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Abstract. We introduce a new mechanism for one-sided matching markets, inspired by
procedures currently being used to match millions of students to public universities in Brazil
and China. Unlike most mechanisms available in the literature, which ask students for a
full preference ranking over all colleges, they are instead sequentially asked to make choices
among sets of colleges. These choices are used to produce, in each step, a tentative allo-
cation. If at some point it is determined that a student cannot be accepted into a college,
then she is asked to make another choice among those which would tentatively accept her.
Participants following the simple strategy of choosing the most preferred college in each step
is a robust equilibrium that yields the Student Optimal Stable Matching. We also provide an
extension in which, after running the sequential mechanism for a number of steps students
are asked to submit a ranking over the colleges that are still within reach. This constitutes
a novel approach to matching mechanisms. We show that the initial sequential stage clears
a substantial part of the market before the rankings submission. This finding, together with
empirical and simulation results, makes our proposal an attractive alternative to the sequen-
tial mechanisms currently being used and the standard Gale-Shapley Deferred Acceptance
mechanism for practical applications.
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1. Introduction

The field of market design has developed rapidly in recent years, both in terms of the
range of objectives that are studied – different notions of efficiency, stability, fairness, etc.
– and also in the number of applications and their evaluations, in the field and in the lab.
In the typical framework, the attainability of a given objective is evaluated in terms of
mechanisms that request the relevant agents to submit preferences over sets of outcomes,
before a clearinghouse then combines them using some predetermined criteria to produce an
allocation. This induces a game in which the action space of the participants consists of
the preferences they submit. By studying the incentive properties of these games, one can
then see how equilibrium outcomes relate to the objectives of the market designer. These
mechanisms, therefore, have two common properties: they are direct (in the sense that the
participants are asked for their relevant types, in this case their preferences,) and induce a
simultaneous move game: all agents simultaneously interact only once.

There are many theoretical and practical reasons for using and focusing on direct mecha-
nisms. First, the revelation principle guarantees that nothing is lost by using direct mecha-
nisms as opposed to alternative action spaces. Second, in the induced games the participants
have a simple strategy space, whereas strategies in sequential games may consist of large
sets of contingency plans over information structures. Finally, if truth-telling is a dominant
strategy (i.e., the mechanism is strategy-proof), the game can be understood as being very
simple for a participant, with truth-telling being the expected behavior.

In this paper we follow a different path and propose a family of sequential mechanisms
for implementing stable outcomes in many-to-one matching markets. These are problems
for which there is already a well-known strategy-proof direct mechanism, namely the Gale-
Shapley student-proposing deferred acceptance procedure (DA). In the mechanisms we pro-
pose, instead of requesting from each participant a full preference over all private outcomes,
they are instead repeatedly asked to make choices, which are used to produce tentative al-
locations. Some information about these allocations may be given back to the participants,
before asking them for further choices, until a final allocation is produced. The mechanism,
therefore, resembles a sequential implementation of DA, in which instead of using a pref-
erence ranking submitted by the agents to make the choices during the process, the agents
themselves are repeatedly asked to make choices from sets of available options. We term
them by iterative deferred acceptance mechanisms, and use two main reasons to justify this
departure.

First, the last few years have seen the emergence of uses of iterative mechanisms for
matching students to schools and colleges, some of them on a very large scale. Prominent
examples are the college admission mechanism for the Chinese province of Inner Mongolia
[Chen and Pereyra, 2016, Gong and Liang, 2016], used for matching more than 200,000
students to universities per year, the SISU mechanism, used to determine where more than
two million prospective university students per year are matched, among public universities
in Brazil, and the mechanism currently being used in the German university admissions
[Grenet et al., 2017].1 The use of these procedures has been made possible, in practice, by the
Internet, which allows students to easily interact multiple times with a central clearinghouse
1Another example of current use of iterative mechanisms is the school district in Wake County, NC. [Dur
et al., forthcoming]
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via a website or even a mobile application. Although the procedures being used improve upon
many aspects of the ones previously in place, an evaluation of its theoretical and empirical
properties is imperative, given the potential impact on large numbers of students.

Second, there are reasons why the standard DA mechanism may not have the desired
theoretical properties and outcomes, especially in large-scale college admissions, where there
are thousands of options available to the students. One is that students are, in practice,
either restricted to list a limited number of options, or even if they could do so it is actually
impractical to require students to rank all of those options in a way that truly represents
their preferences. As shown in Haeringer and Klijn [2009], when lists are restricted, truth-
telling is no longer a dominant strategy, and equilibria may not be stable. That is, the two
main benefits of DA are eliminated. Another one is that there is empirical and experimental
evidence that the strategic simplicity of DA may not be matched by an understanding, on
the part of the agents, of its incentives [Chen and Sönmez, 2006, Pais and Pintér, 2008,
Ding and Schotter, 2017, Rees-Jones, forthcoming, Hassidim et al., 2015, Chen and Pereyra,
2015]. Finally, recent experimental evidence shows that iterative versions of DA outperform
the standard one in the proportion of stable outcomes and truth-telling rates [Klijn et al.,
2016, Bo and Hakimov, 2016].

This paper is divided into three parts. In section 2 we analyze the mechanism currently
being used to match students to public universities in Brazil, denoted SISU. Under the SISU
mechanism, students are repeatedly asked to choose one college from the list of options avail-
able. At the end of each of four days, cutoff grades, which represent the tentative minimum
requirements for acceptance at each college, are made public. Students are then allowed to
change their choice in response to that information. After a predetermined number of steps,
the last choices made are used to produce an allocation. We show that the SISU mechanism
has some undesirable theoretical properties: it may fail to give reliable information about
where students could be accepted, and it is subject to a new type of manipulation, denoted
manipulation via cutoffs. Using detailed data on the values of the cutoffs at the end of each
day during the selection process that took place in 2016, we show that the first problem is
empirically relevant, that is, that the cutoff values produced by it often constitute unreliable
information for the students. Manipulation via cutoffs are situations in which groups of stu-
dents with high exam grades temporarily inflate the cutoff grades at some colleges and change
their options in the last step, with the objective of reducing the competition faced by specific
low-grade students. We show that, due to specific characteristics of college admissions in
these countries, these manipulations are feasible both in Brazil and in Inner Mongolia, and
provide anecdotal evidence that they take place in real life in the latter.

In the second part, in section 3, we introduce the Generalized Iterative Deferred Acceptance
Mechanism (GIDAM), as well as its special case for the exam-based college admissions, the
Iterative Deferred Acceptance Mechanism (IDAM). Both of them are free from the problems
identified above. Similarly to the SISU mechanism, under the GIDAM students are repeatedly
asked for choices from sets of options until an allocation is produced. It differs, however, in
other dimensions. In every step, it restricts students to only choosing colleges which would
accept them given other students’ choices in that step. Also, it introduces “commitment” in
students’ choices: students are not allowed to change their choices unless the previous ones
are no longer feasible. Moreover, it allows students to submit partial rankings (as opposed to
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single colleges) in each step, and for different contractual terms between students and colleges
(such as with and without funding). When students follow the simple strategy of choosing
the most preferred college among those available at each step (denoted the straightforward
behavior),2 the matching produced after a finite number of steps is the Student Optimal
Stable Matching, that is, the matching that is the most preferred by all students among all
stable matchings (Proposition 1). Moreover, students following the straightforward behavior
constitute a robust equilibrium in which any deviating strategy is stochastically dominated
by following the equilibrium one (Theorem 1). This result comes from the fact that, with the
modifications introduced with respect to the SISU, deviating strategies are indistinguishable,
from the perspective of an observer, from the straightforward behavior for some different
preferences.

In the third part, we show that the comparison between DA and IDAM presents a trade-off
between the length of submitted preferences in DA and the number of steps that IDAM takes
to produce its outcome. Section 4 evaluates this trade-off through theoretical and simulation
results. We run simulations comparing the number of steps it takes for the IDAM mechanism
to produce an outcome and the minimum length of a rank-ordered list necessary for truth-
telling to be an equilibrium in DA. These show that the relative advantage of the IDAM is
higher when the students to seats ratio is higher. Interestingly, when the number of students
equals the number of seats, the simulations also show that IDAM produces an outcome in
fewer steps in scenarios where DA needs longer rank ordered lists and vice-versa.

Finally, we present a new mechanism for matching students to colleges, which is a “hybrid”
between iterative mechanisms and DA, denoted IDAM+DA. It consists of two parts. First,
we run a pre-specified number of steps of IDAM. After that, we ask students to submit a
ranking over those colleges still available to each of them after these initial steps, and then
execute a deferred acceptance procedure over this “residual” problem. This being a special
case of the GIDAM mechanism, truthful behavior is also a robust equilibrium, producing the
student-optimal stable matching. That is, during k steps, students are asked to choose among
all options available, and if rejected to make new choices among the remaining, still feasible,
options. After these k steps, the minimum grade required for being accepted at some colleges
are such that some students, especially those who have average or low exam grades, see a
substantial reduction in the number of colleges where they may still be matched. Students
are then requested to submit a preference ranking over the remaining options. By using a
model with a continuum of students, we show that when students are ranked in the same
way by all colleges these initial steps clear a significant proportion of the market, that is, a
large number are matched to their final outcome with these steps (Proposition 5). Moreover,
the marginal gain is higher in the first steps. This implies that by running a small number
of steps of IDAM before the “residual DA” problem we clear the market for many students,
and also as a result reduce the set of remaining options that students need to rank. These
results are robust to more general settings, as is shown in simulations with more general
settings. The IDAM+DA mechanism is, therefore, a new and appealing alternative for DA
for a policymaker. It runs for a pre-specified number of steps, clears the market for a large

2As we will show later, the straightforward behavior includes students also submitting (possibly constrained)
rankings over available colleges.
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proportion of students with a small number of choices, and greatly reduces the size of the
ranking that is necessary to ask students to submit in the last step.

1.1. Related literature. This paper mainly relates to two lines of research in market design.
One is the family of works which evaluate, from both a positive and a normative perspective,
mechanisms that are being used in the field in college admission and school choice. While
evaluating the college admission process in Turkey, Balinski and Sönmez [1999] showed that
the Gale-Shapley student-proposing deferred acceptance procedure (DA) [Gale and Shapley,
1962] is characterized as the “best” fair mechanism, in that it is strategy-proof and Pareto
dominates any other fair mechanism (that is, it is constrained efficient). In fact, variations
of the DA mechanism are used in many real-life student matching programs around the
world. Examples of the use of the DA mechanism include the college and secondary school
admissions in Hungary [Biró, 2011], the high school admissions in Chicago [Pathak and
Sönmez, 2013], the New York City [Abdulkadiroğlu et al., 2009] and the elementary schools
in Boston [Abdulkadiroglu et al., 2006]. Other mechanisms, such as the college-proposing
DA, top trading cycles, the so-called “Boston mechanism” and the “Parallell mechanism”
are used to match millions of students to schools and colleges around the world [Chen and
Kesten, 2017, Abdulkadiroğlu and Sönmez, 2003, Balinski and Sönmez, 1999]. Gong and
Liang [2016] and Chen and Pereyra [2016] apply the mechanism currently in use to match
students to universities in the province of Inner Mongolia in China. Although the dynamic
mechanism used in that province has some similarities to the SISU, such as the availability
of tentative cutoff grades, it is in fact a different mechanism, with different timing and
incentives. Grenet et al. [2017] analyze the system used for college admissions in Germany,
which combines a sequential phase and a direct revelation phase. In section 4.1 we show that
the IDAM+DA mechanism also presents this combination and has good practical properties.

The other line in which this paper relates is that of the study of sequential mechanisms.
Kagel et al. [1987] show that, although the second-price auction is isomorphic to an English
auction, experiments show that behavior is significantly different when comparing both, with
truthful behavior more prevalent in the latter. Ausubel [2004] and Ausubel [2006] propose
sequential auction mechanisms for multiple (homogeneous and heterogeneous, respectively)
objects. While there are direct mechanisms which implement the same outcomes in domi-
nant strategies, the author argues that the proposed sequential mechanisms are simpler and
preserve the privacy of participants.

In a recent paper, Li [2017] provides a theoretical justification for why some sequential
mechanisms perform better than their direct counterparts. That justification is based on
a refinement of strategy-proofness, denoted obvious strategy-proofness (OSP), in which the
realization that a certain strategy is dominant does not rely on contingent reasoning. The
author shows that a family of mechanisms, which includes the English auction, is OSP,
therefore providing a theoretical explanation for the results in Kagel et al. [1987]. When it
comes to stable mechanisms, however, Ashlagi and Gonczarowski [2015] show that there is
no OSP mechanism which yields stable matchings.3

3The authors show, however, that when the preferences on one side of the market satisfy an acyclicity
condition there is an OSP stable mechanism. This is a very restrictive condition, which is not satisfied, for
example, by the college admission process in Brazil.
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Experimentally comparing the behavior under DA and the IDAM mechanism, Bo and
Hakimov [2016] show that the truthful equilibrium in IDAM, which produces the student-
optimal stable matching, predicts behavior better than the dominant strategy in DA, also
leading to a larger proportion of stable outcomes. Klijn et al. [2016] also present evidence in
that direction. Similarly, Kagel and Levin [2009] show experimental evidence that subjects
behave more often in line with the equilibrium prediction in the sequential mechanisms in
Ausubel [2004] than with the dominant strategy of the direct versions of it. These results
indicate that the behavior more consistent with the equilibrium prediction in these sequential
implementations is not entirely captured by the refinement proposed in Li [2017].

Other papers have evaluated non-direct iterative mechanisms for matching students to
colleges or schools. Dur et al. [forthcoming] use the fact that the school choice mechanism
used in the Wake County Public School System allows for students to interact multiple times
with the procedure as a method for empirically identifying strategic players. Interestingly,
the dynamic nature of the procedure, and the information that is made available during the
process to the participants, makes it somewhat comparable to the IDAM mechanism. A
rich series of papers also consider sequential mechanisms which implement stable matchings
in equilibrium, including Alcalde and Romero-Medina [2000], Alcalde and Romero-Medina
[2005], Romero-Medina and Triossi [2014], and Klaus and Klijn [2017]. While many of these
mechanisms implement stable allocations in equilibrium, the determination of equilibrium
strategies depends on coordination between students in a way that is significantly more
demanding than the equilibrium strategy that IDAM has, which depends solely on (partial)
information about the student’s own preferences over colleges.

Proofs absent from the main text and additional details can be found in the appendix.

2. The SISU mechanism

In 2010 the Brazilian ministry of education launched a method for matching students to
university programs, denoted SISU. The SISU system represented a significant change in the
way in which universities admitted students. First, it unified the acceptance criteria at the
universities for the seats made available through the system: instead of a different exam for
each university, a unified national exam was used. Second, students were free to apply to any
program in any university in the country (among those available in the SISU) for no extra
cost, whereas previously in some cases the student would have to travel to the university
premises just to be able to apply. Third, and perhaps most importantly, the centralized
system could allow a student to obtain information about which university programs would
accept her.

In the period between 2010 and 2016, the precise rules which define the SISU mechanism
were changed multiple times. The version that we will consider for analysis, due to its sim-
plicity, is the one used in the year 2010. Although later versions have different modifications,
to the best of our knowledge all the problems identified in this section are also present in the
later versions.

