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Abstract

We describe a dynamic extension of Allen and Gale (1998)’s optimal security de-
sign model and provide a recursive method for computing equilibria in the resulting
environment. The model is quantitatively consistent with the cyclical properties of safe
corporate debt issues, in particular with the fact that those issues are less procyclical
than other sources of corporate financing. It is also consistent with the countercyclical-
ity of risk spreads on corporate debt. We then use the model to measure the effect of a
protracted periods of low safe yields, one of the main features of the so-called “saving
glut” the global economy is currently experiencing. A long period of low interest rates
on safe debt has little impact on the level of economic activity but causes output and
investment volatility to fall.
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1 Introduction

Markets for safe US assets have received increased attention in policy and academic circles

over the past decade for two prominent reasons. First, mortgage-backed securitization– the

largest sources of safe US securities after Treasury markets – was at the epicenter of and is

often blamed for the recent financial crisis. Second, demand for US investment-grade assets

started increasing markedly in the late 1990s, fueled in part by the fast emergence of nations

with high saving rates and a strong preference for safe investments, a phenomenon former

Federal Reserve Board Governor Ben Bernanke termed the Global Saving Glut. Bernanke

et al. (2011) and Gennaioli et. al (2011) among many others have argued that the saving

glut has had a profound impact on financial practices in the United States and made the US

financial system more prone to crises.

This paper considers a prominent producer of highly rated US securities that has received

much less attention than asset-backed securitization markets: the corporate sector. One

should expect increased willingness to pay for safe assets to have a significant impact on the

capital structure and investment decisions by corporations. In order to quantify this effect

one first needs a satisfactory model of the production of safe securities by corporations. In

particular, such a model should be consistent with the cyclical properties of safe corporate

issues. Our main goal in this paper is produce such a model.

To that end we begin by documenting the cyclical properties of safe corporate debt. Our

main finding in this respect is that safe corporate debt is noticeably less cyclical that other

corporate liabilities (risky debt and equity.) We establish a connection between this fact and

the observation made recently by Covas and Den Haan (2014) that the cyclical properties

of corporate liabilities vary drastically with firm size. We go on to show that a dynamic

extension of Allen and Gale (1988)’s optimal security design can account for these cyclical

facts.

The model we build is standard on the real side but we allow the security space to respond

endogenously to changes in demand for different types of claim. Specifically, producers choose
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what quantity of safe claims to issue given investors’ willingness to pay for such assets. In

particular, ours is model where the financial structure is endogenous. As a result, in order to

select a consumption and investment policy, households must form forecasts as to what the

future supply of various types of securities will be for every possible sequence of aggregate

shocks. Given this forecast and the resulting willingness to pay for various securities by

households, the security creation decisions made by producers must be optimal. In addition

to satisfying standard conditions, equilibria must therefore satisfy a consistency condition a

la Allen-Gale (1988). The assumptions households make about future security markets and

the resulting state prices must be consistent with the securities producers choose to issue

given those prices. We propose a recursive algorithm for computing allocations and prices

that solve this dynamic fixed point problem.

In our model, producers can sell financial claims to a household sector and/or to an outside

market for safe securities where the willingness to pay of investors is stochastic but exogenous.

We think of this latter aspect of our model as reflecting the fact that the willingness to pay

for safe US assets is largely set by global markets. In the data, yields on highly rated US

corporate debt are mildly countercyclical and we calibrate the exogenous process for the price

of safe debt in outside markets in our model to capture that feature. This force, alone,

would cause safe debt issues to be procyclical in our model. Another source of procyclicality

in our model is that constraints on how much safe debt producers can issue become looser

during good economic times. While this aspect of our model closely resembles the main

mechanism in Jerman and Quadrini (2011), this phenomenon arises endogenously in this

paper as safe borrowers require that the claims they buy pay in full even if the worst case

scenario materializes.

Given these two procyclical forces, how can a model like ours account for the relative

acyclicality of safe debt issues? The key difference between our model and Jerman and

Quadrini’s is that our model features a strongly countercyclical intensive margins: fewer

producers choose to participate in safe debt markets during good times than during bad

times. Good macroeconomic shocks increase household wealth which in turn increases their
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willingness to pay for the claims issued by producers, including safe claims. Good shocks thus

reduce the value of accessing outside markets for producers and, therefore, fewer producers are

willing to bear the costs associated with issuing securities in those markets. Quantitatively,

the net effect of these offsetting channels turns out to be weakly counter-cyclical safe debt

issues, consistently which what our data analysis suggests.

Having produced a model that is quantitatively consistent with the cyclical properties of

safe corporate debt, we use our framework to run two counterfactual experiments. First we

simulate the impact of shutting down access to outside markets for safe debts by studying

an economy where all securities are priced endogenously by the US household sector. This

causes the average level of capital formation to fall by 4% while average output falls by 1%.

The volatility of output falls as household savings become more stable but, on the flip side,

household consumption becomes significantly more volatile.

In a second experiment we lower the support of the exogenous safe yield process by a

uniform 20% to mimic the recent decline in global interest rates. This phenomenon – our

proxy for the aforementioned savings glut – has a small impact on the level of GDP in our

model but significantly reduces the volatility of investment, output and consumption at the

stochastic steady state. When safe yields go down, the return on household portfolios falls

which causes domestic savings to fall as well. This, we find, almost exactly offsets the increased

investment flows from outside markets. Reduced volatility in activity stems from the greater

share of investment flows coming from outside markets since those flows tend to be acyclical.

2 Evidence on the cyclicality of safe corporate debt

The extent literature on the cyclicality of corporate liabilities has yielded often contradictory

results. Choe et. al. (1993) and Korajczyk and Levy (2003) find that firms are more likely

to issue equity during expansions while debt issues are countercyclical. Quadrini and Jerman
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Figure 1: Credit rating by asset size

0

10

20

30

40

50

60

70

80

   [0, 25]   [25, 50]   [50, 75]   [75, 90]   [90, 95]   [95, 99]  [99, 100]

Investment grade High yield
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firms do not have a debt rating.

(2012) find the exact opposite.1 Den Han and Covas (2011) suggest that those striking

differences in findings could stem from the fact that different papers rely on different data

sources. They also make the case that cyclical properties of security issues differ greatly across

firm types. In particular, large firms appear to behave very differently from other firms. Their

debt issues, in particular, are acyclical at best.

One reason why large firms behave very differently from other firms when it comes to

capital raising could be that they tend to be more highly rated than other firms. Erel et. al.

(2011) find that capital raising overall and debt issues in particular tend to be countercyclical

for investment-grade borrowers. Kahle et. al (2010) find that large and investment-grade

1Accordingly, Quadrini and Jerman (2012) propose a model where constraints on debt issues become
tighter during recessions whereas Levy and Hennessy (2007) write a model where constraints on equity issues
become tighter during recessions.
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non-financial firms did not exhibit abnormally low net debt issuances in the aftermath the

2008 crisis, while other firms did. This section relies on Compustat data to document the

main cyclical properties of safe debt issues by corporations and confirm, in particular, that

safe debt issues are significantly less cyclical than other corporate liabilities. This will also

establish the data benchmarks we will later use to evaluate the performance of our dynamic

model of security creation.

