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Abstract

We study testing and estimation in panel data models with two potential sources of

endogeneity: that due to correlation of covariates with time-constant, unobserved heterogeneity

and that due to correlation of covariates with time-varying idiosyncratic errors. In the linear

case, we show that two control function approaches allow us to test exogeneity with respect to

the idiosyncratic errors while being silent on exogeneity with respect to heterogeneity. The

linear case suggests a general approach for nonlinear models. We consider two leading cases of

nonlinear models: an exponential conditional mean function for nonnegative responses and a

probit conditional mean function for binary or fractional responses. In the former case, we

exploit the full robustness of the fixed effects Poisson quasi-MLE, and for the probit case we

propose correlated random effects
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1. Introduction

The availability of panel data can greatly facilitate the estimation of causal effects from

nonexperimental data. For example, for studying policy interventions using linear models, the

methods of fixed effects (FE) estimation and first differencing (FD) estimation are used

routinely. The primary attractiveness of the FE and FD methods is due to their eliminating

additive, unobserved heterogeneity that is thought to be correlated with the policy variable or

variables of interest. Fixed effects-type approaches are available in special cases for nonlinear

models, although in such cases they are best viewed as conditional maximum likelihood, or

conditional quasi-maximum likelihood, estimators, where a conditioning argument essentially

removes the dependence of an objective function on unobserved heterogeneity. The leading

cases are the so-called FE logit and FE Poisson estimators. To handle heterogeneity more

generally in a microeconometric setting, where the number of avalaible time periods, T, is

typically small, the correlated random effects (CRE) approach can be effective. Wooldridge

(2010) shows how the CRE approach can be used for a variety of nonlinear panel data models

used in practice. See also Wooldridge (2016) for some recent developments using unbalanced

panels.

One drawback to FE, FD, and CRE approaches is that they allow for only one kind of

endogeneity: correlation between the time-varying explanatory variables, often through

sometime like the time average of these variables, and time-constant heterogeneity. But in

many contexts we may be worried about correlation between at least some of the covariates

and unobserved shocks – often called idiosyncratic errors. In the case of a linear model,

combining instrumental variables (IV) approaches with the FE and FD transformations can be

quite powerful. For example, Levitt (1996, 1997) uses IV approaches after eliminating
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heterogeneity at either the state or city level.

Fixed effects IV approaches explicitly recognize two potential sources of endogeneity. We

will call these “heterogeneity endogeneity,” which arises when one or more explanatory

variables is correlated with time-constant heterogeneity, and “idiosyncratic endogeneity,”

which arises when one or more explanatory variables is correlated with time-varying

unobservables. Both kinds of endogeneity can be present in nonlinear models, too. Papke and

Wooldridge (2008) [hereafter, PW (2008)], in the context of a probit fractional response

model, show how to combine the CRE and control function approaches to allow for

heterogeneity and idiosyncratic endogeneity. [More recently, Murtazashvili and Wooldridge

(2016) use a similar approach for panel data switching regression models with lots of

heterogeneity.] The approach is largely parametric, although it is robust to distributional

misspecificiation other than the conditional mean, and it allows unrestricted serial dependence

over time – a feature not allowed, for example, by random effects probit or fixed effects logit

approaches. The PW (2008) approach is attractive because it leads to simple estimation

methods, robust inference, and easy calculation of average partial effects. It does, however,

have a couple of potential drawbacks. The first is that the method does not allow one to tell

whether a rejection of the null hypothesis of exogeneity of the covariates is due to

heterogeneity or idiosyncratic endogeneity. Second, the explanatory variables that are

potentially endogenous in the structural equation are not rendered strictly exogenous in the

estimating equation. Rather, they are only contemporaneously exogenous, which means that

only pooled methods, or method of moments versions of them, produce consistent estimators.

This leaves out the possibility of applying quasi-generalized least squares approaches, such as

the generalized estimating equations (GEE) approach that is popular in fields outside
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economics.

In this paper, we show how to modify, in a straightforward way, the CRE/CF approach of

PW (2008) so that we can easily separate the two kinds of endogeneity. One benefit is that we

can test the null hypothesis of idiosyncratic exogeneity while allowing for heterogeneity

exogeneity, which effectively allows us to determine whether an IV approach is needed.

Section 2 covers the linear case, where we show that our new control function approach leads

to a test statistic that is identical to the variable addition Hausman test discussed in Wooldridge

(2010, Chapter 11). This sets the stage for two leading cases of nonlinear models, an

exponential mean function and a probit mean function. The exponential mean case, treated in

Section 3, is an interesting case because the robustness properties of the Poisson FE estimator

can be combined with the control function approach to obtain a test for idiosyncratic

exogeneity that is fully robust to distributional misspecification, as well as to serial dependence

of arbitrary form. We also cover the issue of estimating average partial effects, and discuss the

merits of a CRE/CF approach. In section 4 we turn to a probit response function – as in PW

(2008) – and show how to modify PW’s CRE approach to separately analyze the two kinds of

endogeneity. Section 5 discusses how the approach applied to general nonlinear unobserved

effects models, and provides a discussion of the pros and cons of using a joint MLE – such as

random effects probit or random effects Tobit – in the second stage. Two empirical

applications in section 6 show how the methods are easily applied, and section 7 contains

concluding remarks.

2. Models Linear in Parameters

We start with a “structural” equation
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yit1  xit11  ci1  uit1     (2.1)

where, for now, the explanatory variables are

xit1  yit2,zit1.