In the setup used in the SISU mechanism, there is a set of colleges C “ tc1, . . . , cmu with
fixed capacities (a maximum number of students who can be matched to them) pqc1 , . . . , qcmq.
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Colleges rank all students based on the results of the national exam. Different colleges4 may
use different weights for the various parts of the exam. For example, economics programs
could give a higher weight to the math section of the exam, while medical programs could
give a higher weight to the biology section. Denote by zc psq student s’s resulting exam
grade in college c. Colleges may also have a minimum acceptance grade, representing the
minimum value of zc psq a student s must have to be acceptable at c, denoted zc. Given a set
of students applying to a certain college, a commonly used information is the cutoff grade for
that college. A cutoff grade represents the lowest grade necessary to be accepted at a college,
given the set of students applying to it. When looking at the cutoff values of all colleges,
therefore, a student can infer which ones would accept her if all other students’ choices remain
constant. Before the SISU mechanism was introduced, it was common for students to see
historical values of the cutoffs for the different colleges as an indication of where they should
apply, given their information about their own exam grade or ability. One of the advantages
of the new procedure would be to allow the students to make that assessment in “real-time”
instead of only based on historical data.

The mechanism runs for four days.
‚ During each day t “ t1, 2, 3, 4u, students may each choose a college to apply for. If a
student makes no choice, her last choice is used again, if any. At the end of the each
of the first three days, the following is executed, for each college c:
– If the number of students who chose c and have an exam grade at that college

higher than zc is smaller than qc, the cutoff grade ζtc is set to zc.
– Otherwise, the cutoff grade ζtc is set to be the qthc highest grade at that college

among those who chose it in that day.
‚ The values of ζtc1 , . . . , ζ

t
cm are made public.

‚ At the end of the fourth day, a matching of students to colleges is produced, as follows:
– For each college c, the top qc students who have an exam grade higher than zc

and chose c in the last day are matched to it.
– All students who were not among the ones above remain unmatched.
– Final cutoffs, calculated in the same way, are made public.

The definition above can be naturally extended to the case where the number of days is
any arbitrary number TMax, so we may also consider this more general definition as well.
Although the potential ability to know which colleges a student might not be matched to
before submitting their final choice seems like an interesting property, in fact that is not the
case in general, as is noted in the following remarks.

Remark 1. Choices made in the run-up to the last day may have no direct effect on the final
outcome. As a result, students have no clear incentive to make choices prior to the last day.

Of course, if some student makes a choice the day before the last and does not make a
choice on the last, her last choice will be the one considered when generating the outcome.
However, the outcome would be the same if we kept other players’ choices and that student
made her choice only on the last day. The fact that this results in no clear incentive for

4In Brazil, as in many other countries, students apply directly to specific programs in the colleges or univer-
sities. For simplicity, though, we refer only to “colleges” whenever the distinction is not necessary.
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students to make choices before the last day makes the information available before the
beginning of the last day, regarding which colleges are out of reach, even less reliable.

Remark 2. The cutoff values at some colleges may go down from one day to the next.

Since students may choose any college on any day, nothing prevents the cutoff values at
some colleges from going down from one day to the next. For example, consider a scenario
in which TMax “ 4 and college c has unit capacity. Let student s, where zc psq “ 200, be the
only student to choose college c during day three. The cutoff value for c made public at the
end of day three is therefore ζ3c “ 200. If s chooses a different college on day four and no
other student chooses c, then ζ4c “ zc. That is, some student s1 whose grade at c is greater
than zc but lower than 200, cannot take the cutoff value at college c, even at the end of day
three, as an indication that she had no chance of being accepted there by the end of day four.

If the cutoff values go down from one day to another, then the use of those values as
information that guides students’ applications away from colleges at which they will not be
accepted is jeopardized. Moreover, if the cutoff values go down at some program from day
TMax ´ 1 to TMax, a student who may have preferred to go to that program and would be
accepted by the end of day TMax will not do so.

Another shortcoming of the SISU mechanism is that it is subject to a new type of manip-
ulation, denoted manipulation via cutoffs, in which groups of students may induce others to
change their behavior in a way that may benefit that group. This is explored in more detail
in section 2.2.

2.1. Empirical evidence. In order to evaluate the empirical relevance of the shortcomings
of the SISU mechanism identified in the previous section, we analyze data for the selection
process that took place in January 2016. In that month, more than 228,000 seats in public
universities were offered, and a total of more than 2,500,000 students participated. The
average competition, therefore, was of more than 10 candidates per seat.

The data consists of the cutoff values for each of the 25,686 options available to the stu-
dents, for each of the four days in which students were able to make choices.5 In Brazilian
universities, students apply and may be accepted to specific programs in those universities, as
opposed to joining the university as a whole. For example, a student must choose whether to
apply for the daytime economics program at the Federal University of Rio de Janeiro, or for
the night-time computer science program at the same university. Although all programs use
the same national university entrance exam, different programs may use different weighted
averages for different parts of the exam when ranking students.

In the present analysis, we are interested in whether the cutoff values decrease from one
day to another and, if so, by how much. As pointed out in section 2, a decrease in the cutoff
5The process in 2016 differs from the rules used in 2010 in two aspects. First, the seats in each program
offered by federal public universities are split into up to five different sets of seats, and eligibility to apply to
each of those sets of seats differ across students (see Aygün and Bó [2013] for more details on the procedure).
Secondly, instead of choosing only one program per day, students were able to specify first and second choices.
Each day, DA was run based on the two submitted choices.
Finally, we note that although many programs have minimum exam grades in order for a student to be
acceptable at that program, some do not, so cutoff values are set to zero if the number of students acceptable
who chose one of these programs is below the capacity. More information on these differences can be found
in the appendix.
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Figure 2.1. Proportion of programs where the cutoff values increased, de-
creased or did not change from one day to the next

values points to a failure of the SISU mechanism in providing information on the programs
to which a student has no chance of being accepted and, moreover, leads students not to
choose programs that they prefer and to which they would actually end up being accepted.

Figure 2.1 shows the proportion of the programs at which the cutoffs increased, decreased
or did not change from one day to the next. Some important facts to note are:

‚ The proportion of programs in which the cutoffs decreased from one day to the next
is surprisingly high.

‚ The proportion of programs in which the cutoffs decreased from one day to the next
increased over time.

‚ More than 10% of the final cutoffs were lower than those communicated to the students
on the last day in which they made choices.

In all but five of the 25,686 programs available, the cutoff values by the end of day four
were above zero. Figure 2.2 shows the histogram of the values of the cutoffs after they
increased or decreased for each day. Although we cannot say that the distributions of cutoffs
which decreased and those which increased are not distinguishable, it seems clear that the
decreases or increases are not clustered around different values of cutoffs. This indicates that
the problems identified with the reliability of the cutoffs are not concentrated on more or less
competitive programs.

The next question is whether the changes in cutoff grades, when they decrease, are large
enough to affect students’ beliefs and outcomes. If a cutoff decreases by a very small amount,
for example, it may be that no student could have been negatively affected by that change,
since the number of those who would be able to choose that program due to that decrease is
small or even zero.
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Figure 2.2. Cutoff values after they were decreased/increased from the pre-
vious day

The measure that we use to evaluate the degree to which a cutoff value decreases is the
change in the value of the empirical cumulative distribution function (CDF), for each pro-
gram, from one day to the next. For example, say that the cutoff value at program p decreased
from day 1 to day 2 from 550 to 500. If the values of the empirical CDF of the cutoffs of
program p day are 0.3 and 0.2 for days one and two, respectively, then 30% of all program
cutoff values were below the one for program p on day one, but only 20% of them were below
the cutoff value of program p on day two.

Figure 2.3 shows the frequency of the changes in the value of the empirical CDF for each
pair of consecutive days.6 For the programs that had their cutoff value reduced between these
days, the graphs show that although the largest changes take place from day one to day two,
in all cases the proportion of large changes in the ranking is quite substantial. In fact, the
percentage of programs where the change in the value of the CDF was lower than -0.2 was
46.87%, 14.61%, and 19.39% for Day1/Day2, Day2/Day3 and Day3/Day4, respectively.

We can therefore conclude that the daily cutoff values which result from candidates inter-
acting with the SISU mechanism fail to provide reliable information about those programs
for which a student would not be accepted, since many of them are substantially reduced
from one day to the next.

2.2. Manipulations via cutoffs. Other than the fact that under the SISU mechanism the
cutoff values do not represent reliable information regarding the chances a student has of being
accepted into a college, that mechanism is also subject to what we denote as manipulation

6All changes in the value of the CDFs were negative except for one, which had a change below 0.001 and was
removed from the graphs for convenience.
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Figure 2.3. Change in the value of the empirical CDF for cutoff values that decreased

via cutoffs. A manipulation via cutoffs occurs when a group of students artificially increase
the cutoff values of some college, as a way to prevent applications from other students, and
then in the last day vacate those seats so that students with a lower exam grade, aware of
that manipulation, then take their places. In what follows, we will make the assumption that
students have strict preferences over the colleges, and that they follow a simple behavior:
a student is said to present straightforward behavior if in every step she chooses her most
preferred college among those which have cutoff values lower than her grade. The example
below shows how manipulations via cutoffs can happen.

Example 1 (Manipulation via cutoffs). Consider the set of students S “ ts1, s2, s3, s4u and
of colleges C “ tc1, c2, c3u, each with capacity qi “ 1 and minimum score zero. Students’
preferences are as follows:

Ps1 : c1 c2 c3
Ps2 : c1 c2 c3
Ps3 : c1 c2 c3
Ps4 : c2 c1 c3

Students’ exam grades at the colleges are as follows:
c1 c2 c3

s1 100 100 100
s2 200 200 200
s3 300 300 300
s4 400 400 400

Suppose that the SISU mechanism is used, and students present straightforward behavior.
The cutoff values, at the end of each day would then be as follows (remember that the cutoffs
at t “ 4 represent the final allocation cutoffs):

c1 c2 c3

t “ 1 300 400 0
t “ 2, 3, 4 300 400 200

The matching produced will therefore be µ:
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µ “

ˆ

c1 c2 c3 H

s3 s4 s2 s1

˙

Suppose, however, that students s1 and s4 modify their behavior, and act instead as follows:
‚ During t “ 1, 2, 3, student s1 chooses college c3 and student s4 chooses college c1.
‚ In day t “ 4, student s1 chooses college c1 and student s4 chooses college c2.

Assuming that the other students present straightforward behavior, the cutoff values at the
end of each day would be as follows:

c1 c2 c3
t “ 1 400 ´´´ 100
t “ 2 400 300 100
t “ 3 400 300 200
t “ 4 100 400 200

The matching produced will be µ1:

µ1 “

ˆ

c1 c2 c3 H

s1 s4 s2 s3

˙

Student s1 is better off under µ1 than under µ, while s4 is matched to the same college in
both cases.

In other words, manipulations via cutoffs consist of a set of students SH “holding” seats for
some time in colleges and “releasing” them so that a set of students ST can take them in the
last day. In order for these manipulations to have a good chance of success, some conditions
need to be satisfied.

First of all, the set of students SH needs to be large enough when compared to the capacity
of the college, and their exam grades in that college must also be high compared to other
students interested in it. If the number of students in SH is low when compared to the
capacity of the college, the effect of them choosing that college in the value of the cutoff
may be much less noticeable. To see that, consider the case in which, at a certain day, there
are 100 students choosing college c, which has a capacity of 10 students, and for simplicity
assume that those students’ scores fill the range t1, 2, . . . , 100u (that is, one student has a
score 1, one has a score 2, etc). Then, given those choices, the students who will be tentatively
accepted are those with scores 91 to 100, and therefore the cutoff value in that day will be
91. Suppose that SH has five students, with exam grades t300, 301, 302, 303, 304u. These are,
of course, significantly higher than those of the other students. If all of them choose college
c in addition to the 100 students, all of them will be tentatively accepted in that day, but
the change in the cutoff value will not be as significant: it will change from 91 to 96. If the
capacity of the college was five, the change in the cutoff would instead be from 96 to 300.7

7It’s not necessarily the case that the number of students in SH has to be equal to the college’s capacity
for the change in cutoff to be significant. Consider the case in which the exam scores of the 100 students
choosing c are, instead, t252, 251, 250, 100, 99, 98, . . . 4u, and the capacity is still five. The cutoff value for
college c would be 99 in that day. If SH has only two students, with exam grades t300, 301u, them choosing
c would lead the cutoff grade at c to change from 99 to 250, instead.
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Second, the students who are not in the coalition have to respond in a straightforward way
to the cutoff values in the last day. This can be considered a reasonably mild requirement.
It does not require that the other students follow the straightforward behavior in all days,
but only that they do not choose, in the last day, a college where the cutoff value is above
their grade in that college.

One may wonder how realistic the first condition is. After all, colleges typically accept
hundreds or thousands of students every year, and a coalition of hundreds of high-achieving
students performing these potentially risky manipulations does not seem realistic. In many
countries (including Brazil and China), however, students apply directly to specific programs
in the universities, so even though the universities as a whole accept hundreds or thousands
of students, the number of seats at each program is often below 100, and many times lower
than 30 or 20. Moreover, even those seats are often subdivided. In China, the seats in
each program are partitioned between seats reserved for candidates from specific provinces.
In Brazil, federal universities partition the seats in the programs into five sets of seats,
reserved for different combinations of ethnic and income characteristics. Finally, universities
sometimes offer only a subset of the total number of seats in a program through the centralized
matching process. In fact, the median number of seats offered in each option available
during the January 2016 selection process in Brazil, where more than 228,000 seats in public
universities were offered, was five.

Moreover, there is evidence that this type of manipulation takes place in real life. In the
Chinese province of Inner Mongolia, a mechanism which has some similarities to the SISU
mechanism is used to match students to programs in universities.8 While the mechanism
itself has significant differences, it is also vulnerable to manipulation via cutoffs. This fact
seems to be exploited by students, as documented by China News:9

“(...) in fact, since 2008, the clearinghouse found that some high scored stu-
dents applied to a college with lower cutoff score. For example, their score
allows them to go to PKU or Tshinghua, but they chose Beijing Polytech first.
On the other hand, some other students, from the same high school often,
applied to college that their score would not allow them to go initially (...)
[the] system shows that their rank is below the capacity — so they can’t be
admitted under usual terms — however they do not revise their choices.”

Even more remarkably, there seems to be evidence that high schools are coordinating stu-
dents’ actions:

“(...) the clearing house noticed that, 2 or 3 min before the deadline, the
ranking of students in the system is changing – this is the evidence that high
schools are organizing their own high scored students to occupy seats for low
scored students.”

3. The Generalized Iterative Deferred Acceptance Mechanism

In this section, we introduce the generalized version of our proposed mechanism, inspired
by the SISU, denoted the Generalized Iterative Deferred Acceptance Mechanism (GIDAM).

8For detailed descriptions of the mechanism, see Gong and Liang [2016] and Chen and Pereyra [2016].
9Source (in Chinese): http://www.chinanews.com/edu/2014/09-04/6562740.shtml (Accessed on 09/12/2017)
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In this generalized version, we consider a more general setup, in which the criteria used by
colleges may be more general than one simply based on exam grades, allowing, for example,
for the use of affirmative action policies or variations in financial aid in student admissions.10
This version also allows for the same students and colleges to be matched under different
contractual terms, as in the matching with contracts model introduced by Hatfield and
Milgrom [2005]. Finally, we also allow for students not having to only submit one choice at
a time, but also rankings over the available options.

