p

t (K))/2.

By substituting this approximation in equation (13), we obtain equation (22). This derivation

shows that the approximation error in (22) stems from the higher-order terms of the Taylor

series approximation of BScall(IV
c
t (K))−BScall(IV p

t (K)). 2

A.6 Proof of Proposition 5.3

Substituting the definition of SUt and SLt in equation (23) yields

DOTSt =
1

St

(
Cmid
t (K)− Pmid

t (K)− St +
1

2

(
1 +

1

R0
t,t+1

)
K +

Dt+1

2R0
t,t+1

)
, (A.14)

where Cmid
t and Pmid

t are the mid price of American options. By the definition of ηct and ηpt ,

Ct := Cmid
t − ηct and Pt := Pmid

t − ηpt are the European option prices. Furthermore, we define

C̃t(K) = Pt(K) + St − (K + Dt+1)/R
0
t,t+1 as in equation (14). Then, by rearranging the right
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hand side of equation (A.14) we obtain

DOTSt =
Ct(K)− C̃t(K)

St
+

1

St

[(
ηct −

Dt+1

2R0
t,t+1

)
−
(
ηpt −

1

2

(
1− 1

R0
t,t+1

))]
. (A.15)

Since the first term in the right hand side of equation (A.15) is CMERt,t+1/R
0
t,t+1, we prove

equation (27). 2

A.7 Proof of Proposition 5.4

First, we show equations (28) and (29). Taking the ratio of equation St = Ftµt at time t and

t+ 1 yields
St+1

St
=
Ft+1

Ft

µt+1

µt
⇔ Rt,t+1 = RF

t,t+1

µt+1

µt
. (A.16)

Taking the expectation of both sides of the second equation in (A.16) yields

EP[Rt,t+1] = EP[RF
t,t+1] +B, where B = EP[RF

t,t+1]EP
[
µt+1

µt
− 1

]
. (A.17)

Then, under the time-series specification of µt in equations (26) and (27), it follows that23

EP
[
µt+1

µt
− 1

]
≈


BBW = (1− ρ)σ2

z under the specification (26)

BHKW = σ2
ϕ under the specification (27).

(A.18)

Both BW and HWK approximate B ≈ EP[µt+1/µt − 1] because both EP[RF
t,t+1 − 1] (the net

fundamental return rate) and EP[µt+1/µt−1] (the variance of the mispricing multiple) are small

and hence their product is negligible.

Now, we show equation (30). Taking the unconditional expectation of equation (A.4) yields

EP[Rt,t+1] = EP[RF
t,t+1] + EP

[
1

St
(Mt+1 −RF

t,t+1Mt)

]
. (A.19)

23For the detailed derivation of equation (A.18), see Brennan and Wang’s (2010) and Hou et al.’s (2016)
original articles.
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Therefore, it suffices to show EP[(Mt+1 − RF
t,t+1Mt)/St] ≈ EP[CMERt,t+1]. To this end, we

transform EP[CMERt,t+1] as follows.

EP [CMERt,t+1] = EP
[
R0
t,t+1

St
EP
t [m

∗
t,t+1Mt+1 −Mt]

]
= EP

[
1

St

(
EP
t [Mt+1]−RF

t,t+1Mt

)]
+ EP

[
Mt

St
(RF

t,t+1 −R0
t,t+1)

]
,

(A.20)

where we use the definition of CMER and the law of iterated conditional expectations to derive

the first equality. The second equality follows from EP
t [m

∗
t,t+1Mt+1] = EP

t [Mt+1]/R
0
t,t+1, which

holds under the independence assumption between m∗ and M . Next, we prove that the second

expectation term in the right hand side of equation (A.20) is approximately equal to zero. Due

to the independence assumption between mispricing and the fundamental return, we have

EP
[
Mt

St
(RF

t,t+1 −R0
t,t+1)

]
= EP

[(
1− 1

µt

)
(RF

t,t+1 −R0
t,t+1)

]
= EP

[
1− 1

µt

]
EP[RF

t,t+1 −R0
t,t+1].

(A.21)

The first expectation in the right hand side equals σ2
z/2 under BW’s assumptions and it is

approximately equal to σ2
ϕ under HKW’s assumptions, whereas the second term is the ex-

pectation of the excess return of the fundamental return. Note that both BW and HKW

treat the product of the variance term σ2
z or σ2

ϕ with the expectation of the net fundamen-

tal return as being approximately equal to zero. By adopting their approximation policy,

we can also treat equation (A.21) as being approximately equal to zero. This shows that

EP [CMERt,t+1] ≈ EP
[(
EP
t [Mt+1]−RF

t,t+1Mt

)
/St
]
. 2

B Description of variables

Relative bid-ask spread (BAS): We calculate the daily relative bid-ask spread as BASid =

(Sask,id − Sbid,id )/(0.5(Sask,i + Sbid,i)). Then, we average the daily bid-ask spread over the

past one year. We require there are at least 200 non-missing observations. Data are

obtained from the CRSP database.

Amihud (2002) illiquidity measure: We calculate daily Amihud’s illiquidity measure as
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the ratio of the absolute daily return to the dollar trading volume, Illiqid = |Ri
d|/(SidV olid),

where Ri
d and V olid are the daily return and the trading volume of i-th stock on day d.

Then, we average daily illiquidity measure over the past one year. We require there are at

least 200 non-missing observations. The stock returns, stock prices, and trading volumes

are obtained from the CRSP database. The trading volume of the NASDAQ equities is

adjusted by following Gao and Ritter (2010).

SIZE: Size is the natural logarithm of the market equity. The market equity is calculated as

the product of the number of outstanding share with the price of the stock at the end of

each month. Data are obtained from the CRSP database.

Idiosyncratic volatility (IVOL): In each month, we regress the daily excess returns over

the past 12 months on the Fama and French (1993) three factors to obtain the residual

time-series εid. Then, we calculate the idiosyncratic volatility (IVOL) as

IV OLit =

√
1

N(d)− 1

∑
d∈D

(εid)
2,

where D is the set of non-missing days in the past 12 months. We require there are

at least 200 non-missing observations. Stock return data are obtained from the CRSP

database and the Fama and French (1993) three factors data are obtained from Kenneth

French’s website.

Beta: In each month, we regress daily stock excess returns over past 12 months on the daily

excess market return to obtain the beta. We require there are at least 200 non-missing

observations. Stock return data are obtained from the CRSP database. We use the excess

market return provided at Kenneth French’s website.

Relative short interest (RSI): The relative short interest (RSI) is calculated as the ratio of

the number of short interest to the number of outstanding share. The short interest data

is obtained from the Compustat North America, Supplemental Short Interest File via the

WRDS. Until the end of 2006, the Compustat records the short interest at the middle of
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any given month (typically 15th day of each month). Since 2007, the short interest file

contains the short interest at the middle of months and the end of months. We use the

end-of-month short interest data since 2007 because we sort stocks in portfolios at the

end-of-each month in our analysis. The number of outstanding share is obtained from

the CRSP database.

Estimated shorting fee (ESF): We follow Boehme et al. (2006) to calculate the estimated

shorting fee as

ESF = 0.07834 + 0.05438V RSI − 0.00664V RSI2 + 0.000382V RSI3 − 0.5908Option

+ 0.2587Option · V RSI − 0.02713Option · V RSI2L0.0007583Option · V RSI3,

where V RSI is the vicile ranking of the RSI, that is, V RSI takes the value 1 if the

firm’s RSI is below 5th percentile, 2 if the RSI is between 5th and 10th percentile and

so on. Option is a dummy variable that takes 1 if option trading volume in the month

is non-zero and takes 0 otherwise. Option trading volume data is obtained from the OM

database.

Book-to-Market equity (B/M): We follow Davis et al. (2000) to measure book equity as

stockholders’ book equity, plus balance sheet deferred taxes and investment tax credit

(Compustat annual item TXDITC) if available, minus the book value of preferred stock.

