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Abstract

We study the evolution of risk premiums on US Treasury bonds from the perspective

of a real-time Bayesian learner BL who conditions her beliefs on measures of disagreement

among professional forecasters about the future paths of bond yields. Learning about

historical yields and disagreement within a dynamic term structure model leads to substan-

tial variation in BL’s subjective expected excess returns on bonds. The informativeness of

disagreement is shows to be distinct from the (much weaker) forecasting power of inflation

and output growth. Rather, it appears to reflect policy uncertainty and, in particular,

uncertainty about fiscal policy. BL’s learning rule substantially outperforms consensus

forecasts of market professionals, particularly following U.S. recessions.
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1 Introduction

Market participants trading US treasury bonds need to form prospective views in real-time

on bond expected returns, while learning about changing policy, regulatory or political

environments. However, most of the literature that studies risk compensation in bond markets

has followed and Dai and Singleton (2000) and Duffee (2002) in focusing on retrospective

within-sample measures of risk premiums, and in presuming that the parameters governing

the evolution of the risk factors in the economy are fixed and known by investors.

That learning can materially impact measured risk premiums is illustrated in Figure 1.1

For a one-quarter holding period on a ten-year Treasury zero-coupon bond, the within-sample,

least-squares forecasts of (annualized) excess returns and the forecasts from a real-time,

recursive least-squares learning model differ by as much as 4%; analogous differences for the

one-year horizon exceed 5%.2 Moreover, the mechanical end-of-sample convergence of the

recursive to the full-sample least-squares estimates is quite slow.

In this paper we explore in depth the structure and complexity of ex ante risk premiums

in US Treasury markets through the lens of a Bayesian econometrician– referenced as BL–

who is learning in real-time about the distribution of future bond yields. As an “outside

observer” of bond markets, BL approaches her learning problem with several insights in hand,

including: (i) bond yields are well described by a low-dimensional factor model with the

principal components (PCs) of yields as factors; (ii) the cross-sectional covariance structure

of yields in an arbitrage-free market essentially reveals the factor loadings to investors; and

and (iii) “market prices” of the factor risks vary over the business cycle.

Most distinctively, relative to extant empirical learning models in bond markets, BL
believes that the observed differences of opinion among market participants about future

yields influence the actual (objective) conditional distributions of realized yields. She learns

from disagreement by conditioning on the cross-sectional dispersion of beliefs across market

participants when forecasting future realized excess returns in bond markets. Atmaz and

Basak (2017) show that, in markets where there are a large number of participants (as in

Treasury markets), this measure of disagreement may serve as sufficient statistic for the impact

of disagreement on equilibrium asset prices.

1This exercise reinforces prior evidence on learning and yield forecasts. See, e.g., Laubach, Tetlow, and
Williams (2007), Dewachter and Lyrio (2008), and Gargano, Pettenuzzo, and Timmerman (2018).

2For the learning model, forecasts are the fitted values from recursive least-squares projections of the
realized excess return xrnt+0.25y for an n-period bond over a one-quarter horizon onto the first three principal
components of bond yields Pt:

xrnt+0.25y = αn,t + BnP,tPt + σvvt+h.

Figure 1 compares these “expanding-window” estimates to their full-sample counterparts.
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Figure 1: The three-month expected excess returns for a 10-year zero-coupon bond implied
by the full-sample estimates minus those from a recursive least-squares learning scheme. The
sample is monthly from January 1972 to December 2014. NBER recessions are shaded.

BL’s learning rule is based on a Gaussian Dynamic Term Structure Model (DTSM),3

under the presumption that the parameters of the historical distribution of yields may shift

with economic conditions, and she adopts a Bayesian rule for updating her subjective beliefs

about these parameters. Cross-sectional disagreement about yields potentially impacts BL’s

learning rule through two channels: her market prices of factor risks may be depend directly

on measured disagreement; and it may inform in real time how she updates the parameters

governing the time-series dynamics of the yield PCs.

Empirically, the fitted market prices of risk from BL’s learning rule differ systematically

from those implied by the full-sample analysis of the fixed-parameter version of this DTSM.

In particular, BL’s learning rule generates risk premiums that are more sensitive to shocks to

the level of the yield curve, especially at turning points of business cycles. Moreover, building

on feature (ii), we find the striking result that BL holds the factor loadings (“hedge ratios”)

nearly constant over the past twenty-five years. In contrast, BL makes substantial revisions

to the parameters governing the conditional distribution of the PCs of bond yields (i.e., her

3A Gaussian framework offers substantial flexibility in modeling the conditional first moments of bond
yields which determine risk premiums. Now, in fact, BL updates her estimates of the conditional covariance
matrix of the yield PCs monthly as new information arrives (see below). Both our descriptive evidence and
analysis of an extended DTSM with stochastic volatility in Appendix E suggest that our central findings about
risk premiums under BL’s learning scheme are robust to the presence of stochastic volatility.
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views on the future paths of yields).

Investor disagreement– proxied by the cross-sectional dispersion in forecasts from the

Blue Chip Financial Forecasters (BCFF) panel– does indeed have substantial real-time

predictive power for future yields, over and above the history of bond yields. BL’s forecasts

are substantially more accurate than the consensus BCFF forecasts of yields for both one-

and four-quarter ahead horizons, especially coming out of recessions.4 As such, BL’s ex ante

term premiums are notably different than those implied by a learning rule that conditions

only on bond yields or those implied by the BCFF consensus beliefs.

Moreover, once BL conditions on disagreement, many of the macroeconomic variables

that previous researchers have found to have predictive power for expected excess returns

(e.g., Ludvigson and Ng (2010), and Joslin, Priebsch, and Singleton (2014), JPS) are largely

rendered redundant.5 Digging deeper, we provide evidence that the predictive power of yield

disagreement within BL’s learning rule has roots in policy uncertainty and, in particular, to

uncertainty about future government spending. In Section 6 we discuss ways these findings

might inform future development of equilibrium models in which market participants disagree

about the conditional distributions of bond yields.

2 Disagreement in US Treasury Markets and Bond Yields

From various theoretical perspectives, a role for disagreement in the determination of equi-

librium bond prices has been well established.6 From BL’s perspective, the relevant risk

factors are the known yield PC’s. For given her presumed factor structure under (i) above the

theoretical PC’s span any underlying macro factors that are relevant for pricing bonds. Her

learning problem is that of determining the values of the parameters governing the evolution of

these PC’s over time. Prior to formalizing this learning problem, it is instructive to examine

some of the descriptive statistics of the joint distribution of yields and measured disagreement.

Throughout this analysis we focus on the U.S. Treasury zero-coupon bond yields of

maturities 6 months, and 1, 2, 3, 5, 7, and 10 years. For a matching set of bond maturities,

we construct empirical counterparts to disagreement using the BCFF survey of yield forecasts

over the period from January, 1985 through December, 2015, with the start date determined

4Thus, disciplining BL’s learning rule with survey information would likely lead to a material deterioration
in forecast accuracy. Kim and Orphanides (2012), Chun (2011), and Piazzesi, Salomao, and Schneider (2013)
use survey data directly in the estimation of DTSMs in which the median forecaster has full knowledge of
risk-factor dynamics and her forecasts are spanned by the low-order PCs of bond yields. We show subsequently
that roughly 50% of the variation in consensus BCFF forecasts is not spanned by the PCs of bond yields.

5These earlier studies did not explore real-time learning; they were full-sample analyses.
6One illustrative set of models are those of David (2008), Xiong and Yan (2009), and Buraschi and Whelan

(2016) in which the pairwise relative beliefs across heterogeneous agent types impact bond prices as “agree to
disagree” about the values of an unobserved risk factor that influences aggregate consumption growth.
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Panel (a): Bond Yields
0.25y 0.5y 0.75y 1y

ID(y6m) 60.31% 69.54% 66.76% 64.23%
ID(y2y) 56.37% 61.83% 59.84% 57.41%
ID(y5y) 43.39% 54.32% 55.54% 54.66%
ID(y7y) 45.58% 55.76% 58.31% 59.13%
ID(y10y) 41.21% 54.03% 55.64% 56.49%

Panel (b): Bond Yields, ID(CPI), ID(RGDP )
0.25y 0.5y 0.75y 1y

ID(y6m) 66.52% 76.04% 76.36% 74.13%
ID(y2y) 60.42% 69.17% 72.01% 72.00%
ID(y5y) 50.60% 65.10% 71.54% 71.31%
ID(y7y) 53.57% 66.30% 73.64% 74.63%
ID(y10y) 51.38% 66.29% 72.26% 72.05%

ID(y10y)− ID(y2y) 23.12% 18.14% 17.49% 13.98%

Table 1: R2’s from the projections of inter-quantile differences in BCFF forecasts onto all yields
(maturities of 6 months, and 2, 5, 7 and 10 years), and onto all yields and disagreement about inflation
and real output growth over forecast horizons of one through four quarters. The sample period is
January, 1985 through December 2014.

by data availability. The survey is run each month, and is typically released at the beginning

of the following month (usually the first business day), based on information collected over a

two-day period (usually between the 20th and the 26th of the month). Both the zero yields

and their corresponding survey-implied forecasts are computed as in Le and Singleton (2012).7

Disagreement is constructed as the inter-decile range of the professional yield forecasts

from the BCFF survey, which begin in January 1985.8 The differences between the ninetieth

and tenth percentiles of the cross-sectional distribution of forecasts over horizon j and bond

maturity m is denoted by IDjt(y
m).9 In Panel (a) of Table 1 we report the R2’s from the

projections of these dispersion measures onto bond yields for forecast horizons of one through

four quarters. Yield disagreement is only partially spanned by the yield curve, with R2’s

ranging from 40% to 69% across forecast horizons and bond maturities.

