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Abstract

We establish the lattice theorem, rural hospitals theorem, and a group-
incentive-compatibility result for terminal buyers (sellers) with unit demand,
in a general bilateral trading network without making the assumption of
quasi-linear utility in transfers. JEL-classification: C78, D47
Keywords: Trading Networks; Full Substitutability; Law of Aggregate De-
mand; Law of Aggregate Supply; Lattice; Rural Hospitals; Matching with
Contracts

1 Introduction

Substitutability is a key concept for the analysis of markets with indivisibilities
that feature prominently in the field of market design (see e.g. Milgrom, 2017 who
highlights the role of substitutability in market design). Under substitutability,
equilibria in markets with indivisibilities exist, natural tâtonnement dynamics con-
verge to equilibrium, (one-sided) incentive compatibility results for mechanisms
that implement equilibria hold, competitive equilibria have cooperative founda-
tions and one can obtain important structural results, such as the lattice structure
of competitive equilibrium prices. The importance of substitutability in markets
with indivisibilities has first been highlighted by Kelso and Crawford (1982). They
showed that in a two-sided labor market matching model, under the assumption
of gross substitutability, a natural ascending auction converges to an approximate
equilibrium which becomes a competitive equilibrium as price increments become

∗I gratefully acknowledge financial support by the Swiss National Science Foundation (SNSF)
under project 100018-150086. I thank Ravi Jagadeesan, Alex Nichifor and Alex Teytelboym for
valuable comments.

1



smaller and smaller. In the last three decades, the work of Kelso and Crawford
(1982) has been vastly generalized beyond two-sided markets and additional re-
sults have been obtained. Recently, the results have been extended to trading
networks, which allow to model complex supply chains in an industry where firms
are engaged in upstream as well as downstream contracts. Hatfield et al. (2013)
show that under the assumption of full substitutability,1 which requires that firms
see upstream (downstream) contracts as substitutes to each other and upstream
(downstream) contracts as complements to downstream (upstream) contracts, the
set of competitive equilibria is non-empty, has a lattice structure, and is essentially
equivalent to the core and the set of (pairwise) stable allocations.

In Hatfield et al. (2013) as well as many precursors, quasi-linearity in trans-
fers is assumed to simplify the analysis. However, recent studies (Fleiner et al.,
2018; Dupuy et al., 2017; Galichon et al., 2017; Hatfield et al., 2018a) have gone
beyond the quasi-linear benchmark to capture important frictions (such as tax-
ation) or wealth effects that are present in real-world markets. It was unknown
so far, whether the structural properties of the set of competitive equilibria carry
over to the case of non-quasi-linear utility. In contrast to this, in models with
discrete transfers or no transfers (Fleiner, 2003; Hatfield and Milgrom, 2005; Os-
trovsky, 2008; Fleiner et al., 2016), only the assumption of strict preferences, (full)
substitutability and the law of aggregate demand (supply) are sufficient for the
set of (trail-)stable outcomes, which is the (cooperative) solution concept most
often used in this context,2 to exhibit the same structural properties as competi-
tive equilibria for models with transfers. In particular, in the discrete world with
strict preferences, severe income effects can be handled as long as substitutability
and the law of aggregate demand (supply) are not violated. Since competitive
equilibria in market with continuous transfers have cooperative foundations even
without quasi-linearity, as recently demonstrated by Fleiner et al. (2018), it seems
plausible that the set of competitive equilibria, and hence by the equivalence result
of Fleiner et al. (2018), (trail)-stable allocations, exhibit the same structural prop-
erties as for quasi-linear preferences. The purpose of this paper is to show that
this is indeed the case and hence full substitutability and the laws of aggregate
demand/supply alone are driving all of the results.

We show that for a fully general model of trading networks with transfers,
only assuming continuity and monotonicity in transfers, the set of competitive
equilibria has a lattice structure, provided that full substitutability and the laws
of aggregate demand and supply hold. Moreover, under our assumptions, we show

1Full Substitutability has first been introduced by Ostrovsky (2008) for a discrete model of
trading chains and generalizes a condition first introduced by Sun and Yang (2006) in the context
of exchange economies with indivisibilities).

2Stability has appealing normative properties, as well as empirical support, see e.g. Roth
(1984a, 1991).
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that a version of the rural hospitals theorem holds. If we make the additional
assumption of bounded willingness to pay (as introduced by Fleiner et al., 2018)
we obtain an existence result of extreme equilibria: There exists an equilibrium
that is most preferred by terminal sellers and an equilibrium that is most preferred
by terminal buyers among all equilibria. The latter result allows us to obtain
a group-incentive compatibility result. We show that a mechanism that selects
terminal buyer optimal equilibria is group-strategy-proof for terminal buyers on
the domain of unit demand utility functions and similarly a mechanism that selects
terminal seller optimal equilibria is group-strategy-proof for terminal sellers on the
domain of unit supply utility functions. Hence we obtain continuous analogs for
the full set of results that have been previously obtained for discrete markets. This
highlights the similarity between the discrete and continuous models and the fact
that quasi-linearity is not essential for any of the canonical results in the literature.

1.1 Related Literature

The literature on trading networks has its origins in the literature on matching
markets with transfers. In a seminal paper, Kelso and Crawford (1982) show that,
under the assumption of gross substitutability, competitive equilibria with person-
alized prices exist and are equivalent to core allocations in a many-to-one labor
market matching model. The construction is by an approximation argument where
the existence in the continuum is obtained from the existence of an equilibrium in a
discrete markets with smaller and smaller price increments. Subsequent work has
further studied the question of existence of equilibria in the context of exchange
economies with indivisibilities. See for example Gul and Stacchetti (1999) and
the recent contribution of Baldwin and Klemperer (2016). Different versions of
a (group-)strategy-proofness result for a many-to-one matching model with con-
tinuous transfers have been established by Hatfield et al. (2014); Schlegel (2016);
Jagadeesan et al. (2018).

Trading networks with bilateral contracts and continuous transfers have been
introduced by Hatfield et al. (2013). Under the assumption of quasi-linear utility
and full substitutability they establish many results that we generalize to the case
of general utility functions. The notion of full substitutability has been studied
in detail by Hatfield et al. (2018b) who show the equivalence of various different
definitions of full substitutability. The work of Hatfield et al. (2013) builds on
the work of Ostrovsky (2008) on trading networks with discrete contracts that
generalizes matching models with contracts (Hatfield and Milgrom, 2005; Fleiner,
2003; Roth, 1984b) beyond two-sided markets. The matching model with contracts
in turn originates in the discrete version of the model of Kelso and Crawford (1982).
Hatfield and Kominers (2012) and Fleiner et al. (2016) provide additional results
for the discrete trading networks model, which in many ways are parallel to the

3



results we obtain in the continuous model.
All the above mentioned work for continuous models make the assumption of

quasi-linear utility for at least one side of the market.3 There are two papers that
deal with general, not necessarily quasi-linear, utility functions and are particularly
close to our work:

In a classical paper, Demange and Gale (1985) establish several structural
results about the core (or equivalently the set of competitive equilibria) for a
one-to-one matching model with continuous transfers. In particular, they show
that the core has a lattice structure and an agent that is unmatched in one core
allocation receives his reservation utility in each core allocation (the result is often
called the rural hospital theorem in the literature on discrete matching markets).
Moreover, they show that the mechanism that selects an extreme point of the
bounded lattice is strategy-proof for one side of the market. Importantly, these
results are established without assuming quasi-linearity in transfers. They only
require that utility is increasing, unbounded and continuous in transfers. We
generalize this work to trading networks with bilateral contracts.

In recent work Fleiner et al. (2018) study trading networks with general pref-
erences. Their work is in many regards complementary to our work and all major
results of Hatfield et al. (2013) are generalized to non-quasi-linear preferences, ei-
ther in our work or by Fleiner et al. (2018). The authors establish the existence
of a competitive equilibrium under the assumption of Full Substitutability and
mild regularity conditions, using the approximation approach pioneered by Kelso
and Crawford (1982). Moreover, they provide conditions under which competi-
tive equilibria correspond to (trail-)stable allocations. We derive our results for
competitive equilibria. However, by the equivalence result of Fleiner et al. (2018)
analogous results also would hold for trail-stable allocations.

2 Model

We consider a finite set of firms F and a finite set of trades Ω. Each trade ω ∈ Ω
is associated with a buyer b(ω) ∈ F and a seller s(ω) ∈ F with b(ω) 6= s(ω).
For a set of trades Ψ ⊆ Ω and firm f ∈ F we define the set of downstream
trades for f by Ψf→ := {ω ∈ Ψ : s(ω) = f} and the set of upstream trades by
Ψ→f := {ω ∈ Ω : b(x) = f}. Moreover, we let Ψf := Ψf→ ∪ Ψ→f . A firm f ∈ F
such that Ωf→ = ∅ is called a terminal buyer and a firm such that Ω→f = ∅ is
called a terminal buyer. Note that terminal buyers and/or terminal buyers do

3Note however that the existence proof of Kelso and Crawford (1982) is actually more general
and also applies to non-quasi-linear preferences, provided they are continuous, monotonic and
unbounded in transfers for each bundle.
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not need to exist. A contract is a pair (ω, pω) ∈ Ω × R, where pω is the price
attached to the trade ω.

