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SUMMARY

The role of brain cell-type-specific functions and
profiles inpathological andnon-pathological contexts
is still poorly defined. Such cell-type-specific gene
expression profiles in solid, adult tissues would
benefit fromapproaches that avoidcellular stressdur-
ing isolation. Here, we developed such an approach
and identified highly selective transcriptomic signa-
tures in adult mouse striatal direct and indirect spiny
projection neurons, astrocytes, and microglia. Inte-
grating transcriptomic and epigenetic data, we ob-
tained a comprehensive model for cell-type-specific
regulation of gene expression in the mouse striatum.
A cross-analysis with transcriptomic and epigenomic
data generated frommouse and human Huntington’s
disease (HD) brains shows that opposite epigenetic
mechanisms govern the transcriptional regulation of
striatal neurons and glial cells and may contribute to
pathogenic and compensatory mechanisms. Overall,
these data validate this less stressful method for the
investigation of cellular specificity in the adult mouse
brain and demonstrate the potential of integrative
studies using multiple databases.

INTRODUCTION

Neurons have long been considered to be the principal actors of
thoughts and actions in the CNS. Technological developments

have highlighted the vast cellular diversity of the brain and con-
tributions of neuronal and non-neuronal cell populations in brain
functions. The striatum, in particular, is an essential relay of mo-
tor, cognitive, and limbic processes, implying highly specific
roles for distinct cell subpopulations (Silberberg and Bolam,
2015). Precise dissection of cellular contributions to striatal
loops is central to the comprehension of this region and its impli-
cation in normal and pathological contexts. For example, spe-
cific epigenetic and transcriptional alterations have been
described in the striatum of mice and patients with Huntington’s
disease (HD), a genetic neurodegenerative disease affecting pri-
marily the striatum (Achour et al., 2015; Hodges et al., 2006;
Langfelder et al., 2016). However, it is still unclear whether HD
mutation similarly or differently affects the epigenetic and tran-
scriptional regulation of neurons and glial cells.
Cell-type-specific characterization faces a major challenge in

the isolation of populations from both developing and adult ani-
mals with techniques compatible with high-throughput analysis.
Attempts to overcome these limitations have included the purifi-
cation of cell-type-specific cells from mouse striatum (Doyle
et al., 2008; Heiman et al., 2008; Lobo et al., 2006) or other brain
structures (Cahoy et al., 2008; Macosko et al., 2015; Molyneaux
et al., 2015; Zhang et al., 2014). These methods rely either on the
development of new genetically modified animals to isolate ribo-
some-bound RNA and determine the translational profile of CNS
cell types or ex vivo cellular immunolabeling and sorting. Howev-
er, large-scale cellular staining compatible with multiple high-
throughput -omics applications (e.g., transcriptome and prote-
ome profiling) in adult models is still associated with artificial
cellular stress encountered during purification (Handley et al.,
2015).
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Figure 1. Validation of the New Method for Transcriptome Profiling
(A) The mean normalized expression levels of genes with low, medium, and high expression across samples (x axis) were compared with expression levels from

the Allen Brain Atlas (y axis). Linear regression revealed a high correlation coefficient (r = 0.58) between the two studies.

(B) Heatmap of Pearson correlations between each sample, showing stronger correlation coefficients between samples of the same group than intergroup

correlations.

(C–E) Principal-component analysis (PCA) on all detectedmiRNAs (C) andmRNAs (E) showing a clear distinction of neuronal and glial samples for mRNA and less

separation for microRNA (miRNA) based on the first principal components (PC1). Grouping of the messenger RNA dots suggests separation by cell type.