For ease of comparability with the related literature, we follow for the most part the

approach of Covas and Den Haan (2012). We focus on the 1985-2014 period and measure

net debt and net liability issues exactly as Covas and Den Haan (2011), using their level

approach. Compustat data for this time period comprise 366, 317 firm-year observations. Ex-

cluding foreign, utility and financial firms leaves us with 186, 818 observations while removing

observations with bad or missing data and firms listed for 3 years or less further reduces our

sample to 94, 729 observations.

Table 1 shows firms counts in our sample by debt rating. We rely on the issuer credit

assessments performed by Standard and Poor’s available in the Wharton Research Data Ser-

vices version of Compustat. While many firms are not rated, our concern in this paper is

with highly rated firms, firms for which rating data is available in almost all cases. Figure 1

shows the fraction of firms that are rated investment-grade (BBB or above) and of those that

are rated below investment grade by asset size category. It shows a fairly strong correlation

between size and credit quality. For instance, almost all the firms in the top 1% size category

for which rating data is available are investment-grade rated. As we discussed above, this

correlation could explain the fact emphasized by Covas and Den Haan (2011) that debt issues

by the largest firms seem to behave differently from debt issues by other firms.

In the model we are about to introduce, corporations issue debt that never defaults.

While it would be easy to extend this notion of safe to tolerate a small probability of default,

a satisfactory data counterpart for our model’s notion of debt should pay almost always.

Figure 2 shows historical default rates – the frequency of failure to pay – by rating for issues

rated by Moody’s between 1920 and 2010. (In Moody’s classification, BAA corresponds to
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Table 1: Firm counts by rating

AAA AA A BBB <BBB No rating

1985 13 58 125 75 163 1,680
1986 13 64 159 108 258 2,040
1987 13 59 137 117 316 2,023
1988 13 60 136 100 291 1,996
1989 14 51 140 102 280 1,980
1990 14 54 129 107 255 2,098
1991 13 55 130 114 222 2,292
1992 13 55 131 117 225 2,526
1993 13 54 134 132 270 2,697
1994 13 49 136 141 283 2,863
1995 12 48 135 155 289 3,251
1996 12 45 146 176 331 3,282
1997 12 43 149 186 336 3,175
1998 10 35 158 208 387 3,244
1999 9 32 144 218 383 3,065
2000 9 27 136 223 406 2,739
2001 8 22 124 223 425 2,522
2002 7 20 115 219 465 2,516
2003 6 15 113 220 482 2,531
2004 6 13 115 210 504 2,466
2005 6 12 113 205 509 2,466
2006 6 11 113 201 495 2,399
2007 6 11 101 203 478 2,287
2008 6 12 93 200 454 2,226
2009 6 13 86 194 461 2,190
2010 5 14 83 197 448 2,166
2011 4 13 89 209 441 2,131
2012 4 13 87 205 453 2,198
2013 4 13 88 212 472 2,232
2014 4 15 90 211 488 2,095

Notes: The sample includes all observations in the Compustat database with the exclusion of foreign, utility

and financial firms and observations with missing debt data.
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Table 2: Cyclicality of corporate debt by rating

Firm rating AAA AAA-AA AAA-A ≥ BBB <BBB
mean(DS/Y ) 0.81 2.93 7.66 11.8 4.16
ρ(DS, Y ) -0.14 0.03 0.23 0.19 0.47

ρ
(
DS

Y
, Y
)

-0.20 -0.09 0.06 0.00 0.38

ρ
(

DS

D+E
, Y
)

-0.25 -0.17 -0.04 -0.15 0.35

Notes: The sample period is 1985-2014. In the left-hand column, Y is value added by the private sector as

measured by the Bureau of Labor Statistics, Ds is stock of safe debt for various rating categories, D+E is the

book value of all liabilities. Correlation are reported for HP-filtered real series with a smoothing parameter of

100. Results obtained using the Baxter-King and Christiano-Fitzgerald filters are similar.

a BBB rating for Standard and Poor’s.) Not surprisingly, ratings and realized default rates

are highly correlated. AAA-rated issues show no default whatsoever during this time period

while AA-rated issues only defaulted once. A-rated issues also pay in almost all cases. Based

on this evidence we will use AA and above as our notion of safe in our main calibration. By

way of robustness however we will also consider narrower and broader notions.

Our principal concern is the correlation of safe debt issues with economic activity. Let

D̃ be the accumulated value of nominal debt issuances in the dataset we described while D

is the accumulated value of the same issuances deflated by the Producer Price Index (PPI).

Denote by D̃S and DS the same measures but for highly rated firms only. As we discussed

above, our main calibration will consider A and AA-rated firms as highly rated but we will

also show results for AAA firms only, firms rated A or above and firm rated BBB or above

(the standard definition of investment-grade firms.) The measure we will use for economic

activity is value added by the private sector as measured by the Bureau of Labor Statistics.

According to this approach, the stock of debt that is rated, say, AAA, is the sum of the

stocks of all firms that are rated AAA at the start of the year. Fluctuations in that stock,

therefore, are caused by changes in the stock of debt of firms that remain AAA rated from

one year to the next (the intensive margin) but also by the addition of firms that become

AAA rated in a particular year, and by the subtraction of firms that lose their AAA rating
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Figure 2: Frequency of default by rating, 1920-2010

0

2

4

6

8

10

12

14

16

AAA AA A BAA BA B CAA-C
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(the extensive margin.) In the model we describe in the next section, the same forces affect

the stock of safe debt.

The first row of table 2 shows that the stock of AAA debt so issued represents around

0.8% of private sector value-added in the United States while debt that is either AAA or AA,

the notion of safe debt we will use in our benchmark calibration, represents around 3% of

value added. The second row shows that the debt issued by more highly rated firms is less

cyclical than the debt issued by firms with a below investment-grade rating. The same holds

for the ratio of debt to value added and the ratio of debt to all liabilities. The bottom line

for our purposes is that the debt issued by highly-rated firms behaves very differently from

overall debt issues, showing weak procyclicality at best. This is the key fact with which a

satisfactory model of safe corporate debt should be consistent.

A key input in the calibration of our model is the correlation between the yield on safe

debt issues and economic activity. The first row of table 3 shows that real yields on AAA-

rated debt issues are mildly countercyclical. Put another way, appetite for safe assets tends
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Table 3: Cyclicality of safe yields and spreads

1985-2006 1985-2014 1947-2014
ρ(AAA yield, Y ) -0.0401 -0.2491 -0.3048

ρ(AAA-BAA spread, Y ) -0.2991 -0.3774 -0.6028

Notes: Yield and spread data are Moody’s Seasoned Corporate Bond Yield downloaded from the St-Louis Fed’s

FRED database. We deflate the nominal yield using the CPI index and HP filter the resulting series with a

smoothing parameter of 100.

to be midly procyclical. As shown in the second row and has been well-documented,2 risk

spreads tend to be countercyclical. We will use this fact to test our model.