Buraschi and Whelan (2016) and Andrade, Crump, Eusepi, and Moench (2014), among

others, present evidence that disagreement about future output growth and inflation have

predictive power for yields. We focus on disagreement about future yields, because the

priced factors in bond markets are spanned by the low-dimensional yield PCs. Moreover,

7By interpolating the forecasts of par yields to obtain approximate forecasts of zero yields, we simplify our
analysis to one of forecasting zero-coupon yields in an affine DTSM.

8Our results are robust to measuring dispersion in beliefs as the cross-sectional (point-in-time) volatility
of professional forecasts (Patton and Timmerman (2010)) or the cross-sectional mean-absolute-deviation in
forecasts (Buraschi and Whelan (2016)), and our measure is similar to that used by Andrade, Crump, Eusepi,
and Moench (2014).

9In each month we check how many forecasters have published a forecast for the desired yield and predictive
horizon. Out of the total 117 forecasters, we usually find approximately 45 forecasts.

5



1990 1995 2000 2005 2010 2015
0

50

100

150

200

250

300

B
as

is
 P

oi
nt

s

Figure 2: Historical measures of dispersions in professional forecasts one-year ahead for the two- and
seven-year bond yields, ID(y2y) and ID(y10y).

disagreement about yields is not spanned by disagreement about inflation and output growth.

Using the BCFF panel of forecasters, we construct forecasts of one-year ahead inflation and

real GDP growth (again as inter-decile ranges).10 Panel (b) of Table 1 shows that R2’s in the

projections of yield disagreement on yields and macroeconomic disagreement are less than 75%.

Equally notable, when the dependent variable is the slope of disagreement, ID(y10y)−ID(y2y),

the R2 is only 14% for the four quarters horizon. In subsequent sections we show that yield

disagreement is more strongly predictive of future excess bond returns than inflation, output

growth, and disagreement about these macro variables.

A large part of its variation over time of our measures of disagreement can be explained

their low-order PCs: the first PC of the covariance matrix of the IDjt(y
m), across j and m,

explains 97% of the variation. The second PC is a “slope of disagreement” factor. Therefore,

in our subsequent analysis of learning we summarize information on bond yield disagreement

at time t using H ′t =
[
IDt(y

2y), IDt(y
10y)

]
over the horizon of one year (so we drop the

subscript j = 1y). Figure 2 shows that these measures of disagreement are counter-cyclical

as they tends to rise during and shortly after NBER recessions. Moreover, ID(y2y) tends

to be higher than ID(y10y) and the gap between them (ID(y2y) − ID(y10y)) is relatively

large following the two recessions in our sample. The years 2012-13 are exceptional for the

persistently low level of ID(y2y). The cyclical patterns of H for different choices of the

professional forecasters’ horizon are qualitatively similar.

10We compute one-year-ahead expected inflation and real GDP growth for each forecaster as the average of
the one, two, three and four quarter ahead forecasts.
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3 Formalizing BL’s Learning Rule

Figure 1 provides compelling evidence that learning shapes beliefs about expected excess

returns. Our goal is to explore how real-time learning, enriched by conditioning on disagreement

among professionals, affects the market prices of factor risks, insights that real-time predictive

regressions alone do not reveal. Additionally, we are interested in how BL updates the

parameters of the historical and pricing distributions as new information arrives, and the role

of disagreement in this updating process. To identify these properties of BL’s learning rule,

we endow her with a learning model based on a Gaussian DTSM.

In a standard Gaussian DTSM the one-period riskless rate rt has an affine factor represen-

tation, rt = ρ0 + ρPPt,. Consistent with the well-documented covariance structure of yields,

the risk factors Pt are taken to be the first three PCs of bond yields. Under the pricing

distribution Q, P is assumed to follow the autonomous Gaussian process

Pt+1 = KQ
0P +KQ

PPPt + Σ
1/2
PPe

Q
P,t+1. (1)

The arbitrage-free price Dm
t of a zero-coupon bond issued at date t and maturing at date

t+m is then determined as

Dm
t = EQ

t

[∏m−1

u=0
exp(−rt+u)|ΘQ,Pt

]
, (2)

where ΘQ is the parameter vector governing the Q distribution of P . Econometric identification

of ΘQ can be achieved (see Joslin, Singleton, and Zhu (2011), JSZ) by normalizing ρ0, ρP , KQ
0P ,

and KQ
PP to be known functions of

(
kQ∞, λ

Q,ΣPP
)
, with kQ∞ a scalar and λQ the eigenvalues

of KQ
PP .11 Zero-coupon bond yields in this model are affine functions of P:

ymt = Am(kQ∞, λ
Q,ΣPP) +Bm(λQ)Pt. (3)

Professional traders typically adopt a pricing model that shares the factor structure of (3).

This industry practice presumes knowledge of the loadings (Am, Bm), for ΘQ is being treated

as both known and fixed over the interval [t, t + m] when computing Dm
t .12 By following

this practice, BL can precisely calibrate λQ from the loadings Bm(λQ) and the cross-maturity

11When P follows a stationary process under Q, kQ∞ is proportional to the risk-neutral long-run mean of r.
We adopt this more robust normalization, since the shape of the yield curve may call for the largest eigenvalue
λQ
1 to be very close to or even larger than unity. See JSZ for details.
12This is reminiscent of the assumption of “anticipated utility” that is often made in equilibrium representative-

agent models with Bayesian learning (see, e.g., Kreps (1998) and Cogley and Sargent (2008)) for tractability,
particularly in high dimensional models. Among recent studies of learning and the pricing of equities, Johannes,
Lochstoer, and Mou (2016) also adopt the assumption of anticipated utility. Importantly, here we are discussing
the martingale pricing measure and there is no presumption of shared beliefs across market participants.
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Figure 3: Time-series projections of the decile-ordered one-year ahead forecasts by BCFF
forecasters of yields onto their forecasts of PC1 and PC2.

factor structure of ymt and Pt (see also Duffee (2011)). The intercepts Am depend in addition

on kQ∞ and ΣPP . However, the impact of ΣPP on Am is through a convexity adjustment that

is typically very small. Therefore, knowledge of λQ and a tight prior on kQ∞ (also estimable

from the cross-section of yields) imply that BL effectively knows the Am’s as well.

Now if the factor loadings are known to BL, then they are also knowable by other bond

market participants, so one might wonder whether professionals do in fact share the same

views about the Bm. Fortunately, we can shed light on this using the monthly BCFF yield

forecasts. Consider the yield forecasts for horizon h ordered by deciles in the BCFF panel,

yht,o1 < ... < yht,o10 , where yht,o1 is the forecast of the professional falling at the tenth percentile,

yht,o2 is the forecast falling at the twentieth percentile, and so on up to the ninetieth percentile

(we focus on order statistics, because the individual forecasters change over our sample). If

the BCFF professionals share common views on the loadings, then (for each horizon h) we

should find identical loadings across deciles in the projections

ŷmht,ok = Ām + B̄mP̂ht,ok + emht,ok , (4)

where P̂ht,ok are the BCFF decile forecasts of the PCs. Figure 3 displays the full-sample

estimates (for h = 1y) of these loadings on PC1 and PC2 for the decile expectations (solid

lines) and for the sample yields (dashed lines). The loadings are remarkably similar across

forecaster deciles, and they are all close to the sample counterparts. This is the case even

though there are large differences in the forecasts of future yields across deciles (Figure 2).

Taken together, these observations suggest that BL’s central learning problem in Treasury
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markets is about the physical dynamics of the risk factors fP(Pt|Zt−1
1 ), where Zt−1

1 ≡
{Z1, Z2, ..., Zt−1}. Two considerations motivate the conditioning of fP(Pt|Zt−1

1 ) on a richer

information set than the history of Pt. First, the market prices of the factor risks will generally

depend on more information than bond yields alone (see JPS for discussion of this point in a

non-learning setting). Second, as BL learns, her time-varying posterior means of the unknown

parameters of fP(Pt|Zt−1
1 ) will change with the arrival of new information Z. Given our focus

on the roles of disagreement Ht in BL’s learning rule, for most of our analysis Z ′t = (P ′t, H ′t).
However, to shed broader light on the nature of the incremental forecasting power of Ht we

subsequently expand Zt to include various macro variables as well.

Within the Gaussian DTSM framework, BL assumes that Zt follows the process

Zt+1 = KP
0t +KP

ZtZt + Σ
1/2
Z ePZ,t+1, ePZ,t+1 N(0,ΣZ), (5)

with the elements of KP
0t and KP

Zt unknown and potentially time varying. We define ΘP
t as

the vectorized (KP
0t,K

P
t ). The portfolios Pt are assumed to be priced perfectly by (2),13 while

the higher-order PCs Ot are priced with errors:

Ot = AO

(
ΘQ
)

+BO

(
ΘQ
)
Pt + εO,t, (6)

where (Pt,Ot) fully spans yt. The pricing errors εO,t are assumed to be iid Normal(0,ΣO),

with ΣO diagonal (consistent with its sample counterpart from a regression of Ot on Pt).
To allow for constraints on the market prices of risk, we partition ΘP

t as (ψr, ψP
t ), where

ψP
t is the vectorized set of free parameters and ψr is the vectorized set of parameters that

are fixed conditional on ΘQ. Letting ιr and ιf denote the matrices that select the columns of

(I ⊗ [1, Z ′t−1]) corresponding to the restricted and free parameters, and collecting the known

terms in (5) into Yt = Zt −
(
I ⊗ [1, Z ′t−1]

)
ιrψ

r, we rewrite the state equation as

Yt+1 = XtψP
t + Σ

1/2
Z ePZ,t+1, (7)

where Xt = (I ⊗ [1, Z ′t]) ιf .