Stockholders’ equity is the value reported by Compustat (item SEQ), if it is available. If

not, we measure stockholders’ equity as the book value of common equity (item CEQ)

plus the par value of preferred stock (item PSTK), or the book value of assets (item

AT) minus total liabilities (item LT). Depending on availability, we use redemption (item

PSTKRV), liquidating (item PSTKL), or par value (item PSTK) for the book value of

preferred stock. From June of each year t to May of t + 1, the book-to-market equity

(B/M) is calculated as the ratio of the book equity for the fiscal year ending in calendar

year t−1 to the market equity at the end of December of year t−1. We treat non-positive

B/M data as missing.
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Profitability: We follow Fama and French (2015) to measure profitability as revenues (Com-

pustat annual item REVT) minus cost of goods sold (item COGS) if available, minus

selling, general, and administrative expenses (item XSGA) if available, minus interest

expense (item XINT) if available all divided by (non-lagged) book equity. From June of

year t to May of t + 1, we assign profitability for the fiscal year ending in calendar year

t− 1.

Investment: We follow Fama and French (2015) to measure investment as the change in total

assets (Compustat annual item AT) from the fiscal year ending in year t− 1 to the fiscal

year ending in t, divided by t − 1 total assets. From June of year t to May of t + 1, we

assign investment for the fiscal year ending in calendar year t− 1.

Turnover rate: We calculate daily turnover rate as the ratio of trading volume to the number

of outstanding share. Then, we average daily turnover rate over the past one year. We

require there are at least 200 non-missing observations. Trading volume and the number

of outstanding share are obtained from the CRSP database. The trading volume of the

NASDAQ equities is adjusted by following Gao and Ritter (2010).

Bali and Hovakimian’s (2009) implied-volatility spread (IVS): We follow Bali and Ho-

vakimian (2009) to construct IVS. Specifically, we keep IV data for options which have (i)

positive bid price, (ii) positive open interest, (iii) bid-ask spread is smaller than 50% of

the mid price. Then, we average all available IVS extracted from options with maturities

between 30 days and 91 days and with the absolute value of the log moneyness | log(K/S)|

smaller than 0.1.

DOTS: We follow Goncalves-Pinto et al. (2017) to keep pairs of call and put options with the

same maturity and strike if (i) their day-to-maturity is between 8-days and 31-days, (ii)

their IV does not exceed 250%, (iii) their bid prices are strictly positive and (iv) their

open interest is greater than zero.
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On each end of month t, DOTS of i-th stock at j-th strike price is calculated as follows:

DOTSit,j =

Si,U
j +Si,L

j

2
− Sit

Sit
,

where Si,Uj = Ci,ask
t (Kj) − P i,bid

t (Kj) + Kj + PV Di
t and Si,Lj = Ci,bid

t (Kj) − P i,ask
t (Kj) +

PV Ki
t,j. PV Di

t and PV Ki
t,j are the present value of dividend payments and the strike

price Kj. Then, DOTS of i-th stock in month t is calculated as

DOTSit = 100×
J∑
j=1

(Ci,ask
t (Kj)− Ci,bid

t (Kj) + P i,ask
t (Kj)− P i,bid

t (Kj))
−1∑J

k=1(C
i,ask
t (Kk)− Ci,bid

t (Kk) + P i,ask
t (Kk)− P i,bid

t (Kk))−1
DOTSit,j,

where J is the number of option pairs. Option and dividend data are obtained from the

OM database.

C Extended formula of CMER under option mispricing

In this section, we discuss how our option-implied CMER formula, Theorem 2.2, alters when

we relax the assumption that options are not mispriced. Then, we empirically examine possible

biases in option-implied CMER caused by frictions and associated mispricing in option prices.

Specifically, we demonstrate that the inclusion of margin constraint in our model does not

qualitatively changes our empirical findings.

C.1 Option-implied CMER formula under option mispricing

In Section 2, we assumed that there are no constraints on option trading (i.e., any constraint

function glt(θt) does not contain θct (K) and θpt (K)) and hence option prices coincide with their

respective fundamental price. When we relax this assumption, the first-order conditions for
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call and put options (θct (K) and θpt (K)) yield the following equations, respectively.

Ct(K) = EP
t [m

∗
t,t+1(St+1 −K)+] +

L∑
l=1

λlt
∂glt(θt)

∂θct (K)
, (C.1)

Pt(K) = EP
t [m

∗
t,t+1(K − St+1)

+] +
L∑
l=1

λlt
∂glt(θt)

∂θpt (K)
, (C.2)

where the first term in equation (C.1) and (C.2) are the fundamental price of call and put,

respectively. Due to the existence of market frictions, the market price and the fundamental

price of options do not generally coincide. We denote the call and put fundamental prices by

C∗t (K) and P ∗t (K) to distinguish them from their market prices, Ct(K) and Pt(K). In this

extended setup, Theorem 2.2 is generalized as follows:

Theorem C.1 For any strike K, the following equation holds:

CMERt,t+1 =
R0
t,t+1

St
(Ct(K)− C̃t(K)) +

L∑
l=1

Z l
t(K), where (C.3)

Z l
t(K) = −

R0
t,t+1

St
× λlt

(
∂glt(θt)

∂θct (K)
− ∂glt(θt)

∂θpt (K)

)
. (C.4)

Proof: See Appendix D.1. 2

Theorem C.1 shows that when option prices can be mispriced, the option mispricing appears

in CMER formula as an additional term as in the second term in the right hand side of equation

(C.3). This additional term is given by the sum of Z l
t, each of which represents the effect of l-th

constraint and its associated mispricing in option prices on CMER. Equation (C.4) shows that,

apart from the coefficient −R0
t,t+1/St which is common across any constraints, Z l

t is the product

of its Lagrange multiplier λlt and
∂glt(θt)

∂θct (K)
− ∂glt(θt)

∂θpt (K)
. This difference of partial derivatives term

denotes how l-th constraint function changes as the agent increases one unit of synthetic stock

long position, where she goes long in a call option and short in a put option.

Theorem C.1 shows that the option-implied CMER we used in the main analysis (the first

term in the right hand side of equation (C.3)) is an approximation of the true CMER when

frictions on option trading and hence option mispricing exists. Even though research on options
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mispricing is still at its infancy compared to the literature on stock mispricing, recent literature

demonstrates that at least the margin constraint affects option prices (see Santa-Clara and

Saretto (2009) and Hitzemann et al. (2016)). Therefore, the margin constraint on option

trading can also affect the calculation of CMER through a non-negligible Zmc
t (the superscript

mc stands for the margin constraint). In the next subsection, we estimate Zmc
t . Then, we show

that the inclusion of Zmc
t does not qualitatively change our empirical findings.