3 The environment

Consider an economy where time is discrete and infinite and with one consumption good. The

economy contains a mass one of identical, infinitely-lived households endowed with a unit of

labor each period. Households order stochastic sequences of consumption according to time

separable preferences with a CRRA period reward function and discount future utility at a

constant rate β ∈ (0, 1). We will focus throughout on type symmetric equilibria. Specifically,

all households start at date 0 with the same wealth a0 > 0 and make the same decisions from

then on.

The economy also contains a large mass of producers each characterized by a permanent

skill level z ≥ 0. The mass of producers in a given Borel set Z ⊂ [0,+∞) is µ(Z). Producers

can each operate an establishment whose activation requires an investment of one unit of the

consumption good at the start of any period. An active project operated by a producer of

type z > 0 yields gross output

Atz
1−αnαt + (1− δ)

at the end of the period t where α ∈ (0, 1), nt is the quantity of labor employed by the

2See e.g. Gourio (2012).
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producer, δ ∈ (0, 1) reflects the fraction of capital lost to depreciation, and At is an aggregate

TFP shock common to all establishments. The aggregate shock follows a first-order Markov

process whose transition function GA is public information and takes values in A ⊂ IR+.

Labor choices – unlike the decision whether or not to activate project – are made after the

period TFP shock is drawn.

Producers take the price wt of labor in a particular period as given. Conditional on having

activated a project and given TFP level At, a producer of talent z solves

Π(At, wt; z) ≡ max
n>0

zAtn
α − nwt

in net operating income. Let

n∗(At, wt; z) ≡ arg max
n>0

Atz
1−αnα − nwt

denote profit-maximizing labor use given values of the aggregate shock and the wage.

Exactly as in Allen and Gale (1988) producers sell contingent claims to output at the

start of each period taking the willingness to pay of investors as given. Let qHt (A) denote

households’ willingness to pay for a marginal unit of consumption given a realization A of the

aggregate shock at date t. Producers can also sell risk-free claims at price qWt ≤ 1 in world

markets provided they incur a cost κ > 0 at the start of the period.

The assumption that issuing safe debt is costly while other financing methods are free

may seem to run contrary to the traidtional pecking order view according to which issuing

debt is presented as cheaper than issuing equity. But our model is in fact fully consistent

with that traditional view. Most producers who are active in one period are also active in the

next period. The overall payoff producers generate on risky securities exceeds the investment

in those securities on average.3 While we assume for expositional convenience that producers

return all security proceeds to households each period and raise external funds anew, we could

3Indeed, expected payoffs on risky security are investment times expected return. That expected return
must exceed one under our and, for that matter, any reasonable calibration.
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just as well assume that producers retain what they need for the next period so that most

equity financing in our simulations is effectively financed by retained earnings. Retained

earnings, according the the aforementioned pecking order view, are the cheapest source of

funds.

One formal way to justify the safe debt issue cost is to assume that outside investors

must bear a verification cost to discover the type of project used to back the securities they

purchase. Paying this cost enables producers to distinguish themselves from managers with

worthless projects in a manner that is visible for those outside agents. We think of κ as

standing in for additional guarantees and rating requirements certain investors – institutional

investors, say – require.

The key assumption we are making here is that the price of risk-free claims is set ex-

ogenously. As we discussed in the data section, real yields on safe US corporate are mildly

counter-cyclical. To capture this correlation we assume that qWt is measurable with respect

to history of past TFP shocks. That is, qWt is measurable with respect to At−1. In particular

and like A, it follows a Markov process.

Given qHt and qWt producers of type z > 0 who opt to activate their project choose a

quantity of risk-free claim bs to sell to maximize:

MVt(z) ≡ max
bs≥0

bsqWt +

∫
A
qHt (A)

[
(Π(A,wt; z) + 1− δ)− bs

]
dA−

(
1 + 1{bs>0}κ

)
,

subject to:

bs ≤ Π(At, w; z), (3.1)

where At is the lowest possible realization of the aggregate shock at date t i.e. the essential

greatest lower bound of GA(•|At−1).

The constraint says that risk-free claims must be delivered with probability one i.e. even
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if the worst possible value of the TFP shock is drawn. We do not allow producers to collat-

eralize risk-free claims with the undepreciated part of capital. While for simplicity we make

depreciation predictable and fully convertible to the consumption in the model, physical in-

vestments are obviously illiquid and risky in practice. Assuming that the undepreciated part

of physical investments cannot be used as collateral for highly rated debt also turns out to

imply reasonable leverage ratios as we will discuss in section 6.

Producers could sell risk-free claim to households as well as to world markets but that

option will not be used in equilibrium for reasons we will discuss in section 6. Henceforth we

will write bst(z) for the selected supply of risk free claims to world markets by producers of

type z > 0. The price of the security sold to households by producers of type z is

∫
A
qHt (A)

[
(Π(A,wt; z) + 1− δ)− bst(z)

]
dA

so that the stochastic return on the same security is defined for all A ∈ A by:

rt(A; z) =
Π(A,wt; z) + 1− δ − bst(z)∫

A q
H
t (A)

[
(Π(A,wt; z) + 1− δ)− bst(z)

]
dA

.

The risk-free constraint implies that rt(A; z) ≥ 0 for all possible TFP shocks.

The producer problem tells us the market value of a project once it is created. If z is too

low, MVt(z) < 0 and producers of such a type remain idle. Other producers are active and

rebate their market value to the households, who own them by assumption.

Households enter a given period with wealth at ≥ 0, the result of past saving decisions.

It will be convenient to assume that consumption takes place at the start of the period. In

order to make their consumption plans, households need to forecast the contingent path of

future security menus. A security menu S is the set of securities created by producers of each

active type. From the point of view of households it is enough to know the stochastic returns

rt(•, z) : A 7→ IR+
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offered by producers of type z ≥ 0 at date t given the current history ht ∈ At−1 of shocks,

as well as the corresponding willingness to pay qWt (ht) for safe claims in global markets.

Formally, households assume a mapping

St : At−1 7→ S

that gives for every possible date and history the predicted financial structure, i.e. the set of

contingent returns offered by active producers. In equilibrium, we will require this forecast

to be correct.

Given this forecast and an initial wealth a0, households choose non-negative history-

contingent policies {ct, at+1, b
d
t , (e

d
t (z) : z ≥ 0)}+∞

t=0 , where edt denotes the demand of available

risky securities while bdt are the risk-free claims purchased by households, to solve:

maxE
+∞∑
t=0

βtU(ct)

subject to, for every date t and possible history ht ∈ Ht:

qWt b
d
t +

∫
edt (z)dµ(z) + ct = at +

∫
max {MVt(z), 0} dµ(z),

at+1(ht, A) =

∫
edt (z)rt(A, z)dµ(z) + bdt + wt(ht, A), for all A ∈ A

where:

{qWt , rt(•, z) : z ≥ 0} = St(ht),

and wt(ht, A)) is the wage rate that prevails given the history of aggregate shocks, including

the current one.