(legend continued on next page)
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Here, we report a flexible method for physiological cell-type-
specific profiling of adult cells, taking advantage of existing
transgenic animals and widely used technologies. The method
combines the advantages of fluorescent transgenic mouse
models and sectioning under physiological conditions to avoid
fluorescent signal loss and ensure high-quality RNA, together
with laser capture microdissection (LCM) (Cheng et al., 2013).
We performed transcriptome profiling of astrocytes, microglia,
and spiny projection neurons (SPNs) of the striatonigral (direct
pathway [dSPN]) and striatopallidal loops (indirect pathway
[iSPN]). Neurons from these two pathways are morphologically
identical but have distinct roles in basal ganglia networks, high-
lighting the need to deeply characterize their common and spe-
cific features.
We used RNA sequencing (RNA-seq) and microarray hybrid-

ization to identify differential mRNA profiles and analyze the mi-
croRNA (miRNA) pool of striatal cell populations, respectively.
The analyses of differentially expressed (DE) genes highlight
gene expression signatures specific to each population. The
integration of these data with miRNA and epigenetic profiles
emphasizes complex mechanisms of transcriptional regulation
in the striatum involving the activity of selective transcription
factors (TFs) and a role for genome tridimensional folding.
Finally, analysis of databases on HD underlines differential
transcriptomic and epigenetic changes in striatal neurons and
glial cells. Specifically, we show that neuronal identity genes,
and not glial genes, are highly susceptible to downregulation
and histone deacetylation, thus providing new insights in HD
pathogenesis.

RESULTS

LCM Protocol for In Vivo Brain Cell Population -Omics
We analyzed the transcriptomic profiles of the main cellular pop-
ulations of the striatum by LCM using transgenic mice express-
ing EGFP in the iSPN (Drd2-eGFP) (Gong et al., 2003), astrocytes
(GLT1-eGFP) (Regan et al., 2007), and microglia (Cx3cr1-eGFP)
(Jung et al., 2000) and Tomato fluorescent protein in the dSPN
(Drd1-Tomato) (Ade et al., 2011) (Figure S1A). As previously re-
ported, freezing fresh, unfixed brain samples induces a strong
loss of fluorescent protein due to the diffusion of the signal,
whereas partial brain fixation ensures the preservation of fluores-
cence but is incompatible with high-quality RNA recovery (data
not shown) (Rossner et al., 2006). We overcame these limitations
by developing a LCM tool for in vivo brain cell population -omics
that preserves cytoplasmic fluorescence while recovering high-
quality RNA (Figures S1B and S1C). The protocol is based on vi-
bratome slicing in cold, oxygenated artificial cerebrospinal fluid
and a modified dehydration procedure.
We extracted total RNA from 10 to 123 104 cells (three or four

animals per group) for each cell population (Table S1) and per-
formed microarray analysis of miRNA expression and mRNA

sequencing (Figures S1D and S1E). We detected 16,058mRNAs,
including hundreds of long-intergenic non-coding RNAs
(lincRNA) and 370 miRNAs. We verified the quality of our data
by randomly selecting 100 genes of the Allen Brain Atlas with
low, medium, or high striatal expression levels. Linear regression
revealed a significant correlation (r = 0.58, p < 2.2e-16), showing
that our data are consistent with previously published gene
expression profiles (Figure 1A).
The reproducibility of the data was demonstrated by the

strong correlation between samples from the different groups,
as well as between all samples, which is coherent with previous
studies suggesting that a small proportion of transcripts may be
cell-type specific (Heinz et al., 2010; Zhang et al., 2014) (Fig-
ure 1B). In addition, principal-component analysis and hierarchi-
cal clustering demonstrated good discrimination between
different cell populations across samples according to mRNA
expression profiles, (Figures 1E and 1F), but less so for miRNA
(Figures 1C and 1D).