The vector zit1 would typically include a full set of time effects to allow for secular changes

over time. We suspect the vector yit2 is endogenous in that it may be correlated with the

unobserved effect (or heterogeneity), ci1, and possibly with the idiosyncratic error, uit1. In what

follows we allow all exogenous variables, which include the vector zit1 and variables excluded,

zit2, to be correlated with the heterogeneity. Therefore, we proceed as if all explanatory

variables can be correlated with the unobserved heterogeneity, ci1. In other words, we are not

taking a traditional random effects approach.

The difference between yit2 and zit is that we take the latter to be strictly exogenous with

respect to uit1:

Covzit,uir1  0, all t, r  1, . . . ,T.

By contrast, yit2 may be correlated with uit1, either contemporaneously or across time

periods.

Given a suitable rank condition, which is discussed in Wooldridge (2010, Chapter 11), 1

can be estimated by fixed effects 2SLS (FE2SLS), sometimes called FEIV. To describe the

estimator, define the deviations from time averages as

ÿit1  yit1 − T−1∑
r1

T

yir1, ÿit2  yit2 − T−1∑
r1

T

yir2, z̈it  zit − T−1∑
r1

T

zir.

Given a random sample (in the cross section) of size N, one characterization of FE2SLS

estimator is that it is pooled 2SLS applied to the equation
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ÿit1  ẍit11  üit1, t  1, . . . ,T

using IVs z̈it. With fixed T and N → , the estimator is generally consistent and

N -asymptotically normal. Fully robust inference that allows arbitrary serial correlation and

heteroskedasticity in uit1 is straightforward.

In terms of precision, the FE2SLS estimator can have large standard errors. We are first

removing much of the variation in the data by removing the time averages, and then we are

applying 2SLS. At a minimum, we require sufficient variation in the excluded exogenous

variables that serve as instruments for yit2. Therefore, it is of some interest to test the null

hypothesis that yit2 is exogenous with respect to uit1.

A common approach is to apply the Hausman (1978) principle, where the two estimators

being compared are the usual FE estimator and the FE2SLS estimator. The usual FE estimator

is consistent if we add the assumption

Covyit2,uir1  0, all t, r  1, . . . ,T.

The FE2SLS estimator does not require this stronger form of exogeneity of yit2.

There are a couple of drawbacks to the traditional Hausman test. Most importantly, because

it assumes that one estimator is relatively efficient – in this case, the FE estimator plays the

role of the efficient estimator – it is not robust to serial correlation or heteroskedasticity in

uit1. If we make our inference concerning 1 robust to departures from the standard, usually

unrealistic, assumptions, then it is logically inconsistent to use nonrobust specification tests.

Wooldridge (1990) makes this point in the context of a variety of specification tests. The

second problem with the traditional Hausman test is the asymptotic variance required is

singular, and this can lead to computational problems as well as incorrect calculation of
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degrees of freedom.

A simpler approach is to obtain a variation addition test (VAT), which is based on the

control function approach. Wooldridge (2010, Chapter 11) describes the procedure:

Procedure 2.1 (FE Variable Addition Test):

1. Estimate the reduced form of yit2,

yit2  zit2  c i2  uit2,

by fixed effects, and obtain the FE residuals,


ü it2  ÿit2 − z̈it̂2

ÿit2  yit2 − T−1∑
r1

T

yir2

2. Estimate the equation

yit1  xit11 

ü it21  ci1  errorit1

by usual FE and compute a robust Wald test of H0 : 1  0. 

The VAT version of the Hausman test has a simple interepretation, because the ̂1 obtained

in the second step is actually the FEIV estimate. If we set 1 to zero we are using the usual FE

estimator. If we estimate 1, we obtain the FEIV estimator. Importantly, it is very easy to make

the test robust to arbitrary serial correlation and heteroskedasticity. As a practical matter, it is

important to understand that the nature of yit2 is unrestricted. It can be continuous, discrete

(including binary), or some mixture. Below we will discuss what happens if we allow more

general functional forms.

In motivating our general approach for nonlinear models, it is useful to obtain a test based

on Mundlak’s (1978) CRE approach. We must use some care to obtain a test that rejects only
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in the presence of idiosyncratic endogeneity. We start with a linear reduced form for yit2, but

we emphasize that, for linear models, this equation is not restrictive. A linear unobserved

effects reduced form is

yit2  zit2  c i2  uit2

where 2 is dimension L  G1 where G1 is the dimension of yit2. Now we apply the Mundlak

(1978) to the vector of unobserved heterogeneity, c i2:

c i2  2  z̄i2  ai2,

where z̄i  T−1∑ t1
T zit is the row vector of time averages of all exogenous variables and 2 is

L  G1. Plugging into the previous equation gives

yit2  2  zit2  z̄i2  ai2  uit2, t  1, . . . ,T.

In what follows, we operate as if

Covzit,uis2  0, all t, s

Covzit,ai2  0, all t,

but, as we will see, even these mild assumptions need not actually hold.

The key now in obtaining a test of idiosyncratic endogeneity is how we apply the Mundlak

device to ci1 in the structural equation

yit1  xit11  ci1  uit1

One possibility is to project ci1 only onto z̄i. It turns out that this approach is fine for

estimating 1 but, for testing endogeneity of yit2, it does not distinguish between

Covyit2,ci1 ≠ 0

and
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Covyit2,uis1 ≠ 0.

Instead, it is better to project ci1 onto z̄i, v̄i2 where

vit2  ai2  uit2.