As emphasized by Allen and Gale (1991), the assumption that households can only hold

positive positions in available securities in all period plays a key role in this costly securi-

tization environment. If unrestricted short-selling were allowed households could arbitrage
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away any profits associated with costly cash-flow tranching and no costly tranching could

take place in equilibrium. Another way to state this assumption is that short-selling, to the

extent that is possible, carries at least the same transaction costs for households as security

creation does for producers.

4 Equilibrium

Households enters date 0 with assets a0 > 0. The aggregate state of the economy in that

initial period is summarized by {a0, q
W
0 , A−1}. An equilibrium, then, is history-contingent

market values {MVt(z)}+∞
t=0 for each producer types, wage rates {wt(A)}+∞

t=0 for every A ∈ A,

security spaces St, decision plans {bst}+∞
t=0 by producers of all types, non-negative decisions

{ct, at+1, b
d
t , (e

d
t (z) : z ≥ 0)}+∞

t=0 for households and, finally, a pricing kernel {qHt (A) : A ∈ A}

such that, at all dates t and all possible histories:

1. Given prices, decision plans solve the household and producer problems;

2. The market for labor clears:

∫
{z:MVt(z)≥0}

n∗(A,wt(A); z) = 1 for all A ∈ A;

3. The market for risk-free debt clears:

∫
{z:MVt(z)≥0}

bst(z)dµ ≥ bdt ;

4. The market for all risky security types z ≥ 0 clears:

edt (z)rt(A, z) = Π(A,wt; z) + 1− δ − bs(z) for all A ∈ A;
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5. The pricing kernel satisfies the Allen-Gale condition:

qHt (At) =
βGA(At|At−1)U ′ (ct+1(ht, At))

U ′(ct)
;

6. Market values satisfy, for all z,

MVt(z) = bst(z)qWt +

∫
A
qHt (A)

[
(Π(A,wt; z) + 1− δ)− bst(z)

]
dA−

(
1 + 1{bst>0}κ

)
.

The market clearing condition for risk-free claims is an inequality because any surplus

claims created by producers can be sold in world markets. Imposing it amounts to assuming

that households have no direct access to risk-free investments overseas. This is immaterial

for our results since, as we will argue below, all equilibria are such that bdt = 0 at all dates

and histories.

5 Aggregate feasibility and GDP accounting

As usual the collection of equilibrium conditions above imply that an aggregate feasibility

condition must hold each period. This section will show that this constraint has essentially

the same structure as what would emanate from a traditional RBC model. Denote by K the

aggregate quantity of capital used for production in a given period and let N be the total mass

of employment. In equilibrium, K is the mass of establishments activated while N = 1 but

one goal of this section is to show in full generality that GDP and conventionally-measured

TFP can be given standard interpretations.

In any equilibrium, only producers whose talent is above a certain threshold z are acti-

vated, as we will formally demonstrate in the next section. It follows that:

K =

∫
z≥z

dµ
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which implicitly defines a threshold z(K). For labor markets to clear wages must be such

that: ∫
z≥z(K)

n∗(A, z, w)dµ = N (5.1)

where A and w are the current aggregate TFP shock and price of labor, respectively. In turn,

standard manipulations of producer first-order conditions imply that for all z ≥ z(K),

n∗(A, z, w) = zn∗(A, 1, w) (5.2)

so that size is linear in z a fact we will invoke later in the calibration of the distribution µ of

producer skill. After plugging this relationship into (5.1) we obtain

n∗(A, 1, w) =
N

KE
[
z

1
1−α |z ≥ z(K)

]
Then, letting

F (A,K,N)

be aggregate output given the aggregate TFP shock, aggregate capital and aggregate labor,

we have:

F (A,K,N) =

∫
z≥z(K)

An∗(A, z, w)αdµ

=

∫
z≥z(K)

Az1−α[zn∗(A, 1, w)]αdµ

=

∫
z≥z(K)

Azn∗(A, 1, w)αdµ

= An∗(A, 1, w)α
∫
z≥z(K)

zdµ

= An∗(A, 1, w)αKE [z|z ≥ z(K)]

= AE [z|z ≥ z(K)]1−αK1−αNα. (5.3)
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The final line of the derivation simply replaces n∗ by what its value must be for markets to

clear. The previous line uses the fact that:

∫
z≥z(K)

zdµ = E [z|z ≥ z(K)]K.

Note that F is a standard neoclassical production function with AE [z|z ≥ z(K)]1−α play-

ing the role of conventionally-measured TFP. In our model, measured TFP is a function both

of the exogenous aggregate shock and of the average quality of active establishments.

These aggregation facts yield a convenient computational shortcut. Given the TFP real-

ization and the quantity of capital used in production, the market-clearing wage rate can be

computed as the aggregate marginal product of labor so that, simply and in all periods:

w(A,K) = αAE [z|z ≥ z(K)]1−αK1−α.

And this is only the tip of the iceberg. These aggregation facts will buy us more computational

shortcuts once we characterize what security markets must look like in all equilibria.

Aggregating all payments to securities now yields the following feasibility condition, given

Kt, Nt, At and bWt (risk free promises to world markets):

∫
edt (z)rt(A, z)dµ(z) + bWt +Ntwt(A) = F (At, Kt, Nt) + (1− δ)Kt.

In words, gross output gets spent on payments to capital and labor at the end of any given

period.

To arrive at a more standard expression for GDP, first note that household assets at the

start of period t+ 1 are:

at+1 = F (At, Kt, Nt) + (1− δ)Kt − bWt .
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At the same time, manager rents at the start of of period t+ 1 are

mt+1 = at+1 +mt+1 − ct+1 −
∫
bst+1>0

κdµ+ qt+1Bt+1 −Kt+1.

Indeed, at+1 + mt+1 − ct+1 + qt+1b
W
t+1 is total security purchases. Rents are the difference

between those purchases and the resources spent on capital fomation and security creation.

Replacing at+1 by the expression above yields, after some reorganization:

ct+1 +Kt+1 − (1− δ)Kt +

∫
bst+1>0

κdµ+ bWt − qWt+1b
W
t+1 = F (At, Kt, Nt).

In words, GDP is spent on domestic consumption, gross fixed capital formation, security

creation, and net exports.4

6 Security markets

This section provides equilibrium features security markets must satisfy in any given period.

The security design choices of producers are fully characterized by two thresholds. As we

have already mentioned, producers only engage in production hence issue securities in a given

period provided their talent exceeds some history- dependent threshold zt. Whether or not

they issue safe debt, likewise, is characterized by a second threshold z̄t ≥ zt:

Proposition 1. The solution to the producer security design problem at a given date t is fully

described by two thresholds 0 ≤ zt ≤ z̄t such that:

1. Producers issue securities if and only if z ≥ zt;

2. bst(z) = 0 if z < z̄t;

3. bst(z) = (Π(At, w; z) + 1− δ) if z > z̄t.

4Spending is indexed by t + 1 rather the traditional t because of our convention that consumption takes
place at the start of a given period so that period t + 1 spending is contemporaneous with period t GDP.
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Proof. Since producers maximize a linear objective over a compact, convex set the result

follows almost immediately from the Extreme Value Theorem stated for instance in Ok (2007).