Analysis of Cell-Type-Specific Molecular Markers and
Cellular Functions
We conducted contrast analyses to identify DE mRNA and
miRNA (Table S2) and obtained 757, 476, 342, and 759 mRNAs
significantly enriched in the iSPN, dSPN, astrocytes, and micro-
glial cells, respectively (Figure 2A; false discovery rate [FDR]
threshold = 0.1).We also identified between 1 and 10DEmiRNAs
(Figure 2A). Given that dSPN and iSPN share many functions, we
compared SPNs (dSPN and iSPN samples) and glial cells (astro-
cytes and microglia; Figure 2B). We obtained 961 and 47 SPN-
enriched mRNAs (FDR threshold = 0.05) and miRNAs (FDR
threshold = 0.1) and 1,550 and 28 glia-enriched mRNAs and
miRNAs, respectively. The selectivity and robustness of our
data were assessed by selecting known markers of targeted
and non-targeted cells (Heiman et al., 2008; Zhang et al.,
2014). As expected, SPNs were enriched for Ppp1r1b (DARPP-
32), Adora2b, and Calb1 (Calbindin) (Figure 2C). More specif-
ically, we found known markers of the striatopallidal pathway
in iSPN cells (Drd2, Penk, and Gpr6; Figure 2C) and striatonigral
markers in dSPNs (Drd1 and Tac1; Figure 2C). We confirmed
substantial enrichment of Aqp4 (Aquaporin 4), Glul (GS), and
Slc1a3 (GLAST) in astrocytes (Figure 2C) and Itgam (CD11b),
Emr1 (F4/80), and CD68 in microglia (Figure 2C). We detected
marked enrichment ofGfap, Slc1a2 (GLT1), and Aldh1l1 in astro-
cytes. Finally, we did not observe notable enrichment of genes
belonging to the non-targeted cell populations (Figure 2C).
We further validated some of these DE genes by qRT-PCR
and compared our DE gene (DEG) with the markers found in a
previous single-cell RNA-seq study (Gokce et al., 2016; Figures
2D and S2A). A selected set of genes involved in cellular stress
responses showed a lower level of expression compared to
data obtained by fluorescence-activated cell sorting (FACS)
(Zhang et al., 2014) (Figure S2B). Finally, our data demonstrate

(D–F) Euclidean unsupervised hierarchical clustering of the log2 normalized expression levels from the 20% most variable miRNAs (D) and mRNAs (F). Color

intensities are proportional to z-scaled expression levels. Strong clustering by cell population is observed for mRNA, confirming the sample distribution

determined by PCA.

See also Figure S1 and Tables S1 and S2.
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the absence of strong cross-contamination between cell popula-
tions due to the dissection procedure (Figure 2C).
We further validated the capacity to discriminate between

striatal cell types with a network analysis. A spectral decompo-
sition of gene expression signals was performed against the
probabilistic functional network MouseNet v2, which generates
unbiased and precise predictions of the biological significance
of DE genes while reducing the risk of false positives and nega-
tives (Lejeune et al., 2012; Tourette et al., 2014). Such analysis
systematically retained gene nodes (Table S3, sheet 1), relative
to the raw data (Figure S2C), that are highly expressed in a given
cell type and show no expression or poor expression in one of
the other cell types (blue genes) (Figure 2E; Table S3, sheet 2).
Biological enrichment analysis of the union of the blue-gene lists
for each cell type using Gene Ontology biological processes and
reactome data revealed cell-type-specific patterns of biological
annotations (Figure 2F). These analyses notably suggested that
blue genes for dSPNs are associatedwith a greater susceptibility
to cell death than those of iSPNs, consistent with the current
view of neuronal cell vulnerability in the striatum and the higher
vulnerability of D1 neurons to degeneration (Francelle et al.,
2014; Han et al., 2010) (Figure 2F). More precisely, high-confi-
dence Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING) database annotations of the highly enriched
(log fold-change [logFC] >1.5 versus reference) genes in the
blue-gene network signature of dSPNs, which includes Trim12a,
Usp50 B3gnt3, Hist1h1d, Lsm7, Mrc1, Map3k7cl, and 29 other
genes, representing !35% of the 105 genes retained in this
signature (including Drd1; LCF = 1.08), show these genes are
implicated in mRNA splicing, extrinsic apoptosis signaling,
mRNA splicing, extracellular matrix, and 1-phosphatidylinosi-
tol-3-kinase activity (Figure S7A). We detected no overlap with
previously reported and larger signatures of human striatal
neurons (Kelley et al., 2018) (Figure S7B). The same appears
to apply to the comparison with previously reported and larger
RNA-seq signatures of mouse D1 striatal neurons, as inferred
from the data made available in this study (Gokce et al., 2016).
These comparisons suggest that network analysis is able to
extract precise functional signatures not necessarily put forth
by traditional analysis. In astrocytes, blue genes were associ-
ated with cell-to-cell interactions and cell-to-extracellular matrix