In recognition of the possibility of permanent structural changes in the underlying economic

environment, BL assumes that ψP
t evolves according to

ψP
t = ψP

t−1 +Q
1/2
t−1ηt, ηt

iid∼ Normal(0, I), (8)

13In a similar Gaussian setting without learning, Joslin, Le, and Singleton (2013) show that model-implied
risk premiums and forecasts of future yields are nearly identical from a model in which Pt is priced perfectly
and a model with all of the bonds (and hence P) are priced with errors.
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where Qt−1 denotes the (possibly) time-varying covariance matrix of ηt, with ηt independent of

all past and future ePZt. BL’s Bayesian learning rule filters for the unknown ψP
t conditional on

her knowledge of (ΘQ, ψr). Adopting a Gaussian prior on ψP
0 leads to a posterior distribution

for ψP
t that is also Gaussian, ψP

t |Zt1 ∼ Normal(ψ̂P
t , Pt). In Appendix A we show that her

posterior mean follows the recursion

ψ̂P
t = ψ̂P

t−1 +R−1
t X ′t−1Σ−1

Z (Yt −Xt−1ψ̂
P
t−1), (9)

which depends on the posterior variance Pt through R−1
t ≡ Pt −Qt, with Rt satisfying

Rt =
(
I − P−1

t−1Qt−2

)
Rt−1 + X ′t−1Σ−1

Z Xt−1. (10)

This rule has a revealing interpretation within the class of adaptive least-squares estimators

of ψP
t . We subsequently focus on the following two special cases:14

B↓CGLS: Setting P−1
t−1Qt−2 = (1− δ) · I15 for a constant scalar 0 < δ ≤ 1, ψ̂t becomes the

constant gain least-squares (CGLS) estimator of ψP with γ = δ.

B↓RLS: If the constant δ = 1, then this CLGS estimator ψ̂t simplifies further to the recursive

least-squares (RLS) estimator of ψP.

Note that a Bayesian agent whose learning rule specializes to the RLS estimator is

not adaptive in the following important sense. With γ = 1 we have Qt = 0, so an agent

following a RLS rule is learning about an unknown ψP that is presumed to be fixed over

time. Consequently, sudden changes in market conditions that result in sharp movements

in recent values of Z may have an imperceptible effect on ψ̂P
t as updated by BL. Indeed, in

environments where the ML estimator converges to a constant for large T , an RLS-based BL
will be virtually non-adaptive on ψ̂P to new information after a long training period.

A more adaptive rule that responds to changes in the structure of the economy (owing say

to changes in government policies) is obtained by giving less weight to values of Z far in the

past. Such down-weighting arises naturally when BL’s learning specializes to Case B↓CGLS.

The constant-gain coefficient γ determines the “half-life” of the weight on past data. This

follows from the observation that, conditional on ΘQ, the first-order conditions to the likelihood

function implied by Bayesian learning with CGLS updating (Appendix A) are identical to

those of a likelihood with terms of the form γtεP′ZtΣ
−1
Z εPZt.

16

14See McCulloch (2007), and the references therein, for discussions of similar issues in a setting of univariate
yt and econometrically exogenous xt.

15This condition can be obtained by recursively setting Qt−1 = 1
δt

(Pt−1 − Pt−1x
′
t−1Ω−1

t−1xt−1Pt−1).
16The latter is the likelihood function of a naive learner who simply re-estimates the likelihood function of a

fixed-parameter model every period using the latest data and with down weighting by γt.
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The density of Yt+1 conditional on Zt1 is fP(Yt+1|Zt1) = Normal
(
Xtψ̂P

t ,Ωt

)
, with the

one-step ahead forecast variance determined inductively by Ωt = XtPtX ′t + ΣZ . The term

XtPtX ′t captures the uncertainty related to the unknown ΘP, while the second term is the

innovation variance of the state Zt. Out-of-sample forecasts of yields and excess returns are

computed directly from BL’s learning rule. Since yields are spanned by P, the first step is to

compute the out-of-sample forecasts of the state vector Z, which includes P. The h-period

ahead forecast of Z from the fitted DTSM at date t, is given by

Ẑt+h = K̂P
0t +

(
K̂P
Zt

)
K̂P

0t + ...+
(
K̂P
Zt

)h−1
K̂P

0t +
(
K̂P
Zt

)h
Zt. (11)

This leads directly17 to the h-period ahead forecasts of yields:

ŷmt+h = Am

(
KQ

0 ,K
Q
PP ,ΣPP

)
+Bm

(
KQ
PP

)
P̂t+h. (12)

Importantly, (11) and (12) reveal that BL’s learning rule is not an affine model; BL’s

optimal forecasts and expected excess returns are nonlinear functions of the history of Zt.

This is also revealed by BL’s stochastic discount factor MB:

M(ΘQ,Pt+1, Z
t
1) = e{−rt−

1
2

log |Γt|− 1
2

Λ̂′PtΓ
−1
t Λ̂Pt−Λ̂′PtΓ

−1
t εPt+1+ 1

2
(εPt+1)′(I−Γ−1

t )εPt+1}, (13)

Γt = Ω
−1/2
PP,tΣPP(Ω

−1/2
PP,t)

′,

Ω
1/2
PP,tΛ̂Pt = Λ̂0t(Θ

Q, Θ̂P
t ) + Λ̂1t(Θ

Q, Θ̂P
t )Zt, (14)

where the market prices of risk Λ̂Pt depend on the posterior mean Θ̂P
t and, therefore, implicitly

on the entire history Zt1 (Appendix B). The form of ΛPt is familiar from Duffee (2002)’s model

without learning, but importantly here the weights are state-dependent owing to learning.

At date t a Bayesian BL, faced with new observations (Zt,Ot) and the past history

(Zt−1
1 ,Ot−1

1 ), evaluates an (approximate) likelihood function by integrating out the uncertainty

about ΘP
t using her posterior distribution. Thus, with (ΘQ,ΣO) known,

f(Zt1,Ot1) =
t∏

s=1

f(Os|Zs1 ,Os−1
1 ; ΘQ,ΣO)×∫

f(Zs|Zs−1
1 ,Os−1

1 ,ΘP
s−1; ΣZ)f(ΘP

s−1|Zs−1
1 ,Os−1

1 )d(ΘP
s−1). (15)

For robustness– and consistent with practice by sophisticated market participants– we extend

17Notice that in computing the forecast we are neglecting the effects of parameter uncertainty, but rather
we are assuming that BL takes the physical dynamics of Z as known when forecasting. We have found that
accounting for parameter uncertainty does not materially change yields forecasts.
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BL’s learning rule to have her update ΘQ monthly using (15) as new data becomes available.

This allows us to assess whether the cross-maturity structure of bond yields calls for revisions

of the factor loadings as BL learns over time. Strikingly, BL’s estimates of λQ change very

little over the twenty-five years that she is learning in our sample (Section 4.1). This supports

the premise that BL prices bonds as if λQ is known.

The constraints φr on (KP
0t,K

P
Zt) in (5) mitigate overfitting of the forecasts of yields

relative to unconstrained linear regressions. As we explain in Section 4.1 and Appendix D,

BL selects constraints during a model “training period” that predates her learning. As such,

she is truly computing out-of-sample forecasts using a real-time learning rule.

Throughout this construction the direct dependence of Ωt on ΣZ is a consequence of BL
treating ΣZ as known, and not as an object to be learned. This is an admittedly strong

assumption as, empirically, BL’s learning rule shows revisions in ΣZ . Though revisions in ΣPP

through learning would be largely inconsequential for pricing (convexity effects are small),

they could be material for how she updates her beliefs about ΘP. In Appendices E and F we

show that our core findings are robust to the introduction of learning about the structure of

the conditional covariances of Z in a model with time-varying second moments.

4 Learning and Risks Premiums: Empirical Evidence

Equipped with this parametric learning rule for BL, we next explore empirically the properties

of her subjective risk premiums, and of the roles of disagreement in shaping her views about

future excess returns. In setting out on this analysis it is instructive to focus initially on

learning from information in the yield curve alone. This serves as a benchmark for evaluating

the incremental role of disagreement, and it allows examination of learning over a much longer

time period (owing to relatively limited historical BCFF data).

4.1 Learning From the Yield Curve: Rule `LCG(P)

Consider a three-factor DTSM in which BL follows a constant-gain learning rule with con-

ditioning on past information on P alone, rule `CG(P). BL’s rule is trained over the period

from June 1961 through January 1972, and it is during this period that constraints are set on

the market prices of factor risks (ΛPt in (14)). Every month thereafter, through December

2014, BL updates her posterior Θ̂t as new data becomes available.

The gain parameter γ is set to 0.99. Appendix C offers two complementary perspectives

on this choice. First, if we allow BL to adjust γ over time based on realized out-of-sample

forecast accuracy, for both one- and four-quarter ahead horizons, she selects fitted γt’s close

to 0.99. This is especially true over the period January 1995 through December 2014, which

12



will be the focus of most of our subsequent analysis. Second, setting γ equal to 0.99 is ex-post

optimal. In fact, searching over fixed γ’s to minimize out-of-sample forecast errors at the

one-quarter ahead and one-year-ahead horizon over the period from January 1995 through

December 2014 leads to an “optimal” value of γ that is approximately 0.99.

The real-time estimates of λQ from rule `LCG(P) are displayed in Figure 4. Notably, BL
holds λQ virtually fixed over the entire sample, consistent with the premise of her Bayesian

rule for learning about ΘP
t . (They are virtually identical for the RLS rule γ = 1). Though

there is mild drift in the second eigenvalue λQ2 , repeating our learning exercise with the

full vector λQ fixed from the initial training period onward has a very small effect on the

quantitative properties of the rule-implied prices or forecasts. This is reflected in the loadings

B(λQ) (see (3)) of the first two PC’s of the yields (y2y, y5y, y10y) as they are close to constant

over the entire sample (Figure 5).18 Thus, BL uses nearly fixed “hedge ratios” in managing

bond portfolio risks.