The underlying principle behind the SISU mechanism, however, is maintained: instead
of asking students to submit a preference ranking over all the available options, students
are sequentially asked for partial information about the outcomes that they would like to
obtain, and receive information on the feasibility of those options over time. A special case
of GIDAM, which considers the same setup of college admissions presented while introducing
the SISU mechanism, is introduced in subsection 3.1.

A matching with contracts market is a tuple xS,C, T,X, PS, FCy:
(1) A finite set of students S “ ts1, . . . , snu,
(2) A finite set of colleges C “ tc1, . . . , cmu,
(3) A vector of contractual terms T “ pt1, . . . , t`q,
(4) A set of valid contracts X Ď C ˆ S ˆ T Y tHu,
(5) A list of strict student preferences PS “ pPs1 , . . . , Psnq over X Y tHu11, and the

respectively derived weak preferences RS,
(6) A list of college choice functions over sets of students FC “ pfc1 , . . . , fcmq, where

for every c P C and I Ď X, fc : 2X Ñ 2X , tpc, s, tq , pc, s1, t1qu Ď fc pIq ùñ s ‰ s1 and
pc1, s, tq P fc pIq ùñ c1 “ c.

For any I Ă X, s P S and c P C, denote Is ” tpc, s1, tq P I : s1 “ su , Ic ” tpc1, s, tq P I : c1 “ cu,
s pIq ” ts P S : D pc, s, tq P Iu and c pIq be defined analogously. We abuse notation and let
c pxq and s pxq be the college and student in contract x, respectively. An outcome is a set of
contracts Y Ď X such that Y contains at most one contract per student, that is, |Ys| ď 1 for
each s P S. Denote by X the set of all outcomes. An outcome Y is individually rational if
for every student s, YsRsH and for every college c, Yc “ fc pYcq. Define by maximum rank
function a function π : Z` Ñ NY t8u which defines, for each step t “ 0, . . . , TMax, what is
the maximal length of a ranking that a student may submit.

The GIDAM mechanism consists of the following steps:
t “ 0: A weakly informative signal about the set of feasible allocations is broadcast.

Additionally, each student is given an individualized menu of contracts, consisting of
the contracts involving said student that colleges deem acceptable.12 Each student
who is given a non-empty menu is asked to submit an ordered list with at most π p0q
contracts in their menu. After all students submit their lists (or opt not to,) these

10See, for example, Hafalir et al. [2013], Aygün and Bó [2013], Shorrer and Sóvágó [2017], Hassidim et al.
[2015], Yenmez.
11In some places we abuse notation and use Ps also over sets with only one contract. Here, H represents the
null contract, representing a student remaining unmatched to any college. We also assume that a student’s
preference is over contracts in which she is involved and H.
12That is, these contracts would be chosen if each one of them were the only option given to the college
involved in it.
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are used to perform a cumulative offer process. That is, students one at a time offer
their highest ranked contract, in the list submitted, to the college involved in it, and
colleges choose among all contracts offered, cumulatively, with their choice functions.
Whenever a contract is rejected, the student involved in it offers the next highest-
ranked contract, if any. The step ends whenever every student has a contract being
held by a college or had all of those in the list submitted rejected.

0 ă t ď TMax: At the beginning of the step, a weakly informative signal about the set of
allocations that are still feasible is broadcast. Additionally, each student who doesn’t
have a contract being held by a college is given an individualized menu of contracts,
consisting of the contracts involving said student that colleges would accept, while
having all contracts that were offered in previous steps still available. Each student
who is given a non-empty menu is asked to submit an ordered list with at most π ptq
contracts in their menu. The same cumulative offer process is undertaken, as in the
previous step, where the lists submitted by the students in this and previous steps are
used to offer contracts to colleges, which are considered together with those offered
in previous steps.

The process ends after the step t “ TMax or whenever the set of contracts being held by all
colleges doesn’t change from one step to the next. Denote that last step by T ˚. A formal
definition of the mechanism can be found in the Appendix.

The public signals do not play a role in the results we present, but in general they may
affect other incentives induced by the mechanism and be useful in terms of transparency. In
subsection 3.1, for example, the public signals will be the cutoff grades at each college, as in
the SISU mechanism.

Example 2. Consider a matching with contracts problem in which there are four colleges
C “ tc1, c2, c3, c4u, each with one seat available, and four students S “ ts1, s2, s3, s4u. Col-
leges may accept students with or without financial aid. Colleges always prefer to accept
students without financial aid, and select them based on their grades in a single national
exam otherwise. Students’ grades in the national exam follow their indexes: s1 has the high-
est grade, s2 the second-higest, etc. Let the maximum rank function be such that π ptq “ 2
for every t ě 0 and TMax “ 8.

The table below shows, for each student, the menu of contracts offered in the first step
(which, for all students, contain all possible contracts with colleges), and a list that is sub-
mitted by each student in the first step. We represent contracts with financial aid with the
letter F , and without financial aid with N .
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Step t “ 0
Student Tentative match Menu offered List submitted

s1 H
C1

F N

C2

F N

C2

F N

C3

F N

C3

F N

C4

F N

C4

F N

C1

F

C1

F ą2

C4

F

C4

F

s2 H
C1

F N

C2

F N

C2

F N

C3

F N

C3

F N

C4

F N

C4

F N

C1

F

C1

F ą2

C2

F

C2

F

s3 H
C1

F N

C2

F N

C2

F N

C3

F N

C3

F N

C4

F N

C4

F N

C2

F

C2

F ą3

C2

N

C2

N

s4 H
C1

F N

C2

F N

C2

F N

C3

F N

C3

F N

C4

F N

C4

F N

C1

F

C1

F ą4

The table below shows the menus offered in the next step, and choices that we consider
students make. Notice that the number of options in the menus offered to students s2 and s4
is different. Since s4 has a low exam grade, no contract with C2 would be accepted anymore.
Also, while the student with the highest exam grade is tentatively matched to college c1, a
contract without financial aid is offered in the menu to student s2.

Step t “ 1
Student Tentative match Menu offered List submitted

s1
C1

F

C1

F
H H

s2 H
C1

N

C1

N

C2

N

C2

N

C3

F N

C3

F N

C4

F N

C4

F N

C1

N

C1

N
ą2

C4

F

C4

F

s3
C2

N

C2

N
H H

s4 H
C1

N

C1

N

C3

F N

C3

F N

C4

F N

C4

F N

C1

N

C1

N
ą4

C4

F

C4

F

In step t “ 3, only student s4 will be given a menu, with only three contracts. This
happens even though s1 had her previous match to C1 rejected. The mechanism continued
down her list submitted in step t “ 0 and matched her to C4 with financial aid:
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Step t “ 3
Student Tentative match Menu offered List submitted

s1
C4

F

C4

F
H H

s2
C1

N

C1

N
H H

s3
C2

N

C2

N
H H

s4 H
C3

F N

C3

F N

C4

N

C4

N

C3

F

C3

F ą4

C4

N

C4

N

Given the submitted list, the final matching is produced by the end of that step:

Step t “ 4
Student Final match

s1
C4

F

C4

F

s2
C1

N

C1

N

s3
C2

N

C2

N

s4
C3

F

C3

F

The example above highlights some of the main characteristics of the GIDAM mechanism.
Students only have to submit a list when the absence of that information would not allow the
mechanism to determine where their next tentative allocation (if any) should be. Contracts
that are no longer feasible for a student are not offered in their menus, reducing the number
of options that she has to consider.

We can define a matching function that represents the outcome, µ, can be defined
such that, for every c P C, µ pcq “ fc

`

AT
˚

pcq
˘

, and for every x P µ pcq, let µ ps pxqq “ x.
Whenever TMax “ 8 or there is a t ď TMax such that π ptq “ 8, we say that the GIDAM
is unbounded. When GIDAM is unbounded, therefore, a student is able to express, either
over time or via a ranking in some steps, a sequence of choices over as many contracts as she
wishes.

A random outcome is a probability distribution over X . An outcome X 1 Ď X is stable
if it is individually rational and there is no college c and set of contracts X2 Ă X such that
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X2 ‰ fc pX
1q, X2 “ fc pX

1 YX2q and for every s P s pX2q, xRsX
1
s. More specifically, we say

that a student s and college c form a blocking pair under X 1 if s has a contract in X2zX 1.
A stable outcome is called the student-optimal stable allocation if every student weakly
prefers it to any other stable outcome.

In order to guarantee that the outcomes and incentives of the GIDAM mechanism sat-
isfy desirable properties, it is necessary to impose some restrictions on the colleges’ choice
functions. The first one comes from Hatfield and Kojima [2010]:

Definition 1. Contracts in X are unilateral substitutes for college c under fc if there
do not exist contracts x, z P X and a set of contracts Y Ď X such that s pzq R s pY q,
z R fc pY Y tzuq and z P fc pY Y tx, zuq.

Another condition that we use comes from Aygün and Sönmez [2013]:

Definition 2. The choice function f satisfies irrelevance of rejected contracts (IRC) if
x R f pX 1 Y txuq implies f pX 1 Y txuq “ f pX 1q for all X 1 Ă X and x P XzX 1.

Finally, the last property that will be used was introduced in Hatfield and Milgrom [2005]:

Definition 3. The choice function f satisfies the law of aggregate demand if for all
Y Ď Z, |f pY q| ď |f pZq|.

Lemma 1. Assume that for every college c P C, fc satisfies IRC and contracts in X are
unilateral substitutes. Then, for every student s and 0 ď t ď t1 ď T ˚, if the set of contracts
in the menu given to s in step t is non-empty, then all contracts in a menu given in step t1
are also in the one given in step t.

What Lemma 1 says is that once a contract becomes unavailable for a given student,
that contract will never become available again, regardless of the strategies used by the
students. This shows that one information given by the mechanism after each step – the set
of acceptable contracts available to the student – constitutes reliable information about the
contracts which are not available anymore for a student, as opposed to the SISU mechanism.
We define a formal generalization of the “straightforward behavior” [Roth and Sotomayor,
1992] when interacting with the GIDAM mechanism:

Definition 4. A strategy of student s P S is straightforward with respect to P ˚ if for
every step t in which a non-empty menu ψt psq is offered by the mechanism, s submits a
ranking with the top k pψt psq , tq contracts in ψt psq, ordered as in P ˚, where k : 2X ˆNÑ N
is a function such that, for every t, 1 ď k p¨, tq ď π ptq, and k p¨, t8q “

ˇ

ˇψt
8

psq
ˇ

ˇ, where t8 is
the highest value of t such that π ptq “ 8.

A strategy is straightforward in the GIDAM, therefore, when in every step the student
submits either her full preference over the contracts in the menu offered (whenever π ptq is
large enough) or some truncation of her true preference. Moreover, when there are multiple
steps in which a student can submit an unbounded ranking over contracts, she should rank
all those offered at least in the last step in which that is allowed. When π ptq “ 1 for all t,
the definition reduces to the definition of straightforward behavior in Roth and Sotomayor
[1992]: everytime the student is asked, she picks the most preferred alternative. When
students follow straightforward strategies, the outcome produced by the unbounded GIDAM
is of a well-known type:
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Proposition 1. Assume that, for every college c P C, fc satisfies IRC and contracts are
unilateral substitutes. If all students’ strategies are straightforward with respect to PS, there
is a finite number of steps T ˚ after which the outcome of any unbounded GIDAM mechanism
is the student-optimal stable outcome with respect to PS.

The proof of Proposition 1 is based on the fact, shown in Hirata and Kasuya [2014], that the
cumulative offer process that takes place during the GIDAM mechanism is order independent
and when students follow straightforward strategies the outcome is the student-optimal stable
outcome. As a result, all combinations of such strategies yield the same result.

When colleges’ choice functions satisfy IRC, unilateral substitutes and the law of aggregate
demand, a direct mechanism that produces the student-optimal stable outcome is strategy-
proof [Aygün and Sönmez, 2013, Hatfield and Kojima, 2010]. That is, submitting her true
preference ranking over contracts is a weakly dominant strategy for every student. One may
be tempted to conclude that this will imply that straightforward strategies, which are the
equivalent of truth-telling in this dynamic setting, are also dominant under the GIDAM
mechanism, but the proposition below shows that not only is this not the case, but that
students may not have any dominant strategy at all.

Proposition 2. A student may not have a weakly dominant strategy under the GIDAM
mechanism.

The reason why not following a straightforward strategy may be profitable is that, in
contrast to the case of the direct mechanism, an agent may influence others’ actions by
modifying the signals received by them. So if, for example, a student has a strategy that
depends in some way on the signals produced by one’s actions, or even on the sequence of
menus that are presented or timing of the rejection in a particular choice, that fact could
be exploited. We will show, however, that the strategy profile in which students follow
straightforward strategies constitutes a robust equilibrium. The equilibrium concept that we
use is a refinement of the Perfect Bayesian Equilibrium.

Definition 5. A strategy profile is an ordinal perfect Bayesian equilibrium (OPBE)
if, at every information set, every deviation from the equilibrium strategy is stochastically
dominated by following it.

The definition above is intentionally informal, but its formal version can be found in the
appendix. When a strategy profile is an OPBE, therefore, the probabilility of obtaining
the most preferred contract, the two most preferred contracts, the three most preferred
contracts, etc., is weakly greater when following the equilibrium strategy when comparing
to any deviating strategy, when starting from any step. Equivalently, no deviating strategy
yields a better expected utility, for any utility function that represents the students’ ordinal
preferences. For that, we consider the extensive-form game induced on the students by
the GIDAM mechanism. We will allow students to have uncertainty about other students’
preferences and exam grades. The sequence of events is as follows:

(1) Step t “ 0: Nature draws the values of X and P from a joint distribution f , and each
student s observes the realization of Xs and Ps.

(2) Steps 1 ď t ď TMax: students interact with the GIDAM mechanism. That is, in
each step t, every student s P S receives a menu of contracts and a maximum rank
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value π ptq and has to submit a ranking over those contracts, as in the description of
the mechanism above. At the end of the step, the public signals are observed by all
students. The mechanism terminates at some step T ˚ ď TMax.

(3) Step T ` 1: Students are matched to their outcomes produced by the GIDAM mech-
anism.

Our main result shows that, when facing that game, students following straightforward strate-
gies is an OPBE.

Theorem 1. Consider a maximum rank function π and an unbounded GIDAM mechanism
under it, and let σ˚ be the strategy profile in which all strategies are straightforward with
respect to PS. Then σ˚ is an OPBE of the game induced by the GIDAM mechanism.

The proof of Theorem 1 is fundamentally based on the fact that, although the space of
deviating strategies is significantly large, they are all indistinguishable, from the perspective
of an observer, from a student following a straightforward strategy for some different prefer-
ence. This allows us to evaluate deviating strategies in all of their paths, which may include
multiple interactions that the student may have with the mechanism. Without this, it is
difficult to determine the final outcome of a generally specified deviation.13 This, however, is
not present in other iterative matching mechanisms, such as the SISU14 and the mechanism
used in Inner Mongolia.