Then we have

ci1  1  z̄i1  v̄i21  ai1

Covzi,ai1  0

Covyi2,ai1  0

Importantly, the remaining heterogeneity, ai1, us uncorrelated not only with

zi  zit : t  1, . . . ,T but also with yi2  yit2 : t  1, . . . ,. Plugging into the structure

equation produces the following estimating equation:

yit1  xit11  1  z̄i1  v̄i21  ai1  uit1

 xit11  1  z̄i1  ȳi2 − 2 − z̄i21  ai1  uit1

≡ xit11  1  ȳi21  z̄i1  ai1  uit1.

Now, by the Mundlak device, ai1 is uncorrelated with all RHS observables, that is,

yit2,zit1, ȳi2, z̄i. By the strict exogeneity assumption on zit : t  1, . . . ,T, uit1 is uncorrelated

with zit1, z̄i. Therefore, we can now test whether yit2, is uncorrelated with uit1 by testing

whether vit2 is uncorrelated with uit1.

Procedure 2.2 (CRE/CF Variable Addition Test):

1. Run a pooled OLS regression

yit2  2  zit2  z̄i2  vit2,

and obtain the residuals, v̂it2.

2. Estimate
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yit1  xit11  1  ȳi21  z̄i1  v̂it21  errorit1     (2.2)

by POLS or RE and use a robust Wald test of H0 : 1  0. 

Because the derivation of the estimating equation in Procedure 2.2 uses the Mundlak

device, it nominally appears that it is less robust than that based on fixed effects in Procedure

2.1. This turns out not to be the case; in fact, the two approaches yield identical estimates of 1

and 1. The estimate of 1 is still the FEIV estimate. Therefore, we can use either the FE

approach or the Mundlak CRE approach, and it does not matter whether the residuals we add

to the equation are the FE residuals,

ü it2, or the Mundlak residuals, v̂it2. These residuals are not

the same, but in the appendix it is shown that

v̂it2 

ü it2  r̂ i2

where

r̂ i2  ȳi2 − ̂2 − z̄i̂2

are the between residuals from regressing ȳi2 on 1, z̄i. In particular, r̂ i2 is a linear combination

of ȳi2, 1, z̄i. It follows immediately that replacing v̂it2 in (2.2) does not change ̂1 and ̂1.

Only ̂1, ̂1 and ̂1 would change.

Interestingly, if we drop ȳi2 from step (2) in Procedure 2.2, the resulting estimate of 1 is

still the FEIV estimate. But we obtain a different estimate of 1, and basing a test of

endogeneity on the equation without including ȳi2 conflates heterogeneity endogeneity and

idiosyncratic endogeneity. Evidently, this point has gone unnoticed, probably because

Procedure 2.1 is the usual VAT in testing for idiosyncratic endogeneity. Neverthless, this

observation is very important when we must use the Mundlak CRE approach in nonlinear

models (because an FE approach is not available).
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The conclusion from this section is that, for using the CRE/CF approach for testing

H0 : Covyit2,uis1  0,

we should use the equations

yit2  ̂2  zit̂2  z̄i̂2  v̂it2

yit1  xit11  1  ȳi21  z̄i1  v̂it21  errorit1,

being sure to include ȳi2.

As an aside, one might want to know what happens if the seemingly less restrictive

Chamberlain (1982) version of the CRE approach is used in place of Mundlak. The answer is:

nothing. At least not if we use the basic estimation methods that do not attempt to exploit serial

correlation or heteroskedasticity in the uit1. To be clear, letting

zi  zi1, . . . ,ziT, yi2  yi12, . . . ,yiT2,

the equations

yit2  ̂2  zit̂2  zi̂2  v̂it2

yit1  xit11  1  zi1  yi21  v̂it21  errorit1

result in the same estimates of 1 and 1 as the Mundlak approach, provided we use either

pooled OLS or RE in the second equation.

How can one use the test of idiosyncratic endogeneity? Guggenberger (2010) shows that

the pretesting problem that exists from using the Hausman test to determine an appropriate

estimation strategy can be severe. Nevertheless, such practice is common in empirical work. If

the VAT rejects at, say, the 5% significance level, one typically uses the FEIV estimator. If

one fails to reject, it provides some justification for dropping the IV approach and instead

using the usual FE estimator.
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3. Exponential Model

If yit1 is nonnegative, and especially if it can take the value zero, an exponential conditional

mean function is attractive. (The common alternative when yit1  0 is to use logyit1 in a

linear model, but some researchers prefer to model yit1 directly.) An unobserved effects model

that allows for heterogeneity endogeneity and idiosyncratic endogeneity is

Eyit1|yi2,zi,ci1, rit1  Eyit1|yit2,zit1,ci1, rit1  ci1 expxit11  rit1,     (3.1)

where, again, xit1  yit2,zit1. Now the heterogeneity, ci1, is nonnegative and multiplicative.

We use rit1 to denote time-varying omitted factors that we suspect are correlated with yit2. We

could make rit1 multiplicative but it is slightly more convenient to have it appear inside the

exponential function.

An FE Poisson/CF Approach

As discussed in Wooldridge (1999) and Wooldridge (2010, Chapter 18), without rit1 an

appealing estimator is what is typically called the fixed effects Poisson estimator. In Hausman,

Hall, and Griliches (1984), the FE Poisson estimator was obtained as a conditional MLE,

where the Poisson assumption was assumed to hold along with conditional independence.

Wooldridge (1999) showed that the neither assumption is needed to ensure consistency and

asymptotic normality of the FE Poisson estimator. Viewed as a quasi-MLE, the estimator is

fully robust in the sense that it only requires, in the current notation (with idiosyncratic

endogeneity),

Eyit1|xi1,ci1  Eyit1|xit1,ci1  ci1 expxit11.