An allocation is a pair (Ψ, p) consisting of a set of trades Ψ ⊆ Ω and a
price vector p ∈ RΨ. We denote the set of allocations by A and we let Af :=
{(Ψf , (pω)ω∈Ψf

) : (Ψ, p) ∈ A}. An arrangement is a pair [Ψ, p] ∈ 2Ω ×RΩ. Thus
in contrast to an allocation the price vector also contains prices for unrealized
trades.

2.1 Utility functions

Each firm has a utility function uf : Af → R∪{−∞}. As Hatfield et al. (2013), we
allow the utility function to take on a value of −∞ to model technical constraints
faced by a firm. We require that uf (Ψ, p) = −∞ implies uf (Ψ, p′) = −∞ for each
p′ ∈ RΨ and that uf (∅) > −∞. For notational convenience we extend uf to 2Ω×RΩ

by defining for Ψ ⊆ Ω and p ∈ RΩ, the utility uf (Ψ, p) := uf (Ψf , (pω)ω∈Ψf
). We

make the following assumptions on utility functions:

• Continuity: For each Ψ ⊆ Ωf with uf (Ψ, ·) > −∞ the functions uf (Ψ, ·) is
continuous on RΨ.

• Monotonicity: For Ψ ⊆ Ωf with uf (Ψ, ·) > −∞ and p, p′ ∈ RΨ with p′ 6= p:

1. If p′ω = pω for ω ∈ Ψf→ and pω ≤ p′ω for ω ∈ Ψ→f , then uf (Ψ, p) >
uf (Ψ, p′).

2. If p′ω = pω for ω ∈ Ψ→f and pω ≥ p′ω for ω ∈ Ψf→, then uf (Ψ, p) >
uf (Ψ, p′).

Thus utility is continuous in prices and firms prefer higher sell prices strictly to
lower sell prices and lower buy prices strictly to higher buy prices.

A special case, studied in previous work (Hatfield et al., 2013) is the case where
transfers enter utility linearly. In this case there is valuation function vf : 2Ωf →
R ∪ {−∞} such that

uf (Ψ, p) = vf (Ψ) +
∑

ω∈Ψf→

pω −
∑

ω∈Ψ→f

pω.

A utility functions induces a demand correspondence Df : RΩ ⇒ 2Ωf by:

Df (p) := argmaxΨ⊆Ωf
uf (Ψ, p).

It is a straightforward consequence of the continuity of the utility function that
the demand correspondence satisfies the following continuity property:

Upper Hemi-Continuity: Let ‖ · ‖ be the Euclidean norm.4 The demand corre-

4As usual, we could replace the Euclidean norm by any norm on RΩf .
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spondence Df is upper-hemicontinuous, if for each p ∈ RΩf there is an ε > 0 such
for any q ∈ RΩf with ‖p− q‖ < ε, we have Df (q) ⊆ Df (p).

Lemma 1. For a continuous utility function uf the induced demand Df is upper
hemi-continuous.

For completeness, the appendix contains a proof of the lemma.

2.2 Full substitutability and the laws of aggregate demand and supply

We now introduce several properties (same side substitutability, cross-side comple-
mentarity and their combination called full substitutability) of demand functions
that have been well-studied in the literature. We use the “demand language” (Hat-
field et al., 2018b) definitions of the properties.

The following two properties have been originally introduced by Ostrovsky
(2008) for a discrete model of trading networks with contracts.

Same-Side Substitutability (SSS): For p, p′ ∈ RΩ and each Ψ′ ∈ Df (p′) there
exists a Ψ ∈ Df (p) such that if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for ω ∈ Ω→f ,
then

{ω ∈ Ψ→f : pω = p′ω} ⊆ Ψ′→f ,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

{ω ∈ Ψf→ : pω = p′ω} ⊆ Ψ′f→.

Cross-Side Complementarity (CSC): For p, p′ ∈ RΩ and each Ψ′ ∈ Df (p′)
there exists a Ψ ∈ Df (p) such if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for ω ∈ Ω→f ,
then

Ψ′f→ ⊆ Ψf→,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

Ψ′→f ⊆ Ψ→f .

The combination of the two properties is called full substitutability.

Full Substitutability (FS): The demand of firm f satisfies full substitutabil-
ity if it satisfies Same-Side Substitutability and Cross-Side Complementarity.

Remark 1. As observed, by Hatfield et al. (2018b) in their Appendix A, there is
an “expansion version” and a “contraction version” of full substitutability that
differ with regard to how the conditions are defined at price vectors where mul-
tiple bundles of trades are optimal. Our definition uses the expansion version
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of the properties. Hatfield et al. (2018b) show that under the assumption of
quasi-linearity, the expansion and contraction version of full substitutability are
equivalent. Without quasi-linearity, however, the equivalence no longer holds. We
discuss in Appendix B how several different versions of the properties are logically
related.

Under quasi-linear utility functions, a weaker version of full substitutability in
which the property is only imposed at price vectors where the demand is single-
valued is equivalent to our version of full substitutability (Hatfield et al., 2018b).
We call this property weak full substitutability.5

Weak Full Substitutability: For p, p′ ∈ RΩ such that Df (p) = {Ψ} and
Df (p′) = {Ψ′}, if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for ω ∈ Ω→f , then

{ω ∈ Ψ→f : pω = p′ω} ⊆ Ψ′→f and Ψ′f→ ⊆ Ψf→,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

{ω ∈ Ψf→ : pω = p′ω} ⊆ Ψ′f→ and Ψ′→f ⊆ Ψ→f .

The following counter-example shows that weak full substitutability is strictly
weaker than full substitutability for general utility functions. In Section 3, we will
use the counter-example to show that under weak full substitutability, the results
in our paper do not necessarily hold. See Figure 1 for a geometric representation
of the demand in the example.

Example 1. Consider four trades Ω = {α1, α2, β1, β2} with f = b(α1) = b(α2) =
s(β1) = s(β2). We let uf (∅) = 0, uf ({αi, βj}, pαi , pβj) = 2−pαi +pβj for i, j,= 1, 2,
and

uf ({α1, α2, β1, β2}, p) = 4− exp

(
pα1 + pα2

2
− 1

)
− exp

(
1−

pβ1 + pβ2

2

)
.

We let uf (Ψ, p) = −∞ for each other Ψ ⊆ Ω. Observe that

Df (1, 1, 1, 1) = {{α1, β1}, {α1, β2}, {α2, β1}, {α2, β2}, {α1, α2, β1, β2}}

but
Df (0, 1, 1, 1) = {{α1, β1}, {α1, β2}}.

5Fleiner et al. (2018) call this property “full substitutability”. Thus they reserve the term
full substitutability for the weaker notion and all of their results hold for the weaker notion of
full substitutability. Our use of the term full substitutability is consistent with the use of the
term in Hatfield et al. (2018a). They establish the equivalence of chain stability and stability
in trading networks for general utility functions under the assumption of the stronger version of
full substitutability that we also use.
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{α1, β1}

{α2, β2}{α1, β2}

{α2, β1}

pα1

pβ1

{{α1, β1}, {α1, β2}, {α2, β1}, {α2, β2}, {α1, α2, β1, β2}}

pα2 = 1 = pβ2

{{α1, β1}, {α1, β2}}

{{α2, β1}, {α2, β1}}

{{α1, β2}, {α2, β2}}

{{α1, β1}, {α2, β1}}

(1, 1, 1, 1)

Figure 1: The demand in price space for pα2 = 1 = pβ2 .

As {α1, α2, β1, β2} ∈ Df (1, 1, 1, 1), Full Substitutability would require that there
is a Ψ ∈ Df (0, 1, 1, 1) with {β1, β2} ⊆ Ψ. Hence Full Substitutability is not
satisfied. As the demand at (0, 1, 1, 1) and (1, 1, 1, 1) is multi-valued, Weak Full
Substitutability does not impose any structure here. More generally, note that if we
replace uf by the quasi-linear utility functions ũf such that ũf ({α1, α2, β1, β2}, p) =
−∞ for all p ∈ RΩ and uf remains otherwise unchanged, only the demand at prices
(1, 1, 1, 1) changes. One readily checks that ũf satisfies Full Substitutability. Hence
uf satsfies Weak Full Substitutability.

The other two important properties that we consider throughout the paper are
monotonicity properties called the Law of Aggregate Demand respectively the Law
of Aggregate Supply.6 Under quasi-linear utility functions, the two properties are
implied by (weak) full substitutability. However, in general they are independent
of full substitutability.

Law of Aggregate Demand (LAD): For p, p′ ∈ RΩ and each Ψ′ ∈ Df (p′)
there exists a Ψ ∈ Df (p) such that if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for
ω ∈ Ω→f , then

|Ψ→f | − |Ψf→| ≥ |Ψ′→f | − |Ψ′f→|.