C.2 Estimation of Zmc
t : formula and empirical strategy

To assess the magnitude of Zmc
t , we need to specify the margin constraint function gmct and we

also need empirical evidence on the magnitude of the Lagrange multiplier λmct . First, we follow

Gârleanu and Pedersen (2011) to formalize the margin constraint function gmct as follows:

gmct (θt) := Wt − |θSt |µSt St −
∑
K∈Kt

(
|θct (K)|µct(K)Ct(K) + |θpt (K)|µpt (K)Pt(K)

)
≥ 0, (C.5)

where µSt > 0, µct(K) > 0 and µpt (K) > 0 are the margin rates, that is, µSt St, µ
c
t(K)Ct(K)

and µPt (K)Pt(K) are the initial margin traders need to hold when they trade one unit of the

corresponding asset. This constraint imposes that the aggregated margins the agent need to

hold should not exceed her wealth Wt. The absolute values of asset allocations are involved

since typically traders need to hold margins both when they long and short assets (see also the

discussion in Gârleanu and Pedersen (2011)). The margin rates of options, µct(K) and µpt (K)

are determined by the option exchange rule and depend on the strike price and whether options

are bought or sold. Under the CBOE margin rule, they are given by the following equations

(see Hitzemann et al. (2016) for a detailed discussion):24

µit(K) = 1, when an option is longed, θit(K) > 0, i ∈ {c, p} (C.6)

24Even though each option exchange can have a different margin rule, Hitzemann et al. (2016) document that
the CBOE margin rule is the de facto standard margin rule in the U.S. option exchanges.
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µct(K) =
max(0.2St − (K − St)+, 0.1St)

Ct(K)
, when a call option is shorted, θct (K) < 0 (C.7)

µpt (K) =
max(0.2St − (St −K)+, 0.1K)

Pt(K)
, when a put option is shorted, θpt (K) < 0 (C.8)

To simplify the calculation of the call and put margin rates, we restrict our attention to

strikes which satisfy 8/9 ≤ K/St ≤ 1.1. This examined range of strikes is not restrictive

because we only use options whose moneyness satisfy 0.9 ≤ K/St ≤ 1.1 in our empirical

exercises. In this case, the calculation of the two max functions in equations (C.7) and (C.8)

yields µct(K)Ct(K) = 0.2St − (K − St)+ and µpt (K)Pt(K) = 0.2St − (St − K)+. Under these

specifications of gmct , µct(K) and µpt (K), we obtain the following expression for Zmc
t :

Proposition C.1 For any strike price K satisfying 8/9 ≤ K/St ≤ 1.1, the following equation

holds:

Zmc
t (K) = R0

t,t+1λ
mc
t Et(K), where (C.9)

Et(K) =



(Ct(K)− Pt(K))/St when θct (K) > 0 and θpt (K) > 0

−(St −K)/St when θct (K) < 0 and θpt (K) < 0

(0.2 + [Ct(K)− (St −K)+]/St) when θct (K) > 0 and θpt (K) < 0

− (0.2 + [Pt(K)− (K − St)+]/St) when θct (K) < 0 and θpt (K) > 0.

(C.10)

Proof: See Appendix D.2. 2

We estimate Zmc
t (K) = R0

t,t+1λ
mc
t Et(K) by relying on previous empirical evidence. To this

end, we separately estimate R0
t,t+1λ

mc
t and Et(K) and take their product. First, R0

t,t+1λ
mc
t

corresponds to the shadow cost of capital in Gârleanu and Pedersen (2011), which is shown to

be equal to the spread between the uncollateralized and collateralized risk-free bond rates. We

can show that the spread of these two bond rates coincides with R0
t,t+1λ

mc
t if we extend our

model to include both the collateralized and uncollateralized risk-free bonds.25 Gârleanu and

Pedersen (2011) find that the shadow cost of capital is time-varying and become higher during

25Let Ru
t,t+1 be the return of the uncollateralized bond and θut be the market-maker’s position on the uncol-
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market distress periods. Moreover, their empirical estimations and calibration results suggest

that the shadow cost during the recent financial crisis is about 10% per year (page 1982 and

Figure 1).

We examine three specifications for R0
t,t+1λ

mc
t . In the first specification, R0

t,t+1λ
mc
t is assumed

to be constant and equal to 10% per year, based on the maximum of the estimated shadow cost

of capital in Gârleanu and Pedersen (2011). In the second specification, we set R0
t,t+1λ

mc
t as 5%

per year (constant) considering the fact that 10% is the highest value during the financial crisis

and thus the time-series average of the shadow price of capital is much lower. To consider the

time-varying nature of the shadow cost of capital, we also examine the case where R0
t,t+1λ

mc
t

is given by the scaled TED spread, whose maximum value matches 10% per year during the

financial crisis.26

For each one of the four cases in equation (C.10), the value of Et(K) can be calculated

as long as the sign of the call and put positions are known. To this end, recall that in our

model there are two types of agents, the market-maker and the end-user. Let dct(K) and dpt (K)

be the end-user’s demand for the call and put option, respectively. Then, at equilibrium,

dct(K) = −θct (K) and dpt (K) = −θpt (K) hold because options are in zero net supply. Therefore,

it follows that sgn(θct ) = −sgn(dct) (sgn(θpt ) = −sgn(dpt )) in our equilibrium market model. We

estimate the signs of the end-user’s demand instead of the market-maker’s position and take

the opposite signs.

To infer the signs of the end-user’s demand, we rely on Gârleanu et al.’s (2009) empirical

lateralized bond. The equations for the consumption (4) and the margin constraint (C.5) change to

ct = Wt − θ0t − θut − θSt St −
∑

K∈Kt

[
θct (K)Ct(K) + θpt (K)Pt(K)

]
,

gmc
t (θt) = Wt − θut − |θSt |µS

t St −
∑

K∈Kt

[
|θct (K)|µc

t(K)Ct(K) + |θpt (K)|µp
t (K)Pt(K)

]
≥ 0.

The first order conditions of the collateralized bond (θ0t ) is unchanged and given by 1 = EP
t [m∗t,t+1R

0
t,t+1],

whereas the first order condition of the uncollateralized bond (θut ) is 1 = EP
t [m∗t,t+1R

u
t,t+1] − λmc

t . From these
two first order conditions, we obtain Ru

t,t+1 −R0
t,t+1 = R0

t,t+1λ
mc
t .

26Note that Gârleanu and Pedersen (2011) regress the estimated shadow price of capital on the TED spread
to obtain the coefficient on the TED spread about 1.8, while we multiply the TED spread by the factor of about
3.3 to match the 10% maximum value. Our choice of the scaling factor is conservative for our robustness check
purposes, because it results in bigger (absolute value of) estimated Zmc

t .
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finding in that end-user’s demand for option is highly related to the options’ expensiveness,

which they proxy by the difference between the historical volatility and the implied volatility.

Specifically, we assume that the options’ expensiveness is above (below) the reference point s

if and only if the end-user’s demand dt(K) is positive (negative), i.e., the end-user buys (sells)

the option:

expensivenessit(K) < s ⇔ dit(K) < 0 ⇔ θit(K) > 0, i ∈ {c, p}. (C.11)

To select the value of s, we rely on Gârleanu and Pedersen’s (2011) finding that the end-user is

the net seller of individual options, i.e., the end-user sells more options than buys, implying that

there are more “cheap” options than “expensive” options. This suggests that the proportion of

options whose expensiveness is below s should be above 50%. Given this finding, we examine

three values for the reference point, s = 0, s = 0.01 and s = 0.02. Under these parameters,

the estimation rule (C.11) yields the results that in our sample, roughly 50%, 55%, and 62% of

options are “cheap,” respectively.

To sum up, we estimate the Zmc
t -adjusted CMER as follows:

1. First, we calculate options’ expensiveness for each call and put options, where we calculate

the difference between the BS-IVs and the one-year historical volatility, both of which are

provided by the OM database.

2. Then, we estimate the signs of θct (K) and θpt (K) for each pair of call and put options based

on equation (C.11) and calculate Et(K) based on (C.10). There are three estimation

results depending on the choice of the reference point value s.

3. Next, we multiply Et(K) and R0
t,t+1λ

mc
t to obtain Zmc

t and calculate R0
t,t+1(Ct(K) −

C̃t(K))/St + Zmc
t (K). Since we examine three scenarios for R0

t,t+1λ
mc
t , we obtain nine

estimates of the Zmc
t -adjusted CMER for each strike and maturity.

4. Finally, we construct monthly CMER by following the same procedure described in

Section 3.2, but using the Zmc
t -adjusted CMER constructed in Step 3 above.
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Table A.1 shows the average return and αCAPM , αFF3, αFFC , αFF5, αSY of the value-weighted

decile spread portfolio where we sort stocks based on the Zmc
t -adjusted CMER. The first co-

lumn reports the baseline result shown in Section 4.2 (i.e., the case of the frictionless option

market) and the remaining columns report the results for Zmc
t -adjusted CMER-sorted portfo-

lios, where Zmc
t has been computed in nine different ways as described above. We can see that

CMER predicts future stock returns cross-sectionally even when it is computed by relaxing the

assumption of frictionless option markets (equations (C.3) and (C.4)). The average return and

alphas are statistically and economically significant for each one of the nine alternative methods

to compute Zmc
t . This suggests that our baseline results are robust to the options’ mispricing

due to the presence of margin constraints on option trading.