The first equality imposes a strict exogeneity requirement with respect to idiosyncratic shocks.

It will be violated if rit1 is present and correlated with yis2 for any time period s, including, of

13



course, s  t.

To obtain a test of the null hypothesis that there is no idiosyncratic endogeneity, we again

need time-varying, strictly exogenous instruments that are excluded from zit1. Formally, the

null hypothesis is

Eyit1|yi2,zi,ci1  Eyit1|yit2,zit1,ci1  ci1 expxit11,

where the key is that zit2 is exclused from the mean function. Also, all variables are strictly

exogenous conditional on ci1. In order to obtain a test, we need to specify an alternative, and

this is where explicitly introducing a time-varying unobservables into the structural model, and

a reduced form for yit2, come into play. But we emphasize that these do not play a role under

the null hypothesis. They are used only to obtain a test. In addition to (3.1), we write

yit2  zit2  c i2  uit2, t  1, . . . ,T,

and, because the zit is strictly exogenous, we test for correlation between rit1 and

functions of uit2. We use the analog of the test from Procedure 2.1.

Procedure 3.1 (Poisson FE/VAT):

1. Estimate the reduced form for yit2 by fixed effects and obtain the FE residuals,


ü it2  ÿit2 − z̈it̂2

2. Use FE Poisson on the mean function

“Eyit1|zit1,yit2,

ü it2,ci1  ci1 expxit11 


ü it21”

and use a robust Wald test of H0 : 1  0. 

It turns out that, as in the linear case, the fixed effects residuals can be replaced with the

Mundlak residuals. Again let v̂it2 be the OLS residuals from estimating
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yit2  2  zit2  z̄i2  vit2.

Then, as shown in the appendix, step (2) in Procedure 3.1 produces the same estimates of

1,1. This follows from the form of the FE Poisson quasi-log-likelihood function and the

fact that v̂it2 

ü it2  r̂ i2, and so removing the time averages of v̂it2 produces the FE residuals


ü it2.

As in the linear case, it is useful to remember that, under the null hypothesis, no restrictions

are placed on yit2. In fact, the EEVs could include binary variables, in which case the reduced

forms are linear probability models estimated by FE or the CRE approach. Under the null that

yit2 is exogenous we can use any way of generating residuals that we want. More power

might be obtained by using different models for the elements of yit2, but that is a power issue.

The equivalance between the between using the FE residuals

ü it2 and the Mundlak

residuals v̂it2 means that we can obtain sufficient conditions for Procedure 3.1 to correct for

idiosyncratic endogeneity when it is present. But now we need to make assumptions on the

reduced form of yit2. We can get by with somewhat less, but a convenient assumption is

r i1,ui2 is independent of ci1,c i2,zi,

where r i1 is the vector of omitted variables in (3.1) and ui2 is the reduced form error. This

assumption that vit2 is independent of means that the Mundlak equation is in fact a conditional

expectation. Moreover, there cannot be heteroskedasticity.

Now, if we make a functional form assumption,

Eexprit1|ui2   exp1  uit21  exp1  vit2 − ai11 ,

which follows under joint normality of r i1,ui2 but can hold more generally. The structural

expectation is in (3.1), where now we also assume this is the expectation when we add c i2 to
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the conditioning set. Then

Eyit1|yi2,zi,ci1,c i2,vi2  ci1 expxit11  1  vit2 − ai11 

 gi1 expxit11  vit21

where gi1  ci1 exp−ai11. Now we can use Procedure 3.1, with either the FE residuals or the

Mundlak residuals, to consistently estimate 1, along with 1, using the Poisson FE estimator.

We require nothing more about the Poisson distribution to be correctly specified, and serial

independence is entirely unrestricted. However, because we now allow 1 ≠ 0, the standard

errors need to be adjusted for the two-step estimation. One can use the delta method, or use a

panel bootstrap, where both estimating steps are done with each bootstrap sample.

Estimating Average Partial Effects

In addition to consistently estimating 1, we may want to obtain partial effects on the

conditional expectation itself. One possibility is to estimate the average structural function

(Blundell and Powell, 2004), which averages out the unobservables for fixed xt1:

ASFtxt1  Eci1,rit1ci1 expxt11  rit1

 Eci1,rit1ci1 exprit1expxt11.

Let

vit1  ci1 exprit1

t1 ≡ Evit1.

Because we have a consistent estimate of 1 – which would typically include time effects – we

just need to estimate t1 for each t (or, we might assume these are constant across t). Write

yit1  vit1 expxit11eit1

Eeit1|xi1,ci1,r i1  1.

In particular,
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Evit1eit1  Evit1Eeit1|vit1  Evit1  t1.

Therefore,

t1  E
yit

expxit11

and so a consistent estimator of t1 is

̂t1  N−1∑
i1

N
yit

expxit1̂1
.

Therefore, a consistent and N -asymptotically normal estimator of ASFtxt1 is

ASFtxt1  ̂t1 expxt1̂1.

One can compute derivatives or changes with respect to the elements of xt1, and insert

interesting values. Obtaining a valid standard error for the resulting partial effects can be done

via the delta method or bootstrapping.

Sometimes one wishes to have a single measure of partial effects, averaged across both the

unobservables and observables. If xt1j is continuous – for example, an element of yt2 – we

usually obtain the derivative and then average. The average partial effect (APE) is

APEtj  1jExit1,ci1,rit1ci1 expxit11  rit1

and this is particularly easy to estimate because, by iterated expectations,

Exit1,ci1,rit1ci1 expxit11  rit1  Eyit.