Law of Aggregate Supply (LAS): For p, p′ ∈ RΩ and each Ψ′ ∈ Df (p′) there
exists a Ψ ∈ Df (p) such that if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→,

6The definitions are the demand-language versions of the (choice-language) definitions of Hat-
field et al. (2018b). See Definition 10 in their paper.
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then
|Ψf→| − |Ψ→f | ≥ |Ψ′f→| − |Ψ′→f |.

The combination of full substitutability and the laws of aggregate demand and
supply imply an invariance property of the demand that will be crucial for many
of our results. It states that if a bundle of trades is demanded by a firm f at
a price vector, then this bundle is also demanded by f , if all the trades in the
bundle in which f is a seller become more expensive, all trades not in the bundle
in which f is a seller become cheaper, all trades in the bundle in which f is a buyer
become cheaper, and all trades not in the bundle in which f is a seller become
more expensive.

Lemma 2. Let Df satisfy FS, LAD and LAS. Let p, p′ ∈ RΩ and Ψ′ ∈ Df (p′). If
pω ≤ p′ω for ω ∈ Ωf→ \ Ψ′f→, pω ≥ p′ω for ω ∈ Ψ′f→, pω ≥ p′ω for ω ∈ Ω→f \ Ψ′→f
and pω ≤ p′ω for ω ∈ Ψ′→f , then Ψ′ ∈ Df (p). Moreover, if all of the inequalities

are strict, then Df (p) = {Ψ′}.

3 Results

3.1 The Lattice Theorem and the Rural Hospitals Theorem

We now introduce the solution concept of a competitive equilbrium (with trade
specific prices) and establish that equilbrium prices form a lattice and that (modulo
indiferences) for each firm the difference between the number of signed upstream
and downstream contracts is the same in each equilibrium. These results extend
results established by Hatfield et al. (2013) for the case of quasi-linear utility
functions.

In the following, a competitive equilibrium for utility profile u = (uf )f∈F
is an arrangement [Ψ, p] ∈ 2Ω × RΩ such that for each f ∈ F and the demand
Df induced by uf we have Ψf ∈ Df (p). We call (Ψ, (pω)ω∈Ψ) the equilibrium
allocation induced by [Ψ, p]. We denote the set of equilibrium price vectors for u
by E(u) and define for each price vector p ∈ RΩ the (possibly empty) set E(u, p) :=
{Ψ ⊆ Ω : Ψf ∈ Df (p) for each f ∈ F} of sets of trades that support p as a
competitive equilibrium under u.

Theorem 1. Let u be a utility profile such that for each firm the induced demand
satisfies Full Substitutability and the Laws of Aggregate Demand and Supply.

1. Lattice Theorem: Let p, p′ ∈ E(u) be competitive equilibrium prices. Then
the price vectors p̄, p ∈ RΩ defined by

p̄ω := max{pω, p′ω}, p
ω

:= min{pω, p′ω}

are competitive equilibrium prices.

9



2. Rural Hospitals Theorem: Let p, p′ ∈ E(u) be competitive equilibrium
prices. For each Ψ ∈ E(u, p) there exists a Ψ′ ∈ E(u, p′) such that for each
f ∈ F we have |Ψ→f | − |Ψf→| = |Ψ′→f | − |Ψ′f→|.

The theorem fails to hold if we replace full substitutability by weak full sub-
stitutability.

Example 1 (cont.). Consider the set of trades Ω = {α1, α2, β1, β2} and firm f with
the utility function uf as defined in Example 1. The induced demand Df satisfies
weak full substitutability as previously shown. Moreover, for each p ∈ RΩ and Ψ ∈
Df (p) we have |Ψf→| = |Ψ→f |. Thus Df satisfies the Laws of Aggregate Demand
and Supply. Consider four additional firms s1, s2, b1, b2 with s1 = s(α1), s2 =
s(α2), b1 = b(β1) and b2 = b(β2). Define utility functions for the additional firms
as follows: For i = 1, 2 define us

i
({αi}, pαi) = pαi and ub

i
({βi}, pβi) = 2 − pβi

and us
i
(∅) = ub

i
(∅) = 0. Observe that the equilibria for u are [Ω, (1, 1, 1, 1)] and

[{αi, βj}, (0, 0, 2, 2)] for i, j = 1, 2. In particular, the vector (1, 1, 2, 2) is not an
equilibrium price vector, since Ds1(1, 1, 2, 2) = {{α1}} and Ds2(1, 1, 2, 2) = {{α2}}
but Df (1, 1, 2, 2) = {{α1, β1}, {α1, β2}, {α2, β1}, {α2, β2}}. Similarly, (0, 0, 1, 1) is
not an equilibrium price vector.

3.2 Compactness and extremal points of the lattice

So far we have not considered the question of existence of competitive equilibria
and, in principle, the lattice in Theorem 1 could be empty. However, as shown
by Fleiner et al. (2018), under the assumption of (weak) full substitutability and
a very mild regularity condition called bounded compensating variations there al-
ways exists a competitive equilibrium. The condition rules out for example the
case that for a trade the seller would never sell under any price and the buyer
would buy under any price. Fleiner et al. (2018) also introduce a stronger reg-
ularity condition such that under this condition and (weak) full substitutability,
competitive equilibrium outcomes are equivalent to trail stable outcomes which is
a cooperative solution concepts that generalizes pairwise stability from matching
markets. Their condition is the following:

Bounded willingness to pay (BWP): The utility function uf satisfies bounded
willingness to pay if there exists a K > 0 such that for all p ∈ RΩ and Ψ ∈ Df (p)
if ω ∈ Ψ→f then pω < K and if ω ∈ Ψf→ then pω > −K.

Next we show that under the assumption of BWP and an additional assumption
that we call “no undesired trades”, the set of equilibrium price vectors is compact.
“No undesired trades” requires that for each trade there is a (high enough) price
such that the seller would like to execute the trade and a (low enough) price such
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that the buyer would like to execute the trade.7

No undesired trades (NUT): The utility function uf satisfies no undesired
trades if for each ω ∈ Ωf and p−ω ∈ RΩ\{ω} there exists a pω ∈ R and Ψ ∈ Df (p)
with ω ∈ Ψ.

Next we show that under the assumption of BWP and NUT, the set of equilib-
rium price vectors is compact. As a corollary of this result and the lattice result
of the previous section, we obtain the result that there exist extremal points in
the set of equilibrium vectors, provided that BWP, NUT, FS and LAD/LAS are
satisfied.

Proposition 1. Under the assumption of BWP and NUT the set of competitive
equilibrium vectors is a compact set.

Proof. Following a proof idea originally introduced by Kelso and Crawford (1982),
we can characterize competitive equilibria by a zero-surplus condition: Define a
surplus function RΩ → R by

Z(p) := min
Ψ⊆Ω

max
f∈F

max
Ψ′⊆Ωf

uf (Ψ′, p)− uf (Ψ, p).

By definition, for each f ∈ F , we have Df (p) = argmaxΨ′⊆Ωf
uf (Ψ′, p). Thus for

each arrangement [Ψ, p], we have maxf∈F maxΨ′⊆Ωf
uf (Ψ′, p) − uf (Ψ, p) ≥ 0 with

equality if and only if Ψ ∈ E(u, p). Thus E(u, p) 6= ∅ if and only if Z(p) = 0.
Now note that the surplus function is continuous, as uf (Ψ′, p) − uf (Ψ, p) is

continuous in p and the maximum resp. minimum of finitely many continuous
functions is continuous. Thus the set of competitive equilibrium vectors is closed
as it is the pre-image of the closed set {0} under the continuous map Z. Moreover,
by BWP and NUT, E(u) is bounded. Hence E(u) is compact.

Corollary 1. Under the assumption of BWP, NUT, FS, LAD and LAS, the set
of competitive equilibrium vectors is a bounded lattice where the maximal element
is given by

p̄ = (sup{pω : p ∈ E(u)})ω∈Ω,

and the minimal element is given by

p = (inf{pω : p ∈ E(u)})ω∈Ω.

7The assumption is for example satisfied if a utility function satisfies a full range assumption,
i.e. if for each Ψ ⊆ Ω the function uf (Ψ, ·) is a surjective function from RΨ to R. The full
range assumption is made by Demange and Gale (1985) to obtain similar results than ours for
one-to-one matching markets with transfers.
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Proof. By Theorem 1, E(u) is compact and by Corollary 2 in Fleiner et al. (2018),
E(u) 6= ∅. Thus for each ω ∈ Ω, the set {pω ∈ R : p ∈ E(u)} is compact
and non-empty as well. Thus for each ω ∈ Ω there exists a pω ∈ E(u) with
pωω = max{pω : p ∈ E(u)}. Taking the join of the finite set of vectors (pω)ω∈Ω

yields an equilibrium price vector, which by definition is p̄. A similar argument
establishes that p ∈ E(u).