Optimal policies for active producers must be extreme: producers either issue the most safe

debt they can or none at all. For completeness and intuition’s sake however, we will also

provide a direct proof.

The first item of the proposition is obvious. Without loss of generality in the context of

this proof but to simplify notation, assume that µ(z) = 1 for all z > z̄t. To see the second

item note that if
∫
A q

H
t (A)dA ≥ qWt then producers optimally choose to issue no risk free debt

since doing so carries a fixed costs and households are willing to pay at least as much for

risk-free claims as world markets are. The result holds trivially in this case.

For the rest of this proof then, assume that
∫
A q

H
t (A)dA < qWt . Then market value rises

strictly with b. If it is profitable to pay the fixed cost for particular project then it is therefore

optimal to maximize the production of risk-free debt. This means that the constraint must

bind when some risk-free debt is issued by a producer.

That leaves us with two possibilities: produce zero risk-free debt or max-out risk-free debt.

Maintaining the normalization that µ(z) = 1 for all z > z̄t, write MV b>0
t (z) for the highest

market value before the tranching cost κ conditional on b = Π(At, w), while MV b=0
t (z) is the

same under the constraint that b = 0. We have:

MV b=0
t (z) =

∫
A
qHt (A) (Π(A,wt; z) + 1− δ) dA

while

MV b>0
t (z) = qWt Π(At, w; z) +

∫
A>At

qHt (A)

(
1− δ + Π(A,wt; z)− Π(At, w; z)

)
dA,

so that

MV b=0
t (z)−MV b>0

t (z) =

(
qWt −

∫
A
qHt (A)dA

)
Π(At, w; z).

When
∫
A q

H
t (A)dA < qWt , this difference rises with z and it follows that if MV b=0

t (z) <
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Figure 3: Stock of debt vs yearly EBITDA among firms rated AA or above
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Notes: The sample of firms used in these calculations is the same as in section 2.

MV b>0
t (z)+κ, this remains true as z rises. This establishes the existence of a second threshold

z̄t. This completes the proof.

These results follow from a fundamental feature of environments in the spirit of Allen and

Gale (1988) such as ours: producers take state prices as given hence have a linear objective

which, in turn, leads to bang-bang financial policies. One key consequence is that when

producers choose to create some risk-free debt, they max out the production of such debt. In

addition, only producers above a certain productivity hence size threshold issue investment-

grade debt, small producers do not.

Another key consequence of the proposition is that households do not participate in risk-

free markets in equilibrium. It makes no economic sense for producers to bear the tranching

cost to cater to households. This does not mean that the portfolio held by households does

not have a risk-free part. It simply means that there is no need to split the risk-free part from

the rest of the household portfolio.
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Conversely, households hold all risky assets in the economy. It follows that, from the point

of view of households, it is as if they were in a world with one security whose stochastic payoff

is

F (At, Kt, 1) + (1− δ)Kt − bWt ,

and whose price at the start of the period is

∫
A
qHt (A)

[
F (At, Kt, 1) + (1− δ)Kt − bWt

]
dA,

hence whose return, for all possible values of At is

rH(At) =
F (At, Kt, 1) + (1− δ)Kt − bWt∫

A q
H
t (A)

[
F (At, Kt, 1) + (1− δ)Kt − bWt

]
dA

.

Finally, the bang-bang nature of financial policies implies that among firms that do issue

safe debt, the size of the stock of debt should be near annualized net operating income. This

is obviously testable using the data we described in section 2. Figure 3 compares the stock

of debt to yearly EBITDA5 The two series track each other fairly closely and this is exactly

what our endogenous borrowing constraint implies.

7 A recursive approach

As usual in this sort of context, a recursive approach is the most natural way to look for

an equilibrium.6 The aggregate state of the economy at any given point in time is fully

summarized by (āt, A−1) ∈ IR+ ×A, i.e the wealth holdings of the household sector and the

most recent TFP shock. Of course, average household wealth āt coincides with individual

wealth levels at but each household views those as distinct and understand, in particular,

5We use OIBDP (Operating income before depreciation) as our proxy for EBITDA in Compustat. This is
the closest notion to our measure Π of net operating income in Compustat and only differs from EBITDA as
it is typically defined in that in doesn’t include non-operating income.

6See e.g. Krusell, Rios-Rull . . .
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that their individual decisions do not directly affect the aggregate values.

Because δ > 0 and returns to capital are decreasing in the aggregate, it is easy to see

that we can confine our attention to a compact set of possible aggregate states. It will be

convenient to have notation for the set of possible aggregate states at the start of a given

period so define

Θ = IR+ × IR+ ×A.

The purpose of this section proposes a definition of a Markov Recursive Equilibria. An

equilibrium consists of the following objects:

1. g : Θ×A 7→ Θ is the transition function for the aggregate state given the new realization

of the TFP shock;

2. K : Θ 7→ IR+ is the capital stock deployed;

3. z × z̄ : Θ 7→ IR2
+ are the two thresholds that define the financial structure;

4. qH : Θ × A 7→ IR+ is the willingness to pay of households for security payoffs at each

possible realization of the TFP shock;

5. rH : Θ×A 7→ IR+ is the return on the household portfolio;

6. eH : Θ× IR+ 7→ IR+ is the household’s risky investment at the start of the period;

7. c : Θ × IR+ 7→ IR+ is household consumption given the aggregate state and their

individual wealth level;

8. w : Θ×A 7→ IR+ is the wage rate for each possible TFP shock;

9. bW : Θ 7→ IR+ is the volume of risk-free claims created;

10. MV : Θ× IR+ 7→ IR+ is the market value of establishments of each possible talent level;

11. V H : Θ× IR+ 7→ IR is the household’s continuation value function.
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To characterize recursive equilibria, we will begin by writing out the functional equation

that define V H given other objects. Given state θ = (ā, A−1) ∈ Θ and the household’s

individual wealth a > 0,

V H(θ, a) = max
eH≥0,b≥0

U

(
a+

∫
z≥z

MV (z)dz − eH − qW b
)

+ β

∫
A
V H (g(θ, A), a′(A))dG(A|A−1)

where, for all A ∈ A

a′(A) = b+ eHrH(θ, A) + w(θ, A).

To understand this expression, notice that agents are atomistic hence take the evolution of

the aggregate state as independent of their decisions. Here we allow for b > 0 even though,

as we have already argued, households hold no risk-free securities in equilibrium.

Standard arguments imply that the functional equation above defines V H uniquely in the

space of bounded function as long as all laws of motion are such that all integrals are well

defined, a condition we will impose throughout. Furthermore, under the premise that all

underlying objects in the above functional equation are continuous, so is V H . In fact, under

that same premise:

Proposition 2. The household value function V H is concave and differentiable in individual

assets. Furthermore, for all possible values θ ∈ Θ of the aggregate state,

∂V H(θ, a)

∂a
= U

′
(c(θ, a)) .

Proof. Benveniste-Scheinkman, 1979.

This envelope property is important because it means that the Allen-Gale approach to

pricing all potential security using the marginal rate of substitutability across different pe-

riods can be motivated in our infinite horizon context exactly as it can in their two-period

environment.