(This simplification comes because of the exponential mean function.) Therefore, for each t,

APEtj  1jEyit,

and a simple, consistent estimator is ̂1j N−1∑ i1
N yit . In many cases one would average
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across t as well to obtain a single partial effect.

A CRE/Control Function Approach

A CRE/CF approach can be used, although it requires more assumptions. Let

Eyit1|yit2,zit1,ci1, rit1  ci1 expxit11  rit1

vit1  ci1 exprit1

yit2  2  zit2  z̄i2  vit2

Then there are two possibilities. Papke and Wooldridge (2008) suggest modeling the

conditional disribution

Dvit1|zi,vit2,

where and assuming that this depends only on z̄i,vit2. While this approach leads to consistent

estimation under maintained parametric assumptions, it does not lead to a straightforward test

of idiosyncratic endogeneity: vit1 may be related to vit2 because of heterogeneity or

idiosyncratic endogeneity. In addition. because we obtain an equation for Eyit1|xit1,zi,vit2,

only contemporaneous exogeneity holds because we are only conditioning on vit2 at time t.

Therefore, only pooled methods can be used for consistent estimation.

Drawing on the linear case, a second possibility is attractive: Model the distribution

Dvit1|zi,vi2.

Here, we use a Mundlak assumption:

Dvit1|zi,vi2  Dvit1|z̄i, v̄i2,vit2

 Dvit1|z̄i, ȳi2,vit2.

By construction, strict exogeneity holds for the conditioning variables, and so GLS-type

procedures can be used. Moreover, even before we use a parametric model, this approach

endogeneity of yit2 with respect to ci1 and uit1.
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If we use a linear index structure, the estimating equation is

Eyit1|zi,yi2  exp1  xit11  ȳi21  z̄i1  vit21.

Identification of the parameters follows because the time-varying exogenous variables zit2 are

excluded from xit1, and therefore generates variation in vit2. The presence of ȳi2 and z̄i allows

the unobserved heterogeneity to be correlated with all explanatory variables and the excluded

exogenous variables. The test of H0 : 1  0 is a clean test of idiosyncratic endogeneity,

provided we assume our instruments are strictly exogenous and that the Mundlak device holds.

There are several approaches to estimating. The simplest is to use the pooled Poisson

QMLE; naturally, we need to use fully robust inference to allow serial correlation and

violations of the Poisson assumption. But we can also used a generalized least squares

approach, where a “working” variance-covariance matrix is used to potentially increase

efficiency over pooled estimation. Typically, one would use the Poisson variance, up to a

scaling factor, as the “working” variances, and then choose a simple working correlation

matrix – such as an exchangeable one, or at least one with constant pairwise correlations.

Wooldridge (2010, Chapter 12) shows how the GEE approach is essentially multivariate

weighted nonlinear least squares with a particular weighting matrix.

Because of the properties of the exponential function, it is possible to estimate the

parameters 1 using a generalized method of moments approach on a particular set of

nonlinear moment conditions. The GMM approach does not restrict that nature of yit2. See

Wooldridge (1997) and Windmeijer (2000). At a minimum, one can use the test for

idiosyncratic endogeneity based on the Poisson FE estimator before proceeding to a more

complicated GMM proccedure.
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4. Probit Response Function

With a probit conditional mean function, there are no versions of a fixed effects estimator

that have attractive statistical properties, at least when T is not fairly large. Therefore, we

consider only CRE/CF approaches to testing and correcting for endogeneity.

A probit conditional mean for yit1 ∈ 0,1, which we consider the “structural” equation, is

Eyit1|zi,yi2,ci1,uit1  Eyit1|zit1,yit2,ci1,uit1  xit11  ci1  uit1,     (4.1)

and this can hold when yit1 is binary or when it is a fractional response. We assume that yit2

continuous and write a Mundlak reduced form, as before:

yit2  2  zit2  z̄i2  vit2

The important restriction (which can be relaxed to some degree) is

vit2 is independent of zi.

Define

rit1  ci1  uit1.

Now we assume

Drit1|zi,vi2  Drit1|z̄i, v̄i2,vit2  Drit1|z̄i, ȳi2,vit2,

where the second equality holds simply because of the relationships among z̄i, ȳi2, and v̄i2. In

the leading case, we use a homoskedastic normal with linear mean:

rit1|z̄i, ȳi2,vit2  Normal1  ȳi21  z̄i1  vit21, 1.

We set the variance to unity because we cannot identify a separate variance, and it has no

effect on estimating the average partial effects – see Papke and Wooldridge (2008) for further

discussion. Then, an argument similar to that in Papke and Wooldridge (2008) gives the
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estimating equation

Eyit1|zi,yi2  1  xit11  ȳi21  z̄i1  vit21,

which is clearly similar to the estimating equation in the exponential case.

Procedure 4.1 (CRE/CF Probit):

1. Obtain the Mundlak residuals, v̂it2, by pooled OLS.

2. Insert v̂it2 in place of vit2, use pooled (fractional) probit of

yit1 on 1, xit1, ȳi2, z̄i, v̂it2, t  1, . . . ,T; i  1, . . . ,N. 

As in the linear case, Procedure 2.2, because v̂it2 

ü it2  r̂ i2 we can replace v̂it2 with


ü it2

and not change ̂1 or ̂1; only ̂1, ̂1 and ̂1 would change.