If we drop NUT, the set of equilibrium vectors can fail to be bounded for
trades that are never realized under any prices. However, equilibrium prices are
still bounded for all other trades. In particular, we can obtain the result that there
exist an equilibrium that is a most preferred equilibrium for all terminal buyers
and an equilibrium that is a most preferred equilibrium allocations for all terminal
sellers.

Theorem 2 (Existence of Extremal Equilibria). Under the assumption of
BW, FS, LAD and LAS, there exists a seller optimal equilibrium, i.e. a [Ψ̄, p̄] with
Ψ̄ ∈ E(u, p) such that for each terminal seller f ∈ F :

uf (Ψ̄, p̄) ≥ uf (Ψ, p) for each [Ψ, p] with Ψ ∈ E(u, p),

and a buyer optimal equilibrium, i.e. a [Ψ, p] with Ψ ∈ E(u, p) such that for each
terminal buyer f ∈ F :

uf (Ψ, p) ≥ uf (Ψ, p) for each [Ψ, p] with Ψ ∈ E(u, p).

Proof. By BWP there is a K > 0 such that for each f ∈ F and each p ∈ RΩ,
if Ψ ∈ Df (p) then pω < K for ω ∈ Ω→f and pω > −K for ω ∈ Ωf→. Thus for
each equilibrium [Ψ, p] there is a p′ ∈ [−K,K]Ω with Ψ ∈ E(u, p′) and p′ω = pω
for each ω ∈ Ψ. Observe that the argument for establishing that E(u) is closed
in the proof of Proposition 1 only depended on BWP. Thus E(u) is closed and
E ′(u) := E(u) ∩ [−K,K]Ω is compact. Now using the same argument as in the
proof of Corollary 1, we can show that

p̄ = (sup{pw : p ∈ E ′(u)})ω∈Ω ∈ E ′(u),

and
p = (inf{pw : p ∈ E ′(u)})ω∈Ω ∈ E ′(u).

Since for each p ∈ E(u) and Ψ ∈ E(u, p) there is a p′ ∈ E ′(u) with p′ω = pω for
ω ∈ Ψ and Ψ ∈ E(u, p′), this concludes the proof.

Remark 2. Fleiner et al. (2018) establish that under the assumption of BWP and
(weak) FS, equilibrium allocations are equivalent to trail-stable allocations. Thus,
alternatively the proposition could be stated in the form that under BWP, FS,
LAD, LAS there is a seller optimal trail stable allocation and a buyer optimal trail
stable allocation.
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3.3 Strategic Considerations

The existence of buyer (seller) optimal equilibria established in Proposition 2,
allows to obtain a group-incentive compatibility result. In the following, a domain
of utility functions is a set U = ×f∈FUf where Uf is a set of (continuous and
monotonic) utility functions for firm f . A mechanism is a functionM : U → A.
A mechanism is (weakly) group-strategy-proof for a set of workers F ′ ⊆ F on
the domain U ′ ⊆ U if for each u, ũ ∈ U ′ with ũ−F

′
= u−F

′
, there exist a f ∈ F ′

with
uf (M(u)) ≥ uf (M(ũ)).

Theorem 2 allows to define a class of focal mechanisms on the domain of utility
profiles satisfying BWP, FS, LAD and LAS: a seller-optimal mechanism maps
to each utility profile a seller optimal equilibrium allocation and a buyer-optimal
mechanism maps to each utility profile a seller optimal equilibrium allocation.

To obtain a group-strategy-proofness results for terminal buyers (sellers) for the
buyer (seller)-optimal mechanism, we have to restrict the domain. In the following
a unit demand utility function is a uf such that for the induced demand Df at
each p ∈ RΩ and Ψ ∈ Df (p) we have |Ψ→f | ≤ 1 and a unit supply utility function
is a uf such that for the induced demand Df at each p ∈ RΩ and Ψ ∈ Df (p) we
have |Ψf→| ≤ 1

To establish the group-strategy-proofness for terminal buyers (sellers), we sim-
plify and adapt to our context an argument introduced by Hatfield and Kojima
(2009) for matching with contracts.8 As observed by Jagadeesan et al. (2018),
the argument of Hatfield and Kojima (2009) relies crucially on the possibility of
reporting preferences with income effects. Hence working with the larger domain
of continuous and monotonic utility functions instead of quasi-linear utility func-
tions is crucial for the argument. However, our result implies (a forteriori) that
a buyer (seller) optimal mechanism is also group-strategyproof on the domain of
quasi-linear utility functions such that terminal buyers (sellers) have unit demand
and all other firms have FS demand.

Theorem 3. Each buyer-optimal (seller-optimal) mechanism is group-strategy-
proof for terminal buyers (sellers) on the domain of utility profiles such that ter-
minal buyers’ (sellers’) utility functions satisfy Unit Demand (Supply) and BWP
and all other firms’ utility functions satisfy BWP, FS, LAD and LAS.

8The mechanism falls outside of the domain defined by Barberà et al. (2016) on which strategy-
proofness is equivalent to (weak)-group-strategy-proofness. Thus, it is not sufficient to only show
strategy-proofness and invoke the result of Barberà et al. (2016).
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A Proof of Lemma 1

Proof. Let p ∈ RΩ. Let ε > 0 such that

ε < min
Ψ∈Df (p),Ψ′ /∈Df (p)

uf (Ψ, p)− uf (Ψ′, p).

By continuity of uf in prices, for each Ψ,Ψ′ ⊆ Ωf the function

GΨ,Ψ′(p) := uf (Ψ, p)− uf (Ψ′, p)
is continuous and there exists a δΨ,Ψ′ > 0 such that for p ∈ RΩf with ‖p−p′‖ < δΨ,Ψ′

we have |GΨ,Ψ′(p)−GΨ,Ψ′(p′)| < ε. Define δ > 0 by

δ := min
Ψ∈Df (p),Ψ′ /∈Df (p)

δΨ,Ψ′ .

Let Ψ ∈ Df (p) and Ψ′ /∈ Df (p). Let p′ ∈ RΩf with ‖p − p′‖ < δ. By
construction |GΨ,Ψ′(p) − GΨ,Ψ′(p′)| < ε, and GΨ,Ψ′(p) > ε. Therefore GΨ,Ψ′(p′) >
0 and uf (Ψ, p′) > uf (Ψ′, p′). Thus, each bundle of workers that is not utility
maximizing under p is also not utility maximizing under p′. We have Df (p

′) ⊆
Df (p).

We repeatedly make use of perturbation arguments, where in the case of multi-
valued demand we slightly perturb prices to obtain a price vector where the demand
is single-valued and selects from the demand at the unperturbed price vector. The
following lemma allows us to use this argument and follows from Lemma 1.

Lemma 3. Let p ∈ RΩf . For every ε0 > 0 there is an ε ∈ RΩf with 0 < εω < ε0 for
ω ∈ Ω→f and −ε0 < εω < 0 for ω ∈ Ωf→ such that |Df (p+ ε)| = 1 and Ψ ∈ Df (p)
for the unique Ψ ∈ Df (p+ ε).

Proof. Let

Φ(p) := {ω ∈ Ω : ∃Ψ ∈ Df (p) and Ψ′ ∈ Df (p) with ω ∈ Ψ, ω /∈ Ψ′}.
We prove the lemma by induction on |Φ(p)|. For each p ∈ RΩ with |Φ(p)| = 0 the
demand is single-valued and by Lemma 1 we can select a ε ∈ RΩf as desired.

Now let k > 0 and suppose for each p ∈ RΩf with |Φ(p)| ≤ k there is for each
ε0 > 0 an ε ∈ RΩf with 0 < εω < ε0 for ω ∈ Ω→f and −ε0 < εω < 0 for ω ∈ Ωf→
such that |Df (p + ε)| = 1 and Ψ ∈ Df (p) for the unique Ψ ∈ Df (p + ε). Now let
p′ ∈ RΩf with |Φ(p′)| = k + 1. Let ε′0 > 0. Choose an arbitrary ω̃ ∈ Φ(p′). By
Lemma 1, there exists a ε1 > 0 such that for q ∈ RΩf with ‖q − p‖ < ε1 we have
Df (q) ⊆ Df (p). We may choose ε1 < ε′0/2. Let ε̃ ∈ RΩf , be defined by ε̃ω̃ = ε1 if
ω̃ ∈ Ω→f , resp. ε̃ω̃ = −ε1 if ω̃ ∈ Ωf→, and ε̃ω = 0 for ω 6= ω̃. As uf is monotonic,
we have |Df (p′ + ε̃)| ≤ k. Thus by the induction assumption with ε0 = ε′0/2 and
p = p′ + ε̃ there is a ε ∈ RΩf with 0 < εω < ε0 for ω ∈ Ω→f and −ε0 < εω < 0
for ω ∈ Ωf→ such that |Df (p′ + ε̃ + ε)| = 1 and Ψ ∈ Df (p′ + ε̃) ⊆ Df (p′) for the
unique Ψ ∈ Df (p′ + ε+ ε̃). Thus we can choose ε′ = ε+ ε̃.
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B Different Versions of Full Substitutability

In Appendix A of Hatfield et al. (2018b), the authors introduce the contraction
and expansion version of full substitutability that differ in regard to how they
are defined at price vectors where the demand is multi-valued. Note that full
substitutability relates the demand at two price vectors p and p′. If pω ≤ p′ω for
ω ∈ Ωf→ and p′ω = pω for ω ∈ Ω→f respectively if pω ≥ p′ω for ω ∈ Ω→f and
p′ω = pω and ω ∈ Ωf→, then the choice set expands from p′ to p, and contracts
from p to p′. Now the contraction version of full substitutability requires that
“for all Ψ ∈ Df (p) there is a Ψ′ ∈ Df (p′) such that...” whereas the expansion
version inverts the order of quantification and requires that “for all Ψ′ ∈ Df (p′)
there is a Ψ ∈ Df (p) such that...” We further split full substituability into same-
side substitutability (SSS) and cross-side complementarity (CSC) and the laws
of aggregate demand and supply, all of which are implied by all versions of full
substitutability in the quasi-linear case. We use the expansion version of SSS as
our main definition. Alternatively, we can consider the contraction version.