This finding is especially striking in relation to how BL updates the historical eigenvalues

λP (see Figure 4). Her views about the objective feedback matrix KP
PP,t change substantially

over time, hence so do the implied responses of risk premiums to innovations in P. For all of

the periods of large changes in λPt , λQ remains remarkably stable. This is particularly evident

for λP1 during the Fed experiment in the early 1980’s.

The DTSM-based rules are potentially highly parametrized. For parsimony, and forecast

precision in the out-of-sample assessments, the parameters governing the market prices of P
risks (MPR’s) are set to zero if their p-values during the training period are larger than 0.4.

Since KQ
PP is presumed known by BL, these constraints on ΛP effectively transfer a priori

knowledge of λQ to (some) knowledge about KP
PP,t. All constraints on ΛP selected during

the training period are maintained throughout the remainder of the sample period.19 See

Appendix D for details on the constraints imposed.

Figure 6 compares annualized MPR’s for P1 and P2, for `LCG(P) against those implied by

the fixed-parameter, full-sample estimates. Real-time learning induces substantial differencea

in measured MPR’s compared to results without learning. Over the sample from January

1985 through December 2014, the root-mean-squared differences are 23 basis points for P1 and

18Further reassurance that the near constant λQ is not a mechanical implication of the no-arbitrage term
structure framework is provided by running the reduced-form, expanding-window regressions

ynt = ant +Bnt Pt + unt .

The loadings Bnt remain quite stable for yields across the maturity spectrum. Importantly, the estimates of the
weights that define P are also stable over time.

19We wondered whether adjusting the constraints in real time would improve out-of-sample forecasts.
Interestingly, for the rules we examine, such real-time updating leads to a deterioration in the quality of
forecasts, by a substantial degree. We found that this was true for a variety of training periods. Evidently,
real-time adjustments induce a form of over-fitting that compromises forecast accuracy.
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Figure 4: Estimates from model `LCG(P) of the eigenvalues λQ (λP) of the feedback matrices

KQ
PP,t (KP

PP,t) governing the persistence in P. The estimates at date t are based on the
historical data up to observation t, over the period January 1972 through December 2014.

133 basis points for P2. For P1 the effects of learning are particularly large around business

cycle turning points. There are larger and more persistent effects of learning for P2, especially

after 1995. The slope of the yield curve is unquestionably a priced risk for BL.

The expected excess returns over a one-year holding period implied by BL’s learning rule

`LCG(P) differ substantially from the corresponding risk premiums implicit in the learning rule

followed by the median BCFF forecaster, `(BCFF ) (Figure 7).20 Key to understanding these

differences– which are particularly large following NBER recessions– is the strong positive

correlation between BL’s risk premium on ten-year bonds and the steepness of the yield curve.

Precisely when the Treasury curve is relatively steep, the median BCFF forecaster believes

that risk compensation is much lower than what is implied by BL’s learning rule. For example,

following the low (recession) levels of y10y from late 2002 until 2004 the BCFF forecasters

20BCFF forecasts are averages over calendar quarters and cover horizons out to five quarters ahead. For
example, in January, 1999, the one-quarter ahead forecast for a specific variable will be equal to its average
value between February and April. For comparability across all forecast rules, we compute similar quarterly
averages for rule `LCG(P) and, indeed, all subsequent rules explored in this paper.
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Figure 5: Loadings of P1 and P2 on bond yields of maturity 2, 5 and 10 years and for model
`LCGP, based on (12) over the sample January 1972 through December 2014.
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Figure 6: One-month ahead market prices of risk (ΛP,t) for P1 and P2. We compare `LCG(P)
against full sample (FS) estimates over the period June 1961 through December 2014.

expected a much more rapid rise in y10y than did BL’s more accurate rule `LCG(P). Thus,

the widespread advice to reduce long-term bond positions as the US economy emerged from

recent recessions, while consistent with the subjective beliefs of the median BCFF forecaster,

was in fact poor advice relative to the ex ante signal from `LCG(P) and (with the benefit of

hindsight) the actual performance of bonds.21

4.2 Learning from Disagreement: Rule `CG(P , H)

To accommodate dependence of expected excess returns on both information spanned by

the current yield curve and disagreement about the paths of future yields, we expand the

21This finding is complementary to (and distinct from) Rudebusch and Williams (2009)’s finding that the
slope of the yield curve gives more reliable forecasts of recessions than the one-year ahead recession probabilities
from the Survey of Professional Forecasters. It suggests that using median BCFF forecasts of long-term bond
yields to calibrate empirical learning rules would lead to distorted measures of required risk compensations.
Gains in forecast performance may come from using information embedded in survey forecasts of short-term
rates and, indeed, Altavilla, Giacomini, and Ragusa (2014) present evidence consistent with this view.
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Figure 7: Average expected excess returns over holding periods of ten, eleven and twelve
months for the ten-year bond based on `LCG(P) and `(BCFF ) (left axis) and the slope of the
Treasury curve measured as y10y − y2y (right axis), January, 1972 to December, 2014.

conditioning information vector Z ′t to (P ′t, H ′t). This rule– referred to as `CG(P, H)– fits

directly into the framework of Section 3. Since data for Ht is available only from January 1985,

rule `CG(P, H) is trained from January 1985 through January 1995, and then BL proceeds

forward in time using a monthly expanding window up to December 2014. For comparison we

also construct forecasts from the simple yield-based rule that has each zero yield following a

random walk, rule `(RW ).

The relative accuracies of these rule-based forecasts, which depend primarily on Θ̂P
t , can

be assessed from the RMSE’s displayed in Table 2. Below each RMSE are Diebold and

Mariano (1995) (D-M) statistics for assessing whether two RMSE’s are statistically the same,

calculated as extended by Harvey, Leybourne, and Newbold (1997). Conditioning on Ht leads

to a substantial improvement in forecast accuracy relative to the DTSM-based rules that

conditions only on P. This pickup in accuracy occurs across the maturity spectrum, with

larger gains at the long end of the Treasury yield curve. Moreover, `CG(P, H) outperforms

rule `(RW ) across the maturity spectrum (most significantly for long-maturity bonds). The

outperformance of `CG(P, H) relative to the least accurate rule `(BCFF ) is statistically

significant across the entire yield curve for the one-quarter horizons.22

22In the literature on forecasting with Gaussian DTSMs and vector autoregressions the choice of the horizon h
has not been without controversy, especially as h extends out a year or longer, owing to potential small-sample
biases (see, e.g., Stambaugh (1999)). In a term structure context, Bauer and Hamilton (2018) argue that there
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RMSE’s (in basis points) for Quarterly Horizon
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y
`(RW ) 30.7

(−3.81)
[−]

32.6
(−2.98)

[−]

35.2
(−3.98)

[−]

36.1
(−5.06)

[−]

36.4
(−4.89)

[−]

36.0
(−3.96)

[−]

32.5
(−3.01)

[−]

`(BCFF ) 38.6
(−)
[]

37.6
(−)
[]

43.8
(−)
[]

50.7
(−)
[]

44.6
(−)
[]

44.1
(−)
[]

40.0
(−)
[]

`CG(P) 28.9
(−3.47)
[−1.45]

31.1
(−2.60)
[−0.86]

35.8
(−3.55)
[1.31]

36.1
(−5.22)
[−0.06]

37.1
(−4.53)
[0.71]

36.6
(−3.75)
[0.85]

33.4
(−2.74)
[1.65]

`CG(P, H) 28.8
(−3.38)
[−1.45]

29.9
(−2.86)
[−1.45]

34.2
(−3.73)
[−1.42]

34.7
(−5.16)
[−1.60]

36
(−4.39)
[−0.33]

35.3
(−4.00)
[−0.67]

31.6
(−3.10)
[−1.36]

RMSE’s (in basis points) for Annual Horizon
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

`(RW ) 118.8
(−1.00)

[−]

115.3
(−0.83)

[−]

103.3
(−1.90)

[−]

94.1
(−2.65)

[−]

84.9
(−2.82)

[−]

78.8
(−2.75)

[−]

70.8
(−2.69)

[−]

`(BCFF ) 128.8
(−)

[1.00]

123.9
(−)

[0.83]

122.1
(−)

[1.90]

122.5
(−)

[2.65]

105.9
(−)

[2.82]

100.6
(−)

[2.75]

88.1
(−)

[2.69]

`CG(P) 108.9
(−1.60)
[−1.34]

105.7
(−1.68)
[−1.27]

98.7
(−2.28)
[−0.79]

90.9
(−2.93)
[−0.55]

83.0
(−2.98)
[−0.33]

77.0
(−3.10)
[−0.38]

70.8
(−2.74)
[0.01]

`CG(P, H) 109.4
(−1.38)
[−1.20]

105.0
(−1.48)
[−1.35]

95.8
(−2.17)
[−1.44]

86.5
(−2.91)
[−1.36]

77.0
(−3.28)
[−1.41]

70.2
(−3.72)
[−1.69]

64.0
(−3.49)
[−1.75]

Table 2: RMSE’s for one-quarter and one-year ahead forecasts, January 1995 to December
2014. The D-M statistics for the differences between the DTSM- and BCFF-implied (DTSM-
and RW -implied) forecasts are given in parentheses (brackets).

The outperformance of `CG(P, H) relative to both `(RW ) and `(BCFF ) was especially

large in the early 2000’s (Table 3). The portion of our sample covering the global financial

crisis was the easiest subperiod for forecasting Treasury yields. With short-term rates

pegged essentially at zero, `(RW ) was the best performing rule out to the five-year maturity.