[Table A.1 about here.]

D Proofs for Appendix C

D.1 Proof of Theorem C.1

The combination of equations (C.1) and (C.2) yields

Ct(K)− Pt(K) = EP
t [m

∗
t,t+1(St+1 −K)] +

L∑
l=1

λlt

(
∂glt(θt)

∂θct (K)
− ∂glt(θt)

∂θpt (K)

)
. (D.1)

The application of similar calculations to the ones required to prove equation (A.6) yields

Ct(K)− C̃t(K) = EP
t [m

∗
t,t+1Mt+1 −Mt] +

L∑
l=1

λlt

(
∂glt(θt)

∂θct (K)
− ∂glt(θt)

∂θpt (K)

)
. (D.2)

Multiplying R0
t,t+1/St to the both side of equation (D.2) proves equation (C.3). 2
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D.2 Proof of Proposition C.1

It suffices to show − 1

St

(
∂gmct (θt)

∂θct (K)
− ∂gmct (θt)

∂θpt (K)

)
= Et(K). The calculation of the partial deri-

vatives given the margin constraint function, equation (C.5), yields

− 1

St

(
∂gmct (θt)

∂θct (K)
− ∂gmct (θt)

∂θpt (K)

)
=

1

St

[
sgn(θct (K))µct(K)Ct(K)−sgn(θpt (K))µpt (K)Pt(K)

]
, (D.3)

where the sign function sgn(x) returns 1 (-1) if x is positive (negative). Then, we can further

calculate the right hand side of equation (D.3) for each of four possible combinations of the

signs of θct (K) and θpt (K).

When θct (K) > 0 and θpt (K) > 0, the margin rule is µct(K) = µpt (K) = 1 and the right hand

side of equation (D.3) boils down to (Ct−Pt)/St. When θct (K) < 0 and θpt (K) < 0, the margin

rule are given by µct(K)Ct(K) = 0.2St− (K−St)+ and µpt (K)Pt(K) = 0.2St− (St−K)+ under

our assumption that 8/9 ≤ K/St ≤ 1.1, . Therefore, the right hand side of equation (D.3)

simplifies to

1

St

[
−(0.2St − (K − St)+) + (0.2St − (St −K)+)

]
= −St −K

St
. (D.4)

When θct (K) > 0 and θpt (K) < 0, the margin rule becomes µct(K) = 1 and µpt (K)Pt(K) =

0.2St − (St −K)+ and the right hand side of equation (D.3) is calculated as

1

St

[
Ct + (0.2St − (St −K)+)

]
= 0.2 + [Ct − (St −K)+]/St. (D.5)

Finally, when θct (K) < 0 and θpt (K) > 0, the margin rule becomes µct(K)Ct(K) = 0.2St− (K −

St)
+ and µpt (K) = 1 and the right hand side of equation (D.3) is calculated as

− 1

St

[
Pt + (0.2St − (K − St)+)

]
= −

(
0.2 + [Pt − (K − St)+]/St

)
. (D.6)

These complete the proof of equation (C.10). 2
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Figure 1. Time Series of the monthly Median of AVE-CM CMER: this figure illustrates
the time-series of the monthly median of AVE-CM CMER. For each month, we calculate the
median of the individual stocks’ end of month AVE-CM CMER values. The unit of the y-axis
is % per 30-day. The estimating period spans January 1996 to April 2016 (244 months).
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Figure 2. Time Series of the monthly interquartile range (IQR) of AVE-CM CMER:
this figure illustrates the time-series of the monthly IQR (difference between the 75th and 25th
percentile points) of AVE-CM CMER. For each month, we calculate the IQR of the individual
stocks’ end of month AVE-CM CMER values. The unit of the y-axis is % per 30-day. The
estimating period spans January 1996 to April 2016 (244 months).
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Table 1. Summary statistics of the estimated CMER

Entries in Panel A report the summary statistics of the estimated CMER on the end of each month for the four ways of estimating CMER.

The estimation ways of CMER are denoted by a combination of the method of choosing strikes (AVE or ATM) and the method of choosing

maturities (CM or CLS) of options. In AVE methods, (1) and (3), we average CMER across available stocks, while in ATM methods, (2) and

(4), we choose the strike closest to the forward price. In CM methods, (1) and (2), we interpolate traded maturities to obtain a 30-day constant

maturity CMER, while in CLS methods, (3) and (4), we choose the traded maturity closest to 30 days. The row for N reports the total number

of month-stock CMER observations, the row for IQR reports the interquartile range (75th minus 25th percentile values), and the last row, % of

CMER > 0, reports the proportion of observations with positively estimated CMER. The estimating period spans January 1996 to April 2016

(244 months). The unit of statistics (except skewness, kurtosis, and % of CMER > 0) is % per 30-day. Entries in Panel B report the pairwise

Pearson correlation coefficients between the four estimated CMER.

Panel A: Summary statistics of the estimated CMER

(1) AVE-CM (2) ATM-CM (3) AVE-CLS (4) ATM-CLS

N 333,234 333,234 347,073 347,073

mean -0.09 -0.09 -0.10 -0.10

standard deviation 0.88 0.89 1.09 1.10

skewness -1.95 -1.88 -1.59 -1.53

kurtosis 69.32 68.92 69.97 69.20

minimum -27.67 -27.67 -35.60 -35.60

5th percentile -1.24 -1.25 -1.54 -1.55

Median -0.04 -0.04 -0.04 -0.04

95th percentile 0.89 0.89 1.14 1.15

maximum 24.96 24.96 32.72 32.72

IQR 0.47 0.46 0.60 0.60

% of CMER> 0 44.7% 44.9% 45.1% 45.4%

Panel B: Correlation between different estimation ways of CMER

(1) AVE-CM (2) ATM-CM (3) AVE-CLS (4) ATM-CLS

(1) AVE-CM 1

(2) ATM-CM 0.986 1

(3) AVE-CLS 0.989 0.974 1

(4) ATM-CLS 0.973 0.989 0.984 1
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Table 2. AVE-CM CMER-sorted value-weighted and equally-weighted decile portfolios

Entries in Panel A report the average CMER, average post-ranking return and results for the risk-adjusted returns (α) of the AVE-CM CMER-

sorted value-weighted decile portfolios and the spread portfolio, with respect to the CAPM and Carhart’s (1997) four-factor model. On the

last trading day of each month t, stocks are sorted in ascending order based on AVE-CM CMER and then value-weighted decile portfolios are

formed. We then calculate the return of these portfolios and the spread portfolio in the succeeding month-(t + 1). Entries in Panel B report

the average CMER, average post-ranking return and alphas of the AVE-CM CMER-sorted equally-weighted decile portfolios and the spread

portfolio. The estimating period spans January 1996 to April 2016 (244 months)) for both Panels. t-statistics are adjusted for heteroscedasticity

and autocorrelation and reported in parentheses. The unit of all variables is % per 30 days. N is the average number of stocks in each decile

portfolio.