A fact that will greatly aid computations is that, in this environment, households hold all
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risky assets while world markets absorb all safe securities created. Having observed this, we

can boil down the search for a RCE to the following set of conditions:

K(θ) =

∫
z≥z

dµ (7.1)

eH(θ, a) =

∫
A
qH(θ, A)

[
F (A,K(θ), 1) + (1− δ)K(θ)− bW (θ)

]
dA (7.2)∫

z≥z
MV (θ, z)dz = qW (θ)bW (θ)−K(θ)−

∫
z≥z̄

κdµ

+

∫ ∫
A
qHt (A)

[
(Π(A,w(θ); z) + 1− δ)− bs(θ, z)

]
dAdz (7.3)

c(θ, a) = a+

∫
z≥z

MV (θ, z)dz − eH(θ, a) (7.4)

a′(θ, A) = eH(θ, A)rH(θ, A) + w(θ, A) for A ∈ A (7.5)

qH(θ, A) =
βG(A|A−1)U

′
(ci(g(θ, A), a′(θ, A))

U ′(c(θ, a)
for A ∈ A (7.6)

and the financial structure is consistent with the producers’ problem given (qH , qW ). (7.7)

The first condition defines the capital stock given the financial structure. The next three

conditions express what consumption must be for households given the portfolio they must

hold in equilibrium and their profit distributions. The next condition states the corresponding

evolution of household assets. That also tells us what the endogenous part of the aggregate

law of motion must be. Condition (7.6) is the recursive version of the Allen-Gale condition.

The final condition is that the assumed thresholds are compatible with the willingness to pay

for securities given optimal behavior by producers.

Having so reduced the set of equilibrium conditions, the search for equilibrium policy

functions becomes greatly simplified. Start with a guess for household state prices for all

possible values of the aggregate state. Given those, we can solve for the aggregate stock of

physical capital fairly quickly. To see this, at a given aggregate state, guess K. This implies

a lower bound below which producers activate their establishment. And it also gives us TFP-

shock dependent wages. We can then solve for Π and, given state prices, we can solve in
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particular for MV (z), which, in equilibrium, must be zero. We can then update K until that

marginal condition holds. The next step is to find the threshold above which risk-free rate is

created, given K and the pricing kernels.

These steps guarantee that labor markets clear and that producers behave optimally given

pricing kernels. To have a recursive equilibrium however we need pricing kernels to be con-

sistent with the Allen-Gale condition. For that aspect of the equilibrium search, note that

knowing K and pricing kernels is enough to compute portfolios and payoffs, hence state con-

tingent consumptions. This then gives us the implied willingness to pay by (7.6). We have

an equilibrium, then, provided the values that come out of that condition are exactly the

marginal willingness to pay the producers assumed in the first place.

8 The cyclical properties of safe corporate debt

This section asks whether the theory we have described is consistent with the cyclical proper-

ties of safe debt issues we documented in the data section. Before delving into the details of

our quantitative strategy, it will be useful to highlight the features of our model that govern

how security markets respond to TFP shocks.

8.1 Basic mechanism

Intuitively, the cyclical properties of the stock of safe debt will depend primarily on the

quantitative strength of three economic forces in our model. First and most obviously, the

behavior of the stock of risk free debt will depend on how cyclical the exogenous price qW of

safe claims is calibrated to be. The data section suggests that this price process is weakly

procyclical and our calibration below will reflect this.

Second, constraint (3.1) limits the quantity of safe debt producers hence the profitability

of paying fixed participation cost κ. In turn, the tightness of that constraint is a function of

the support of the TFP process, or more specifically of the worst-case scenario. It stands to
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reason that the support of the TFP shock should move to the left during recession giving the

model a strong procyclical force for the production of safe assets.

But the third key force that governs security design choice works in the opposite direction.

While the process that governs qW is exogenous, the willingness to pay for securities by the

household is bound to be strongly procyclical. Indeed, a good TFP shocks results in higher

wealth for households hence, under typical preference specifications in the context of an

exercise like ours, a greater desire to save. When household state prices rise, the profitability

of participating in safe debt markets falls. This aspect of our model pushes debt issues down

during expansions.

In summary, the overall cyclicality of safe assets issues in our model will depend on the

relative strength of competing forces. We now turn to exploring the result of this quantitative

horse race.

8.2 Parameters

In order to explore the properties of our model we first need to specify functional forms and

parameters. We will think of a period as representing one year. Households’ preference are

in the time-separable CRRA class. We set the elasticity of substitution to 2 and the discount

rate β to 0.95.

On the production side, we set the depreciation rate δ to 10% while the labor share

parameter (α) is set to 65%. We will set other parameters jointly so that the model matches

a set of data moments that are directly pertinent to our question.

We assume that the distribution of idiosyncratic establishment productivity is log-normal

and normalize the location parameter 0. The dispersion parameter (γ) is calibrated via its

implications for the size of managerial rents
∫
{z:MVt(z)>0} b

s
t(z)MVt(z)dz. Intuitively, more

dispersion in talent should imply greater rents and this monotonicity is borne out in all the

simulations we have performed. To identify a data counterpart for these rents, we must take

a stand on what the implicit producer factor represents in our model. We will think of this
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fixed factor as the time and skill input provided by sole proprietors and top managers.

To pin down the dispersion of talent then, we need data counterpart for
∫
{z:MVt(z)≥0}MVt(z)dz

and for aggregate output (Y ≡ F (A,K,N) where K is physical capital and N is employment)

in our model. We will think of managerial rents as the labor income of proprietors and top

managers. By top managers we mean Chief Executives and General and Operations managers

(occupation codes 11-1011 and 11-1021) in the Bureau of Labor Statistics (BLS)’s National

Occupational Employment and Wage Estimates survey. For proprietor’s income we use the

standard series available from the Bureau of Economic Analysis and make the assumption

that the fraction of labor income in this measure is 65%.

As a counterpart for aggregate output Y we use value added by the private sector as

measured by the Bureau of Labor Statistics minus the compensation of top managers as

defined above and proprietor’s income since we are treating those payments to labor as part

of
∫
{z:MVt(z)≥0}MVt(z) . For the 1998-2014 period managerial rents so measured represents

around 10% of value added by the private sector hence around 0.1
0.9
≈ 11% of the appropriate

counterpart for aggregate output in our model.

Next we need to parameterize the process for exogenous TFP. We assume that A – the

support for exogenous TFP consists of three points. Output is defined as above as value added

by the private sector as measured by the Bureau of Labor Statistics minus the compensation

of top managers as defined above and the labor part of proprietor’s income. Because below

we calibrate a transition matrix based on the frequency of TFP changes, we use the entire

annual series available from the BLS, which covers the 1948-2014 time period. Top manager

compensation data available from the BLS do not go back that far so to approximately remove

the contribution of managerial rents to value added we apply a constant factor of 0.9 to the

BLS series.7 Consistently with our specification of the labor share, we define aggregate TFP

7As long as the share of managerial rents does not fluctuate too much – an assumption which underly
our entire calibration approach anyway – the specific factor one uses does not affect the TFP process. We
should in principle exclude the labor provided by proprietors and top managers form the BLS series for labor
services, but this would require detailed data on the hours provided by top managers and proprietors going
back to 1948, data which we do not have. Here too,as long as the fraction of these categories of labor to the
overall labor series does not fluctuate too much, the results for the TFP process will not change much.
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Table 4: Calibration summary

Parameter Description Value
β Discount rate 0.95
σ Utility curvature 2.00
δ Depreciation rate 0.10
α Labor share 0.65
γ Project productivity dispersion 0.50
κ Tranching cost 0.0115

as the ratio of real value added so defined to a Cobb-Douglas index

(Labor input).65(Capital Services).35

of input use.