`CG(P, H) outperformed `(RW ) for long-maturity bonds, even though the DTSM-based

learning rules do not directly incorporate a zero lower bound for the Federal Reserve’s policy

rate (see, e.g., Kim and Singleton (2012) and Christensen and Rudebusch (2015)). Moreover,

shortening our evaluation window to the period from 2008 to 2011 leads to outperformance of

`CG(P, H) over `(RW ) across all yields. Only after several years of short rates near a zero

lower bound does rule `(RW ) slightly outperform `CG(P, H) over the intermediate segment

is a tendency for an upward bias in estimated R2’s in excess return regressions owing to a “standard error
bias,” and this bias is potentially amplified when studying long-horizon forecasts using overlapping data. We
emphasize that our assessments of forecast accuracy are based on out-of-sample fit. Moreover, our findings on
out-performance are consistent across one-quarter- and one-year-ahead horizons.
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RMSE’s by Bond Maturity
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

January, 1995 – December, 2000
`(RW ) 128 130 119 108 100 93 84
`(BCFF ) 136 131 125 113 104 95 85
`CG(P) 113 114 106 96 90 86 81
`CG(P, H) 113 113 103 92 84 80 76

January, 2001 – December, 2007
`(RW ) 154 144 127 114 90 71 56
`(BCFF ) 157 149 142 136 110 95 77
`CG(P) 142 135 124 111 90 74 58
`CG(P, H) 140 132 119 104 81 64 47

January, 2008 – December, 2014
`(RW ) 51 52 47 49 64 72 72
`(BCFF ) 82 84 95 115 102 110 100
`CG(P) 53 51 54 59 68 71 72
`CG(P, H) 60 56 55 58 65 67 67

Table 3: RMSE’s in basis points for one-year-ahead forecasts of individual bond yields over
the indicated sample periods.

of the Treasury curve.

How does conditioning on H change BL’s perceived risk premiums? Figure 8 shows one-

month annualized market prices of risk for the first two PC’s of the yield curve. Introducing

H in the conditioning information substantially increases the volatility of risk premiums. Over

the sample from January 1995 through December 2014 the sample standard deviation of the

estimated MPR for the first PC (second PC) is 0.69% (1.24%) for model `CG(P), while it is

almost 2.5% (3.0%) for rule `CG(P, H). With this increased volatility of the MPR’s from rule

`CG(P, H) comes more accurate out-of-sample forecasts of future yields (Table 3).

Letting xrn,ht+h denote the realized excess return on an n-maturity bond over an h-period

holding period, the left panel of Figure 9 displays BL’s forecast exr10y
1y,t(P, H) of exr10y,1y

t+1y from

rule `CG(P, H) and er10y
1y,t(P) from rule `CG(P). The right panel shows the difference in RMSEs

across these two learning rules from forecasting the realized excess returns xr10y,1y
t+1y . The

greater forecast accuracy of rule `CG(P, H) relative to rule `CG(P) is particularly large during

and immediately after the recessions of 2001 and 2008. For most of the sample, the difference

in RMSEs is close to 80 bps and drops to 65 bps only after 2013. This forecasting power of

disagreement is more pronounced for long-term bonds, as the corresponding differences in

the RMSEs from rules `CG(P) and `CG(P, H) for the two-year Treasury bond are less than 5
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Figure 8: Market prices of risk for the first and second PCs of the yield curve over a one-month
holding period, based on rules `CG(P) and `CG(P, H).
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Figure 9: The left panel shows expected excess returns for a 10-year bond over a one-year
horizon, estimated using rules `CG(P) and `CG(P, H) from January 1995 through December
2015. The right panel shows the difference in RMSEs of forecasted of excess returns between
rules `CG(P) and `CG(P, H). The RMSEs are computed using an expanding window from
December 1995 through December 2014.

basis point post 2000.

Within BL’s learning rule there are two channels through which disagreement (H) can

affect expected excess returns. The first is the direct effect that It has on forecasts of future

PCs as components of Zt in (11). The second is the indirect effect of BL’s updating of the

parameters (K̂P
0t, K̂

P
Zt) as part of the learning process conditioned on (P, H). We can frame
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these effects in terms of risk premiums. Using (11) and the expression for realized excess

returns xrn,ht+h in terms of ynt+h, we can write:

exrn1y,t(P, H) = âP,Hn,t + b̂P,Hn,t Pt + ĉn,tHt, (16)

exrn1y,t(P) = âPn,t + b̂Pn,tPt. (17)

We separate the direct and indirect effects of H in (16) by estimating a rolling constant-gain

least-squares projection of Ht onto Pt,

Ht = α̂t + β̂tPt + ut, (18)

and then we construct the pseudo expected excess return

exrn1y,t(P, 0) ≡ (âP,Hn,t + ĉn,tα̂t) + (b̂P,Hn,t + ĉn,tβ̂t)Pt ≡ âP,0n,t + b̂P,0n,t Pt. (19)

The difference between (19) and (17) arises entirely from the effect that H has on the updating

of the weights on Pt when learning is conditioned on the full information (Pt, Ht).
23

There are large differences between exr10y
1y,t(P, H) and exr10y

1y,t(P, 0), especially around

cyclical turning points (left panel of Figure 10). This is indicative of H having large direct

effects during major transitions to rising or falling expected excess returns from BL’s perspective.

The differences in the root-mean-square forecasting errors for rules `CG(P) and `CG(P, H)

are above 80 bps for most of the sample (right panel), whereas the differences induced by

exr10y
1y,t(P) and exr10y

1y,t(P, 0) are always below 40 bps. Thus, following the dot-com bust in 2000,

just under half of the increased forecast accuracy of `CG(P, H) arises through the indirect

effects of H on the updating of the parameters by BL’s learning rule; the direct predictive

power of H for future P that is orthogonal to Pt accounts for the other half plus/minus.

5 Macroeconomic Information and Disagreement About Yields

Within-sample analyses in the absence of learning show that macroeconomic fundamentals

have predictive power for excess returns in bond markets (e.g., Ludvigson and Ng (2010) and

JPS). This leads us naturally to inquire as to whether our evidence on the predictive power of

H arises as a consequence of our omission of macro conditioning variables. That is, might the

role of H be simply that it is a stand-in for business cycle information?

23While it is true that (18) is fit outside of our DTSM, the (α̂t, β̂t) that we recover using monthly data
would be literally identical to those recovered within a DTSM without constraints on the market prices of risk.
This is an immediate implication of the propositions in JSZ. Therefore, we believe we are obtaining a reliable
picture of the impact of H on the loadings on P in exrn1y,t(P, 0).
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Figure 10: The left panel shows estimated using rule `CG(P, H) and rule `CG(P, 0) over
the sample from January 1995 through December 2015. The panel on the right shows the
difference in expected returns RMSE between rule `CG(P, H) and rule `CG(P, 0). RMSEs are
calculated using the same methodology as in figure 9.

5.1 Inflation, Output Growth, and Real-Time Expected Excess Returns

An important issue when studying the predictive power of macro-variables for future yields is

that official macro time-series are regularly updated after their original release date. Thus,

the current releases of macro time-series are not the same as the ones available to investors in

real time. To address this issue, we construct measures of inflation (INF) and real economic

activity (REA) that market participants would have known in real time. We use data from

the Archival Federal Reserve Economic Data (ALFRED) database, which reports the original

releases of macroeconomic series. Letting xs|t denote an economic statistic indexed to time s

and available at time t ≥ s, and recognizing that most economic statistics are released with a

one-month delay, an investor at time t can typically condition on

xt0−1|t, xt0|t, ..., xt−2|t, xt−1|t,

where t0 indicates the start of the training sample. Importantly, this is the fully updated series

through time t, and not the series as it was released in real time.24 INF is the twelve-month

log difference of the Consumer price index for all urban consumers that is available at the

time of estimation. REA is the three-month moving average of the first principal component

24Prior studies using original release data have not always updated their series through time t as we do (e.g.,
Ghysels, Horan, and Moench (2014)). Such studies are using stale data relative to what market participants
knew at the time they constructed their forecasts.
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2Y 3Y 5Y 7Y 10Y

Part A: January, 1995 – December, 2014
`CG(P) 1.06% 1.97% 3.44% 4.82% 6.61%
`CG(P, H) 1.05% 1.92% 3.22% 4.43% 5.94%
`CG(P, REA) 1.07% 1.96% 3.50% 5.02% 7.22%
`CG(P, REA, INF ) 1.07% 1.97% 3.51% 5.04% 7.24%
`CG(P, H,REA) 1.03% 1.93% 3.39% 4.77% 6.53%
`CG(P, H,REA, INF ) 1.23% 2.31% 3.89% 5.33% 7.07%
`CG(P, ID(RGDP ), ID(INF )) 1.20% 2.16% 3.71% 5.23% 7.14%
`CG(P, Cons(RGDP ), Cons(INF )) 1.22% 2.21% 3.85% 5.31% 7.17%

Part B: January, 2001 – December, 2007
`CG(P) 1.35% 2.48% 3.94% 5.10% 5.76%
`CG(P, H) 1.32% 2.38% 3.62% 4.51% 4.76%
`CG(P, REA) 1.22% 2.29% 4.02% 5.72% 7.71%
`CG(P, REA, INF ) 1.23% 2.32% 4.09% 5.84% 7.92%
`CG(P, H,REA) 1.18% 2.22% 3.73% 5.14% 6.45%

Table 4: RMSEs for average expected excess returns over holding periods of ten, eleven and
twelve months, based on learning rules with different choices of conditioning information.

of six series related to real economic activity.25

Using the BCFF panel of forecasters, we construct consensus (median) forecasts of

one-year inflation Cons(INF ) and real GDP growth Cons(RGDP ) from the monthly cross-

sections of forecasters.26 Disagreement about one-year-ahead inflation ID(INF ) and growth

ID(RGDP ) are measured as the inter-decile ranges of the cross-sections of forecasts in the

BCFF panel. Both INF and REA are negatively correlated with forecasters’ disagreement

about future macroeconomic variables, ID(INF ) and ID(RGDP ). Just as with disagreement

about future yields, disagreement about the macroeconomy increases during weak economic

times, as inflation and real economic activity decline.