3.1. Iterative Deferred Acceptance. Here we introduce the Iterative Deferred Acceptance
Mechanism (IDAM), which is an application of the GIDAM mechanism for the problem of
college admissions tackled by the SISU mechanism, in which the criterion used by colleges
to select candidates is based solely on their grades in an exam, and therefore acceptability
may be summarized by cutoff grades. A exam-based college matching market is a tuple
xS,C, q, PS, z, Zy:

(1) A finite set of students S “ ts1, . . . , snu,
(2) A finite set of colleges C “ tc1, . . . , cmu,
(3) A capacity vector q “ pqc1 , . . . , qcmq,
(4) A list of strict student preferences PS “ pPs1 , . . . , Psnq over C Y tsu15,
(5) A list of vectors of exam scores z “ pz ps1q , . . . , z psnqq, where for each s P S,

z psq “ pzc1 psq , . . . , zcm psqq, are the exam scores that student s obtained, respectively,
at college c1 . . . , cm. We assume that for every s, s1 P S and c P C, zc psq “ zc ps

1q ùñ

s “ s1,
(6) A list of minimum necessary scores Z “

`

zc1 , . . . , zcm
˘

.
The set of contracts, colleges’ choice functions and public signal functions are derived from
the above as follows:

‚ The set of valid contracts is X “ tps, c, zc psqq : s P S, c P C and zc psq ě zcu. That is,
the valid contracts are between all colleges and the students who have an exam grade

13In fact, in most sequential matching mechanisms in the literature (for example, Alcalde and Romero-Medina
[2005], Triossi [2009], and Romero-Medina and Triossi [2014]) the number of times an agent interacts with
the mechanism is either exogenously given or is one in equilibrium.
14 See Remark 4 in the appendix.
15Here s represents a student remaining unmatched to any college.
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at least as high as the minimum at that college. The contractual term is the exam
grade itself. Since there is only one contract between each student and college, we can
refer to the menus of contracts as simply being menus of colleges. Moreover, students’
preferences over contracts are directly derived from the preferences over colleges.

‚ For a given set of contracts Y , colleges’ choice functions fc select the top qc contracts
in Yc with respect to zc if |Yc| ě qc, and all contracts in Yc otherwise.

‚ The public signal function ζ yields colleges’ cutoffs (the lowest exam grade in that
college necessary to be chosen, given the current set of contracts being held). Specif-
ically, ζ pY q “ pζc1 pY q , . . . , ζcm pY qq, where ζc pY q “ zc when |Yc| ă qc and ζc pY q is
the qc’th highest value of zc in the contracts in Yc.

It is easy to see that fc, as defined above, satisfies unilateral substitutes and the law of
aggregate demand. This implies that Proposition 1 and Theorem 1 also hold for the IDAM
mechanism.

Corollary 1. If students follow straightforward strategies, the outcome of the IDAM mech-
anism is the student-optimal stable outcome.

Corollary 2. All students following straightforward strategies with respect to their true pref-
erences is an OPBE of the game induced by the IDAM mechanism.

Let ζtc be the value of the cutoff of college c made public in step t, as defined above. In
light of the definition of fc, Lemma 1 leads to the following conclusion:

Corollary 3. (Cutoff grades never go down) For every 0 ď t ď T ˚ and c P C, ζtc ě ζt´1c .

As described in section 2.2, manipulations via cutoffs consist of temporarily inflating the
cutoff value of a college and then reducing it. The corollary above implies, therefore, that
manipulation via cutoffs is not feasible:

Remark 3. The IDAM mechanism is not manipulable via cutoffs.

It is also worth noting that, while the process that takes place during the execution of the
IDAM mechanism resembles a “worker-proposing” version of the salary adjustment in Kelso
and Crawford [1982], our results shows that, at least when students are the only strategic
agents, the process itself is an equilibrium when interactions are restricted in the way defined
by the IDAM mechanism.

4. Time feasibility

The number of steps that it takes for the GIDAM or IDAM mechanisms until it produces
the Student Optimal Stable Outcome when students follow the straightforward strategy
depends on the interaction of multiple variables, such as students’ preferences, the maximum
rank function, the colleges’ choice functions (or students’ exam grades), etc. It is very
important, however, to have some sense of how many steps that will take, what happens if
the value of T ˚ is not large enough, and if there are other viable alternatives to reduce the
time it takes to produce the outcome.

For the results below, we consider exam-based college matching markets where the set of
students and colleges can be partitioned as S “

 

S1 Y S2 Y ¨ ¨ ¨ Y Sk
(

and C “
 

C1 Y C2 Y ¨ ¨ ¨ Y Ck
(

,
where

ř

cPCi qc ď |S
i| and students in Si have higher grades at colleges in Ci than those not
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in Si. This is consistent with situations in which college exams have math and literature
sections and students are good at either math or literature. Notice, however, that when
k “ 1 this definition accommodates any market in which the number of seats in colleges does
not exceed the number of students.

One related question that we tackle in the proposition below is how “far” from a stable
matching the outcome will be if we use the bounded IDAM mechanism for a number of
steps smaller than that necessary to produce the Student Optimal Stable Matching but with
students still following the straightforward strategy. The measure of distance from a stable
matching that we use is the number of individuals involved in blocking pairs.

Proposition 3. Let, for every i P t1, . . . , ku, c, c1 P Ci and s, s1 P Si, zc psq ą zc ps
1q ðñ

zc1 psq ą zc1 ps
1q and for all s P Si, c P Ci and c1 R Ci, cPsc1. If students follow straightforward

strategies then:

(1) The maximum number of steps it takes for the unbounded IDAM mechanism to produce
the student optimal stable outcome is maxi t|C

i|u.
(2) If the IDAM mechanism runs for T ˚ ă maxi t|C

i|u steps, the maximum number of
individuals involved in blocking pairs is n´

řk
j“1

řT˚

i“1 q
j
i , where for each j, qj1 ď qj2 ď

¨ ¨ ¨ ď qj
|Cj |

is the ordering of the capacities of the colleges in Cj.
The configuration of preferences used in Proposition 3 is consistent with scenarios in which
the top preferences are mutually partitioned between students and colleges, and colleges share
the selection criteria among their top students. One example would be a college admissions
program that is based on national exams consisting of questions on different subjects and
college programs that rank the students based on their grades in those different subjects. The
stronger assumption in this case is that the partition is such that students are among the best
at only one of the subjects. For example, if the partitioning of college programs is between
medical sciences, STEM, and humanities, a student who is among the top at humanities is
not so at STEM or medical subjects.

For the case of common grades between all colleges, the result does not have to rely on
any assumption on students’ strategies.

Proposition 4. If grades are common across colleges, the maximum number of steps it takes
for the unbounded IDAM mechanism to produce the student optimal stable outcome is m.

4.1. The IDAM+DA alternative. One possibility that a policymaker could adopt is to
use a hybrid between the iterative mechanisms considered here and the traditional deferred
acceptance, which we denote by IDAM+DA. It consists of running the IDAM mechanism,
with students making only one choice at a time, for a fixed number of steps, and then asking
students to submit a ranking over the remaining options available. Formally, for a given
number of steps k ą 0, the IDAM+DA is simply defined as the IDAM mechanism in which
the maximum rank function is such that for all t P t1, . . . , ku, π ptq “ 1, and π pt` 1q “ 8.

One of the main advantages of the IDAM+DA is that it ends after a number of steps set by
the designer: k`1. Moreover, being an unbounded IDAM, it implements the student-optimal
stable outcome in an OPBE of straightforward strategies. The additional advantage is that,
as we will show in the following subsections, these initial iterative steps done before the
“DA-like” last step will clear a large part of the market, leaving a smaller residual allocation
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problem to be solved. More specifically, after the initial steps, the number of students who
still need to have their match determined, and the number of options that remain available
for those whose matches still need to be determined, are both substantially reduced.

The IDAM+DA mechanism has some similarities to the college admissions procedure in
Germany [Grenet et al., 2017]. In that system, there is an initial stage, which lasts a specific
number of days, in which colleges send offers to students who listed them as acceptable. Stu-
dents may accept or reject these offers, which may lead to additional offers being sent. After
that step ends, the remaining seats and students are allocated using the college-proposing
deferred acceptance mechanism [Gale and Shapley, 1962] using rankings with limited length.
While this has significant differences from the one we propose here, it shows that policymak-
ers are already experimenting with procedures that mix a sequential phase which clears part
of the market with a final one that is supposed to clear the rest of it.

4.2. A model with a continuum of students. In this section we introduce a model with
a continuum of students and a finite number of colleges, which allows us to obtain some
approximations that can be helpful on the issue of time feasibility. This model is based on
the logit model with preferences in Ashlagi and Shi [2014]. There is a unit mass of students.
Colleges share a common grading of students: each student’s grade is drawn from the uniform
distribution with support r0, 1s, and have a minimum grade of zero. Each college has capacity
q ą 0, and the total mass of seats is weakly smaller than the number of students, that is,
q ˆ m ď 1. Students’ ordinal preferences over colleges are derived from a random utility
model, in which a student s ’s utility from being matched to a college c is:

usc “ ανc ` εsc

Students’ utilities thus consist of a common value, shared by all students (ανc), where
α ą 0, and an idiosyncratic shock drawn from a standard Gumbel distribution. The value of
α, therefore, functions as a parameter for the correlation of preferences: the larger it is, the
more students’ utilities depend on the common value as opposed to their idiosyncratic shocks.
For simplicity, we use a linear value function vci “ pm´ iq. Therefore νc1 ą νc2 ą ¨ ¨ ¨ ą νcm .
Denote ri “ eανci . Due to the logit utility structure, for every student, the probability that
college ci is the most preferred is:

P 1
pciq “

ri
řm
j“1 rj

Clearly, therefore, P 1 pc2q ą P 1 pc3q ą ¨ ¨ ¨ ą P 1 pcmq. Consider now the IDAM+DA
mechanism. If students follow straightforward strategies, the number of students who apply
to college ci is P 1 pciq in step t “ 1. If there is a college cj such that P 1 pcjq ă q, therefore, the
number of students who choose cj (or any cj`k) is smaller than the capacity, and therefore
at the end of the first step all of those colleges will have zero as their cutoff values. Suppose
here, for ease of exposition, that P 1 pcmq ě q, so that no cutoff will be zero. The cutoff value
ζ1ci will be, for those which are above zero, the lowest grade from a mass of q top students
among P i pciq students:

ζ1ci “ 1´
q

P 1 pciq
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It follows, therefore, that the cutoff values, after step t “ 1 are such that:

ζ1c1 ą ζ1c2 ě ¨ ¨ ¨ ě ζ1cm

Notice that, since ζ1c1 is larger than all other cutoffs, this implies that all students who had
their choices in t “ 1 rejected have grades below ζ1c1 and therefore will not have c1 in their
menus in the next step. Most importantly, Lemma 1 implies that c1 will not ever appear in
their menus again.

Consider the cutoff values that are published after the last day of the execution of the
mechanism for each college c, and denote it ζ˚c . One consequence of Corollary 3 is that after
step t, no student with a grade above ζ˚ct will be rejected from the last choice she made. This
follows from the fact that after a student is rejected, the cutoff value at that college must
then become higher than that student’s grade. We can say, therefore, that after step t all
students with a grade above ζ˚ct are permanently matched, and will not be presented with any
other menu during the iterative part of the IDAM+DA mechanism.

Proposition 5. Let M t be the mass of students who are permanently matched to a college
by the end of step t. Then:

(i) M1
ąM1

“
e´αpm´1q pemα ´ 1q

eα ´ 1
q

(ii) For every 1 ď t ă m´ 1, ∆M t
ą ∆Mt

“ q
`

1´ e´αpm´tq
˘

Where ∆M t “M t`1´M t. Proposition 5 shows us that each initial step in the IDAM+DA
mechanism increases the number of students who will not have to interact with the mechanism
again because they are matched to their final match or because they will not have any chance
of getting a seat. Moreover, the marginal effect of those increases is larger in the first steps,
since ∆Mt ą ∆Mt`1. The following corollaries can be drawn from the proposition:

Corollary 4. Regarding the values of M1 and ∆Mt:

BM1

Bα
ă 0 and

B p∆Mtq

Bα
ą 0

That is, when preferences are less correlated (and α is therefore smaller), the number of
students permanently matched in the first step is higher, whereas later steps may have their
rate of permanent matches reduced. This indicates that a great part of the advantage of
the IDAM+DA is captured in a few initial steps, and that this benefit is greater the less
correlated preferences are. The reason for this is that the less correlated preferences are, the
lower the final cutoff value of the most preferred colleges will be. Therefore, the number
of students with a grade above that is larger. At the same time, the difference between the
cutoffs of the different colleges is smaller, leading to a smaller marginal effect of the additional
steps. In the next section we show, via simulations, that this insight also applies in more
general settings.
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4.3. Simulations. In this section we present the outcome of two sets of simulations. In the
first set we compare the number of steps it takes for the unbounded IDAM mechanism with
one choice per step to produce the student-optimal stable matching with the length of the
rankings that students need to submit so that, for the market in question, truth-telling is an
equilibrium. This allows us to have both a quantitative idea of how these two variables relate
(time in IDAM vs length of ranking in DA) and in which scenario each mechanism performs
relatively better. As we will show, the answer for these questions is surprisingly irregular.

In the second set of simulations, we evaluate the IDAM+DA mechanism, which consists of
first running a fixed number of steps of the IDAM with one choice per step and then asking
students to submit a full ranking over the options remaining for each student. We show that
those initial steps of the IDAM+DA mechanism have the effect of substantially reducing the
length of the ranking that is necessary for students to submit at the last step, making it an
attractive alternative for real-life applications. These results, therefore, generalize the ones
obtained with the model with a continuum of students in section 4.2.

The construction of the problems to be simulated follows a method similar to that applied
in Hafalir et al. [2013]. Students’ ordinal preferences are derived from utilities that each
student has over the colleges. No college is deemed unacceptable by any student. Student
s P S’s utility from being assigned to college c P C is the following:

us pcq “ αΘc ` p1´ αqΘc
s

The interpretation of the parameters goes as follows. The utility that a student s derives
from being assigned to a college c is a combination of a value that is shared by all students
(Θc) and an idiosyncratic value that is unique to a student-college pair (Θc

s). The value
of Θc could therefore be the widespread understanding of the quality of the college and
Θc
s incorporate, for example, how the college’s characteristics fit the student’s particular

objectives. For each problem, and for each value of c P C and pc, sq P C ˆ S, Θc and Θc
s

are independently drawn from the normal distribution with mean zero and variance 1. The
value of α, which represents the correlation of preferences between students, is exogenously
set in the range r0, 1s.

Students’ exam grades at each college follow a similar model, and the grade that student
s has at college c is:

zc psq “ βΘs ` p1´ βqΘs
c

Here once again, for each problem, the value of Θs and Θs
c is independently drawn from

the normal distribution with mean zero and variance 1. The minimum grade at all colleges is
zero (that is, all students are acceptable to all colleges). Moreover, β P r0, 1s is an exogenous
parameter which represents the degree of correlation between a student’s grades at colleges.
Notice that when β “ 1, students have the same exam grade in all colleges. This is the case,
for example, when the criterion used for ranking students is the grade in a single national
exam.