We log and HP-filter the resulting series with a smoothing parameter of 100 and then

classify the resulting productivity levels in three categories: bottom 25% of observations,

middle 50% and top 25%. The frequency transitions between those three TFP states is

summarize in the following matrix:
0.50 0.50 0.00

0.24 0.50 0.26

0.00 0.56 0.44

 .

We specify GA to equal this matrix.

One important approximation we are making here is that in our environment, TFP as

we compute it using BLS data corresponds to AE [z|z ≥ z(K)]1−α so that it mixes the ex-

ogenous part (A) of TFP and the endogenous changes in the average quality of projects. In

our simulations however the endogenous part of TFP accounts for a small fraction of TFP

movements so that, in practice, effective TFP is in the bottom or top 25% of values exactly

when exogenous TFP is.
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To specify the support of A, we calculated that HP-filtered real value added in BLS data

during low (high) TFP periods is roughly 3.5% below (above) its average level in the middle

TFP state. We choose a support for A to {0.97, 1.00, 1.03} so that average output in each

of the three possible aggregate states in our model matches those numbers. (The algorithm

we use to generate model moments will be described in details in the next subsection.) In

those simulations, the average level of aggregate output (Y ) depends both on the TFP level

and the endogenous response of the capital stock so that a 3% spread in exogenous TFP gets

magnified to roughly a 3.5% spread in Y .

To calibrate the relationship of the willingness qW to pay for safe securities we use Moody’

seasoned AAA Corporate Bond Yield series between 1985 and 2014, averaged annually, de-

flated using the Consumer Price Index and HP-filtered with a smoothing parameter of 100.

We normalize the resulting series so that average safe rates are 3%. The resulting support for

qW is {0.972, 0.968, 0.976}. As we will see below, this approach turns out to imply a (mildly

negative) correlation of filtered safe yields with filtered value added that comes very close to

its data counterpart, even though we did not explicitly target that moment.

This leaves one parameter to calibrate, namely the tranching cost κ. Recall that the

aggregate stock of safe debt in the Compustat data we employed in section 2 that is rated

either AAA or AA amounts to around 3% of private value added on average between 1985

and 2014. Setting κ = 0.0115 makes the average ratio of the stock of safe debt to Y roughly

3%. In our benchmark simulations, that value of kappa implies that tranching costs represent

about 0.7% of the total safe debt issues on average. Table 4 summarizes our calibration.

8.3 Algorithm

Finding an equilibrium given these parameters and functional forms boils down to solving

a fixed point on the willingness to pay vector qH . In order to locate such a fixed point, we

use a version of the algorithm Telmer (1993) employed, although our search is significantly

complicated by the fact that the set of securities is endogenous.
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As we discussed in section 7 the state of the economy at any given point in time is fully

summarized by (ā, A−1) ∈ IR+ × A, i.e the wealth holdings of the household sector and the

most recent TFP shock. We set lower and upper bounds for asset holdings of 0.5 and 5,

respectively,8 and discretize the resulting interval using 50 equally spaced points giving us a

state space with 50 distinct values overall.

Next, we need to take on two computational tasks. First, we need policy functions at the

recursive equilibrium. Second, we need to estimate business cycle moment by drawing time

series from the economy’s stochastic steady state. For the first task, we proceed as follows:

1. Start by assuming that agents live for 2-periods (T = 2). In the terminal period, agents

simply consume their wealth. Finding a solution to conditions (7.1 − 7.7) is a version

of the two-period problem studied by Allen-Gale (1988). In particular, that system has

a solution. We compute the corresponding fixed point on a grid of the aggregate state

space.

2. At the solution, denote by cT−1 the optimal consumption plan given the aggregate state.

Apply the same procedure as in step 1 to compute a vector of household willingness to

pay that solves (7.1− 7.7) as of date T − 2, so obtaining cT−2.

3. Let T grow until the optimal consumption policy function become approximately in-

variant. This gives us the approximate equilibrium we sought.

As mentioned above, the key goal is to find a fixed point defined by equation (7.6). On

the right hand side of that equation, asset values obviously fall between grid points. We use

interpolation to evaluate the value of marginal rates of substitution at those interior points.

The second step consists of simulating the stochastic steady state implied by this quan-

titative version of our model. We follow a standard procedure and start from an arbitrary

level (specifically, a0 = 3.5) of household wealth and assuming that we start at the middle

8This range is such that assets never reach those bounds in our simulations. In fact, the stochastic steady
state we simulate stays with the [3, 4] interval throughout our simulations.
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Figure 4: Equilibrium policy functions and state prices
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TFP level. We then draw a path of 500,000 TFP shocks according to GA, trace the resulting

path of assets and, using the policy functions computed above, of every other endogenous

variables. We then drop the first 50, 000 periods to make sure that initial conditions have no

influence on the business cycle properties we report in the next section.

8.4 The Recursive Competitive Equilibrium

Figure 4 plots key endogenous variables against household assets at the recursive equilibrium

we found. All policies are plotted for the case where the most recent TFP shocks is the middle

state. The main patterns we emphasize in this section look similar in the other cases.

The first panel of the figure shows the willingness to pay of households for payoffs in each

of the three possible aggregate states. As they become richer their ability and willingness to
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Figure 5: Safe asset issuances

0 1 2 3 4 5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Assets

Household willingness to pay for risk-free claims

0 1 2 3 4 5
0

5

10

15

20

assets

Securitization cutoffs

 

 
zhigh
zlow

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Assets

Fraction of establishments that issue risk-free debt

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Assets

Volume of risk-free debt

pay rises. This immediately implies that it becomes profitable for more producers to become

active as household wealth increases and correspondingly, as shown in the second panel of the

figure, more capital is deployed. As a result and for each possible realization of the aggregate

shock, aggregate output Y also rises with wealth as does aggregate consumption, as shown in

the two bottom panels of the figure.

Figure 5 shows the consequences of these equilibrium properties on the production of safe

securities. The first panel shows the willingness to pay for safe assets by households (in other

words, the sum of the three state prices shown in the first panel of figure 5) and shows, in

particular, that this willingness rises with household wealth. The second panel of the figure

shows the two thresholds that describe the production of securities. Below the talent level

shown in the red, dotted line producers remain inactive and do not produce any securities. As
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Table 5: Model fit

Moment Data Model
Ratio of safe debt to Y 3.24% 3.18%
Ratio of management rents to Y 11.00% 11.72%
std(log(Y )) 2.15% 2.28%

ρ
(

1
qW
− 1, Y

)
−0.25 −0.28

mentioned in the discussion of figure 4, more producers become active as households become

wealthier. The solid black line depicts the threshold above which producers choose to pay the

fix cost κ and issue safe securities.