processes relative to cellular differentiation and homeostasis,
whereas in microglia, they were associated with inflammation
and immune function, as expected (Figure 2E).
Overall, these data suggest that our method allows the purifi-

cation of striatal cell types to high homogeneity, as shown by
the detection of discriminative molecular signatures in each
population.

Cell-Type-Enriched miRNA Expression Levels Do Not
Predict Expression Levels of Target mRNA
miRNAs are small non-coding RNAs that mediate RNA silencing
through post-transcriptional regulation of gene expression (Bar-
tel, 2009). Here, we recapitulated the relative expression rates of
four strongly expressed miRNAs: mmu-miR-124-3p, mmu-miR-
9-5p, mmu-miR-9-3p, and mmu-miR-29b-3p (Figure S3A) (He
et al., 2012). We also found that SPN-enriched miRNA from
chromosomes 12 and 7 were overrepresented, whereas glia-
enriched miRNAs were mostly transcribed from chromosome 2
(Figures S3B and S3C). Analysis of miRNA clusters showed
that the miR-379/miR-410 cluster, located on chromosome 12,
was significantly enriched in SPNmiRNA, as previously reported
for cultured neurons, whereas no cluster reached the signifi-
cance threshold in glia-enriched miRNA (Figures 3A, 3B, and
S3D; Table S4) (Jovi!ci"c et al., 2013; Rago et al., 2014). Finally,
we observed the expected enrichment of mmu-miR-124 in
SPN relative to glia (He et al., 2012).
A single miRNA regulates multiple distinct mRNAs, whereas

a single mRNA may be regulated by numerous independent
miRNAs,which can be groupedbymiRNA families based on their
common target genes. We assessed whether the enrichment of
mRNA in SPN and glia may be linked to the expression of corre-
sponding miRNA families. According to this hypothesis, strong
enrichment of one miRNA in one cell type should lead to limited
expression of the corresponding target transcripts in these cells.
Therefore, these transcripts should have a greater propensity to
be DE in the other cell population (Figure 3C). Information in
miRNA-target databases suggested that SPN-enriched miRNAs
(47) could regulate 4,299 predicted target mRNAs (miRTs; Fig-
ure 3D), whereas glia-enriched miRNAs (28) could regulate
1,600 transcripts (Figure 3E; Table S4). The analysis shows that
most miRNA-target genes were non-DE and that when the

Figure 2. Differential Analysis Identifies Specific Markers of Striatal Cell Types
(A) Venn contrast diagrams for mRNA (up) andmiRNA (down) of all genes for each cell type showing the number of cell-type-enriched genes (FDR threshold = 0.1)

at the extremity of each area. The data show hundreds of DE mRNAs but a lower proportion of cell-type-enriched miRNAs.

(B) Volcano plots showing all detectedmRNAs (up) andmiRNAs (down) in the SPN-glia contrast. The horizontal red-dotted line represents the FDR threshold (0.05

for mRNA and 0.1 for miRNA) on a "log10 scale, whereas the vertical black-dotted lines show the logFC = 0.58 and logFC = "0.58. Violet dots represent

transcripts with a significant FDR and an absolute logFC R0.58, turquoise dots represent transcripts with a significant FDR but a lower logFC, and green dots

represent non-significant transcripts with an absolute logFC R0.58.

(C) Barplot showing the enrichment score for selected known cellular markers of dSPN (dark blue), iSPN (turquoise), astrocytes (green), microglia (red), and global

SPN (purple). Markers for non-dissected cell types were also selected (black). The enrichment score is plotted for each gene in contrast (see STAR Methods).