Panel A: Value weighted portfolios

AVE-CM CMER-sorted decile portfolios Spread

1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Average CMER -1.31 -0.53 -0.31 -0.18 -0.09 -0.01 0.07 0.18 0.36 0.93 2.24

Average return -0.18 0.23 0.54 0.49 0.79 0.89 0.99 0.92 1.15 1.46 1.64

(-0.36) (0.60) (1.58) (1.64) (2.57) (2.82) (3.20) (2.73) (3.19) (3.38) (5.77)

αCAPM -1.15 -0.58 -0.23 -0.25 0.04 0.13 0.24 0.13 0.33 0.55 1.70

(-5.69) (-3.41) (-1.96) (-2.47) (0.42) (1.29) (2.30) (1.16) (2.30) (2.77) (5.91)

αFFC -1.11 -0.62 -0.26 -0.23 0.00 0.12 0.24 0.18 0.44 0.75 1.86

(-6.52) (-3.74) (-2.28) (-2.28) (0.02) (1.16) (2.38) (1.50) (2.54) (3.52) (6.56)

N 134.9 135.0 134.9 135.1 134.7 135.3 134.9 135.0 134.9 135.0 —

Panel B: Equally-weighted portfolios

Average CMER -1.58 -0.55 -0.32 -0.19 -0.09 -0.01 0.07 0.18 0.37 1.14 2.73

Average return -0.35 0.49 0.65 0.76 0.86 0.97 0.93 1.02 1.08 1.38 1.73

(-0.65) (1.09) (1.54) (1.94) (2.24) (2.62) (2.42) (2.58) (2.49) (2.76) (9.10)

αCAPM -1.41 -0.46 -0.24 -0.12 0.00 0.11 0.07 0.12 0.14 0.35 1.76

(-5.62) (-2.63) (-1.59) (-0.86) (0.01) (0.97) (0.63) (1.00) (0.77) (1.53) (9.60)

αFFC -1.31 -0.45 -0.27 -0.10 -0.04 0.07 0.04 0.13 0.17 0.50 1.81

(-9.61) (-3.79) (-2.55) (-0.99) (-0.47) (0.79) (0.40) (1.48) (1.41) (2.61) (9.42)

N 134.9 135.0 134.9 135.1 134.7 135.3 134.9 135.0 134.9 135.0 —
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Table 3. AVE-CM CMER-sorted decile Portfolios: Effect of Skipping First Trading Days

This table reports the monthly average returns and risk-adjusted returns (αFFC) of the AVE-CM CMER-sorted value-weighted decile portfolios

by skipping first trading days. Panel A reports results for the case where stocks are held from the close of the first date after the portfolio

formation date. Panels B and C report the results, where we skip the first five and six trading days from the portfolio formation date, respectively.

Portfolios are being formed based on the AVE-CM CMERs of the respective equities. The estimating period spans January 1996 to April 2016

(244 months)). t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in parentheses. The unit of all variables is %

per 30 days.

AVE-CM CMER-sorted value-weighted decile portfolios Spread

1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: The first trading day is skipped

Average return 0.19 0.27 0.48 0.46 0.61 0.66 0.72 0.62 0.69 0.81 0.62

(0.41) (0.73) (1.46) (1.52) (1.98) (2.15) (2.34) (1.91) (1.93) (1.89) (2.45)

αFFC -0.58 -0.38 -0.13 -0.06 0.04 0.10 0.16 0.14 0.16 0.27 0.86

(-3.47) (-2.39) (-1.15) (-0.59) (0.36) (1.01) (1.48) (1.30) (1.06) (1.50) (3.56)

Panel B: The first five trading days are skipped

Average return 0.21 0.38 0.49 0.38 0.47 0.45 0.52 0.50 0.43 0.73 0.51

(0.60) (1.21) (1.97) (1.76) (2.01) (1.88) (2.19) (1.91) (1.62) (2.02) (2.13)

αFFC -0.42 -0.12 0.04 -0.04 0.06 0.01 0.07 0.12 0.00 0.23 0.65

(-2.79) (-0.72) (0.36) (-0.55) (0.69) (0.13) (0.74) (1.24) (-0.01) (1.32) (2.67)

Panel C: The first seven trading days are skipped

Average return 0.35 0.52 0.63 0.49 0.51 0.47 0.55 0.51 0.46 0.64 0.30

(0.98) (1.74) (2.53) (2.19) (2.15) (2.00) (2.29) (1.88) (1.59) (2.01) (1.43)

αFFC -0.31 -0.04 0.10 0.03 0.07 -0.01 0.06 -0.03 -0.09 -0.03 0.27

(-2.41) (-0.31) (1.18) (0.44) (0.86) (-0.10) (0.73) (-0.33) (-0.74) (-0.23) (1.38)
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Table 4. Alphas of the regression of CMER-adjusted excess returns on risk factors

Entries in Panel A report the intercept (α) of the regressions of CMER-adjusted excess return Rt,t+1 − R0
t,t+1 − CMERt,t+1 on a set of risk

factor(s) of the CAPM and Carhart (1997) four-factor model. On the last trading day of each month t, stocks are sorted in ascending order

based on AVE-CM CMER and then value-weighted decile portfolios are formed. We then calculate the average CMER as well as the return

in the succeeding month-(t+ 1) of these portfolios and the spread portfolio to calculate the CMER-adjusted excess return. Entries in Panel B

report the results of regressions, where we eliminate CMER observations below 1st percentile and above 99th percentile point. Entries in Panel

C report the results of regressions, where we form quintile portfolios instead of the decile portfolios. The estimating period spans February 1996

to May 2016 (244 months)) for all Panels. t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in the parentheses.

The unit of all variables is % per 30 days.

AVE-CM CMER-sorted value-weighted decile portfolios Spread

1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Decile sort with all available CMER

αCAPM 0.17 -0.05 0.08 -0.07 0.14 0.15 0.17 -0.04 -0.02 -0.37 -0.55

(0.94) (-0.29) (0.70) (-0.66) (1.41) (1.42) (1.65) (-0.38) (-0.14) (-1.95) (-2.31)

αFFC 0.22 -0.08 0.05 -0.05 0.10 0.13 0.17 0.00 0.09 -0.16 -0.39

(1.44) (-0.50) (0.45) (-0.48) (1.01) (1.31) (1.68) (0.04) (0.49) (-0.79) (-1.57)

Panel B: Decile sort where CMER below 1st or above 99th percentile are eliminated

αCAPM 0.02 0.00 0.11 -0.02 0.11 0.12 0.13 0.06 -0.02 -0.33 -0.36

(0.13) (0.02) (1.03) (-0.16) (1.18) (1.12) (1.26) (0.52) (-0.14) (-1.78) (-1.57)

αFFC 0.03 -0.02 0.09 0.00 0.08 0.09 0.13 0.08 0.09 -0.16 -0.19

(0.18) (-0.12) (0.91) (0.05) (0.80) (0.94) (1.32) (0.79) (0.52) (-0.84) (-0.88)

Panel C: Quintile sort with all available CMER

AVE-CM CMER-sorted value-weighted quintile portfolios Spread

1 (Lowest) 2 3 4 5 (Highest) 5-1

αCAPM 0.00 0.01 0.14 0.08 -0.17 -0.17

(-0.02) (0.15) (1.70) (1.00) (-1.29) (-0.85)

αFFC -0.01 0.01 0.11 0.09 -0.02 -0.01

(-0.08) (0.17) (1.46) (1.14) (-0.14) (-0.06)
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Table 5. Characteristics of AVE-CM CMER-sorted value-weighted decile portfolios

Entries report the average value of various characteristics of decile portfolios as well as the difference between the highest CMER decile portfolio

and the lowest CMER decile portfolio. On the last trading day of each month t, stocks are sorted in ascending order based on AVE-CM CMER

and then value-weighted decile portfolios are formed. We then calculate the value-weighted average value of characteristics. BAS is the relative

bid-ask spread, Amihud is Amihud (2002) illiquidity measure (multiplied by 1,000 for the sake of readability), SIZE is the natural log of the

market equity, St is the stock price level, IVOL is the idiosyncratic volatility, beta is the regression coefficient of stock returns on the market

portfolio return, RSI is the relative short-interest, ESF is the estimated shorting fee, B/M is the book-to-market ratio, and N is the number of

average stocks in each portfolio. See Appendix B for the detailed description of each variable. The data period spans January 1996 to April

2016 (244 months)). t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in the parentheses.