As before, we can use a cluster-robust Wald test of H0 : 1  0 as a test of idiosyncratic

exogeneity. Compared with Papke and Wooldridge (2008), ȳi2 has been added to the equation,

and doing so allows one to separate the two sources of endogeneity. Further, because the

conditional mean satisfies a strict exogeneity assumption, we can use a GEE (quasi-GLS)

procedure, although bootstrapping should be used to obtain valid standard errors. Technically,

the assumptions under which Procedure 4.1 is consistent are different than those for the PW

procedure, but in practice the difference is unlikely to be important. Procedure 4.1 leads to a

cleaner test and also has the potential to produce more efficient estimators. Namely, GEE

approaches can be used in place of the pooled probit estimation.

Consistent estimation of the APEs is also stratiforward. Using the same arguments in Papke

and Wooldridge (2008),
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APEtj  1jExit1,z̄i,ȳ i2,vit2xit11  1  z̄i1  ȳi21  vit21

APEt j  ̂1j N−1∑
i1

N

xit1̂1  ̂1  z̄i̂1  ȳi2̂1  v̂it2̂1

To obtain a single value, APEt j can be averaged across t, too, and this is what would be

produced by applying the Stata “margins” command after pooled estimation or GEE

estimation. The standard error of the APE is complicated because of the two-step estimation

and the averaging. Bootstrapping the entire procedure is practically sensible and not difficult

computationally.

It can be shown that, just like the parameters, estimation of the APEs does not depend on

whether v̂it2 or

ü it2 is used as the control function.

It is easy to make Procedure 4.1 more flexible. For example, rather than just entering eace

variable linearly, any nonlinear functions of

xit1, z̄i, ȳi2, v̂it2

can be included. These would typically include squares and cross products, but maybe higher

order terms, too. One can still obtain the APEs by differentiating or differencing with respect

to the elements of xt1 and then averaging across everything. For example, if we extend the

estimating equation to

Eyit1|zi,yi2  1  xit11  ȳi21  z̄i1  vit21  xit1 ⊗ x̄i11  xit1 ⊗ vit21,

then we simply add the terms xit1 ⊗ x̄i1 and xit1 ⊗ v̂it2 to the probit or fractional probit

estimation. We then have to account for the interactions when taking derivatives, and then

average the resulting function.

Another possibility is to allow the variance in the probit equation, whether fractional or

22



not, to depend on

z̄i, ȳi2,vit2.

Then, one uses heteroskedastic probit or “fractional heteroskedastict probit” to allow ci1 to

have nonconstant variance.

5. Other Nonlinear Models

5.1. Pooled Methods

The approach taken in the previous section applies to other nonlinear models, including the

unobserved effects Tobit model. The approach is unchanged from the model with a probit

response function. First, model the heterogeneity as a function of the history of the exogenous

and endogenous variables, zi,yi2, typically (but not necessarily) through simple functions,

such as the time averages, z̄i, ȳi2. Then add reduced-form Mundlak residuals, v̂it2, in a pooled

Tobit estimation. The key assumption is that for each t, yit1 conditional on zi,yi2 follows a

Tobit model with linear index 1  xit11  ȳi21  z̄i1  vit21 and constant variance. If we

used a pooled estimation method then abitrary serial dependence is allowed. As usual, we must

account for two-step estimation in calculating standard errors, and we must cluster to account

for the serial dependence.

If yit1 is a count variable, and we prefer to use, say, a negative binomial model, then we can

simple assume that, conditional on zit1,yit2, z̄i, ȳi2,vit2, yit1 follows the appropriate model.

Notice that we would not be able to derive such a model if we start with the assumption that

the structural model for yit1 – conditional unobservables ci1,uit1 as in the previous section –

follow a negative binomial model. Therefore, purists may be reluctant to adopt such a strategy

even though it would perhaps provide a good approximation that accounts for the count nature
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of yit1.

One can even apply the approach to less obvious situations, such as two-part models. For

example, suppose the Tobit model is replaced by the Cragg (1971) truncated normal hurdle

model – see also Wooldridge (2010, Section 17.6). Then one can model the two parts both as

functions of zit1,yit2, z̄i, ȳi2,vit2, and then separately test for endogeneity of yit2 in each part

by testing coefficients on v̂it2. Average partial effects are easily obtained by averaging out

z̄i, ȳi2, v̂it2, across i or across i, t, in the partial derivatives with respect to xt1. The form of

the partial effects is given in, for example, Wooldridge (2010, equation (17.48)).

5.2. Joint Estimation Methods

So far our discussion has centered on pooled estimation methods. There are two reasons for

this. First, pooled two-step methods are computationally simple, and panel bootstrap methods

run quickly in most cases for obtaining valid standard errors. Second, and just as importantly,

pooled methods are robust to any kind of serial dependence.

It is possible to apply the CRE/CF approach to joint MLE estimation in the second stage.

For example, rather than using pooled probit, as in Section 5, one might want to estimate a

so-called random effects probit in the second stage. The explanatory variables would be

xit1, z̄i, ȳi2, v̂it2,

where recall xit1 is a function of zit1,yit2. Or, we could use more flexible functions of the

histories zi,yi2. While joint MLEs can be used in the second stage, one should be aware of

the costs of doing so. First, computationally joint MLEs are usually significantly more difficult

to obtain than pooled MLEs. While the difference in computational times is often irrelevant for

one pass through the data, adding v̂it2 to account for idiosyncratic endogeneity of yit2 requires
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some sort of adjustment for inference, althoug testing the null that v̂it2 has zero coefficients

does not require an adjustment. If one uses the bootstrap then the increased computational

burden can be nontrivial.