To formally evaluate the contribution of macro variables to BL’s learning we expand the

conditioning information in the dynamic learning framework of Section 3, again setting the

gain coefficient γ equal to 0.99. Over the full sample the macro learning rules `CG(P, REA)

and `CG(P, REA, INF ) perform comparably to `CG(P) for maturities up to 5 years, and

25The series are the difference in the logarithm of Industrial production index (INDPRO), the difference in the
logarithm of total nonfarm payroll (PAYEMS), the difference of the civilian unemployment rate (UNRATE), the
difference of the logarithm of “All employees: Durable goods” (DMANEMP), the difference of the logarithm of
“All employees: Manufacturing” (MANEMP), and the difference of the logarithm of “All employees: NonDurable
goods” (NDMANEMP). The first PC is smoothed similarly to the Chicago Fed National Activity Index.

26We compute one-year-ahead expected inflation and real GDP growth for each forecaster as the average of
the one, two, three and four quarter ahead forecasts.
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Figure 11: Average expected excess returns over holding periods of 10, 11, and 12 months for
ten-year bonds based on `CG(P, H) and `CG(P, REA), overlaid with the realized returns.

underperform for longer maturities (Table 4). Leading up to the global financial crisis– 2001

to 2007– `CG(P, REA) substantially underperforms `CG(P) for longer maturity bonds.27

By contrast, rule `CG(P, H) reduces the RMSE of the 10-year bond return by 0.7% relative

to rule `CG(P) (a 10.5% reduction of the RMSE), and by 1.3% relative to rule `CG(P, REA)

(an 18.5% reduction of the RMSE). The relative outperformance of rule `CG(P, H) over

`CG(P, REA) can be seen graphically from Figure 11, where expected excess returns for

the ten-year bonds are plotted against the realized excess returns. The outperformance of

`CG(P, H) is at times large, especially during and immediately after NBER recessions. The

primary exception when `CG(P, REA) outperforms is during portions of the post-crisis period

of 2011-12. Conditioning on both disagreement and current real economic activity (rule

`CG(P, H,REA)) delivers RMSEs that are very close to those of `CG(P, H).

Combining P with information about the beliefs of professionals about the future macroe-

conomy (either (Cons(RGDP )t, Cons(INF )t) or (ID(RGDP )t, ID(INF )t) leads to sizable

deteriorations in forecasting accuracy relative to rule `CG(P, H), across the entire maturity

spectrum. A similar deterioration in fit arises under rule `CG(P, H,REA, INF ). Thus, the

forecasting power of H for the long end of the curve is largely distinct from that of information

about inflation and real output growth.

27These findings suggest that the full-sample analysis of JPS likely overstates the real-time predictive power
of output growth and inflation for risk premiums in bonds markets. Yet, consistent with JPS, there is evidence
of some predictive power for REA, particularly during the first part of the 2000’s.
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5.2 The Information Content of Yield Disagreement: Policy Uncertainty?

Having found that disagreement is not proxying for information about output or inflation, we

turn next to the possibility that the predictive power of H is related to uncertainty about

macroeconomic policy. Letting EPU denote one of the indices of Economic Policy Uncertainty

developed by Bloom, Backer, and Davis (2016), we construct RLS estimates of the projections

xrnt+h = γn0,t + γnP,tPt + γn
ÊPU,t

ÊPU t + ex,t+h (20)

EPUt+h = γEPU0,t + γEPUP,t Pt+h + γEPUH,t Ht+h + eu,t+h ≡ ÊPU t+h + eu,t+h (21)

where xrnt+h is the realized excess return of a zero coupon bond with maturity n over the

period from t to t+ h. Since these projections condition on Pt, γn
ÊPU,t

effectively reveals the

extent to which Ht is informative about future excess returns, over and above its correlation

with Pt, through its association with economic policy uncertainty.

Our prior is that disagreement about future yields will, to varying degrees over time,

reflect a variety of sources of risks for bond markets. We focus on two measures of policy

uncertainty: EPUnews that is constructed from textual analysis of major newspapers based

on the terms ’uncertainty’ or ’uncertain’ and ’economic’ or ’economy,’ along with one or more

of the following terms: ’congress’, ’legislation’, ’white house’, ’regulation’, ’federal reserve’,

or ’deficit;” and EPUfed that measures the more specific uncertainty about federal and local

government spending.28

Figure 12 shows real-time recursive least squares estimates of one-quarter ahead (h = 3)

expected excess returns for a 10 year bond based on (20), and compares them with expected

excess returns from real-time conditioning only on P and on (P, H). Notice, first of all,

that rules `CG(P, H) and `CG(P) generate very different paths for expected excess returns.

Additionally, the excess returns from the rule `CG(P, ÊPUnews) track the returns from `CG(P)

much more closely than they track returns from `CG(P, H), especially during the late 1990’s

and from the onset of the global financial crisis onward. Thus, this broad measure of economic

policy uncertainty is evidently not the key source of the predictive power for H.

On the other hand, and quite strikingly, from mid 1998 through the remainder of our

sample, BL’s expected excess returns and those from rule `(P, ÊPUfed) are nearly identical.

At least for this extended period of time, it appears that the predictive power of H in BL’s

learning rule is associated with an impact of fiscal policy uncertainty on bond yields. The

28These are ailable at http://www.policyuncertainty.com. We also examined measures of uncertainty related
to tax and monetary policies and found them to be only weekly correlated with yield disagreement. Also,
replacing Ht with HM′

t = (ID(CPI), ID(RGDP )) in (21) leads to a substantial deterioration in explanatory
power in these projections, which reinforces our earlier finding that disagreement about inflation and output is
not the source of the predictive power of Ht for excess bond returns.
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Figure 12: Recursive-real time estimates of one quarter-ahead 10-year bond excess returns
conditioning on ÊPUnews (left panel) and ÊPUfed (right panel).

late 1990’s are again an exceptional period. This was the period of fiscal conservatism under

the Clinton administration with a policy focus on deficit reduction. This focus may well have

weakened the association between fiscal policy uncertainty and professionals’ disagreement

about the future course of interest rates.

To be clear, we are not saying that uncertainty about fiscal policy drives (spans) the

observed dispersion of yield forecasts by professionals. On the contrary, EPUfed,t has limited

explanatory power for Ht, and this is especially true when projecting the slope of the term

structure of disagreement onto EPUfed,t. What are findings suggest is that the component of

EPUfed,t that is spanned by Ht has roughly the same correlation with future bond yields as

Ht. Put differently, it is the component of the slope of the disagreement curve correlated with

EPUfed,t that has strong predictive power for future bond yields in BL’s learning rule.

6 Concluding Remarks
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Appendices

A Log likelihood function

We begin by noting that when (ΘQ,ΣO) and ΣZ are presumed to be constant, equation (15)

implies that we can decompose the log likelihood function into a P and Q part

−2 logL = −2 logLQ(ΘQ,ΣPP ,ΣO)− 2 logLP(ΘP
t ,ΣZ , Qt).

logLQ denotes the part of the likelihood function associated with pricing errors and logLP

the likelihood function of the dynamic evolution of Zt,

Zt+1 = KP
Z,0t +KP

Z,1tZt + Σ
1/2
Z ePZ,t+1, (22)

where Z ′t = (P ′t, H ′t)′ and ΘP
t = [KP

Z,0t,K
P
Z,1t] denotes the drifting parameters. We assume ΘP

t

can be partitioned as (ψr, ψP
t ), where ψP

t is the vectorized set of free parameters and ψr is the

vectorized set of parameters that are fixed conditional on ΘQ. The unrestricted parameters,

ψP
t , evolve according to a random walk

ψP
t = ψP

t−1 +Q
1/2
t−1ηt ηt

iid∼ N(0, I), (23)

with stochastic covariance matrix Qt−1. By moving terms that involve known parameters and

observable states to the left hand side we can rewrite equation (22) into

Yt = Xt−1ψ
P
t−1 + Σ

1/2
Z ePZ,t, (24)

where

Yt = Zt −
(
I ⊗ [1, Z ′t−1]

)
ιrψ

r,

Xt =
(
I ⊗ [1, Z ′t]

)
ιf ,

with ιr and ιf denoting the matrices that select the columns of (I ⊗ [1, Z ′t−1]) corresponding

to the restricted and free parameters respectively. With normally distributed innovations to

the latent parameter states (23) (the transition equation) and to the factor dynamics (24)

(the measurement equation) we have a well-defined linear Kalman filter.29 Conditional on

(ΘQ,Σ) the solution to the Kalman filter is given by recursively updating the posterior mean

ψ̂P
t = EP(ψP

t |Zt1), posterior variance Pt = VP(ψP
t |Zt1), and forecast variance Ωt = VP(Zt+1|Zt1)

29Note that the latent states in the filtering problem are the parameters and not the factors.
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according to:

ψ̂P
t = ψ̂P

t−1 + Pt−1X ′t−1Ω−1
t−1(Yt −Xt−1ψ̂

P
t−1), (25)

Pt = Pt−1 +Qt−1 − Pt−1X ′t−1Ω−1
t−1Xt−1Pt−1, (26)

Ωt−1 = Xt−1Pt−1X ′t−1 + ΣZ , (27)

with P log likelihood function given by

−2 logLP = (t− 1)N log(2π) +
t∑

s=2

log |Ωs−1| (28)

+
1

2

t∑
s=2

(Ys −Xs−1ψ̂s−1)′Ω−1
s−1(Ys −Xs−1ψ̂s−1).