(D) Comparison of our DEG with markers cell-type specific markers identified in Gokce et al. (2016). The heatmap displays the normalized average expression

level in the four cell population of the key cell-type- specific markers identified by single-cell RNA-seq. Color code indicates a significant overlap of markers

identified in the two studies.

(E) Cell-type specificity of gene-expression network signatures in themouse striatum. Blue gene nodes represent those genes that are specifically enriched in the

cell type considered and those that are under-expressed in the cell type to which the comparison was made.

(F) Enrichment of blue gene lists in Reactome and GO biological processes annotations. The heatmaps show biological content for the union of the blue gene

groups across cell types for each cell type considered.

See also Figures S2 and S7 and Table S3.
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Figure 3. Relationship between miRNA Enrichment and Target mRNA Cellular Specificity
(A and B) Histogram showing the number of enriched miRNAs in each cluster of chromosome 12 (A: SPN-enriched miRNA) and chromosome 2 (B: glia-enriched

miRNA). A hypergeometric analysis was performed to determine the significance of the enrichment. *FDR < 0.1.

(C) Schematic representation of the rationale behind the analysis of mRNA regulation by cell-type-enriched miRNA. For each cell-type-enriched miRNA in SPN

(green) and glia (blue), the corresponding target sequences of the transcriptomewere recovered using TargetScan. Next, list of predictedmRNA targets ofmiRNA

was crossed with lists of DEGs in SPNs (violet) or glia (orange). The hypothesis was that amiRNA highly expressed in one cell population will downregulate mRNA

that, as a consequence, will be detected as enriched in the other cell population.

(D) Venn diagrams showing the overlap between miRNA targets of SPN-enriched miRNA (SPN miRT, dark blue) with SPN-enriched mRNA (violet) and glia-

enriched mRNA (orange). The proportion of overlap is equal.

(E) Venn diagrams showing the overlap between miRNA targets from glia-enriched miRNA (glia miRT, dark red) with SPN-enriched mRNA (violet) and glia-

enriched mRNA (orange). The proportion of overlap is equal.

See also Figure S3 and Table S4.
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miRNA-targetswereDE, theywerepresent in anequal proportion
in neurons and glial cells (Figures 3D and 3E). These data suggest
thatmiRNA regulation hasonly a limited role in determining global
mRNA profiles and that other mechanisms might be involved in
the regulation of cell-type-specific gene expression.

The Activity of Selective TFs Is Predicted to Modulate
the Cellular Specificity of Gene Expression
We next analyzed the enrichment of specific transcription-fac-
tor-binding sites (TFBSs) in the cell-type-enriched genes based

on regulatory motif over-representation across genes or chro-
matin immunoprecipitation sequencing (ChIP-seq) datasets
(Zhou et al., 2017). We identified 23 to 35 TFs per cell population,
each showing significant enrichment of TFBSs among cell-type-
enriched genes (Figure 4A; Data S1). Some identified TFs are
potential regulators of a large number of cell-type-enriched
genes, such as RUNX1, which potentially binds to 570 genes
among the 759 enriched inmicroglia. We then evaluated the rela-
tionship between the cell-type enrichment of TFs and the enrich-
ment of TFBSs in DE genes in the same population. There was no

Figure 4. Different Sets of Transcription Factors Regulate Cell-Type-Enriched Genes
(A) Density plot of Z scores obtained after TFBS analysis using the Opposum 3.0 TFBS prediction tool. Colored lines represent the distribution of Z scores for TF

identified from a list of genes enriched in distinct cell populations, whereas the black line represents the Z score distribution obtained from randomly generated

gene lists.