At low household wealth levels, the gap between what households are willing to pay for

safe securities and qW is so high that every active producer chooses to pay the fix cost. As

long as that remains true increases in household wealth are associated with more safe debt

issues (see the fourth panel.) But past a certain household wealth level some producers choose

to economize on the tranching cost. That effect is strong enough that as soon as it kicks in,

the relationship between household wealth and the volume of safe debt becomes negative. As

we mentioned in the calibration section, the stochastic steady state of the economy lives in

the [3, 4] interval and, therefore, household wealth and debt issues are in the declining portion

of the figure.

The key targets that informed our calibration strategy are the average ratio of debt to

gross output and the average ratio of managerial rents to gross output. The first two rows of

table 5 shows that the parameters we selected do in fact roughly deliver the desired model

moments in our simulations. The bottom two rows of the table show moments that we did

not directly target but are important given the questions we wish to ask in this paper. First,

our approach to calibrating the exogenous TFP shock delivers an output volatility that comes

very close to its empirical counterpart. Second, safe yields ( 1
qW
− 1 is the risk-free rate in our

model) display a correlation with output that also resembles its value during the 1985-2015

time period.
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Table 6: Cyclical properties of model variables

Y TFP c a K
Y 1.0000 0.9144 0.5074 0.4733 0.5369
TFP 0.9144 1.0000 0.1642 0.1103 0.1495
c 0.5074 0.1642 1.0000 0.9809 0.8974
a 0.4733 0.1103 0.9809 1.0000 0.9262
K 0.5369 0.1495 0.8974 0.9262 1.0000

8.5 Cyclical properties of safe debt issues

Table 6 shows the cyclical properties of key model variables. As is standard in models whose

production side are essentially that of the traditional RBC model, GDP follows TFP very

closely. Aggregate consumption, wealth and capital are all positively but imperfectly corre-

lated with GDP and TFP.

The key question we wish to ask however is whether the model can account for the relative

acyclicality of safe debt issues we documented in section 2. Table 7 shows that the stock of

debt whether raw, as a fraction of output or as a fraction of all liabilities displays a correlation

with output that resembles the relevant evidence. We emphasize that these are moments that

we did not target in any way. Furthermore, the last column of the table shows that not

only does the model perform well in terms of quantities, it is also consistent with the well

documented counter-cyclicality of risk premia. In the model, we measure risk premia as the

expected return on the household portfolio minus the risk-free rate while in the data we

use the average annual BAA-AAA spread for the 1985-2014 time period, HP filtered with a

smoothing parameter of 100.

9 Safe asset markets and the business cycle

Having proposed a model that satisfactorily captures the cyclicality of safe corporate debt, we

will now use it to run counterfactual experiments designed to quantify the impact of safe asset
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Table 7: Cyclicality of safe debt stocks and risk premia

Moment ρ(D, Y ) ρ
(
D
Y
, Y
)

ρ
(

D
all D+E

, Y
)

ρ(spread, Y )

Model -0.10 -0.13 -0.12 -0.13
Data 0.03 -0.09 -0.17 -0.25

markets on the level and volatility of private sector value added. Specifically, we conduct two

experiments. First we set the tranching cost so high that in the stochastic steady state no

producer chooses to access safe markets. In other words, all claims are sold to the household

and subject to aggregate risk in this experiment. In the second experiment, we permanently

and uniformly lower the support of qW by 20%.

Figure 9 displays the impact of shutting down debt markets by setting κ high on capital

formation. The dotted red line shows the relationship between household wealth and capital

use without access to safe debt markets (assuming that the most recent TFP shock was in

the middle state) while the solid black line shows the benchmark relationship. As households

become poorer safe debt markets play a bigger role in the benchmark case and strongly

mitigate the fall of capital use. However recall that the stochastic steady state lives in the

neighborhood of a = 3.5 in our experiments, and part of the state space where the gap

between the two lines is relatively limited. The third column of table 9 shows that aggregate

capital use is about 4% lower on average in the stochastic steady state when safe markets are

shut down which translates to a fall in aggregate output of about 1% on average.

Figure 10 shows the impact of a 20% downward shift in the support of safe yields on capital

formation. Capital formation is uniformly higher but the gap between the two economies is

small. Not surprisingly then, the change in safe yield has little impact on average output at

the stochastic steady state. While the willingness to pay in safe markets is higher households

save much less due to lower returns. The increase in investment flows from safe markets is

almost entirely crowded out by decreased investment by the household sector.

Output and consumption are less volatile in both counterfactual experiments than in
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Figure 6: Tranching and capital formation
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the benchmark economy. In the high κ experiment this is caused by the fact that average

household assets hence investment become significantly less volatile when corporations no

longer have access to outside safe markets. In the low safe yields experiment on the other

hand household savings become much less volatile. But the role of safe asset markets – a

comparatively stable source of investments – increases and this effect turns out to dominate

quantitatively.

10 Conclusion

In this paper we make the quantitative case that a simple dynamic extension of Allen and

Gale (1988)’s optimal security design framework can account for the cyclical behavior of

safe corporate debt. A satisfactory model of safe corporate debt, in turn, makes it possible to

measure the impact on corporate investment and GDP of the recent increase in global appetite

for safe US assets. A uniform reduction in safe yields has little impact on the level of output
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Benchmark High kappa Low safe yields
Mean Y 1.5894 -0.93% +0.04%
std(log(Y ) 0.0236 -0.42% -0.85%
Mean c 1.3532 -0.27% -0.27%
std(log(c)) 0.0134 +8.21% -2.99%
Mean Assets 3.6482 -1.34% -1.98%
std(log(assets)) 0.0269 -15.24% +6.69%
Mean K 2.3426 -4.02% +0.17%
std(log(K)) 0.0276 +0.72% -10.51%

as reduced investment from the household sector almost exactly offsets increased flows from

world markets for safe debt. Since flows from world markets are relatively acyclical, output

and investment volatility fall. Shutting down safe corporate debt markets altogether would

cause a permanent 1% decrease in US output, we find, but would actually goes volatility to

fall as household savings would become more stable when corporations no longer have access

to outside markets for safe debt.

For tractability, we have abstracted from many features of debt markets that we intend

to model in future versions of this paper. First, our model contains no role for long-term

securities in part because tranching costs must be borne by producers each period. If instead

we assumed that producers can enter into long-term contracts by paying a one-time fixed

cost, they would want to take advantage of this option. While this will greatly increase the

dimension of the state space in the dynamic programming problem we need to solve in this

paper, this will produce an economy where long-term securities are issued. Second, we have

limited the analysis to one specific type of tranching that amounts to extracting the part of

aggregate output that is not subject to aggregate output. In an economy with more investor

heterogeneity, producers would choose a more complicated and realistic capital structure.
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Figure 7: Low safe yields and capital formation
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