Reworking equation (25) gives30

ψ̂P
t = ψ̂P

t−1 + (Pt −Qt−1)X ′t−1Σ−1
Z

(
Yt −Xt−1ψ̂

P
t−1

)
. (29)

Letting Rt = (Pt −Qt−1)−1, (29) reduces to the first equation in the definition of an adaptive

least squares estimator (see (??)). Equation (26) can then be rewritten as31

(Pt −Qt−1)−1 = P−1
t−1 + X ′t−1Σ−1

Z Xt−1 (30)

= (I − P−1
t−1Qt−2)(Pt−1 −Qt−2)−1 + X ′t−1Σ−1

Z Xt−1,

which reduces to (??) if Qt−2 = (1− γt−1)Pt−1, for a sequence of scalars 0 < γt ≤ 1. Using

(26) it follows that this condition is satisfied by choosing

Qt−1 =
1− γt
γt

(
Pt−1 − Pt−1X ′t−1Ω−1

t−1Xt−1Pt−1

)
.

From this expression it also follows that Qt−1 is measurable with respect to Zt−1
1 as long

30Substitute (27) into (26) and the resulting equation into (25).
31This expression is obtained by substituting (27) into (26), plugging the resulting equation back into (26),

and multiplying by (Pt −Q−1)−1 from the left and P−1
t−1 from the right.

27



as γt is measurable. We can summarize the preceding calculations as:

Rtψ̂
P
t = γt−1Rt−1ψ̂

P
t−1 + X ′t−1Σ−1

Z Yt, (31)

Rt = γt−1Rt−1 + X ′t−1Σ−1
Z Xt−1, (32)

ψ̂P
t = R−1

t Rtψ̂
P
t , (33)

Pt =
1

γt
R−1
t , (34)

Ωt−1 = Xt−1Pt−1X ′t−1 + ΣZ , (35)

with log likelihood function given by (28). The constant gain estimator corresponds to the

special case where γt = γ for all t.

B Pricing Kernel

The pricing kernel can be expressed as

Mt,t+1 = e−rt ×
fQt,t+1(Pt+1)

fPt,t+1(Pt+1)
.

Since the distributions are conditionally normal under both measures, they have equal support.

Then, Mt,t+1 defines a strictly positive pricing kernel. We can rewrite the conditional

distributions as

fPt,t+1 = N(K̂P
P0,t + [K̂P

PP,t, K̂
P
PH,t]Zt,ΩPP,t) = N(µ̂Pt ,ΩPP,t),

fQt,t+1 = N(KQ
0 +KQ

1 Pt,ΣPP) = N(µQt ,ΣPP),

where (K̂P
P0,t, [K̂

P
PP,t, K̂

P
PH,t]) denote the posterior means of the latent parameters states, and

ΩPP,t the upper left 3× 3 entries of the conditional covariance matrix Ωt given in equation

(35). We can reduce this expression as follows (we use the notation ct to terms that are Ft
measurable but not of direct interest):

logMt,t+1 + rt = ct +
1

2
(Pt+1 − µ̂Pt )′Ω−1

PP,t(Pt+1 − µ̂Pt )− 1

2
(Pt+1 − µQt )′Σ−1

PP(Pt+1 − µQt )

= c′t −
(

Ω−1
PP,tµ̂

P
t − Σ−1

PPµ
Q
t

)′
Pt+1 +

1

2
P ′t+1(Ω−1

PP,t − Σ−1
PP)Pt+1

= c′′t − Λ′PtΓ
−1
t εPt+1 +

1

2
(εPt+1)′

(
I − Γ−1

t

)
εPt+1,
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where

ΛPt = Ω
−1/2
PP,t(µ̂

P
t − µ

Q
t )

Γt = Ω
−1/2
PP,tΣPP(Ω

−1/2
PP,t)

′

c′′t = −1

2
log |Γt| −

1

2
Λ′PtΓ

−1
t ΛPt

Thus the stochastic discount factor resembles a stochastic discount factor under full information,

though with the parameters determining the market price of risks replaced by their posterior

means, and with an additional stochastic convexity term and matrix Γt representing the

change of conditional covariance matrix from P to Q.

To show that ΛPt is naturally interpreted as the market prices of risk in our learning

setting, consider an asset with log total-return spanned by the factors Pt: rat = α+ β′Pt and

satisfying Et
[
er
a
t +1Mt,t+1

]
= 1. Using the fact that E[eθ

′ε+ 1
2
ε′(I−Γ−1)ε] = e

1
2
θ′Γθ+ 1

2
log |Γ|, for

ε ∼ N(0, I), the left-hand side of the last expression can be rewritten as

exp{α+ β′µ̂Pt − rt + c′′t +
1

2
(β′Ω

1/2
t − Λ′PtΓ

−1
t )Γt(β

′Ω
1/2
t − Λ′PtΓ

−1
t )′ +

1

2
log |Γt|}

= exp{Et[rat+1]− rt +
1

2
β′Ωtβ − β′Ω1/2

t ΛPt}.

This leads to

Et[rat+1]− rt +
1

2
V[rat+1] = β′Ω

1/2
t ΛPt;

the expected log excess return equals the quantity of risk times the market price of risk (after

adjusting for a convexity term).

C Selecting the Constant Gain Coefficient γ

Which value of the constant gain coefficient γ would be selected by an econometrician using

the model `LCG(P), developed in section 4.1, to forecast future yields? To answer this question,

we let the econometrician select the value of γ in real time. We estimate the model on an

equally spaced grid of constant gain parameters: {0.95, 0.955, ..., 0.995, 1}. We collect the

three- and twelve-month ahead forecasts for each value of γ and for each month from January

1982 through December 2014. In each month, we select the “optimal” γ, as the value that

minimizes the RMSE of out-of-sample forecasts for the first PC over the previous ten years.

For example, in January 1982 we choose γ to minimize the out-of-sample RMSE between
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January 1971 (post training period) and January 198132. ?? shows the evolution of the

dynamically updated γ parameters (γt) over the sample from January 1982 through December

2014. For one-year-ahead forecasts, the constant gains coefficient takes a value of 0.99 for

most of the sample (Panel (b)), and especially in the period from the late 1990s to the end of

the sample, which is the focus of most of the analysis in the paper. The γt is more volatile

when minimizing in real-time the one-quarter-ahead RMSE of forecasts (Panel (a)), though

γt takes values close to 0.99 for large past of the sample, and especially in the latter years.
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(b) Annual Forecasts

Figure 13: Real-time varying constant-gain parameters γ that minimize one quarter and one
year ahead RMSE’s of the first PC over the previous 10 years.

Figure 14 shows RMSEs, based on the benchmark learning rule `LCG(P), for the first

principal component of US Treasury yields over the sample from January 1995 through

December 2014, and for different values of γ. The minimal RMSE for one-year-ahead forecasts

(Panel (b)) is achieved for γ = 0.99. For the one-quarter-ahead forecasts (Panel (a)), the

smallest RMSE is delivered by values of γ equal to 0.99 and 0.995.

Overall, the choice of γ = 0.99 seems to appear optimal (in the sense of minimizing forecast

errors) or close to optimal both ex-ante and ex-post.

D Constraints on Λt for Rules `CG(P) and `CG(P , H)

We use the training sample to reduce the dimension of ΘP. For models evaluated out of

sample between January 1995 and March 2011, the training sample consists of the prior

10 years from January 1985 through December 1994. Our dimension reduction strategy

is based on restricting the physical measure towards the risk neutral. First we estimate a

model without restrictions imposed, and then we inspect the statistic significance of each

32This is in the spirit of the adaptive step-size algorithm proposed by Kostyshyna (2012) that draws upon
the engineering literature to adjust the gain parameter based on past forecast errors.
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Figure 14: RMSE for one-quarter ahead and one-year ahead forecasts of PC1 of bond yields,
over the sample from January 1995 through December 2014. The RMSEs are reported for
different values of the constant gains coefficient γ.

of the parameters in PmQt =
( K̂P
P0,t−K̂

Q
P0 K̂

P
PP,t−K̂

Q
PP K̂P

PH,t

K̂P
H0,t K̂P

HP,t K̂P
HH,t

)
. If the p-value, induced by the

posterior variance, at the end of the training sample is above 0.1, the corresponding coefficient

in KP
Z,t is concentrated out such that the corresponding entry in PmQt is zero. There are

only two exceptions to this rule. First, we deem that the coefficient of the lagged second

principal component in the second principal component equation plays an important role

in capturing the persistence of the second PC. Thus, we leave it unrestricted even when

the p-value is above 0.1. Second, we choose to restrict the market price of risk of the third

principal component to be equal to zero. This is in line with what is found by Joslin, Priebsch,

and Singleton (2014), and consistent with the idea that the third principal component is a

spread portfolio that hedges away US Treasury bonds risks. In the data, we find that most of

the coefficients in the equation of the third principal component are not significant, with the

exception of the coefficient for the second principal component, which is borderline significant

with 0.9 confidence. Table 5 displays the restrictions imposed on the autoregressive feedback

matrix for rule `CG(P, H). Similarly, Table 6 reports the restrictions for rule `CG(P).