The second cost to use joing MLE in the second step is lack of robustness to distributional

misspecification and serial dependence. Standard joint MLEs used for nonlinear random

effects models maintain that innovations – what we would call uit1 in equations (2.1) and

(4.1) – are independent over time, as well as being independent of ci1 and zi. None of random

effects probit, RE logit, RE Tobit, RE Poisson, and so on have robustness properties in the

presence of serial correlation of the innovations. Moreover, even if the innovations in (4.1) are

serially independent, the RE probit joint MLE is not known to be consistent

When we apply a joint MLE in the second step, there is another subtle point. Suppose we

express the relationship between innovations in, say, (4.1) and those in the reduced form of

yit2, vit2, as

uit1  vit21  eit1.

The relevant innovations underlying the joint MLE in the second step are eit1, not uit1 –

unless 1  0. Consequently, serial correlation in the reduced form of yit2 can cause serial

correlation in the second stage MLE, even though there was none in the original innovations.

For robustness and computational reasons, the pooled methods are generally preferred.

Future research could focus on how to improve in terms of efficiency over the pooled methods

without adding assumptions.

6. Empirical Example

Papke and Wooldridge (2008) estimate the effect of spending on fourth-grade math test
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past rates using data from Michigan. The years straddle the Michigan School Reform, which

was passed in 1995. The response variable, math4, is a pass rate, and so we use a fractional

probit model response in addition to a linear model estimated by fixed effects IV. The variable

of interest is the natural log of real per pupil spending, averaged over the current and previous

three years. The instrumental variable is the “foundation allowance.” which is the amount

given by the state to each school district – after the spending reform. A kinked relationship

between the allowance and pre-reform per-pupil revenue means that, once a district effect is

controlled for, the foundation allowance is exogenous. Not surprisingly, its log is a very strong

instrument for the log of average real spending. Other controls include the proportion of

students eligble for free and reduced lunch and the log of district enrollment. A full set of year

effects is also included. There are N  501 school districts over the seven years 1995 to 2001.

The results of the test are given in Table 1 for the spending variable. The linear fixed

effects estimate, . 377, implies that a 10% increase in average spending increases the pass rate

by about 3.8 percentage points, and the effect is very statistically significant. The FEIV

estimate actually increases to .420, and remains strong significant. The fully robust test of

idiosyncratic endogeneity, where the null is exogeneity, gives t  −. 41, which is not close to

being statistically significant. Therefore, the evidence is that, once spending is allowed to be

correlated with the district heterogeneity, spending is not endogenous with respect to

idiosyncratic shocks.

Columns (3) and (4) in Table 1 apply the fractional probit CRE/CF approaches. In column

(3) we apply Procedure 4.1, which includes the time average of lavgrexp along with the time

average of all exogenous variables, including lfound, the log of the foundation allowance. The

coefficient is . 821 and it is strongly statistically significant. The APE, which is comparable to

26



the FEIV estimate, is quite a bit lower: . 277, but with t  2.47 is still pretty significant. The

test for idioysyncratic endogeneity fails to reject the null of exogeneity, with t . 52. This is

entirely consistent with the linear model estimates and test. By contrast, when we apply the

Papke-Wooldridge approach in column (4), the t statistic for the coefficient on the reduced

form residual v̂2 is t  −1.68, which is significant at the 10% level. This is not a strong

rejection of exogeneity, but it is much stronger than when the time average of lavgrexp. The

outcomes in columsn (3) and (4) are consistent with the conclusion that spending is correlated

with district-level heterogeneity but not district-level shocks, which is why the test in column

(3) marginall rejected exogeneity and that in column (4) does not come close to rejecting. In

the end, the new approach in column (3) and the PW approach in column (4) given very similar

estimates of the APE of spending: . 277 versus .269, and the standard errors are similar.
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Table 1

Model: Linear Linear FProbit FProbit

Estimation: FE FEIV PQMLE PQMLE

Coef Coef Coef APE Coef APE

lavgrexp
.071
. 377

.115
. 420

.334
. 821

.112
. 277

.338
. 797

.114
. 269


ü2 —

.146
−. 060 — — — —

v̂2 — —
.145
. 076 —

.396
−. 666 —

lavgrexp? — — Yes No
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7. Extensions and Future Directions

The main message in this paper is that, when combining the correlated random effects and

control function approaches in nonlinear panel data models, there is a good case to separately

model – even if only implicitly – the distribution of the heterogeneity conditional on all

explanatory variables and outside exogenous variables. In this way, adding the control

functions to account for idiosyncratic endogeneity leads to a pure test of the null hypothesis of

exogeneity. In linear models, a common variable addition test after fixed effects estimation

achieves this goal. We have shown how the same goal can be acheived for two popular

nonlinear models.

We have used parametric assumptions in our discussion and applications. Nevertheless,

when the EEVs yit2 are continuous, there is a more general message when semiparametric, or

even purely nonparametric, approaches are taken. For example, when applying the insights of

Blundell and Powell (2004), it makes sense to separately include functions of the entirely

history, yi2,zi, and the control functions, v̂it2. We touched on this at the end of Section 5,

where we showed a model with interactions between the variables of interests, the time

averages, and the control functions can be added for flexibility. The general point is that by

adding, say, ȳi2 along with z̄i we then obtain an estimating equation where the addition of v̂it2

is purely to account for possible idiosyncratic endogeneity.