In each simulation performed, we set the values of the parameters pn,m, q, α, βq (where
q is the common capacity for all colleges) and generated 20 problems, each representing
independent draws for values of the random variables. Every combination of the values
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of the parameters α and β, in steps of 0.1, were used. In other words, every pα, βq P
r0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1s2 was simulated. In every simulation, the number of
colleges (m) was 100 and every college had a capacity of q “ 5. The number of students was
parametrized: n “ λqm, where λ is the market balance, that is, the number of students per
seat. Different values of λ allows us to see how the aggregate degree of competition between
students for seats affects the results. We used the values λ P t0.5, 1.0, 1.5u.

4.3.1. IDAM versus DA. Figure 4.1 shows, for each combination of α and β and λ, two
values. In the first row of tables, we show the number of steps that it took for the unbounded
IDAM to produce an outcome. That is, assuming that the time between each step of IDAM
is set to be fixed, it represents the total amount of time that it takes for it to end and produce
the student-optimal stable outcome. The second row shows the maximum of how far in each
student’s preferences the DA procedure had to go before producing the final outcome. That
value, therefore, is the shortest length of the ranking for DA in that problem which can
guarantee that truth-telling is a Nash equilibrium which yields the student-optimal stable
outcome.

Some facts stand out. First, that the value of λ (the market balance) have significant
qualitative impact in the outcomes. When λ “ 0.5, both variables present a similar behavior:
they increase with α and do not change much with β. The fact that the number of steps in
IDAM (and similarly the maximum rank in DA) increases with the correlation of preferences
is natural: as preferences become more correlated, many students follow a similar order of
applications, with a small number of them being matched to their final allocation at each
step.

Some of the most noticeable results are observed when λ “ 1, that is, the number of stu-
dents equals the number of colleges. Since all colleges and students are mutually acceptable,
every student will be matched to a college and, therefore, the mechanisms will just determine
the specific match of each student. What we will see is that the performance of IDAM and
DA are almost complementary: IDAM performs better where DA is worse, and vice-versa.
More specifically, when both preferences and grades have low correlation values, IDAM per-
forms especially badly, and DA performs best. The reason for the bad performance of IDAM
is that these scenarios are more prone to so-called rejection chains, in which one student
applies to a college, which leads to the rejection of another student, who then applies and
is tentatively accepted by another college, leading to a further rejection, etc. Since grades
are not very correlated, the fact that a student was rejected at one college does not correlate
with her being rejected at the next in her preferences, which increases the likelihood of those
cycles. When preferences are more correlated, on the other hand, the number of students
applying to a college is higher, and that competition makes it less likely that some student
will later on remove one who was tentatively matched there. As a result, when α is high,
this problem is reduced.

The performance of DA, on the other hand, has a different nature. When the values of α
are low, there is overall less competition between the students for each college. As a result, it
is possible to satisfy students’ preferences to a great extent, matching most of them among
their most preferred colleges. When the value of β is high, though, some students have low
grades in all colleges, and will therefore end up matched to colleges with seats left empty by
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other students’ choices. As a result, these students will be matched to colleges lower in their
preferences, and DA will also perform worse.

Overall, therefore, when it comes to the trade-off between rank length and number of steps
when markets are balanced, IDAM and DA excel in complementary scenarios. When the
correlation of preferences and grades are low, the execution of IDAM is extended for a large
number of steps due to a small number of students following rejection chains, whereas in
the other scenarios IDAM converges in a small number of steps, especially when grades are
correlated.

When λ “ 1.5, however, we see that while DA performs almost equally bad in most
configurations, the effect that the rejection cycles have in the low correlation of preferences
and grades is almost entirely eliminated by the increase in competition between students for
the seats.16 While this increase reduces the likelihood that a student who is rejected from a
college is accepted in the next one, it doesn’t change the fact that some students will end up
matched to less desirable ones. For the intended application of large-scale national college
admissions that use national exams, IDAM therefore presents its highest relative advantage:
competition is high, grades are highly correlated, but preferences are less correlated, due to
field and geographic preferences.
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Figure 4.1. Number of steps in IDAM vs maximum rank in DA
16In the Appendix we show that when the ratio of students per seat is substantially higher, with λ “ 5.0, this
difference is even stronger, with IDAM using a smaller number of steps while DA still needs a full ranking to
be submitted.
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4.3.2. IDAM+DA mechanism. In this simulation, we tested the IDAM+DA mechanism for
different values of k. The simulations that we performed evaluate the following question:
for a given value of k, what is the necessary length of the rank-ordered lists that students
straightforwardly submit in step k`1 such that the outcome will still be the student-optimal
stable outcome? By comparing those values with the length of the ranking necessary for DA
to produce the same outcome, we are able to see how each step running IDAM reduces the
length of the ranking that is necessary at the end, since DA is equivalent to the case where
k “ 0.

Figure 4.2 shows, for different values of β and λ, the average length of the ranking that is
necessary for the mechanism to produce the student-optimal stable matching as the value of
α varies. That is, it shows the average ranking of the worst matching between all students,
among the options given in the final menus. The lines at the top represent the maximum
ranking of a student used while running DA. The next line shows that value after running
one step of IDAM. Especially when the market balance is larger (λ P t1.0, 1.5u), the effect of
one single step may be quite large.

The intuition behind the reason why these initial steps have a large impact on the size
of the ranking needed is the following. The length of the ranking necessary for producing
the student-optimal stable matching is derived from the worst outcome among all students.
These students are therefore only accepted in a deferred acceptance algorithm, after trying
many other colleges. That is, those students likely have lower grades and are the ones who
will see a larger reduction in the number of colleges available to them after the initial steps of
the mechanism. In other words, these initial steps have a stronger effect on the students who
have a de facto smaller set of options, given their grades and the preferences of higher-grade
students. And these students are reasons why DA needs to allow for longer rankings.

These simulations indicate that a combination of some steps of IDAM followed by a ranking
over the remaining options constitute a viable alternative for use in national college admission
processes. It combines the desirable fact that the number of steps is fixed with the possibility
that students, when asked for rankings over multiple options, are able to focus their analysis
on a smaller set of options. Finally, these gains are stronger precisely in configurations present
in these processes: lower correlation of preferences and higher correlation of grades.
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Figure 4.2. IDAM+DA : Minimum ranking length in DA

5. Conclusion

In this paper we analyze, both from an empirical and theoretical perspectives, the use of
iterative mechanisms to produce stable allocations in one-sided matching markets. We show
that a large real-life application of this family of procedures, the SISU mechanism, presents
theoretical shortcomings that significantly reduce the benefits that could be obtained by these
mechanisms, and are subject to manipulation via cutoffs. Empirical and anecdotal evidences
show that these problems are not purely theoretical and may be affecting students’ outcomes.

By introducing some modifications and generalizations to the idea behind the SISU mech-
anism, we introduced the GIDAM and IDAM mechanisms, which produce stable outcomes
in equilibrium. By combining some iterative steps with a final request for a ranking over the
remaining options, the IDAM+DA mechanism is an instance of GIDAM which uses the fact
that a few steps of IDAM may clear a large proportion of the market, providing students
with better information on the set of colleges that may actually accept them before asking
for their preferences.

We believe that there is still many paths to follow ahead in the subject of iterative stable
mechanisms. One of them, for example, is to use information that the policymaker may
have about students’ preferences, and optimize the mechanism accordingly. For example, if
it is known that a large proportion of the students will have a certain college high in their
preferences, the “adaptive” IDAM mechanism could start with a higher initial value for the
cut-off at that college, and the stable matching would still be reached, in this case with a
high probability.

Another related question would be the design of optimal menus which minimize the amount
of information requested from the students, based on the known grades distribution. When
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grades are common, for example, the IDAM mechanism may obtain information on the pref-
erence that low-grade students have over “top” colleges, but if high-grade students are asked
for their preferences earlier, it would not be necessary for this information to be revealed.
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Appendix A. Appendix

A.1. Formal definitions.

A.1.1. The generalized iterative deferred acceptance mechanism (GIDAM). For any I Ď X,
define Ac pIq ” tx P XzI : x P fc pI Y txuqu and As

c pIq ” Ac pIq X Ys. We denote by As
c pIq

the set of available contracts for s at c under I. The interpretation of this is simple:
a contract is available for student s at c under I if college c would choose to accept that
contract while holding the set of contracts I.

Consider a college matching with contracts market xS,C, T,X, PS, FCy, a maximum num-
ber of steps TMax P N Y t8u, a maximum rank function π : Z` Ñ N Y t8u, a public
signal set Θ, and a public signal function ζ : 2X Ñ Θ. The generalized iterative
deferred acceptance mechanism (GIDAM) proceeds as follows:

‚ Step t “ 0: Let L0 “ S, S0 “ H, and for every c P C, A0 pcq “ H. Make ζ pHq
public. 17

‚ Step 0 ă t ď TMax:
– (a) Let St ” ts P Lt´1|Ex P Xs, c P C : x P fc pA

t´1 pcqqu . If π ptq ‰ 8, for every
s P S, let the menu of contracts presented to s be ψt psq ”

Ť

cPC As
c pA

t´1 pcqq Y
tHu if s P St and ψt psq “ H otherwise. If π ptq “ 8, for every s P S, let the
menu of contracts presented to s be ψt psq ”

Ť

cPC As
c pA

t´1 pcqq Y tHu .
– (b) If π ptq “ 8, request each student s P Lt´1 to submit a ranking of any size of
elements in ψt psq. If π ptq ‰ 8, request each student s P St to submit a ranking
with at most π ptq elements in ψt psq. Let, for every student s1, P t

s1 be the ranking
submitted. For every student s2 such that ψt ps2q “ H , let P t

s2 “ P t´1
s2 and, for

all c P C, B0 pcq ” At´1 pcq. Start with τ “ 0 and let Lt “ Lt´1.
˚ Sub-step τ ě 0: Some student s in Lt´1, who does not have a contract being
held by any college, proposes her most-preferred contract with respect to
P t
s which has not yet been rejected, x. If x “ H, remove s from Lt and

from further consideration. Otherwise, college c pxq holds x if x P Ac pB
τ q,

and rejects x if x R Ac pB
τ q. Let Bτ`1 pcq “ Bτ pcq Y txu and for all c1 ‰ c,

Bτ`1 pc1q “ Bτ pc1q.
˚ Repeat the process above until no student is able to propose a new contract.
Let τ˚ be the last step into that process.

– (c) For each college c, let At pcq “ Bτ˚ pcq .
– (d) If for every c P C it is the case that At pcq “ At´1 pcq, stop the procedure.
– (e) Otherwise, make ζ p

Ť

cPC A
t pcqq public, and proceed to the next step.

‚ Denote by T ˚ the last step executed in the procedure. Let X˚ “
Ť

cPC fc
`

AT
˚

pcq
˘

.
X˚ is the outcome of the GIDAMprocedure.

A.1.2. Extensive-form game formulations and equilibrium concept. Fix a set of colleges C and
their choice functions FC . The extensive game form G induced by the GIDAM mechanism
is a tuple pS,H,Φ, P, O, ξ, πq consisting of:

17Notation clarification: Lt is the set of students who are still active at the begining of step t, and St is the
set of students who are active and do not have any contract being held by a college at the beginning of that
step.
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‚ A finite set of players S “ ts1, . . .u.
‚ A finite set of actions A “ ta1, . . .u.
‚ A list of preferences over random outcomes P “ pPs1 , . . .q.
‚ A maximum rank function π : NÑ N.
‚ A set of finite histories H, which are a sequence of actions with the property that if
paiq

k
i“1 P H, then for all ` ă k, paiq

`
i“1 P H. The null history, hH is also in H.

‚ At history h0, nature draws the value of pX,P q from a joint distribution ξ, and each
student s observes the realization of X and of Ps. The distribution ξ is common
knowledge.

‚ Let Z be the set of terminal histories, that is, if h P Z where h “ paiq
k
i“1, then

there is no h1 P H, with h1 “ pa1iq
`
i“1 where ` ą k and for all i ď k, ai “ a1i. Then

paiq
k
i“1 P Z ùñ k mod n “ 0 .

‚ Φ is a player function. Φ : HzZ Ñ S.18 There exists an ordering of the players
ps1, . . . , snq such that, for all h P H such that |h| ď n, Φ phq “ s|h|.19

– Let paiq
k
i“1 P H, where k ě 1. If paiq

k`n
i“1 P H, then Φ

´

paiq
k
i“1

¯

“ Φ
´

paiq
k`n
i“1

¯

.20

‚ For each student s, Is is a partition of h : Φ phq “ s . Define ζ
´

paiq
k
i“1

¯

as the list of

public signals that result from the sequence of actions in paiq
k
i“1 and ψs

´

paiq
k
i“1

¯

as
the sequence of menus of contracts presented to student s after that same sequence of
actions. Define H t

` ”

!

paiq
k
i“1 P H : k mod n “ ` and k ˜ n “ t´ 1

)

, and let h, h1 P

H t
` . The histories h “ paiq

k
i“1 and h1 “ pa1iq

k
i“1 belong to the same member of the

partition Is` if and only if:
– |h| mod n “ |h1| mod n,
– ζ phq “ ζ ph1q,
– ψs` phq “ ψs` ph

1q,
– ai “ a1i for all i such that i mod n “ ` .21

‚ A phq are the actions available at h P H. For every hi P H t
` , the set of actions depend

on whether, given the history of actions until step t of the GIDAMmechanism, student
s “ Φ phiq is offered a non-empty set of contracts, in which case A phiq is the set of
the ordered list of the contracts in ψt psq with at most π ptq elements, or not, in which
case we denote A phiq “ t♦u, where ♦ is simply a placeholder for an action when no
action is requested from the student. We abuse notation and denote, for any Ii P Is,
A pIiq to be A phiq for any hi P Ii (remember that by definition all histories in Ii have
the same set of actions associated with them).

18For simplicity, we only allow one player per history. This is without any loss of generality.
19That is, the first n actions consist of player s1 playing first, s2 second, and etc.
20This, combined with the previous item and the condition on terminal histories, implies that every player
plays every n actions once.
21That is, two histories belong to the same set of the partition if the student’s preferences are the same and
the history of publicized sets of acceptable contracts was the same, and the actions taken by that player were
also the same.
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‚ A strategy for player s is a function σs p¨q that assigns an action in A pIiq to each
information set Ii P Is.22

‚ The outcome function O assigns, to each strategy profile σ “ pσs1 , . . . , σsnq, a random
outcome that results from following the histories that result from following those
strategies in the GIDAM mechanism, given each realization of X and P .

Since our solution concept will demand that students’ strategies are rational at all possible
information sets, we will need to consider how students’ strategies act at each subgame. We
first define a subgame:

Definition 6. A subgame of the game G at non-terminal history h “ paiq
k
i“1, for h P HzZ

is a game [G|h “ pS|h , H|h , Φ|h , P |h , Oq]<G|h “ pS|h , H|h , Φ|h , P |h , π, Oq> (we may also
abuse notation and let G|Ii “ G|h when h P Ii) where:

‚ H|h “
!

h1 “ pa1iq
l
i“k where l ě k and pa1, . . . , ak´1, a1k, . . . , a1lq P H

)

‚ S|h “ ts P S : Φ ph1q “ s for some h1 P H|h zZu
‚ Φ|h : H|h Ñ S|h such that for all h1 P H|h, where h1 “ pa1iq

l
i“k, and Φ|h ph

1q “

Φ pa1, . . . , ak´1, a
1
k, . . . , a

1
lq

‚ For each s P S|h, Ps|h satisfies, for all h1, h2 P H|h :

h1 Ps|h h
2
ðñ pa1, . . . , ak´1, a

1
k, . . . , a

1
lqPs pa1, . . . , ak´1, a

2
k, . . . , a

2
l q

‚ The weak preference Rs|h is defined accordingly.