Contraction Same-Side Substitutability: For p, p′ ∈ RΩ and each Ψ ∈ Df (p)
there exists a Ψ′ ∈ Df (p′) such that if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for
ω ∈ Ω→f , then

{ω ∈ Ψ→f : pω = p′ω} ⊆ Ψ′→f ,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

{ω ∈ Ψf→ : pω = p′ω} ⊆ Ψ′f→.

We have previously introduced weak full substitutability that can be further de-
composed into weak SSS and weak CSC.

Weak Same-Side Substitutability: For p, p′ ∈ RΩ such that Df (p) = {Ψ} and
Df (p′) = {Ψ′} if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for ω ∈ Ω→f , then

{ω ∈ Ψ→f : pω = p′ω} ⊆ Ψ′→f ,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

{ω ∈ Ψf→ : pω = p′ω} ⊆ Ψ′f→.

All three notions of SSS, the weak, the contraction version, as well as the expansion
version that we use as our main definition are equivalent under quasi-linear utility,
as shown by Hatfield et al. (2018b). Fleiner et al. (2018) show that the weak and
the expansion versions are equivalent for general utility functions (they establish
an equivalence for the notions of “decreasing-price full substitutability for sales”
and “increasing-price full substitutability for purchases” whose combinations is
equivalent to expansion SSS).
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Figure 2: The demand in price space for p3 = 2.

Proposition 2 (Hatfield et al., 2018b; Fleiner et al., 2018). Let uf be a monotonic
and continuous utility function with induced demand Df .

1. Df satisfies weak SSS if and only if it satisfies (Expansion) SSS.

2. If Df satisfies Contraction SSS then it satisfies weak SSS.

3. IF uf is quasi-linear and Df satisfies weak SSS, then Df satisfies Contraction
SSS.

In general weak SSS does not imply Contraction SSS as the following example
shows. See Figure 2 for a geometric representation of the demand in the example.

Example 2. Consider three trades Ω = {ω1, ω2, ω3} with f = b(ω1) = b(ω2) =
b(ω3). We let uf (∅) = 0, uf ({ωi}, pi) = 3 − pi for i = 1, 2, 3, uf ({ωi, ωj}, pi, pj) =
4− pi − pj for i 6= j and

uf ({ω1, ω2, ω3}, p) =


4− p1 − p2 − p3 if p1 + p2 + p3 ≤ 0

4− 3
√

p1+p2+p3
6

if 6 ≥ p1 + p2 + p3 > 0,

7− p1 − p2 − p3 else

Observe that
Df (2, 2, 2) = {{ω1, ω2, ω3}, {ω1}, {ω2}, {ω3}}

but
Df (3, 2, 2) = {{ω2}, {ω3}}.
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As {ω1, ω2, ω3} ∈ Df (2, 2, 2), Contraction SSS would require that there is a Ψ ∈
Df (3, 2, 2) with {ω2, ω3} ⊆ Ψ. Hence Contraction SSS is not satisfied. As the
demand at (2, 2, 2) and (3, 2, 2) is multi-valued, Weak SSS does not impose any
structure here. More generally, note that if we replace uf by the quasi-linear utility
functions ũf such that ũf ({ω1, ω2, ω3}, p) = 4 − p1 − p2 − p3 for all p ∈ RΩ and
uf remains otherwise unchanged, only the demand at prices (2, 2, 2) changes. One
readily checks that ũf satisfies (Weak) SSS. Hence uf satisfies Weak SSS.

Similarly as for Same-Side Substitutabilty, we can define an alternative version
of Cross-Side Complementarity.

Contraction Cross-Side Complementarity: For each Ψ ∈ Df (p) there exists
a Ψ′ ∈ Df (p′) such if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for ω ∈ Ω→f , then

Ψ′f→ ⊆ Ψf→,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

Ψ′→f ⊆ Ψ→f .

As before, we also define a weak version of CSC that together with Weak SSS
defines Weak Full Substitutability.

Weak Cross-Side Complementarity: For each p, p′ ∈ RΩ with Df (p) = {Ψ}
and Df (p′) = {Ψ′} such if pω = p′ω for ω ∈ Ωf→ and pω ≤ p′ω for ω ∈ Ω→f , then

Ψ′f→ ⊆ Ψf→,

and if pω = p′ω for ω ∈ Ω→f and pω ≥ p′ω for ω ∈ Ωf→, then

Ψ′→f ⊆ Ψ→f .

Similarly as for SSS, the weak, the contraction version as well as the expansion
version of CSC that we use as our main definition are equivalent under quasi-linear
utility, as shown by Hatfield et al. (2018b). Fleiner et al. (2018) show that the weak
and the contraction versions are equivalent for general preferences (they establish
an equivalence for the notions of “increasing-price full substitutability for sales”
and “decreasing-price full substitutability for purchases” whose combinations is
equivalent to contraction CSC).

Proposition 3 (Hatfield et al., 2018b; Fleiner et al., 2018). Let uf be a monotonic
and continuous utility function with induced demand Df .

1. Df satisfies weak CSC if and only if it satisfies Contraction CSC.
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2. If Df satisfies (Expansion) CSC then it satisfies Weak CSC.

3. IF uf is quasi-linear and Df satisfies Weak CSC, then Df satisfies (Expan-
sion) CSC.

In general weak CSC does not imply (expansion) CSC as our Example 1 shows.

C Proof of Lemma 2

Proof. By monotonicity of uf and upper hemi-continuity of Df it suffices to con-
sider the case that p′ω = pω for ω ∈ Ωf \Ψ′ and p′ω 6= pω for ω ∈ Ψ′.

Let 0 < ε0 < minω∈Ψ′ |p′ω − pω|. By Lemma 3, there exists an an ε ∈ RΩ with
0 < εω < ε0 for ω ∈ Ω→f and −ε0 < εω < 0 for ω ∈ Ωf→ such that |Df (p+ ε)| = 1
and Ψ ∈ Df (p) for the unique Ψ ∈ Df (p+ ε). Define

ε′ω :=

{
εω, if ω ∈ Ωf \Ψ′,
0, else.

Observe that by monotonicity of uf for each Ξ ⊆ Ωf we have uf (Ξ, p′ + ε′) ≤
uf (Ξ, p′). Moreover, as ε′ω = 0 for ω ∈ Ψ′ , we have uf (Ψ′, p′ + ε′) = uf (Ψ′, p′).
Thus Ψ′ ∈ Df (p′ + ε′). Moreover, by monotonicity of uf for each Ξ ⊆ Ωf with
Ξ \ Ψ′ 6= ∅, we have uf (Ξ, p′ + ε′) < uf (Ξ, p′) ≤ uf (Ψ′, p′) = uf (Ψ′, p′ + ε′) and
therefore Ξ /∈ Df (p′ + ε′). Therefore for each Ξ ∈ Df (p′ + ε′), we have Ξ ⊆ Ψ′.

Now consider the unique Ψ ∈ Df (p + ε). We will show that Ψ′ = Ψ. As
Ψ ∈ Df (p) this will prove the first part of the lemma. Let p̃ ∈ RΩ be defined by

p̃ω :=

{
p′ω + ε′ω for ω ∈ Ωf→,

pω + εω else.

First we show the following:

Claim 1. There exists a Ψ̃ ∈ Df (p̃) with Ψ̃→f ⊆ Ψ′→f and Ψ′f→ ⊆ Ψ̃f→.