AVE-CM CMER-sorted value-weighted decile portfolios Spread

1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

CMER -1.31 -0.53 -0.31 -0.18 -0.09 -0.01 0.07 0.18 0.36 0.93 2.24

(-15.88) (-12.34) (-10.92) (-9.52) (-7.03) (-1.25) (7.26) (13.59) (15.08) (16.17) (15.38)

BAS 0.48 0.39 0.35 0.34 0.33 0.31 0.31 0.34 0.37 0.44 -0.04

(2.67) (2.51) (2.14) (2.31) (2.15) (2.18) (2.25) (2.34) (2.28) (2.69) (-2.89)

Amihud 5.60 1.84 0.97 0.55 0.37 0.31 0.36 0.55 1.17 3.82 -1.78

(6.96) (6.13) (5.09) (5.74) (6.26) (5.94) (7.93) (7.50) (7.70) (6.23) (-4.76)

SIZE 15.34 16.30 16.81 17.14 17.43 17.47 17.46 17.20 16.66 15.76 0.42

(221.77) (192.45) (320.21) (386.63) (372.29) (292.14) (282.72) (255.42) (268.91) (189.59) (3.96)

St 36.72 49.00 58.69 62.37 68.08 69.36 70.39 60.62 52.92 39.08 2.35

(23.40) (23.50) (18.87) (20.09) (22.06) (22.03) (16.44) (18.72) (18.38) (15.68) (1.33)

IVOL 39.53 31.74 28.24 26.37 24.93 24.69 24.89 26.22 29.07 35.21 -4.32

(18.06) (13.67) (10.23) (10.25) (9.40) (9.46) (9.82) (10.76) (13.13) (12.95) (-7.30)

Beta 1.20 1.12 1.05 1.02 1.01 1.01 1.03 1.04 1.07 1.16 -0.04

(53.61) (79.84) (132.19) (86.01) (69.39) (59.49) (72.21) (102.76) (102.44) (55.50) (-2.04)

RSI 6.19 3.97 2.99 2.52 2.22 2.09 2.19 2.47 3.14 4.28 -1.90

(19.54) (30.61) (46.87) (39.76) (35.74) (22.78) (19.30) (21.57) (32.74) (29.84) (-8.41)

ESF 0.57 0.43 0.35 0.30 0.27 0.25 0.26 0.29 0.36 0.47 -0.11

(13.46) (8.30) (8.82) (8.37) (6.80) (8.83) (9.00) (8.96) (9.20) (9.08) (-6.52)

B/M 0.53 0.47 0.44 0.43 0.41 0.40 0.40 0.42 0.44 0.48 -0.05

(13.32) (19.51) (22.86) (19.74) (13.87) (13.75) (13.49) (13.55) (16.70) (16.02) (-4.30)

N 134.93 135.02 134.89 135.06 134.69 135.25 134.94 135.00 134.91 135.05 —
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Table 6. Bivariate dependent sort on CMER: Controlling relative bid-ask spread or SIZE

Entries in Panel A report the result of the bivariate dependent sort, where we first sort stocks based on the relative bid-ask spread (BAS), and

then within each group of the BAS level, we further sort stocks into quintile portfolios by the AVE-CM CMER criterion. Rows correspond to

the level of the first sorting variable, BAS, and the first to the fifth columns correspond to the level of the second sorting variable,AVE-CM

CMER. Sixth to the last columns report the average returns, Fama and French (2015) five-factor alpha, and the average CMER, respectively

of the spread portfolio between the highest CMER portfolio and the lowest CMER portfolio. Entries in Panel B report the result, where we

use SIZE (the log of market equity) as the first sorting variable instead of BAS. The estimating period ranges January 1996 to April 2016 (244

months)). t-statistics are adjusted for heteroscedasticity and autocorrelation (HAC-adjusted t-stat). The unit of all variables is % per 30 days.

Ave. returns of AVE-CM CMER-sorted portfolios Spread portfolio (5-1)

1 (lowest) 2 3 4 5 (highest) Ave. return αFFC Ave. CMER

Panel A: Relative bid-ask spread-sorted dependent bivariate sort

BAS 1 0.11 0.63 0.65 0.76 0.84 0.74 0.86 0.75

(narrowest) (0.25) (1.65) (1.54) (1.75) (2.19) (3.47) (3.29) (13.71)

BAS 2 0.31 0.48 0.81 0.70 1.09 0.78 0.69 1.05

(0.72) (1.24) (2.37) (1.78) (2.59) (3.31) (2.96) (10.63)

BAS 3 0.41 0.59 0.98 0.93 1.30 0.89 0.93 1.34

(1.01) (1.52) (2.56) (2.26) (3.03) (3.26) (3.22) (12.30)

BAS 4 0.14 0.70 0.68 0.85 1.48 1.33 1.48 1.70

(0.30) (1.56) (1.69) (2.06) (3.22) (4.60) (4.62) (14.90)

BAS 5 -0.42 0.28 0.85 0.78 1.53 1.95 1.94 2.64

(widest) (-0.72) (0.57) (1.79) (1.64) (3.29) (5.54) (5.90) (14.59)

Panel B: Size-sorted dependent bivariate sort

SIZE 1 -0.62 0.48 0.72 0.96 1.22 1.84 1.79 3.18

(smallest) (-1.00) (0.85) (1.31) (1.63) (2.06) (6.54) (6.39) (16.56)

SIZE 2 0.16 0.86 0.85 0.94 1.28 1.12 1.12 1.95

(0.30) (1.70) (1.84) (2.02) (2.53) (4.94) (4.94) (14.13)

SIZE 3 0.30 0.78 0.86 0.96 1.26 0.96 1.04 1.46

(0.66) (1.83) (2.06) (2.33) (3.07) (4.82) (4.86) (15.77)

SIZE 4 0.70 0.76 0.99 1.20 1.21 0.51 0.57 1.01

(1.72) (1.98) (2.77) (3.35) (3.27) (3.01) (3.14) (12.43)

SIZE 5 0.33 0.69 0.78 0.88 0.94 0.61 0.67 0.65

(largest) (1.03) (2.52) (2.48) (2.96) (2.89) (3.50) (3.65) (12.64)
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Table 7. Comparison between four estimation methods of CMER and removing
extreme CMER samples

Entries in Panel A report the average return and Carhart (1997) four-factor model alpha of the spread portfolio

of CMER-sorted value-weighted decile portfolios, where each column uses one of four estimation methods of

CMER. The first row denotes the method of choosing strikes (AVE: taking average across available strikes, ATM:

choosing the strike closest to the forward price) and the second row denotes the method of choosing maturities

(CM: interpolating traded maturities to construct 30-day constant maturity CMER, CLS: choosing the traded

maturity closest to 30 days). Entries in Panel B report the average return and Carhart (1997) four-factor model

alpha of the spread portfolio of AVE-CM CMER-sorted value-weighted portfolios. The first column shows the

result, where we truncate AVE-CM CMER samples at 1% level, i.e., we remove CMER samples below 1st

percentile point or above 99th percentile point. The second column reports the result of the modified spread,

where we long the second highest CMER portfolio (portfolio 9) and short the second lowest CMER portfolio

(portfolio 2). The third column reports the quintile portfolio sort results, and the last column reports the

modified spread of the quintile portfolios, where we long the second highest CMER portfolio (portfolio 4) and

short the second lowest CMER portfolio (portfolio 2). The estimating period ranges January 1996 to April 2016

(244 months)). t-statistics are adjusted for heteroscedasticity and autocorrelation (HAC-adjusted t-stat). The

unit of the mean returns and α are % per month.