Finally, let σ|h “ pσs1 |h , . . . , σsn |hq be the strategy profile σ restricted to the subgame
G|h. We can define analogously a subgame in terms of an information set instead of a single
history. Let t8 be the highest value of t such that π ptq “ 8. We will consider situations in
which students present straightforward behavior. Therefore, we can define a straightforward
strategy accordingly:

Definition 7. A strategy σs of student s P S is straightforward with respect to P ˚ if
for every t , hts P H t

s and σs phts|z psq , P ˚q “ ♦ if A phtsq ‰ t♦u. Otherwise, σs phts|z psq , P ˚q
consists of the π˚ most preferred contracts in A phtsq, ordered according to P ˚, where π˚ ď
π ptq, and π˚ “ |A phtsq| when t “ t8.

Let A and B be two random outcomes. We denote by Ís the first-order stochastic dom-
inance relation under Ps. That is, A Ís B if for all v P C Y tsu, Pr tA psq “ v1|v1Rsvu ě
Pr tB psq “ v1|v1Rsvu. A belief system ω is a collection of probability measures, one for
each information set. Moreover, denote by Oω pσqG the random outcome induced by the
strategy profile σ and belief system ω in game G.

Definition 8. A strategy profile σ together with a belief system ω is an ordinal perfect
Bayesian equilibrium (OPBE) of a game G if:
(i) For every Ii P Is and s P S|Ii , Oω pσs|h , σ´s|hqG|Ii

Ís Oω pσ
1
s|h , σ´s|hqG|Ii

(ii) Let Pr ph|σq be the probability that history h is reached, given σ. The belief
system satisfies the following property, for any information set Ii that is reached
with positive probability, and h P Ii: ω phq “ Prph|σq

ř

h1PIi
Prph1|σq

.

22We restrict our analysis to pure strategies.
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A.2. Other properties of the SISU mechanism. One interesting property of the IDAM
mechanism, is that although the combination of strategies that students may use is much
richer than that of straightforward strategies, the sequence of interactions that the students
have with the mechanism cannot be distinguished from interactions that result from all
students following straightforward strategies.

Lemma 2. Fix a realization of PS and z, let σ “ pσs1 , . . . , σsnq be a strategy profile and
h a history that results from that strategy profile up to some step t. There is at least one
strategy profile σ˚, where every student follows a straightforward strategy with respect to some
preference profile P ˚, which also results in history h up to step t.

Lemma 2 can be derived from intermediate results of the proof of Theorem 1, and is
ommitted. This result does not hold for the SISU mechanism, however.

Remark 4. There are sequences of actions that students may take under the SISU mechanism
that cannot be produced by any profile of straightforward strategies.

To see why Remark 4 is true, consider a student who has the highest grade in colleges c1
and c2, and on day 1 chooses college c1, on day 2 chooses c2, and day 3 chooses c1 again.
This sequence of actions is not possible under the IDAM mechanism, cannot be the result of
a straightforward strategy (since in all steps both colleges are available to her), but can take
place under the SISU mechanism.

As the proposition below shows, this results on the fact that all students following the
straightforward strategy is not necessarily an equilibrium under the SISU mechanism.

Proposition 6. The strategy profile in which all strategies are straightforward may not con-
stitute a Nash Equilibrium of the game induced by the SISU mechanism, for any value of
TMax.

Proof. Consider the set of students S “ ts1, s2, s3, s4u and of colleges C “ tc1, c2, c3, c4u, each
with capacity qi “ 1 and minimum score zero. Students’ preferences are as follows:23

Ps1 : c1 c4 c3 c2
Ps2 : c1 c2 c3 c4
Ps3 : c2 c3 c1 c4
Ps4 : c3 c1 c2 c4

Students’ exam grades at the colleges are as follows:

c1 c2 c3 c4

s1 300 200 100 100
s2 200 400 200 200
s3 100 300 400 300
s4 400 100 300 400

If all students follow the straightforward strategy, students’ choices over time are the
following:
23This example is based on Example 1 in Kesten [2010].
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t “ 1 t “ 2 t “ 3 t “ 4 t “ 5

s1 c1 c1 c1 c1 c4
s2 c1 c2 c2 c2 c2
s3 c2 c2 c3 c3 c3
s4 c3 c3 c3 c1 c1

Notice that in step t “ 5, all students’ choices are accommodated. Therefore, even if
the SISU mechanism runs for more than five steps, students following the straightforward
strategy would keep their choices. Therefore, the matching produced would be the following,
which is the student-optimal stable matching:

µ “

ˆ

c1 c2 c3 c4
s4 s2 s3 s1

˙

Therefore, for any TMax ě 5, the outcome of the SISU mechanism, when students follow
the straightforward strategy, is µ. Without loss of generality, let TMax “ 5. Suppose that
student s1, instead of choosing c1 in the first and second steps, chooses c4 and then, from
step t “ 3 on, follows the straightforward strategy. Then students’ choices over time will be
as follows:

t “ 1 t “ 2 t “ 3 t “ 4 t “ 5

s1 c4 c4 c1 c1 c1
s2 c1 c1 c1 c2 c2
s3 c2 c2 c2 c2 c3
s4 c3 c3 c3 c3 c3

µ1 “

ˆ

c1 c2 c3 c4
s1 s2 s3 H

˙

Student s1, therefore, is matched to her most preferred college, as opposed to the case
when she follows the straightforward strategy. �

The proof of Proposition 6 is based on the fact that when students follow straightforward
strategies (as well as during the execution of the DA algorithm), there may be rejection
cycles. That is, in some step a student s chooses a college which makes another student, who
becomes tentatively rejected, change her choice, and so on, until some other student ends up
making it impossible for s to be matched to the college she chose in the first place. When
that is the case, one thing that s could do is “postpone” her choice, so that the rejection cycle
does not reach her before step TMax.

A.3. The SISU 2016 procedure. The procedure used during the 2016 version of the SISU
selection process has two differences when comparing with the 2010 version, described in
section 2: the presence of affirmative action quotas and the fact that, instead of choosing
only one program in each step, students were able to choose a first and a second option.
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A.3.1. Affirmative action quotas. Due to a federal affirmative action law, many of the pro-
grams offered in the SISU have their seats split into five sets: Qc

MI , Qc
mI , Qc

Mi, Qc
mi and Qc

´,
with capacities qcMI , qcmI , qcMi, qcmi and qc´, respectively. A student may apply to only one
among these in a program, but eligibility to apply to each of those depend on her status as
a low-income student, as a student who is a racial minority and whether she studied in a
public high school:

‚ Only candidates who studied in a public high school, belong to a racial minority, and
provide evidence of belonging to a low-income household may apply to a seat in Qc

MI ,
‚ Only candidates who studied in a public high school and provide evidence of belonging
to a low-income household may apply to a seat in Qc

mI ,
‚ Only candidates who studied in a public high school and belong to a racial minority
may apply to a seat in Qc

Mi,
‚ Only candidates who studied in a public high school may apply to a seat in Qc

mi,
‚ Any candidate may apply to seats in Qc

´.
The cutoff values that are published by the SISU mechanism are calculated, for each set of
seats in each program, exactly the same as described in section 2. The cutoff for the seats
in QmI in step t is the qmIth highest exam grade in the program among those who applied
to the set of seats QmI . It is easy to see, therefore, that if cutoffs go down, students who
would have ultimately been eligible for those seats may believe that they would now not be
accepted into that program.

A.3.2. First and second choice. Differently from the procedure used in 2010, in 2016, in each
step, students were asked to indicate a first and second choice among the available sets of
programs.24 The cutoff values calculated at the end of each step were based on the execution
of the following algorithm:

(1) Consider all students’ first and second choice as being their preferences over C. That
is, if student s submitted c1 as her first choice and c2 as her second choice, her full
preference are considered as being c1Psc2Pss .

(2) Using programs’ preferences responsive to exam scores, let µCt be the outcome of the
college-proposing deferred acceptance algorithm.

(3) For each program c such that
ˇ

ˇµCt pcq
ˇ

ˇ ă qc, let the cutoff for that step ζtc be zc, that
is, the minimum exam grade for acceptance at c.

(4) For each program c such that
ˇ

ˇµCt pcq
ˇ

ˇ “ qc, let the cutoff for that step ζtc be minsPµCt pcqzc psq,
that is, the lowest exam grade at c among those in µCt pcq.

It is easy to see that the procedure in 2010 is the same as the one described above with the
difference being that instead of using two choices as the student’s preference one considers
instead a preference in which a student considers only one college acceptable. Our objective
in this section is to show that the problems associated with the fact that cutoff grades go
down are also present in the version of the mechanism used in 2016.

24More precisely, the students could choose two programs, first and second choice, and only one option among
the options sets of seats described in section A.3.1 in each. For example, the first choice could be the seats
reserved for low-income minorities in program c1 and the second choice would be the seats reserved for low-
income non-minorities in program c2. Since for the purpose of the analysis of the effect of the availability of
these two choices this fact is not relevant, we will consider simply the students’ choices over programs.
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Since students can only submit two colleges, it is still the case that the students have to
carefully consider which one to submit, since she may end up not matched to any college.
What is left to evaluate, however, is whether a student would always be able to be accepted
at a college which has a cutoff value lower than her grade at that college.

Consider an exam-based college matching market xS,C, q, PS, z, Zy, let P ˚S “ pP ˚s , P´sq be
a preference profile where P ˚s differs from Ps in that college c˚ P C is deemed as unacceptable
for s and let µC be the college-optimal stable matching for the exam-based college matching
market xS,C, q, P ˚S , z, Zy. Suppose that µC is blocked, with respect to PS, by s and c˚. We
want to show that the college-optimal stable matching µC˚ for the market xS,C, q, P ˚˚S , z, Zy,
where P ˚˚S “ pP ˚˚s , P´sq and P ˚˚s is the preference for s in which only college c˚ is acceptable,
is such that µC˚ psq “ c˚.

To see that this is the case, consider the college-proposing deferred acceptance procedure
for the market xS,C, q, P ˚S , z, Zy and college c˚. At each step of the deferred acceptance
procedure, college c˚ proposes to the top qc˚ students, who had not yet rejected c˚, with
respect to zc˚ . Let T ˚ be the number of steps in the algorithm until the matching µC is
produced. The set µC pc˚q consists of the top students in S, with respect to zc˚ , who did not
reject c˚ at some step. Since µC is blocked by s and c˚, either

ˇ

ˇµC pc˚q
ˇ

ˇ ă qc˚ or there is a
student s1 P µC pc˚q such that zc˚ psq ą zc˚ ps

1q.
Suppose that the statement is false, that is, that the college-optimal stable matching µC˚

under the market xS,C, q, P ˚˚S , z, Zy is such that s R µC˚ pc˚q. Since offers made by colleges
during the college-proposing DA are not withdrawn, it must be that college c˚ does not make
an offer to s, implying that college c˚ has under µC˚ a “more preferred” set of students than
under µC . Now consider the deferred acceptance steps in xS,C, q, P ˚˚S , z, Zy compared to
those in xS,C, q, P ˚S , z, Zy, and consider the first step at which the proposals and rejections
are different. These differences can only happen if student s rejects colleges considered
acceptable under P ˚s but unacceptable under P ˚˚s . That is, they come from the fact that
student s will reject a set of colleges weakly larger than under P ˚s . This implies that those
colleges will make offers that are further down in their ranking. Those further rejections will
also, at each step, weakly increase the set of students who reject offers from colleges. That
is, in terms of colleges’ “preferences,” they are weakly worse off. But this contradicts the
assumption that s R µC˚ pc˚q and s blocking µC with c˚, since it would be necessary for c˚
to obtain a more preferred set of students under µC˚ in order not to make an offer to s.

Therefore, the result above shows that if a program has a cutoff value that is below a
student’s grade in that program, the student would be able to get accepted at that college by
modifying her preference, putting that program as her top choice. Similarly, if the cutoff is
higher than that student’s grade, that student would never receive an offer from that college
during the deferred acceptance procedure.

We can therefore conclude that the problems associated with the possibility of a reduction
in the cutoff values described in section 2 are also present in the 2016 version of the SISU
mechanism.

A.4. Proofs.

Proposition 2.
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Proof. For this proof we consider an exam-based college matching market and an IDAM
mechanism with π ptq “ 1 for all t. Consider the set of students S “ ts1, s2, s3u and of
colleges C “ tc1, c2, c3u, each with capacity qi “ 1. Student s1, who will be the player to
whom we will show no dominant strategy exists, has preferences c1Ps1c2Ps1c3, and students’
exam grades at those colleges are as follows:

c1 c2 c3
s1 100 100 100
s2 200 200 200
s3 300 300 300

Suppose now that, conditional on the realized preferences and grades of student s1, student
s3 follows a straightforward strategy with respect to the preference c3P 3c2P

3c1. Notice that
we are not stating those are the preferences of student s3, we are simply assuming that she
will follow the straightforward strategy with respect to P 3. Next, we consider two strategies for
student s2 and show that no strategy is a common best response for these two possibilities.
Scenario 1
Suppose that student s2’s strategy is the following: in t “ 1, choose c3. If at some later

point s2 is asked again to make a choice, she will choose the college with the highest cutoff
value at that step among the options available. In case of ties, she will choose the college
with the lowest index number (for example, the index number of c2 is 2). We will show that,
given s2 and s3’s strategies, the best response involves first choosing c2. The sequence of
steps will be as follows:
Step 1: Student s1 applies to c2. Students s2 and s3 apply to c3. Student s2 is rejected.

Cutoffs
`

ζ1c1 , ζ
1
c2
, ζ1c3

˘

are p0, 100, 300q.
Step 2: Since ζ1c2 is the highest cutoff among the colleges offered to s2, student s2 applies

to c2. Student s1 is rejected. Cutoffs
`

ζ2c1 , ζ
2
c2
, ζ2c3

˘

are p0, 200, 300q.
Step 3: Student s1 is left with two options: choose c1 or s. If she chooses s she will remain

unmatched. If she applies to c1, she will be accepted. Final cutoffs
`

ζ3c1 , ζ
3
c2
, ζ3c3

˘

would then
be p100, 200, 300q and the outcome would be the matching µ1 as follows:

µ “

ˆ

c1 c2 c3
s1 s2 s3

˙

Student s1 can therefore be matched to her most preferred college by first choosing c2.
We now show that by choosing first c1 or c3, s1 will always be matched to a strictly inferior
college. First, let her choose c1 first:
Step 1: Student s1 applies to c1. Students s2 and s3 apply to c3. Student s2 is rejected.