Proof. As p̃ω = pω + εω = p′ω + ε′ω for ω ∈ Ω→f \ Ψ′, SSS implies that there is a
Ψ̄ ∈ Df (p̃) with Ψ̄→f ⊆ Ψ′→f . Let ε̃ ∈ RΩ with ε̃ω > 0 for ω ∈ Ω→f \ Ψ′→f and

εω = 0 otherwise. By monotonicity of uf , for each Ψ̃ ⊆ Ωf with Ψ̃→f 6⊆ Ψ′→f
we have uf (Ψ̃, p̃ + ε̃) < uf (Ψ̃, p̃) and for each Ψ̃ ⊆ Ωf with Ψ̃→f ⊆ Ψ′→f we

have uf (Ψ̃, p̃ + ε̃) = uf (Ψ̃, p̃). Thus, as Ψ̄ ∈ Df (p̃) and Ψ̄→f ⊆ Ψ′→f , for each

Ψ̃ ∈ Df (p̃+ ε̃) we have Ψ̃→f ⊆ Ψ′→f and Ψ̃ ∈ Df (p̃).

By monotonicity of uf , for each Ψ̃ ⊆ Ωf , we have uf (Ψ̃, p′+ε′+ε̃) ≤ uf (Ψ̃, p′+ε′)
and we have uf (Ψ′, p′ + ε′ + ε̃) = uf (Ψ′, p′ + ε′). Thus Ψ′ ∈ Df (p′ + ε′ + ε̃). As
Ψ′ ∈ Df (p′ + ε′ + ε̃), CSC implies that there is a Ψ̃ ∈ Df (p̃+ ε̃) with Ψ′f→ ⊆ Ψ̃f→.

As previously observed, we have Ψ̃→f ⊆ Ψ′→f and Ψ̃ ∈ Df (p̃).
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With the claim we can prove the first part of the lemma. Let Ψ̃ ∈ Df (p̃) as
in the claim. As Ψ′f→ ⊆ Ψ̃f→ and p̃ω = p′ω + ε′ω = pω + εω for ω ∈ Ωf→ \ Ψ′, SSS

implies Ψf→ ⊆ Ψ̃f→. By CSC, we have Ψ̃→f ⊆ Ψ→f . By LAS we have

|Ψf→| − |Ψ→f | ≥ |Ψ̃f→| − |Ψ̃→f |.

Thus Ψ̃ = Ψ. By LAD and LAS we have

|Ψ→f | − |Ψf→| ≥ |Ψ′→f | − |Ψ′f→|.

Combining this with the observation that Ψ→f = Ψ̃→f ⊆ Ψ′→f and Ψ′f→ ⊆ Ψ̃f→ =
Ψf→, we have Ψ′ = Ψ.

Now we show that Df (p) = {Ψ′} if all of the inequalities are strict. Suppose
there is a Ξ 6= Ψ′ with Ξ ∈ Df (p). Then there is a ω̃ ∈ Ωf with ω̃ ∈ Ξ \Ψ or ω̃ ∈
Ψ\Ξ. In the first case, let p̃ ∈ RΩf with p̃ω̃ = p′ω̃ and p̃ω = pω for ω 6= ω̃. Note that
Ψ′ ∈ Df (p̃). Thus, by monotonicity, we have uf (Ξ, p) < uf (Ξ, p̃) ≤ uf (Ψ′, p̃) =
uf (Ψ′, p) contradicting the assumption that Ξ ∈ Df (p). In the second case, let
p̃ ∈ RΩf with p̃ω̃ = p′ω̃ and p̃ω = pω for ω 6= ω̃. Note that Ψ′ ∈ Df (p̃). Thus, by
monotonicity, we have uf (Ξ, p) = uf (Ξ, p̃) ≤ uf (Ψ′, p̃) < uf (Ψ′, p) contradicting
the assumption that Ξ ∈ Df (p).

D Proof of Theorems 1

The proof relies on the following two lemmata.

Lemma 4. Let uf be a utility function inducing a demand correspondence Df

satisfying full substitutability and the laws of aggregate demand and supply. Let
P ⊆ RΩf be finite. Then there is a (single-valued) demand function D̃f : P → 2Ωf

that selects from Df , i.e. D̃f (p) ∈ Df (p) for p ∈ P and satisfies full substitutability
and the laws of aggregate demand and supply.

Proof. By Lemma 1, there exists an ε0 > 0 such that for each p ∈ P and every q
with ‖q − p‖ < ε0 we have Df (q) ⊆ Df (p). Let P = {p1, . . . , pn}. By Lemma 3,
there is a ε1 ∈ RΩf with ‖ε1‖ < ε0 such that |Df (p1 + ε1)| = 1 and Ψ ∈ Df (p1)
for the unique Ψ ∈ Df (p1 + ε1). Consider P 1 := {p1 + ε1, . . . , pn + ε1}. For
each i = 1, . . . , n we have Df (pi + ε1) ⊆ Df (pi). By Lemma 1, there exists
an ε1 > 0 such that for each p ∈ P 1 and every q with ‖q − p‖ < ε1 we have
Df (q) ⊆ Df (p). By Lemma 3, there is a ε2 ∈ RΩf with ‖ε2‖ < ε1 such that
|Df (p2 + ε1 + ε2)| = 1 and Ψ ∈ Df (p2 + ε2) for the unique Ψ ∈ Df (p2 + ε1). Next
consider P 2 := {p1 + ε1 + ε2, . . . , pn + ε1 + ε2}. For each i = 1, . . . , n we have
Df (pi + ε1 + ε2) ⊆ Df (pi + ε1) ⊆ Df (pi) and so on. Iterating in this way, we
obtain ε1, . . . , εn such that for each i = 1, . . . , n, we have |Df (pi +

∑n
j=1 ε

j)| = 1
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and Ψi ∈ Df (pi) for the unique Ψi ∈ Df (pi +
∑n

j=1 ε
j) ⊆ Df (pi). We define

D̃f (pi) = Ψi. By construction D̃f (pi) ∈ Df (pi). Moreover, as all price vectors
are translated by the same vector

∑n
j=1 ε

j, full substitutability and the laws of

aggregate demand and supply are inherited from Df .

Lemma 5. Let p, p′ ∈ RΩf and define p̄, p ∈ RΩf by

pω := max{pω, p′ω}, p
ω

:= min{pω, p′ω}.

Let Ψ ∈ Df (p) and Ψ′ ∈ Df (p′).

1. There is a Ψ̄ ∈ Df (p̄) with

{ω ∈ Ψ→f : pω ≥ p′ω} ∪ {ω ∈ Ψ′→f : p′ω > pω} ⊆ Ψ̄→f ,

Ψ̄f→ ⊆ {ω ∈ Ψf→ : pω ≥ p′ω} ∪ {ω ∈ Ψ′f→ : p′ω > pω}.

2. There is a Ψ ∈ Df (p) with

Ψ→f ⊆ {ω ∈ Ψ→f : p′ω ≥ pω} ∪ {ω ∈ Ψ′→f : pω > p′ω},
{ω ∈ Ψf→ : p′ω ≥ pω} ∪ {ω ∈ Ψ′f→ : pω > p′ω} ⊆ Ψf→.

3. Ψ̄ and Ψ can be chosen such that

|Ψ→f | − |Ψf→| ≥ |Ψ→f | − |Ψf→| ≥ |Ψ̄→f | − |Ψ̄f→|.

Proof. By Lemma 1, there exists an ε0 > 0 such that for each q ∈ {p, p′, p̄, p}
and every q̃ with ‖q̃ − q‖ <

√
|Ωf | · ε0 we have Df (q̃) ⊆ Df (q). We may choose

ε0 < minω∈Ω:p′ω 6=pω |p′ω − pω|.
Define ε′ ∈ RΩf by

ε′ω =



ε0, if ω ∈ Ψ′f→ and p′ω 6= pω,

−ε0, if ω ∈ Ωf→ \Ψ′ and p′ω 6= pω,

−ε0, if ω ∈ Ψ′→f and p′ω 6= pω,

ε0, if ω ∈ Ω→f \Ψ′ and p′ω 6= pω,

0, if p′ω = pω.

First we prove the following claim.

Claim 2. For each Ξ ∈ Df (p′ + ε′) we have {ω ∈ Ψ′ : p′ω 6= pω} ⊆ Ξ and
{ω /∈ Ψ′ : p′ω 6= pω} ∩ Ξ = ∅.
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Proof. First we show that for each Ξ ∈ Df (p′+ε′) we have {ω ∈ Ψ′ : p′ω 6= pω} ⊆ Ξ.
Suppose not, and there is a Ξ ∈ Df (p′ + ε′) and a ω̃ ∈ {ω ∈ Ψ′ : p′ω 6= pω} \ Ξ.
Let p̃ ∈ RΩf with p̃ω̃ = p′ω̃ and p̃ω = p′ω + ε′ω for ω 6= ω̃. Note that by Lemma 2,
we have Ψ′ ∈ Df (p̃). Thus, by monotonicity, we have uf (Ξ, p′ + ε′) = uf (Ξ, p̃) ≤
uf (Ψ′, p̃) < uf (Ψ′, p′ + ε′) contradicting the assumption that Ξ ∈ Df (p′ + ε′).