(B and C) Regression plots of TFs identified with an enrichment of TFBSs in cell-type-enriched genes (B) or in the neuron versus glia contrast (C). The x axis

represents the Z score of the identified TF. The y axis ("log10(FDR)sgn(D)) corresponds to the enrichment score for each gene in each contrast. For the cell-type-

specific analysis (B), the gene is significantly enriched in the cell population if its enrichment score is R1, whereas it is significantly less expressed if the score

is% "1. Scores between "1 and 1 are non-significant. For the neuron versus glia contrast (C), the values of the enrichment score for glia-enriched genes were

inverted to facilitate the interpretation. Thus, genes that are enriched in glial cells have a positive enrichment score, whereas those that are non-enriched in glial

cells have a negative enrichment score.

(D and E) Plot representing the TFs withmore TFBSs close to SOX9 in genes enriched in neurons (D) or glial cells (E). The horizontal red dotted line corresponds to

an FDR threshold of 0.05.

See also Data S1.
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significant correlation between TF expression and enrichment of
the corresponding TFBSs in the four cellular populations (Figures
4B and 4C). In contrast, we identified Sox9, Sox5, and Mef2a as
potential regulators of SPN genes and Runx1, Zfp423, and Ebf1
as potential regulators of glial genes (Figure 4C).

We next evaluated whether DE genes could be regulated syn-
chronously by different TFs sharing close proximity to transcrip-
tion start sites. We focused our analysis on Sox9. In SPNs, this
TF was significantly associated with Sox5 (non-enriched) and
Mef2a (enriched), two TFs already shown to be major potential
regulators in SPN (Figure 4D). In contrast, in glia, Sox9 is signif-
icantly associated with Runx1, Zfp423, and Ebf1, which are
strong regulators of glial DE genes (Figure 4; Data S1). Overall,
these results suggest that a group of distinct TFs contribute to
cell-type gene enrichment, with some TFs also significantly en-
riched in the regulated cell type. However, for most, cell-type
enrichment of the TFs cannot explain their high regulatory poten-
tial, suggesting that more integrated mechanisms contribute to
TF activity.

Conformationally Related Genomic Functional Units
Could Be Involved in TF Activity and Cell-Type-Enriched
Gene Expression Profiles
We finally investigated whether DNA conformation may
contribute to the cell-type-specific profile of DE genes in the
striatum, particularly topological adjacent domains (TADs).
TADs form loops between distant parts of the genome and are
known to contribute to tridimensional folding of DNA and tran-
scriptional regulation. We retrieved the coordinates of TADs
and determined the location of our DE genes (Dixon et al.,
2012). Most DE genes belonged to a known TAD, and the
same number of TADswas found for each cell population relative
to randomly selected genes (Figure 5A; Table S5). Hypergeomet-
ric analysis did not demonstrate significant enrichment of a spe-
cific group of TADs, suggesting that DE genes for each cell type
are not transcribed from distinct TADs (Figure 5B). A substantial
proportion of TADs were shared between cell types. However,
the distribution of DE and randomly selected genes within
TADs was not significantly different (Figure 5C). Overall, our re-
sults show the absence of an association between cell-type
gene enrichment and TAD membership. However, as previously
shown, topological domains can be subdivided into smaller sub-
domains, comprising a reduced number of genes more prone to
common transcriptional regulation. Enhancer-promoter units
(EPUs) have been linked to boundaries between smaller domains
and acting as regulators of gene transcription that belong to their
domains. Therefore, we assessed whether our DE genes be-
longed to specific mouse cortex EPUs (Dixon et al., 2012). There
was significantly less overlap between EPUs associated with
SPN DE genes and those associated with glial DE genes relative
to the overlap resulting from randomly selected genes (Figure 5D;
Table S5). This suggests that cell-type-enriched genes in SPN
and glia preferentially originate from different EPUs. We as-
sessed whether an EPU is characterized by common regulatory
transcriptional elements by performing TF analysis of DE genes
within EPUs containing at least two genes and from which at
least 50% were cell-type enriched. Here, we fully recapitulated
the TF profile previously identified for each cell types, particularly

TFs with a high estimated regulatory score but non-DE in our
study (Figure 5E). This suggests that the fine tridimensional regu-
lation of DNA near genes may be involved in promoter accessi-
bility to TFs and could serve as a regulator of TF activity on
cell-type-enriched genes.