Panel A: Comparison between four estimation methods of CMER

Strike AVE ATM

Maturity CM CLS CM CLS

Value-weighted decile spread portfolio

Average return 1.64 1.56 1.49 1.38

(5.77) (5.44) (5.33) (4.89)

αFFC 1.86 1.77 1.60 1.51

(6.56) (6.20) (5.55) (5.33)

Equally-weighted decile spread portfolio

Average return 1.73 1.56 1.67 1.54

(9.10) (8.92) (9.15) (8.95)

αFFC 1.81 1.65 1.75 1.62

(9.42) (9.18) (9.12) (9.21)

Panel B: Mitigating effect of extreme CMER samples

Truncated decile sort (VW) Quintile sort (VW)

Spread (10-1) Spread (9-2) Spread (5-1) Spread (4-2)

Average return 1.43 0.92 1.11 0.43

(6.08) (4.19) (5.59) (3.37)

αFFC 1.65 0.93 1.29 0.43

(7.05) (3.77) (5.65) (3.27)
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Table 8. Bivariate dependent sort on CMER: Controlling previous month return

Entries report the result of the bivariate dependent sort, where we first sort stocks based on the previous month return, Rt−1,t, and then within

each group of the bid-ask spread level, we further sort stocks into quintile portfolios by the AVE-CM CMER criterion. Rows correspond to

the level of the first sorting variable, the previous month return Rt−1,t, and the first to the fifth columns correspond to the level of the second

sorting variable, AVE-CM CMER. The sixth to last columns report the average return, αFFC , and the average CMER of the CMER-sorted

spread portfolios, respectively. All returns are value-weighted returns. The estimating period ranges January 1996 to April 2016 (244 months)).

The estimating period ranges January 1996 to April 2016 (244 months)). t-statistics are adjusted for heteroscedasticity and autocorrelation

(HAC-adjusted t-stat). The unit of the mean returns and α are % per month.

Ave. returns of AVE-CM CMER-sorted portfolios Spread portfolio (5-1)

1 (lowest) 2 3 4 5 (highest) Ave. return αFFC Ave. CMER

Rt,−1,t 1 -0.51 0.34 1.15 0.44 1.28 1.79 2.02 1.72

(lowest) (-0.78) (0.65) (2.45) (0.86) (1.99) (4.87) (5.02) (13.33)

Rt,−1,t 2 0.50 0.76 1.04 1.04 1.30 0.80 0.90 1.24

(1.10) (2.23) (2.79) (2.98) (3.51) (2.83) (2.83) (13.69)

Rt,−1,t 3 0.31 0.35 0.78 1.16 1.44 1.14 1.22 1.12

(0.82) (1.06) (2.44) (3.71) (3.96) (4.39) (4.40) (14.42)

Rt,−1,t 4 0.58 0.51 0.81 0.76 0.97 0.39 0.52 1.11

(1.53) (1.68) (2.59) (2.33) (2.75) (1.44) (1.83) (15.30)

Rt,−1,t 5 0.00 0.41 0.58 0.93 0.85 0.85 0.96 1.52

(highest) (-0.00) (0.93) (1.51) (2.21) (2.04) (2.88) (3.15) (18.81)
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Table 9. Robustness tests: Non-synchronicity, Low stock price level, and NYSE breakpoint

Entries in Panel A report the average return and Fama and French (2015) five-factor model alpha of the spread portfolio of AVE-CM CMER-

sorted value-weighted decile portfolios, where the returns are calculated as the open-to-close return. The open-to-close return is the return from

the open price on the first trading date after the portfolio formation in month-t to the close price of the end of month-t+ 1. Entries in Panel B

report the average return and αFFC of the AVE-CM CMER-sorted value-weighted decile portfolios, where we discard stocks whose price level

is below $10. Entries in Panel C report the the average return and αFFC of the AVE-CM CMER-sorted value-weighted decile portfolios, where

we calculate decile portfolios’ breakpoints based on NYSE stocks only. The estimating period ranges January 1996 to April 2016 (244 months)).

t-statistics are adjusted for heteroscedasticity and autocorrelation (HAC-adjusted t-stat). The unit of the mean returns and α are % per month.

AVE-CM CMER-sorted value-weighted decile portfolios Spread

1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Open-to-close return (non-synchronicity)

Average return -0.21 0.22 0.52 0.48 0.77 0.87 0.97 0.90 1.13 1.39 1.60

(-0.43) (0.57) (1.52) (1.59) (2.51) (2.77) (3.16) (2.66) (3.12) (3.21) (5.58)

αFFC -1.14 -0.63 -0.28 -0.25 -0.01 0.10 0.23 0.16 0.42 0.69 1.83

(-6.73) (-3.80) (-2.42) (-2.41) (-0.14) (0.99) (2.27) (1.30) (2.40) (3.20) (6.40)

Panel B: Eliminating stocks whose price is below $10

Average return -0.09 0.28 0.49 0.52 0.79 0.91 0.89 0.98 1.05 1.26 1.35

(-0.18) (0.79) (1.49) (1.75) (2.62) (2.82) (2.99) (2.95) (3.00) (3.23) (5.79)

αFFC -1.03 -0.51 -0.29 -0.20 0.01 0.10 0.17 0.23 0.35 0.55 1.57

(-5.07) (-3.27) (-2.92) (-2.03) (0.07) (0.99) (1.68) (2.15) (2.18) (3.15) (5.96)

N 122.0 122.2 122.1 122.2 121.8 122.3 122.1 122.2 122.1 122.1 —

Panel C: NYSE breakpoints

Average return -0.02 0.48 0.51 0.60 0.80 0.90 0.88 1.11 0.93 1.33 1.35

(-0.04) (1.38) (1.51) (2.01) (2.58) (2.79) (2.96) (3.48) (2.66) (3.26) (5.33)

αFFC -0.95 -0.34 -0.27 -0.13 0.00 0.10 0.16 0.36 0.18 0.63 1.58

(-4.92) (-2.56) (-2.28) (-1.19) (-0.04) (0.99) (1.45) (3.26) (1.45) (3.25) (5.85)

N 182.0 136.6 124.0 118.7 115.3 115.3 117.3 122.1 134.0 181.1 —
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Table 10. Sub-sample analysis

Entries in Panels A and B report the average return and Carhart (1997) four-factor model alpha of the spread portfolio of AVE-CM CMER-

sorted value-weighted decile portfolios over January 1996 to December 2006 and January 2007 to April 2016, respectively. t-statistics adjusted

for heteroscedasticity and autocorrelation and reported in the parentheses. The unit of all variables is % per 30 days.

AVE-CM CMER-sorted value-weighted decile portfolios Spread

1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Sub-sample, January 1996–December 2006

Average return -0.19 0.30 0.57 0.49 0.89 0.99 1.13 0.82 1.42 1.76 1.95

(-0.31) (0.60) (1.33) (1.19) (2.25) (2.41) (2.77) (1.90) (2.79) (3.04) (5.02)

αFFC -1.20 -0.71 -0.36 -0.33 -0.02 0.16 0.33 -0.02 0.74 1.20 2.41

(-5.48) (-2.96) (-1.87) (-2.18) (-0.12) (1.07) (1.99) (-0.12) (2.54) (3.84) (6.38)

Panel B: Sub-sample, January 2007–April 2016

Average return -0.17 0.15 0.51 0.50 0.66 0.77 0.81 1.03 0.84 1.10 1.27

(-0.21) (0.24) (0.94) (1.07) (1.38) (1.57) (1.72) (1.97) (1.59) (1.69) (3.24)

αFFC -0.87 -0.49 -0.16 -0.10 -0.01 0.09 0.14 0.34 0.18 0.35 1.22

(-3.36) (-2.03) (-0.99) (-0.78) (-0.05) (0.97) (1.16) (2.44) (1.07) (1.56) (3.12)
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Table 11. Predictive power of CMER: Fama-MacBeth regressions

Entries report the results from Fama and MacBeth (1973) regressions of stock returns on AVE-CM CMER,
market beta, SIZE (log of market equity), log of book-to-market, Momentum (Rt−12,t−1), previous month return
Rt−1,t, idiosyncratic volatility, profitability (operational profit to book equity), investment (asset growth rate),
Amihud’s (2002) illiquidity measure, relative bid-ask spread and turnover rate. The time-series averages of the
estimated coefficients of the cross-sectional regressions are reported. t-statistics are adjusted for heteroscedas-
ticity and autocorrelation and reported in the parentheses. The time-series averages of adjusted R2 and the
observation number N of cross-sectional regressions are reported in the last two rows. Columns (1), (2), (3)
report the results using all samples from January 1996 to April 2016. Columns (4) and (5) report the results
using only NYSE/AMEX and NASDAQ stocks, respectively. Columns(6) and (7) report the results using only
the observations with non-negative and negative AVE-CM CMER, respectively. Columns (8) and (9) report
the results using only the observation over 1996-2006 and 2007-2016, respectively.