Next we show that for each Ξ ∈ Df (p′+ε′) we have {ω /∈ Ψ′ : p′ω 6= pω}∩Ξ = ∅.
Suppose not, and there is a Ξ ∈ Df (p′ + ε′) and a ω̃ ∈ {ω /∈ Ψ′ : p′ω 6= pω} ∩ Ξ.
Let p̃ ∈ RΩf with p̃ω̃ = p′ω̃ and p̃ω = p′ω + ε′ω for ω 6= ω̃. Note that by Lemma 2,
we have Ψ′ ∈ Df (p̃). Thus, by monotonicity, we have uf (Ξ, p′ + ε′) < uf (Ξ, p̃) ≤
uf (Ψ′, p̃) = uf (Ψ′, p′ + ε′) contradicting the assumption that Ξ ∈ Df (p′ + ε′).

By Lemma 1, there exists another ε1 > 0 such that for every q with ‖q − (p′ +
ε′)‖ < ε1 we have Df (q) ⊆ Df (p′ + ε′). We may choose ε1 such that ε1 < ε0.

Define prices p(ε), p′(ε), p̄(ε), p(ε) ∈ RΩf as follows:

p(ε)ω :=


pω + ε1, if ω ∈ Ψf→,

pω − ε1, if ω ∈ Ωf→ \Ψ,

pω − ε1, if ω ∈ Ψ→f ,

pω + ε1, if ω ∈ Ω→f \Ψ.

p′(ε)ω :=



p′ω + ε0, if ω ∈ Ψ′f→ and p′ω 6= pω,

p′ω − ε0, if ω ∈ Ωf→ \Ψ′ and p′ω 6= pω,

p′ω − ε0, if ω ∈ Ψ′→f and p′ω 6= pω,

p′ω + ε0, if ω ∈ Ω→f \Ψ′ and p′ω 6= pω,

pω + ε1, if ω ∈ Ψf→ and p′ω = pω,

pω − ε1, if ω ∈ Ωf→ \Ψ and p′ω = pω,

pω − ε1, if ω ∈ Ψ→f and p′ω = pω,

pω + ε1, if ω ∈ Ω→f \Ψ and p′ω = pω.

p̄(ε)ω := max{p(ε)ω, p′(ε)ω}
p(ε)ω := min{p(ε)ω, p′(ε)ω}.

By Lemma 2, we have Df (p(ε)) = {Ψ}. Moreover, we have Df (p′(ε)) ⊆ Df (p′+
ε′) ⊆ Df (p′), Df (p̄(ε)) ⊆ Df (p̄) and Df (p(ε)) ⊆ Df (p).

Let P := {p̃ ∈ RΩf : p̃ω ∈ {p(ε)ω, p′(ε)ω} for all ω ∈ Ωf}. By Lemma 4, there
is a single-valued selection D̃f : P → 2Ωf from Df satisfying full substitutability
and the laws of aggregate demand and supply. Let Ψ̄ := Df (p̄(ε)) and Ψ :=
Df (p(ε)). As Df (p(ε)) = {Ψ}, we have D̃f (p(ε)) = Ψ. Moreover, by Claim 2
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and as D̃f (p′(ε)) ∈ Df (p′ + ε′), we have {ω ∈ Ψ′ : p′ω 6= pω} ⊆ D̃f (p′(ε)) and
{ω /∈ Ψ′ : p′ω 6= pω} ∩ D̃f (p′(ε)) = ∅.

By FS of D̃f and since {ω ∈ Ψ′ : p′ω 6= pω} ⊆ D̃f (p′(ε)), we have

{ω ∈ Ψ→f : pω ≥ p′ω} ∪ {ω ∈ Ψ′→f : p′ω > pω} ⊆ Ψ̄→f .

Next we show that

Ψ̄f→ ⊆ {ω ∈ Ψf→ : p′ω ≥ pω} ∪ {ω ∈ Ψ′f→ : p′ω > pω}.

Let ω̄ ∈ Ψ̄f→. We consider two cases. Either p̄ω̄ = pω̄ or p̄ω̄ = p′ω̄ > pω̄. In the first
case, consider p̃ ∈ RΩf with p̃ω = p̄(ε)ω for ω ∈ Ω→f and p̃ω = p(ε)ω for ω ∈ Ωf→.
Let Ψ̃ := D̃f (p̃). By SSS of D̃f , we have ω̄ ∈ Ψ̃f→. By CSC, we have Ψ̃f→ ⊆ Ψf→
and hence ω̄ ∈ Ψf→.

Similarly, if p̄ω̄ = p′ω̄ > pω̄, consider p̃ ∈ RΩf with p̃ω = p̄(ε)ω for ω ∈ Ω→f and
p̃ω = p′(ε)ω for ω ∈ Ωf→. Let Ψ̃ := D̃f (p̃). By SSS of D̃f we have ω̄ ∈ Ψ̃f→. By
CSC, we have Ψ̃f→ ⊆ (D̃f (p′(ε)))f→. Since {ω /∈ Ψ′ : p′ω 6= pω} ∩ D̃f (p′(ε)) = ∅
this implies ω̄ ∈ Ψ′f→. A completely analogous proof shows that Ψ has the desired

properties. Finally, by the laws of aggregate demand and supply for D̃f , we have

|Ψ→f | − |Ψf→| ≥ |Ψ→f | − |Ψf→| ≥ |Ψ̄→f | − |Ψ̄f→|.

With this lemma we can prove the theorem.

Proof of Theorem 1. Let Ξ ∈ E(u, p) and Ξ′ ∈ E(u, p′). Define

Ξ := {ω ∈ Ξ : pω ≥ p′ω} ∪ {ω ∈ Ξ′ : p′ω > pω},
Ξ := {ω ∈ Ξ : p′ω ≥ pω} ∪ {ω ∈ Ξ′ : pω > p′ω}.

We show that Ξ ∈ E(u, p̄) and Ξ ∈ E(u, p). Let f ∈ F . By Lemma 5, with Ψ = Ξf

and Ψ′ = Ξ′f there is a Ψf ∈ Df (p̄) and a Ψf ∈ Df (p) such that Ξ→f ⊆ Ψ→f ,

Ψf→ ⊆ Ξf→, Ψ→f ⊆ Ξ→f and Ξf→ ⊆ Ψf→ and

|Ψ→f | − |Ψf→| ≥ |Ψ→f | − |Ψf→| ≥ |Ψ̄→f | − |Ψ̄f→|.

Note that this implies

|Ξ→f |−|Ξf→| ≥ |Ψ→f |−|Ψf→| ≥ |Ψ→f |−|Ψf→| ≥ |Ψ̄→f |−|Ψ̄f→| ≥ |Ξ̄→f |−|Ξ̄f→|.

Summing the inequalities over all firms, we obtain

0 ≥
∑
f∈F

(|Ψ→f | − |Ψf→|) ≥ 0 ≥
∑
f∈F

(|Ψ̄→f | − |Ψ̄f→|) ≥ 0.
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Thus
|Ξ| =

∑
f∈F

|Ξf→| ≤
∑
f∈F

|Ψf→| =
∑
f∈F

|Ψ→f | ≤
∑
f∈F

|Ξ→f | = |Ξ|.

Therefore Ξf = Ψf for each f ∈ F . Moreover,

|Ξ| =
∑
f∈F

|Ξ→f | ≤
∑
f∈F

|Ψ→f | =
∑
f∈F

|Ψf→| ≤
∑
f∈F

|Ξ→f | = |Ξ|.

Therefore Ξf = Ψf for each f ∈ F .
Next we show that the above construction implies the rural hospital theorem:

Note that for each f ∈ F we have

|Ξ→f | − |Ξf→| ≥ |Ξ→f | − |Ξf→| ≥ |Ξ̄→f | − |Ξ̄f→|.

Summing the inequalities over all f , we obtain

0 =
∑
f∈F

|Ξ→f | −
∑
f∈F

|Ξf→| ≥
∑
f∈F

|Ξ→f | −
∑
f∈F

|Ξf→| ≥
∑
f∈F

|Ξ̄→f | −
∑
f∈F

|Ξ̄f→| = 0.

Thus, for each f ∈ F we have

|Ξ→f | − |Ξf→| = |Ξ→f | − |Ξf→| = |Ξ̄→f | − |Ξ̄f→|.

Now observe that by the above reasoning (with [Ξ̄, p̄] in the role of [Ξ, p]) for the
set of trades

Ξ′′ := {ω ∈ Ξ̄ : p̄ω = pω} ∪ {ω ∈ Ξ′ : p̄ω > p′ω}.

we have Ξ′′ ∈ E(u, p′) and for each f ∈ F we have

|Ξ′′→f | − |Ξ′′f→| = |Ξ̄→f | − |Ξ̄f→|.

Since
|Ξ̄→f | − |Ξ̄f→| = |Ξ→f | − |Ξf→|,

this concludes the proof.