In nonlinear models, the assumptions imposed on the reduced form of yit2 will not be met

when yit2 has discreteness. Even allowing for a single binary EEV yit2 poses challenges for

nonlinear unobserved effects panel data models. In particular, the parametric assumptions that

can be viewed as convenient approximations when yit2 now have real bite when it comes to

identifying the average partial effects. If one is willing to make distributional assumptions –
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such as normality in the probit case – the methods in Wooldridge (2014) and Lin and

Wooldridge (2016) can be extended to allow correlated random effects. As just one simple

example, if yit2 is assumed to follow a reduced form probit, one can use as a control function

the generalized residuals,

grit2  yit2wit̂2 − 1 − yit2−wit̂2,

where wit  1,zit, z̄i. But then the issue of how to best model the relationship between

heterogeneity and yi2,zi arises. The Munklak device, or Chamberlain’s version of it, may

work reasonably well, but they may not be flexible enough. We leave investigations into the

quality of CF approximations in discrete cases to future research.

As discussed in Wooldridge (2018), unbalanced panels pose challenges for the correlated

random effects approach, although the challenges are not insurmountable. In the context of

heterogeneity endogeneity only, Wooldridge suggests a modeling strategy where unobserved

heterogeneity is a function of sit, sitxit : t  1, . . . ,T, where sit is a binary selection

indicator which is unity when a complete set of data is observed for unit i in time t. This

approach can be extended to the current setting, but the details remain to be worked out.
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Appendix

This appendix verifies some of the algebraic claims made in Sections 2 and 3.

A.1. Relationship Between the FE and Mundlak Residuals

We firstfind a relationship between the FE residuals and the Mundlak residuals. Let wi be

any collection of time-constant variables. The FE and Mundlak residuals are, respectively,


üit  ÿit − ẍit̂FE

v̂it  yit − xit̂FE − ̂ − x̄i̂ − wi̂,

where we use the fact that the estimates xit are identical using FE and the Mundlak approaches.

Further, because ẍit is a nonsingular linear combination of xit and x̄i, we obtain the same

Mundlak residuals if instead we run the pooled regression

yit on ẍit, 1, x̄i, wi

In fact, we can add on x̄i̂FE and subtract it off:

v̂it  yit − xit − x̄i̂FE − ̂ − x̄i ̂  ̂FE − wi̂

 yit − ẍit̂FE − ̂ − x̄i ̂  ̂FE − wi̂

≡ yit − ẍit̂FE − ̂ − x̄i̂ − wi̂

From Mundlak (1978), it is known that ̂, ̂, ̂ are the between estimates, that is, from the

cross section OLS regression

ȳi on 1, x̄i, wi.

This is easy to see directly in our setup. Define zi  1, x̄i,wi and let ̂ be the set of

coefficients: ̂, ̂, ̂. Then

∑
t1

T

zi
′ẍit  zi

′∑
t1

T

ẍit  0
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so that the regressors are orthogonal in sample. By Frisch-Waugh, ̂ is also obtained by

dropping ẍit, that is, from

yit on zi, t  1, . . . ,T; i  1, . . . ,N.

But

̂  ∑
i1

N

∑
t1

T

zi
′zi

−1

∑
i1

N

∑
t1

T

zi
′yit

 T∑
i1

N

zi
′zi

−1

∑
i1

N

zi
′∑

t1

T

yit  ∑
i1

N

zi
′zi

−1

∑
i1

N

zi
′ T−1∑

t1

T

yit

 ∑
i1

N

zi
′zi

−1

∑
i1

N

zi
′ȳi  ̂B

Now we can write

v̂it ≡ yit − ȳi − ẍit̂FE  ȳi − ̂B − x̄i̂B − wi̂B

 ÿit − ẍit̂FE  ȳi − ̂B − x̄i̂B − wi̂B



üit  r̂i,

where r̂i is the between residual. One important feature of this relationship is that r̂i does not

change over time. Therefore,

∑
t1

T

r̂i

üit  0.

More importantly, for demeaned variables ẍit,

∑
t1

T

ẍit
′ v̂it ∑

t1

T

ẍit
′ üit

because∑ t1
T ẍit

′ r̂i  0.

A.2. Equivalence in Using the FE and Mundlak Residuals in FE
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Poisson Estimation

Now we obtain a general result that shows that adding time-constant variables to the

explanatory variables does not affect ̂ in the Poisson FE case. For a cross-section observation

i, the quasi-log likelihood is

ℓi ∑
t1

T

yit xit − log ∑
r1

T

expxir ,

and the score is

si ∑
t1

T

yit xit
′ −
∑r1

T xir
′ expxir

∑r1
T expxir

Therefore, the FOC is

∑
i1

N

si ̂  0.

Now suppose

xit  git  hi,

which allows for the case that some hi are identically zero for all i. Then for any i,

si ̂ ∑
t1

T

yit xit
′ −
∑r1

T xir
′ expgir̂  hi̂

∑r1
T expgir̂  hi̂

∑
t1

T

yit xit
′ −

exphi̂∑r1
T xir

′ expgir̂

exphi̂∑r1
T expgir̂

∑
t1

T

yit xit
′ −
∑r1

T xir
′ expgir̂

∑r1
T expgir̂

∑
t1

T

yit git
′  hi

′ −
∑r1

T gir
′  hi

′expgir̂

∑r1
T expgir̂

∑
t1

T

yit git
′ −
∑r1

T gir
′ expgir̂

∑r1
T expgir̂

 hi
′ − hi

′ ∑r1
T expgir̂

∑r1
T expgir̂

∑
t1

T

yit git
′ −
∑r1

T gir
′ expgir̂

∑r1
T expgir̂

Note that the final expression is the score with explanatory variables git, and so we have shown
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̂ is the same whether we use xit or git.

The above result applies to the control function estimation in Section 3 because, as shown

in Appendix A.1,

v̂it2 

ü it2  r̂ i2,

where r̂ i2 are the between residuals and do not vary over time. The other explanatory variables

are unchanged. Therefore, we obtain the same estimates whether we obtain the FE residuals in

the first stage or the Mundlak residuals.
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