All sample NYSE/ CMER CMER 1996– 2007–

AMEX NASDAQ ≥ 0 < 0 2006 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9)

CMER 0.62 0.39 0.40 0.53 0.31 0.46 0.46 0.41 0.38

(7.78) (5.60) (5.60) (4.12) (3.23) (2.78) (4.01) (4.14) (3.70)

Beta -0.03 -0.02 -0.02 -0.06 0.19 -0.01 0.19 -0.26

(-0.12) (-0.07) (-0.08) (-0.20) (0.63) (-0.03) (0.48) (-0.64)

SIZE -0.11 -0.12 -0.14 0.01 -0.06 -0.11 -0.12 -0.12

(-1.92) (-1.95) (-2.22) (0.12) (-0.88) (-1.78) (-1.23) (-1.71)

log(BM) 0.11 0.11 0.11 0.15 0.14 0.08 0.32 -0.13

(1.12) (1.14) (1.28) (1.36) (1.24) (0.85) (2.29) (-1.19)

Rt−12,t−1 -0.02 -0.01 0.09 -0.11 -0.05 -0.04 0.24 -0.31

(-0.05) (-0.03) (0.22) (-0.38) (-0.14) (-0.10) (0.77) (-0.47)

Rt−1,t -1.12 -1.26 -0.53 -1.78 -1.55 -0.88 -2.50 0.21

(-1.58) (-1.81) (-0.64) (-2.47) (-1.91) (-1.18) (-2.91) (0.20)

IVOL -0.01 0.00 -0.02 0.01 0.00 0.00 0.00 -0.01

(-1.47) (-0.51) (-2.07) (0.87) (-0.27) (-0.75) (0.16) (-1.10)

Profitability 0.27 0.28 0.22 0.27 0.37 0.42 0.53 0.00

(2.07) (1.92) (1.73) (0.88) (2.00) (2.35) (2.12) (-0.00)

Investment -0.33 -0.33 -0.46 -0.25 -0.39 -0.28 -0.34 -0.32

(-3.76) (-3.64) (-2.98) (-2.48) (-2.64) (-2.60) (-3.24) (-2.01)

Amihud -14.62 -2.51 0.92 -34.98 -17.24 -2.77 -28.59

(-2.43) (-0.09) (0.12) (-2.06) (-1.08) (-0.45) (-2.68)

BAS 0.44 0.47 -0.66 0.52 0.70 0.10 0.84

(0.62) (0.53) (-0.66) (0.44) (0.71) (0.16) (0.62)

Turnover -0.12 0.18 -0.26 -0.36 -0.08 -0.11 -0.14

(-0.72) (0.86) (-0.94) (-1.82) (-0.48) (-0.37) (-1.27)

Intercept 0.88 2.84 2.92 3.32 1.09 2.17 2.72 3.05 2.76

(2.17) (3.03) (2.83) (3.00) (0.52) (1.85) (2.56) (1.84) (2.29)

Ave. adj. R2 0.2% 9.0% 9.2% 10.7% 7.6% 10.1% 9.9% 10.4% 7.8%

Ave. N 1322.7 1008.5 940.2 548.9 401.7 430.3 513.7 775.7 1134.0



Table 12. Predictive power of CMER, IVS, and DOTS

Entries report the average return and five risk-adjusted returns with respect to the CAPM, Fama and French

(1993) three-factor model, Carhart (1997) four-factor model, Fama and French (2015) five-factor model, and

Stambaugh and Yuan (2017) mispricing-factor model of the spread portfolio of AVE-CM CMER-sorted value-

weighted decile portfolios, IVS-sorted value-weighted decile portfolios, and DOTS-sorted value-weighted decile

portfolios. The analysis spans January 1996 to April 2016 (244 months)). t-statistics are adjusted for hete-

roscedasticity and autocorrelation and reported in parentheses. The unit of all variables is % per 30 days.

Average return αCAPM αFF3 αFFC αFF5 αSY

CMER-sorted 1.64 1.70 1.78 1.86 1.58 1.70

(5.77) (5.91) (6.36) (6.56) (5.63) (5.21)

IVS-sorted 1.17 1.23 1.30 1.38 1.14 1.25

(4.90) (4.76) (4.94) (5.24) (4.64) (4.25)

DOTS-sorted 1.45 1.42 1.46 1.47 1.31 1.28

(5.61) (4.93) (4.99) (4.98) (4.70) (4.19)
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Table A.1. Portfolio sort results based on the estimated Zmc
t -adjusted CMER

Entries report the average return and the five risk-adjusted returns (α’s) with respect to the CAPM, Fama and French (1993) three-factor model,

Carhart (1997) four-factor model, Fama and French (2015) five-factor model, and Stambaugh and Yuan (2017) mispricing-factor model, of the

spread portfolio of the CMER-sorted value-weighted decile portfolios. The first column reports the baseline result of the AVE-CM CMER-sorted

value-weighted decile portfolio for the sake of expediting the comparison. The second to the tenth columns report the results of the portfolio sort

results based on nine alternative Zmc
t -adjusted AVE-CM CMER. Each one of the nine alternative CMER is characterized by the assumption on

R0
t,+1λ

mc
t and the assumption on the reference point of the option expensiveness s, which determines the value of Et(K). The analysis spans

January 1996 to April 2016 (244 months). t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in the parentheses.

The unit of all variables is % per 30 days.

baseline R0
t,t+1λ

mc
t = 10% per year R0

t,t+1λ
mc
t = 5% per year Time-varying R0

t,t+1λ
mc
t

result s = 0.00 s = 0.01 s = 0.02 s = 0.00 s = 0.01 s = 0.02 s = 0.00 s = 0.01 s = 0.02

Average return 1.64 1.58 1.61 1.73 1.57 1.63 1.69 1.60 1.60 1.64

(5.77) (5.28) (5.42) (5.58) (5.46) (5.52) (5.54) (5.50) (5.54) (5.59)

αCAPM 1.70 1.64 1.66 1.79 1.63 1.69 1.76 1.66 1.66 1.71

(5.91) (5.30) (5.36) (5.49) (5.55) (5.42) (5.61) (5.65) (5.70) (5.74)

αFF3 1.78 1.75 1.77 1.89 1.71 1.79 1.86 1.74 1.74 1.79

(6.36) (5.95) (5.99) (6.03) (6.14) (5.97) (6.15) (6.20) (6.24) (6.24)

αFFC 1.86 1.83 1.85 1.97 1.76 1.85 1.93 1.78 1.78 1.82

(6.56) (6.16) (6.25) (6.35) (6.09) (6.28) (6.43) (6.18) (6.19) (6.16)

αFF5 1.58 1.49 1.50 1.65 1.49 1.53 1.62 1.49 1.50 1.55

(5.63) (5.45) (5.56) (5.66) (5.54) (5.46) (5.63) (5.42) (5.46) (5.55)

αSY 1.70 1.63 1.65 1.78 1.56 1.65 1.76 1.56 1.57 1.62

(5.21) (4.84) (4.94) (5.07) (5.12) (4.95) (5.20) (5.09) (5.15) (5.20)
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