E Proof of Theorem 3

Proof. We prove the statement for terminal sellers. The proof for terminal buyers
is very similar. Let F ′ ⊆ F be the set of terminal sellers. Let U = ×f∈FUf where
for f ∈ F ′ the set Uf is the set of unit supply and BWP utility functions and for
each f ∈ F \F ′ the set Uf is the set of BWP, FS, LAD and LAD utility functions.
Let M : U → A be a seller optimal mechanism.

First we establish that M is immune to truncation strategies.
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Claim 3. Let f ∈ F ′. Let u, ũ ∈ U with ũ−f = u−f and let [Ψ, p] be a seller
optimal equilibrium under u. If Ψf 6= ∅, ũf (ω, ·) = uf (ω, ·) for each ω ∈ Ωf→ and
ũf (∅) > ũf (Ψ, p), then for each equilibrium [Ψ̃, p̃] under ũ, we have Ψ̃f = ∅.

Proof. Suppose not. Then Ψ̃f 6= ∅. Let Ψ̃f = {ω̃}. Note that also {ω̃} ∈ Df (p̃).
Thus Ψ̃ ∈ E(u, p̃). But since uf (ω̃, p̃) = ũf (ω̃, p̃) ≥ ũf (∅) > ũf (ω̃, pω̃) = uf (ω̃, pω̃)
this contradicts the seller optimality of [Ψ, p].

Second we establish that M is immune to certain strategies where a single
terminal seller changes the utility function for one trade.

Claim 4. Let f ∈ F ′. Let u, û ∈ U with û−f = u−f and such that there is a
ω̂ ∈ Ωf→ with ûf (ω, ·) = uf (ω, ·) for ω 6= ω̂ and ûf (∅) = uf (∅). Let [Ψ̄, p̄] be a
seller-optimal equilibrium under u. If Ψ̄f = {ω̂} and ûf (ω̂, p̄ω̂) = uf (ω̂, p̄ω̂), then
[Ψ̄, p̄] is a seller optimal equilibrium under û.

Proof. Let [Ψ̂, p̂] be a seller optimal equilibrium under û. Note that Df (p̄) =
D̂f (p̄). Thus [Ψ̄, p̄] is an equilibrium under û.

First we show that p̂ω̂ = p̄ω̂. Suppose not. Then p̂ω̂ > p̄ω̂ and in particu-
lar uf (Ψ̂, p̂) ≥ uf (ω̂, p̂ω̂) > uf (ω̂, p̄ω̂) = uf (Ψ̄, p̄). There are two cases. Either
Ψ̂f = {ω̂}, or there is a ω̃ 6= ω̂ with Ψ̂f = {ω̃}. In the first case, consider the util-
ity function ũf obtained from uf by truncating as follows: ũf (ω, ·) = uf (ω, ·)
for all ω ∈ Ωf→ and uf (ω̂, p̄ω̂) < ũf (∅) < uf (ω̂, p̂ω̂). By Claim 3, for each
equilibrium [Ψ, p] under ũwe have Ψf = ∅. Define the utility function ũf∗ by
ũf∗(ω̂, ·) = ũf (ω̂, ·) = u(ω̂, ·), by ũf∗(ω, ·) = −∞ for each ω 6= ω̂, and ũf∗(∅) = ũf (∅).
As for each equilibrium [Ψ, p] under ũwe have Ψf = ∅, we have E(ũ) ⊆ E(ũ∗),
and in particular, there is an equilibrium [Ψ̃, p̃] under ũ∗ with Ψ̃f = ∅. Observe
however that ũf∗(ω̂, p̂ω̂) = ũf (ω̂, p̂ω̂) = u(ω̂, p̂ω̂) > ũf∗(∅). Thus D̃f

∗ (p̂) = {{ω̂}} and
[Ψ̂, p̂] is an equilibrium under ũ∗ with ũf∗(Ψ̂, p̂) > ũf∗(∅). This contradicts the rural
hospitals theorem (the second part of Theorem 1).

In the second case, consider the utility function ũf obtained from uf by trun-
cating as follows: ũf (ω, ·) = uf (ω, ·) for all ω ∈ Ωf→ and uf (Ψ̄, p̄) < ũf (∅) <
uf (ω̃, p̂ω̃). By Claim 3, for each equilibrium [Ψ, p] under ũwe have Ψf = ∅. Define
the utility function ũf∗ by ũf∗(ω̃, ·) = ũf (ω̃, ·) = û(ω̃, ·) = u(ω̃, ·), by ũf∗(ω, ·) = −∞
for each ω 6= ω̃ and ũf∗(∅) = ũf (∅). As for each equilibrium [Ψ, p] under ũwe
have Ψf = ∅, we have E(ũ) ⊆ E(ũ∗), and in particular, there is an equilibrium
[Ψ̃, p̃] under ũ∗ with Ψ̃f = ∅. Observe however that ũf∗(ω̃, p̂ω̃) = ũf (ω̃, p̂ω̃) =

u(ω̃, p̂ω̃) > ũf∗(∅). Thus D̃f
∗ (p̂) = {{ω̃}} and [Ψ̂, p̂] is an equilibrium under ũ∗ with

ũf∗(Ψ̂, p̂) > ũf∗(∅). This contradicts the rural hospitals theorem (the second part of
Theorem 1).

We have established that p̂ω̂ = p̄ω̂. But then for each f ′ ∈ F , we have Ψ̂f ′ ∈
Df ′(p̂) and (Ψ̂, p̂) is an equilibrium allocation under u as well. For each f ′ ∈ F ′ we
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have ûf
′
(Ψ̂, p̂) = uf

′
(Ψ̂, p̂) ≤ uf

′
(Ψ̄, p̄) = uf

′
(Ψ̄, p̄) and as (Ψ̂, p̂) is seller optimal

under û, we have ûf
′
(Ψ̂, p̂) = uf

′
(Ψ̄, p̄) for each f ′ ∈ F ′. Thus (Ψ̄, p̄) is a seller

optimal equilibrium allocation under û.

With the lemma, we can prove the result. Suppose there are profiles u, ũ ∈ U
such that ũ−F

′
= u−F

′
and for each f ∈ F ′, we have

uf (M(ũ)) > uf (M(u)),

Let M(u) = (Ψ̄, p̄) and M(ũ) = (Ψ̃, p̃). By BWP for u and for ũ, there exists
a K > 0 such that for all p ∈ RΩ and all ω ∈ Ω, if ω ∈ Ψ ∈ Db(ω)(p) then
pω < K, if ω ∈ Ψ ∈ Ds(ω)(p) then pω > −K, if ω ∈ Ψ ∈ D̃b(ω)(p) then pω < K,
if ω ∈ Ψ ∈ D̃s(ω)(p). Thus we can specify prices for non realized trades at (Ψ, p)
to obtain p ∈ E(u) with p ∈ [−K,K]Ω and similarly we can specify prices for non
realized trades at (Ψ̃, p̃) to obtain p̃ ∈ E(ũ) with p̃ ∈ [−K,K]Ω.

Now we define for each f ∈ F ′, a ûf ∈ Uf as follows: Note that Ψ̃f 6= ∅ as
uf (Ψ̃, p̃) > uf (Ψ̄, p̄) ≥ uf (∅). Let ω̃ ∈ Ψ̃ be the unique trade in Ψ̃ such that
s(ω̃) = f . We let ûf (ω, ·) = uf (ω, ·) for ω 6= ω̃ and we let ûf (∅) = uf (∅). To
construct ûf (ω̃, ·) we proceed as follows: Define ū := maxω∈Ωf→ uf (ω,K) and
ûf (ω̃, p̃ω̃) = max{ū, ũf (ω̃, p̃ω̃)}. Define ûf (ω̃, p̄ω̃) := uf (ω̃, p̄ω̃). Note that p̃ω̃ > p̄ω̃
and by construction ûf (ω̃, p̃ω̃) ≥ ū ≥ uf (ω̃,K) > uf (ω̃, p̄ω̃) = ûf (ω̃, p̄ω̃). We can
choose any continuous and monotonic extension for prices other than p̄ω̃ and p̃ω̃.

Proceeding in this way for each f ∈ F ′, we have constructed û such that
û−F

′
= u−F

′
, and for each f ∈ F ′ we have ûf (ω̃, p̄ω̃) = uf (ω̃, p̄ω̃), ûf (ω, ·) = uf (ω, ·)

for ω 6= ω̃ and ũf (∅) = uf (∅). Extend (Ψ̃, p̃) to an arrangement [Ψ̃, p̃] as follows:
For each trade ω ∈ Ω if there a p̃ω ∈ R such that ub(ω) is an equilibrium under û,
and for each seller-optimal equilibrium [Ψ̂, p̂] under û we have Ψ̂f = Ψ̃f for each

f ∈ F ′. Thus for each f ∈ F ′ we have uf (Ψ̂, p̂) ≥ uf (Ψ̃, p̃).
Let f ∈ F ′. By Claim 4, [Ψ̄, p̄] is a seller optimal equilibrium for (ûf , u−f ).

Iterating for all f ∈ F ′, [Ψ̄, p̄] is a seller optimal equilibrium under û. We have
derived a contradiction.
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