E Stochastic Volatility Model

Suppose that there exist a 3-dimensional state-variable, consisting of a univariate volatility

factor Vt, and 2 conditionally Gaussian factors Xt. Following our specification of the Gaussian

models with learning, we assume that the parameters governing the risk neutral measure are

known and constant. Joslin and Le (2014) show that an econometrically exactly identified
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Λ0t Λ1t

PC1 PC2 PC3 ID(y2y) ID(y10y)

PC1 * * * 0 * *
PC2 * 0 * * 0 0
PC3 0 0 0 0 0 0
ID(y2y) 0 * * * * *
ID(y10y) 0 * 0 0 0 *

Table 5: Restrictions applied in rule `CG(P, H) to the parameters in PmQt.

const PC1 PC2 PC3

PC1 * * * 0
PC2 * 0 * *
PC3 0 0 0 0

Table 6: Restrictions applied in rule `CG(P) to the parameters in PmQt.

specification is given by

Vt+1|Vt ∼ CAR(ρQ, cQ, vQ),

Xt+1 = KQ
XV Vt + J(λQ)Xt +

√
Σ0 + Σ1Vt · εQt ,

rt = rQ∞ + ρV Vt + 1′Xt,

where CAR is short for the compound autoregressive gamma process. The CAR process has

a conditional Laplace transform that is exponentially affine and first and second moments

given by

logEQ(euVt+1 |Vt) = −vQ log(1− ucQ) +
ρQu

1− ucQ
Vt,

EQ
t (Vt+1|Vt) = vQcQ + ρQVt,

VQ
t (Vt+1|Vt) = vQ

2
cQ + 2ρQVt.

The innovation to the non-volatility factors, εQt+1, is assumed to be normally distributed

and independent of Vt+1. It follows that zero coupon bond prices are exponentially affine,
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Dn
t = eAn+Bn,V Vt+Bn,XXt , with loadings that satisfy the recursions

An+1 = An +
1

2
B′n,XΣ0Bn,X − vQ log

(
1− cQBn,V

)
− rQ∞,

Bn+1,X = J(λQ)′Bn,X − 1,

Bn+1,V = B′n,XKXV +
1

2
B′n,XΣ1Bn,X +

ρQBn,V
1− cQBn,V

− ρV .

Under the physical measure we assume that parameters that govern the dynamics of the

volatility factor are known and constant, while the parameters that govern the conditional

Gaussian factors are drifting and unknown

Vt+1|Vt ∼ CAR(ρP, cP, vP), (36)

Xt+1 = KP
X0,t +KP

XV,tVt +KP
XX,tXt +

√
Σ0X + Σ1XVt · εPt . (37)

As yields are affine in the state-variables,

yt = A(ΘQ,Σ0X ,Σ1X) +BV (ΘQ,Σ0X ,Σ1X)Vt +BX(λQ)Xt,

the principal components P are also affine in the state, since Pt = Wyt. This in turn implies

that Vt can be written as an affine function of ft:

Vt = α(ΘQ,Σ0X ,Σ1X) + β(ΘQ,Σ0X ,Σ1X)′Pt.

Joslin and Le (2014) show that we can rewrite and reparameterize equation (37) with

P2:3
t+1 −W 2:3BV Vt+1 = K̃P

P0,t + K̃P
PV,tVt + K̃P

PP,tP2:3
t +

√
Σ̃0P + Σ̃1PVt · εPt , (38)

where the superscripts 2 : 3 refer to the second and third PCs, and the tilde is used to

indicate that these are parameters governing the dynamics of (Vt, (P2:3
t )′)′ (and not Pt).

Therefore, the model’s parameters can be decomposed into constant and known Q-parameters

(rQ∞, ρV , ρ
Q, cQ, vQ,KQ

XV , λ
Q), constant and known covariance matrices (Σ̃P0, Σ̃1P), constant

and known P-parameters (ρP, cP, vP), and unknown drifting P parameters (K̃P
P0,t, K̃

P
PV,t, K̃

P
PP,t).

We impose that cP = cQ and vP = vQ. These two conditions guarantee diffusion invariance of

Vt, and that the market prices of risks are non-exploding in the continuous time limit (see

Joslin and Le (2014)). From equations (36) - (38) it is seen that the conditional first and
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second moments of the principal principal components are given by

EP
t (Pt+1) = KP

0,t +KP
1,tPt (39)

VP
t (Pt+1) = ΣP

0 + ΣP
1Pt (40)

where (KP
0,t,K

P
1,t,Σ

P
0 ,Σ

P
1) are known functions of (ΘQ, Σ̃P0, Σ̃1P ,Θ

P
t ) induced by rotating

(Vt, (P2:3
t )′)′ to Pt. Similarly to what done for the Gaussian learning model, we impose

restrictions on [KP
0,t,K

P
1,t] based on a training sample. These restrictions can be written as

vec
(

[K̃P
P0,t, K̃

P
PV,t, K̃

P
PP,t]

)
= Rψt + q, where ψ evolves according to a random walk

ψt = ψt−1 +Q
1/2
t−1ηt.

A set of sufficient conditions that guarantees that the innovation co-variance matrix of ψt is

proportional to the posterior co-variance matrix will ensure that the posterior means of ψ is

given by a constant gain estimator. The proof is similar to the derivations discussed in the

paper for the Gaussian learning model.

F Robustness to Time-Varying Volatility

A less constrained Bayesian (relative to BL) would formally build updating of ΣPP into her

learning rule. A priori, we would not expect this generalization of our learning rules to

materially affect BL’s conditional forecasts of bond yields, our primary focus for modeling risk

premiums. Updating of ΣPP would only change the posterior conditional means indirectly

through interactions with ΘQ, passed onto the P-feedback parameters by the restrictions on

the market price of risk. In our current setting BL keeps the Q parameters (kQ∞, λ
Q) nearly

constant. Therefore, it seems unlikely that formally introducing learning about ΣPP would

lead to large changes in the inferred posterior conditional P-means of bond yields.

To provide further reassurance on this front, we proceed to investigate learning within a

setting of stochastic volatility. Suppose there are three risk factors consisting of a univariate

volatility factor Vt and a bivariate Xt that is Gaussian conditional on Vt. We adopt the

following normalized just-identified representation of the state under Q:

Vt+1|Vt ∼ CAR(ρQ, cQ, vQ), (41)

Xt+1 = KQ
V Vt + diag(λQ)Xt +

√
Σ0X + Σ1XVt ε

Q
t , (42)

rt = rQ∞ + ρV Vt + 1′Xt, (43)
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where CAR denotes a compound autoregressive gamma process (Gourieroux and Jasiak

(2006)) and ΘQ ≡ (rQ∞, ρV , ρ
Q, cQ, vQ,KQ

V , λ
Q). As before, we assume that BL treats ΘQ as

constant and known, which implies that yields are given by

yt = A(ΘQ,Σ0X ,Σ1X) +BV (ΘQ,Σ1X)Vt +BX(ΘQ)Xt,

and the principal components are affine in (Vt, Xt) (see Appendix E for details). The market

prices of risk are assumed to be such that, under P, the state follows the process

Vt+1|Vt ∼ CAR(ρP, cP, vP), (44)

Xt+1 = KP
0t +KP

V tVt +KP
XtXt +

√
Σ0X + Σ1XVt ε

P
t+1, (45)

where εPt+1 is independent of Vt+1 and we let ΘP
t = (ρP, cP, vP,KP

0t,K
P
V t,K

P
Xt). BL presumes

that the volatility parameters (ρQ, cQ, vQ,Σ0X ,Σ1X) are constant, while those governing

the conditional means of Xt are unknown and drifting. In Appendix E we show that the

conditional first moments of the principal components are given by

EQ
t (Pt+1) = KQ

0P +KQ
1PPt and EP

t (Pt+1) = KP
0P,t +KP

1P,tPt,

where (KQ
0P ,K

Q
1P ,K

P
0P,t,K

P
1P,t) are known functions of (ΘQ,ΣX0,Σ1X ,Θ

P
t ) from the rotation

of (Vt, X
′
t)
′ to Pt. As before, a subset of the parameters in [KP

0Pt,K
P
1Pt] is constrained based

on the training sample.

Figure 15 plots the eigenvalues of the feedback matrices KQ
1P and KP

1P,t from the perspective

of BL’s real-time learning rule in the presence of Vt and conditioning only on the history of the

PCs. The eigenvalues of KQ
1P are (ρQ, λQ) and the eigenvalues of KP

1P,t are (ρP, eig(KP
Xt)).
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Relaxing the assumption of constant conditional volatility does not alter our prior finding

that the Q eigenvalues are nearly constant over the entire sample period. The variation in the

eigenvalues of KP
1P,t reflects the substantial variation in the market prices of risk.

Figure 16 offers an interesting perspective on the degree to which the learning rule `LCG(P)

(that presumes constant ΣPP) captures the swings in the conditional covariance matrix

that would be perceived by an agent learning in the presence of stochastic volatility. On

the diagonal are the estimated conditional standard deviations from models both with and

without stochastic volatility. Rule `LCG(P) captures the overall evolution of the conditional

standard deviations, but fails to pick up the huge increment in volatilities during the Fed

experiment. Perceptions about volatility under `LCG(P) also decay relatively slowly during the

33The feedback matrices in the conditional first moments of Pt and (Vt, X
′
t)
′ will have equal eigenvalues, as

Pt is an affine function of (Vt, X
′
t)
′.
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Figure 15: Estimates from model `1,3CG(P) of the eigenvalues of the feedback matrix KQ
1P

(KP
1P,t). The eigenvalues of KQ

1P are (ρQ, λQ) and the eigenvalues of KP
1P,t are (ρP, eig(KP

Xt)).

great moderation. The constant conditional correlations are updated by `LCG(P) in a manner

very similar to the learning rule for the stochastic volatility model.
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Figure 16: Summary of ΣPP . Conditional standard deviations (main diagonal elements)
and correlations (off-diagonal elements) estimates from learning models with (blue line) and
without (red line) stochastic volatility. The estimates at date t are based on the historical
data up to observation t, over the period July, 1975 to March, 2011.
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