Cutoffs
`

ζ1c1 , ζ
1
c2
, ζ1c3

˘

are p100, 0, 300q.
Step 2: Since ζ1c1 is the highest cutoff among the colleges offered to s2, student s2 applies

to c1. Student s1 is rejected. Cutoffs
`

ζ2c1 , ζ
2
c2
, ζ2c3

˘

are p200, 0, 300q.
Step 3: Student s1 is left with two options: choose c2 or s. If she chooses s she will remain

unmatched. If she applies to c1, she will be accepted. Final cutoffs
`

ζ3c1 , ζ
3
c2
, ζ3c3

˘

would then
be p200, 100, 300q and the outcome would be the matching µ1 as follows:
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µ1 “

ˆ

c1 c2 c3
s2 s1 s3

˙

If s1 chooses c3 first instead, the following will happen:
Step 1: Students s1, s2, and s3 apply to c3. Students s1 and s2 are rejected. Cutoffs

`

ζ1c1 , ζ
1
c2
, ζ1c3

˘

are p0, 0, 300q.
Step 2: Following her strategy and the fact that college c1’s index is lower than c2, student

s2 applies to c1. Student s1 has three options: choose also c1 and therefore be rejected and
left to choose between c2 and s in step t “ 2, choose c2 or choose s. In all cases she will
either end up remaining unmatched or matched to c2.
Scenario 2
Now suppose that student s2 follows a similar strategy to scenario 1, but where instead of

applying to c3 and then to the college with the highest cutoff value, she applies to the college
with the lowest cutoff value, once again breaking ties based on the index of the college.25

Following an exercise similar to the one above, it is easy to see that student s1’s strategies
that involve choosing first c2 or c3 will lead her to either be unmatched or be matched to c2,
while choosing c1 will match her to c1, her most preferred college.

Since every best response strategy under scenario 1 is dominated by different strategies in
scenario 2, we have shown that a student may not have a weakly dominant strategy of the
game induced by the IDAM mechanism, and as a consequence also the GIDAM mechanism.

�

Proposition 3.

Proof. Since students follow straightforward strategies, a student s P Si will only apply to
colleges that are not in Ci if the cutoffs at all colleges in Ci are above her exam grade.
Moreover, since for every i the number of students who prefer any college in Ci to any college
not in Ci is at least as big as the overall number of seats in these colleges, by the end of the
execution of the IDAM mechanism all seats in those colleges will be occupied by students in
Si, and students in Si who are not matched to colleges in Ci will be left unmatched (even
though some of them may be tentatively accepted at some step during the execution of the
mechanism). From the perspective of a student in Si, therefore, a seat in a college in Ci

which is being occupied by a student not in Si is equivalent to an empty seat.
Consider any i P t1, . . . , ku and let qi1 ď qi2 ď ¨ ¨ ¨ ď qi

|Ci|
be the ordered capacities of the

colleges in Ci. We will denote by
!

Si1, S
i
2, . . . , S

i
|Ci|
, Si´

)

the partitioning of the students in Si

where Si1 are the top qi1 students in Si in colleges Ci’s preferences, Si2 are the top qi2 students
after those in Si1 in colleges Ci’s preferences, etc. and Si´ are the students in Si below the

top
ř|Ci|
j“1 q

i
j students. By Proposition 1, when students follow straightforward strategies the

25Although the strategies used in this proof for student s2 may seem very arbitrary, they can be rationalized
by two simple stories. Student s2’s strategy in scenario 1 is consistent with a student who knows that her
top choice is c3 but that has some uncertainty about which one between c1 and c2 is her second choice, and
sees the cutoff grade as an indication of how competitive acceptance is at those colleges and therefore sees
the perceived quality of those. The strategy in scenario 2 could be rationalized by a student who once again
knows that her top choice is c3 but that would otherwise prefer to go with a college with low-achieving peers,
and uses the low cutoff as an indication of that fact.
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final outcome of the GIDAM mechanism is the student-optimal stable matching. We will use
the following Lemma:

Lemma 3. Let all students present straightforward behavior with respect to the preference
profile P and µ be the matching produced by the IDAM mechanism. If a student s blocks µ
with some college c, then µ psq “ s.

Proof. If the IDAM mechanism is run for enough steps, Proposition 1 implies that µ is stable
and therefore no student blocks µ with any college. Consider now the case in which the
number of steps TMax is smaller than that, and suppose that there is a student s and a
college c where cPsµ psq, µ psq “ c1 and student s and college c block µ. Since µ psq “ c1, then
at some step t˚ ď T ˚, s chose college c1. Since s and c block µ, it must be that ζT˚c ă zc psq.
By Corollary 3, ζt˚c ď ζT

˚

c . Therefore, in step t˚ both colleges c and c1 were available to s
but she chose c1. A contradiction with straightforward behavior with respect to P . �

By Lemma 3, at any step in which there are blockings, those involve students who are not
tentatively matched to any college. The number of students who are involved in a block is
therefore maximized when the number of students tentatively accepted to a college in any
step is minimal.

Consider now step t “ 1. Since every college in Ci has at least qi1 seats, every student in
Si1 will be accepted at any college in that step. There is one case in which all other students
will be rejected, though: if all students in Si choose the same college with capacity qi1 in
step t “ 1. In that case, |Si| ´ qi1 students in Si will be tentatively unmatched by the end of
step 1, and therefore if the GIDAMmechanism runs for just one step, that is, the maximum
number of students in Si who will be involved in blocking pairs. The same argument will
follow at t “ 2: given that the students in Si1 are all matched to a college with capacity qi1,
the number of students who are tentatively unmatched by step t “ 2 is maximal when all
the remaining students in Si choose a college with capacity qi2.

If we consider all the colleges and students, this process will take place in parallel at each
element of S “

 

S1 Y S2 Y ¨ ¨ ¨ Y Sk
(

and C “
 

C1 Y C2 Y ¨ ¨ ¨ Y Ck
(

. That is, by the end of
step 1, the maximum number of students involved in blocks in S1 is |S1|´q11, in S2 is |S2|´q21,
etc. The result therefore extends to a maximum of n ´

řk
j“1

řT
i“1 q

j
i students involved in

blocks.
Finally, if we consider the maximum number of steps that it takes until the student-

optimal stable matching is produced, we can ask about which preferences from the students
minimize the number of students who are matched to their final allocation at each step.
That is, by minimizing the number of students matched to their final allocation we allow
for the maximum number of students who can still make choices. Here it is easy to see
that the preferences considered above, in which all students apply to the colleges in order
of increasing capacity, is also the one that at each step matches the minimal number of
students to their final allocation. The overall process will in that case end when the last set
in

!

S1
|C1|

, S2
|C2|

, . . . , Sk
|Ck|

)

is matched to their final allocation. That will therefore be the one
with the largest number of colleges. Thus, the maximum number of steps is maxi t|C

i|u. �

Lemma 1.
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Proof. First, note that if ψt1 psq “ H then the statement is true. Suppose, for contradiction,
that ψt1 psq ‰ H and the statement is false. Then there is a student s P S, 0 ď t ď t1 ď T ˚

and a contract x˚ P X such that x˚ P ψt
1

psq but x˚ R ψt psq. Since, for any I 1 Ď X,
Ac pIq Ď Ic, we can separate the violation of the lemma into the contracts available for a
student from a single college. There is, therefore, a college c such that:

x˚ P As
c

´

At
1

pcq
¯

but x˚ R As
c

`

At pcq
˘

By construction, for every c P C, At pcq Ď At
1

pcq. Therefore:

x˚ P As
c

´

At
1

pcq Y
”

At
1

pcq zAt pcq
ı¯

but x˚ R As
c

`

At pcq
˘

And given the definitions of As
c and Ac:

x˚ P fc

´

At pcq Y
”

At
1

pcq zAt pcq
ı

Y tx˚u
¯

but x˚ R fc
`

At pcq Y tx˚u
˘

We need to consider three cases: (i) x˚ R At
1

pcq Y At pcq, (ii) x˚ P At pcq and (iii)
x˚ P At

1

pcq zAt pcq. Cases (i) and (ii): In both cases, x˚ R
“

At
1

pcq zAt pcq
‰

. Since fc sat-
isfies IRC, fc

`

At pcq Y
“

At
1

pcq zAt pcq
‰

Y tx˚u
˘

“ fc pA
t pcq Y tx˚uq. But this contradicts

x˚ R fc pA
t pcq Y tx˚uq. Case (iii): Here we will use the following claim, which can easily

be derived from the definition of unilateral substitutes:
If contracts are unilateral substitutes for college c under fc, there does not exist contract

z P Xs and sets of contracts Y Ď XzXs and I Ď XzXs such that z R fc pY Y tzuq and
z P fc pY Y I Y tzuq.

Denote by I˚ “
“

At
1

pcq zAt pcq
‰

z tx˚u. Then:

x˚ P fc
`

At pcq Y I˚ Y tx˚u
˘

but x˚ R fc
`

At pcq Y tx˚u
˘

By IRC and the fact that fc chooses only one contract per student:

x˚ P fc
`“

At pcq zXs

‰

Y rI˚zXss Y tx
˚
u
˘

but x˚ R fc
`

At pcq zXs Y tx
˚
u
˘

Following the claim above, this contradicts the assumption that fc satisfies unilateral
substitutes, finishing the proof. �

Proposition 1.

Proof. First, note that given the description of the unbounded GIDAM mechanism and
Lemma 1, every time a student is asked to submit a ranking, the set of contracts avail-
able under the GIDAMmechanism is weakly smaller. Moreover, for any t, t1 and s P S such
that 0 ď t ă t1 ď T ˚, ψt psq ‰ H and ψt

1

psq ‰ H, it must be that the set of contracts
in ψt

1

psq is a strict subset of ψt psq, since at least the highest ranked contract submitted
by student s in step t must have been rejected by step t1. Therefore, in every step the set
ψt psq is strictly smaller for at least one student. Since X is finite, GIDAM will end and will
produce an outcome after a finite number of steps.

Next, notice that regardless of which straightforward strategy students use, in all of them
students will offer contracts following the order of their preference, perhaps only skipping
those which would not be held by the college associated with the contract, and that the
outcome will be produced when every student either chooses H, or has a contract held by a
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college or reaches the end of the last ranking submitted. By Hirata and Kasuya [2014], if the
choice functions used by the colleges satisfy unilateral substitutes and IRC, this (cumulative
offer) process will produce the student-optimal stable matching regardless of the order in
which doctors are called to offer contracts, as long as the order in which each student offers her
contracts follow their preferences over them. Different straightforward strategies may imply
different orders in which students offer contracts, but not the fact that students follow their
own preference until the end.26 Therefore, the outcome of the GIDAM mechanism, for any
profile of straightforward strategies, will always be the student-optimal stable matching. �

Theorem 1.

Proof. We use the extensive game notation introduced in the Appendix A.1. Consider some
history h P H. Given other players’ strategies σ´s, the history that results from the strategy
profile pσs, σ´sq consists, as described in the definition of the GIDAMmechanism, of a series
of steps in which each student has either only the action ♦ or some menu of options ψt psq
and a maximum rank π ptq. Therefore, given our strategy profile and student s, we can write
down a list of pairs of menus given to student s and her submitted ranking.

Say that the sequence of menus offered and actions chosen for a student s up to history h
are as follows:

``

ψ1, a1
˘

,
`

ψ2, a2
˘

, . . . ,
`

ψt, at
˘˘

For simplicity, and without any loss of generality, assume that the sequence above has
removed from the list the pairs pH,♦q. We show below that menus given to students never
include contracts present in any ranking submitted in previous steps.

Claim. If contract x is in at, then for every t1 such that t1 ą t, x R ψt1 psq.

Proof. Let c “ c pxq. If ψt1 psq “ t♦u, the claim obviously holds. Therefore, we consider the
case in which both ψt psq and ψt1 psq have a positive number of contracts available. Since x is
in at, x P ψt psq. Also, since x P at and the fact that ψt1 psq ‰ t♦u, it must be the case that
all the contracts in at are in At1´1 pcq (otherwise the GIDAM mechanism would still use the
ranking at in step t1). Also, by the definition of the GIDAM, Ey P Xs, c P C : y P fc

`

At
1´1 pcq

˘

,
and in particular x R fc

`

At
1´1 pcq

˘

. Therefore, x R ψt1 psq. �

Therefore, there is no repetition of contracts in ai, i “ 1, . . . , t. We will abuse notation
and use ai to represent the student’s choice both as a ranking and as a set of contracts.
Denote ψi´ ” ψiz

Ťt
j“i a

j and X`
s ” Xsz tHu. We will show that this sequence could have

been generated by a straightforward strategy of a student with a preference relation in the
following class of preferences:27

X`
s zψ

1 R˚s a
1 P ˚s ψ

1
´zψ

2
´ R

˚
s a

2 P ˚s ψ
2
´zψ

3
´ R

˚
s ¨ ¨ ¨R

˚
s a

t P ˚s ψ
t
´

26Technically speaking, under the cumulative order process students will always offer contracts following their
preference, even those which would not be accepted by the college in the contract. Since choice functions
satisfy IRC, however, this is equivalent to a process that simply skips those contracts that would not be
accepted (and are, therefore, not part of the menus offered to the students under the GIDAM mechanism).
27Note that this class of preferences does not necessarily include all the preferences that are compatible with
the choices made.
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The notation above includes a class of strict preferences because some of its elements
(X`

s zψ
1, ψ1

´zψ
2
´, etc) consist of (possibly empty) sets of contracts. Any strict preference

derived from some ordering over the elements of each of those sets belongs to the class of
preferences that we are referring to. We will refer by P ˚s to some arbitrary element of those
preferences. The claim below implies that each preference in that class is complete over the
set of contracts and that no contract appears more than once.

Claim. ψt´ Ď ψt´1´ Ď ¨ ¨ ¨ Ď ψ1
´ Ď Xs , and ai X ψj´ “ H for all i, j.

Proof. First, note that ψ1
´ “ ψ1z

Ťt
j“1 a

j. Since by definition ψ1 is nonempty, a1 Ď ψ1, and
since by definition ψ1 Ď Xs, it follows that ψ1

´ Ĺ Xs. By the definition of ψt and Lemma 1,
ψk Ĺ ψk´1. Therefore:

ψk´1z
t
ď

j“k´1

aj “
``

ψk´1zψk
˘

Y ψk
˘

z

˜

ak´1 Y
t
ď

j“k

aj

¸

Consider now any k ą 1. By definition, all contracts in ak´1 are in ψk´1, and by the first
claim in this proof, no contract in ak´1 is in ψk. Therefore:

ψk´1´ “ ψk´1z
t
ď

j“k´1

aj “
```

ψk´1zψk
˘

zak´1
˘

Y ψk
˘

z

t
ď

j“k

aj “ ψk´ Y
``

ψk´1zψk
˘

zak´1
˘

That is, ψk´1´ “ ψk´Y
``

ψk´1zψk
˘

zak´1
˘

, which implies that ψk´ Ď ψk´1´ . Finally, for every
j ě i, it comes from the definition of ψi´ that aj X ψi´ “ H. Suppose instead that there is
a i ą j such that aj X ψi´ “ I, for some non-empty set of contracts I. In that case, the
definition of ψi´ implies that I Ď ψi. But in that case, we have that the contracts in I were
submitted in a ranking by the student in step j and was available in the menu in step j ą i,
which contradicts the first claim in the proof.

Now, take some of the menus that were offered, ψi. We now show that for all a P ψi where
a R ai, aiP ˚s a. For that, it suffices to show that:

a P
t
ď

j“i`1

aj Y
t´1
ď

j“i

ψj´zψ
j`1
´ Y ψt´

That is, we will show that a must be at some element to the right of those in ai in the
definition of P ˚s . Since a R ai, this is equivalent to:

a P
t
ď

j“i

aj Y
t´1
ď

j“i

ψj´zψ
j`1
´ Y ψt´

Since we defined ψi´ ” ψiz
Ťt
j“i a

j, we can rewrite the condition as:

a P ψizψi´
loomoon

piq

Y

t´1
ď

j“i

ψj´zψ
j`1
´

looooomooooon

piiq

Y ψt´
loomoon

piiiq
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Suppose not. Then a cannot be in piq, piiq and piiiq. By piq, it must be that a R ψizψi´.
Since a P ψi, that implies a P ψi´. By piiq, since a R ψi´zψ

i`1
´ , it must then be that a P ψi`1´ .

This reasoning can be repeated until finding that it must be that a P ψt´. But that is piiiq,
which leads to a contradiction. �

The sequence ppψ1, a1q , pψ2, a2q , . . . , pψt, atqq is consistent with student s having a prefer-
ence over contracts P ˚s and following a straightforward strategy that, up in each step k ď t
submits a ranking with the top

ˇ

ˇak
ˇ

ˇ contracts, among those available, with respect to her
preference.

This implies that, since all other students follow straightforward strategies, every devi-
ating strategy for student s is outcome-equivalent to following a straightforward strategy
for some preference over contracts that is not necessarily that student’s real preference Ps.
Proposition 1, therefore, shows that the outcome produced will be the student-optimal sta-
ble matching with respect to the preference profile pP ˚s , P´sq. Theorem 7 in Hatfield and
Kojima [2010] shows that since colleges’ choice functions satisfy unilateral substitutes and
the law of aggregate demand, submitting a true ranking is a dominant strategy when using
a direct mechanism. In light of the result above, when other students follow straightforward
strategies, any deviating strategy for s is outcome-equivalent to a deviating strategy in the
direct mechanism, and as a result is not profitable.

We have two more steps to follow. One is to consider the fact that the definition of OPBE
implies that no deviation is profitable starting from any information set. Obviously, any
deviation may be outcome-relevant when starting from an information set in which a student
receives a non-empty menu. Let t be the first step in which student s is given a non-empty
menu while using the deviating strategy. It is easy to see that the continuation game is
equivalent to one in which all contracts that were rejected at some step before t are removed
from X.28 Therefore, everything said above also holds when starting from that step.

The last step is to show that deviating strategies are stochastically dominated by stratight-
forward ones under this equilibrium. Since we focus on pure strategies, the only source of
uncertainty is the draw of P and X that takes place in history h0. The fact that a truthful
ranking is a dominant strategy of the direct mechanism that yields the student-optimal stable
matching implies that, regardless of other students’ preferences (and the set of contracts X),
the outcome that a student obtains by using the true preference is always weakly better than
any other strategy. In particular, this implies that following any straightforward strategy will
give her her most preferred contract whenever there exists a strategy that yields that while
the realization of other students’ preferences makes it possible. Also, due to the strategy
dominance in the direct mechanism, straightforward strategies will always match a student
with the second most preferred contract whenever X and other students’ preferences are
such that the first is not possible and the second is for some strategies. This can be done
for every contract in the student’s preference, and proves that any straightforward strategy
stochastically dominates any deviating strategy. �

Proposition 5.

28This will not change the continuation choices by colleges due to the fact that they satisfy IRC.



THE ITERATIVE DEFERRED ACCEPTANCE MECHANISM 48

Proof. By the end of each step t, a mass M t “ 1 ´ ζ˚ct of students, who have grades in the
range

“

ζ˚ct , 1
‰

are permanently matched to some college. This is the case because by the end
of step t all colleges c1, . . . , ct have their cutoffs equal to their final values. The expression
for M t can be found in the proof of Theorem 3 in Ashlagi and Shi [2014]:

M t
“ pt´ 1q q `

řm
j“t rj

rt
q

At each step t, for every college in tct, . . . , cmu, a positive mass of students with grades
in the range

“

0, ζ˚ct
‰

, applies to that college, there will also be those who have grades that
are above the final cutoff for that college. Therefore, the expression above is a strict lower-
bound on the mass of students who are permanently matched. Consider now the expression
M t`1 ´M t:

M t`1
´M t

“

ˆ

q

rt`1
´
q

rt

˙ m
ÿ

j“t`1

rj “

“ q

ˆ

1

rt`1
´

1

rt

˙ m
ÿ

j“t`1

rj

If we open the values of ri, we get:

q
`

e´αvt`1 ´ e´αvt
˘

peαvt`1 ` eαvt`2 ` . . .` eαvmq “

“ q
`

e0 ` eαpvt`2´vt`1q ` eαpvt`3´vt`1q ` ¨ ¨ ¨ ` eαpvm´vt`1q ´ eαpvt`1´vtq ´ eαpvt`2´vtq ´ ¨ ¨ ¨ ´ eαpvm´vtq
˘

Replacing the values of vt with pm´ tq, we get:

q
`

e0 ` e´α ` e´2α ` ¨ ¨ ¨ ` e´αpm´t´1q ´ e´α ´ e´2α ´ ¨ ¨ ¨ ´ e´αpm´tq
˘

Therefore, the expression for M t`1 ´M t is:

M t`1
´M t

“ q
`

1´ e´αpm´tq
˘

Notice that
BpMt`1´Mtq

Bα
ą 0. Finally, the expression for those permanently matched ac-

cording to the above-mentioned reasoning in the first step is:

M1
“

řm
j“1 rj

r1
q “

e´αpm´1q pemα ´ 1q

eα ´ 1
q

So:

BM1

Bα
“ ´q

eα´pm´1q pm´ 1` emα ´meαq

peα ´ 1q2

Since m ą 1, emα ą meα and BM1

Bα
ă 0. �

A.5. Additional simulation data.

A.5.1. Number of steps in IDAM vs maximum rank in DA when market balance is 5.0.
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Figure A.1. Number of steps in IDAM vs maximum rank in DA

IDAMp0`8q IDAMp1`8q IDAMp2`8q IDAMp3`8q

λ 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
α

0.0 2.1 12.8 100.0 0.45 8.9 69.3 0.1 7.45 49.7 0.0 6.6 35.6
0.1 2.35 17.75 100.0 0.45 12.55 70.9 0.2 10.45 51.45 0.0 9.45 36.25
0.2 3.3 29.6 100.0 1.2 20.8 73.8 0.85 16.85 52.7 0.25 14.55 38.0
0.3 5.1 55.25 100.0 2.3 41.3 77.3 1.35 33.05 56.8 1.0 27.6 41.8
0.4 7.95 78.75 99.95 4.45 62.8 82.1 3.15 49.45 61.65 2.4 41.8 45.35
0.5 13.4 95.4 99.95 8.4 82.75 86.8 5.6 69.3 69.05 3.8 59.2 53.3
0.6 20.4 98.5 100.0 14.85 89.15 91.35 9.6 77.35 76.7 6.5 66.65 61.7
0.7 29.6 99.2 100.0 24.85 92.65 94.0 18.55 83.45 83.85 13.35 74.15 71.25
0.8 38.25 99.85 100.0 35.0 95.8 96.2 29.95 90.25 90.25 25.15 82.65 82.05
0.9 45.6 99.95 100.0 43.25 97.45 97.35 40.55 94.45 94.55 37.1 90.45 90.2
0.10 50.0 100.0 100.0 48.0 98.0 98.0 47.0 97.0 97.0 46.0 96.0 96.0

Table 1. Simulations of IDAMpk `8q results when β “ 0.0 and 0 ď k ď 3
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IDAMp4`8q IDAMp5`8q IDAMp6`8q IDAMp7`8q

λ 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
α

0.0 0.0 6.1 25.45 0.0 5.65 18.85 0.0 5.4 13.25 0.0 5.0 9.55
0.1 0.0 8.65 25.95 0.0 7.65 19.1 0.0 7.0 13.1 0.0 6.85 9.6
0.2 0.0 12.8 26.6 0.0 11.65 19.0 0.0 10.85 12.9 0.0 10.0 9.2
0.3 0.55 23.7 29.9 0.25 21.0 21.05 0.15 19.1 14.5 0.1 17.8 10.1
0.4 1.5 36.15 33.7 1.15 30.9 23.65 0.95 27.2 16.5 0.7 24.2 11.05
0.5 2.6 50.2 40.2 2.0 43.95 29.75 1.6 38.2 20.65 1.3 33.4 13.85
0.6 4.6 57.15 48.25 3.35 49.75 36.7 2.9 43.4 27.55 1.95 38.0 19.1
0.7 9.95 64.75 59.25 6.6 56.3 47.65 4.9 49.4 37.1 3.7 43.55 28.1
0.8 19.65 74.75 72.6 15.45 66.8 62.5 12.05 59.1 53.15 9.15 52.7 43.95
0.9 33.8 86.25 85.35 29.6 80.55 79.05 25.7 74.95 73.15 22.35 69.1 65.95
0.10 45.0 95.0 95.0 44.0 94.0 94.0 43.0 93.0 93.0 42.0 92.0 92.0

Table 2. Simulations of IDAMpk `8q results when β “ 0.0 and 4 ď k ď 7

IDAMp8`8q IDAMp9`8q IDAMp10`8q

λ 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
α

0.0 0.0 4.8 7.05 0.0 4.5 5.1 0.0 4.3 3.4
0.1 0.0 6.4 7.0 0.0 6.3 5.15 0.0 6.05 3.45
0.2 0.0 9.2 6.85 0.0 8.5 4.9 0.0 8.15 3.3
0.3 0.05 16.8 7.05 0.05 15.95 5.05 0.0 14.85 3.2
0.4 0.55 22.1 7.4 0.3 19.9 4.7 0.15 18.45 3.0
0.5 1.05 29.4 9.1 0.8 26.65 5.45 0.55 24.55 3.45
0.6 1.7 33.45 12.4 1.3 29.6 7.95 1.15 26.5 4.15
0.7 2.95 38.45 20.5 2.2 33.2 13.6 1.75 29.1 8.3
0.8 6.8 46.55 34.55 5.1 41.1 27.1 3.9 36.05 20.3
0.9 18.75 63.75 59.35 15.4 58.0 52.6 13.05 52.9 45.85
0.10 41.0 91.0 91.0 40.0 90.0 90.0 39.0 89.0 89.0

Table 3. Simulations of IDAMpk `8q results when β “ 0.0 and 8 ď k ď 10

A.5.2. Detailed results for simulations of the IDAM+DA mechanism.
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IDAMp0`8q IDAMp1`8q IDAMp2`8q IDAMp3`8q

λ 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
α

0.0 2.3 60.3 66.35 0.45 25.45 29.0 0.05 13.6 14.95 0.0 7.05 8.1
0.1 2.9 67.9 72.65 0.65 30.1 33.65 0.0 15.85 18.2 0.0 9.3 9.65
0.2 4.0 89.05 82.85 1.1 46.55 44.0 0.35 25.85 24.2 0.05 15.0 14.3
0.3 6.0 91.7 89.05 1.75 55.7 54.2 0.95 33.5 32.65 0.45 20.8 19.85
0.4 9.75 97.35 95.0 3.65 68.7 67.65 1.95 44.35 44.3 0.95 29.4 28.65
0.5 17.25 97.85 98.1 9.25 76.75 78.7 4.15 54.15 57.6 2.4 38.1 40.55
0.6 24.0 98.95 99.45 15.2 83.9 87.05 8.05 66.35 69.4 4.45 50.85 54.2
0.7 33.05 99.65 99.5 25.9 90.25 91.45 17.6 76.95 79.2 11.1 63.85 66.65
0.8 40.3 99.9 99.9 36.05 94.25 95.3 29.95 87.0 88.75 23.35 77.95 79.9
0.9 46.45 99.95 99.95 43.9 96.85 97.05 40.45 93.05 93.8 36.65 89.05 89.5
0.10 50.0 100.0 100.0 48.0 98.0 98.0 47.0 97.0 97.0 46.0 96.0 96.0

Table 4. Simulations of IDAMpk `8q results when β “ 1.0 and 0 ď k ď 3

IDAMp4`8q IDAMp5`8q IDAMp6`8q IDAMp7`8q

λ 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
α

0.0 0.0 4.25 4.7 0.0 2.5 2.6 0.0 1.7 1.7 0.0 1.05 0.85
0.1 0.0 6.1 5.7 0.0 3.45 3.45 0.0 2.35 2.1 0.0 1.3 1.5
0.2 0.0 9.05 8.4 0.0 5.25 5.1 0.0 3.25 3.4 0.0 1.9 2.5
0.3 0.0 13.2 12.25 0.0 7.95 7.65 0.0 4.8 5.35 0.0 2.85 3.3
0.4 0.75 19.85 19.25 0.2 13.2 13.3 0.1 8.6 8.75 0.05 5.95 6.0
0.5 1.35 27.6 28.25 0.55 19.1 20.55 0.15 13.55 15.3 0.05 9.55 10.3
0.6 2.65 38.55 41.55 1.55 29.85 31.0 1.1 22.6 23.55 0.9 16.95 18.6
0.7 7.15 52.8 55.15 4.6 42.4 44.75 2.85 35.25 36.2 1.8 28.6 29.15
0.8 17.55 68.65 70.8 12.65 59.8 61.65 9.25 52.35 54.3 6.75 45.05 47.05
0.9 33.05 83.85 84.6 28.9 78.7 78.9 24.75 73.05 73.95 21.8 67.7 69.0
0.10 45.0 95.0 95.0 44.0 94.0 94.0 43.0 93.0 93.0 42.0 92.0 92.0

Table 5. Simulations of IDAMpk `8q results when β “ 1.0 and 4 ď k ď 7



THE ITERATIVE DEFERRED ACCEPTANCE MECHANISM 52

IDAMp8`8q IDAMp9`8q IDAMp10`8q

λ 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
α

0.0 0.0 0.65 0.45 0.0 0.25 0.25 0.0 0.15 0.0
0.1 0.0 0.95 0.9 0.0 0.45 0.3 0.0 0.2 0.1
0.2 0.0 1.3 1.5 0.0 0.65 0.7 0.0 0.3 0.45
0.3 0.0 1.95 2.45 0.0 1.5 1.7 0.0 0.8 1.25
0.4 0.05 4.3 4.1 0.0 2.9 2.95 0.0 1.85 1.95
0.5 0.05 6.35 7.1 0.0 4.65 5.05 0.0 3.45 3.55
0.6 0.3 12.95 13.2 0.1 9.2 10.0 0.05 6.9 7.75
0.7 1.3 22.6 23.6 1.05 18.9 19.4 0.65 14.8 15.5
0.8 4.65 39.5 40.4 3.35 33.8 34.95 2.4 29.4 29.65
0.9 18.25 62.25 63.75 15.25 57.25 58.95 12.65 52.95 54.2
0.10 41.0 91.0 91.0 40.0 90.0 90.0 39.0 89.0 89.0

Table 6. Simulations of IDAMpk `8q results when β “ 1.0 and 8 ď k ď 10
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