Analysis of HD Transcriptional Signature
Striatal neurons and glial cells have been implicated in HD, high-
lighting the necessity to better understand the specific contribu-
tion of these cell types (Allaman et al., 2011). In particular,
whether transcriptional and epigenetic signatures induced by
mutant HTTs differ between neurons and glial cells and within
SPNs, between the dSPN and iSPN, is yet to be determined.
Despite ubiquitous expression ofHTT in striatal cells (Figure 6A),
dSPNs and iSPNs display differential vulnerability to mutant
huntingtin (HTT) leading to specific dysfunction in patients (Zuc-
cato et al., 2010). To gain insights into these questions, we
compared DE genes with striatal transcriptomic data from HD
patients and mice, including HD knockin mice and R6/1 mice
(Achour et al., 2015; Hodges et al., 2006; Langfelder et al.,
2016).
We extracted genes significantly up- or downregulated in the

striatum compared to healthy controls (p % 0.001, according
to Hodges et al.; Figure S4A) (Hodges et al., 2006). We retrieved
1,984 upregulated and 1,626 downregulatedmouse orthologous
genes. Genes significantly upregulated in HD were more highly
represented in glia than SPNs (Figure 6B), whereas we observed
the opposite pattern for downregulated genes (Figure 6C). We
observed the same trends when considering each cell popula-
tion separately (Figures 6D and 6E). In addition, we obtained
similar results when intersecting our database with RNA-seq
data generated in the striatum of R6/1 mice at the symptomatic
stage (Achour et al., 2015) (Figure S4B; Table S6), thereby
showing that neuronal and glial cells preferentially contributed
to down- and upregulated genes, respectively.
We next performed Gene Ontology (GO) analyses with HD-

modified genes specifically enriched in one cell population.
Functions significantly downregulated in HD were mainly asso-
ciated with neuronal functions (e.g., ‘‘Regulation of ion trans-
port’’ or ‘‘Cell-cell signaling’’; Figure S4C). In contrast, increased
HD transcripts were associated with metabolism (‘‘Negative
regulation of transcription, DNA-templated’’), cell responses to
stimulus, and morphogenesis (Figure S4D). Downregulated
transcripts specifically enriched in dSPNs and iSPNs shared
common ontologies linked to neurotransmission and signaling
(Figures 6F and 6G). However, a few upregulated ontologies
in these neurons were significantly enriched, including cell
apoptosis in dSPN and negative regulation of transcription
and DNA-templated in iSPNs (Figures S4E and S4F). Upregu-
lated HD genes in microglia displayed a strong immune-
inflammatory signature, with strong implication of the JAK-
STAT pathways (Figure 6H). Finally, upregulated HD genes in
astrocytes were associated with developmental and metabolic
processes, including cholesterol-related pathways (Figure 6I).
Comparable GO results were obtained using down- and upre-
gulated genes in HD R6/1 striatum, except that the neuroinflam-
matory signature was more prominent in HD patients than in HD
mice (Figures S4G–S4J).
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Figure 5. Topological Adjacent Domains and Enhancer-Promoter Units
(A) Barplot showing the total number of TADs from which cell-type-enriched genes belong. For each contrast, the position of the DEG was retrieved, intersected

with the coordinates of the TADs, and the total number of unique TADs counted. For each cell type, the left bar reflects the total number of TADs for true cell-type-

enriched genes, whereas the right bar shows the number of TADs obtained from the same number of randomly selected genes.

(B) Barplot representing the number of cell-type-enriched genes in each TAD detected for SPN (up) and glia (down) contrasts. Hypergeometric analysis revealed

that no TAD is significantly enriched for DEGs.

(C) Venn diagram showing the sharing of TADs containing cell-type-enriched genes between SPN and glia. An equivalent analysis was performed for TADs

identified from the randomly selected genes for each contrast. Statistical analyses showed an absence of a significant difference between profiles obtained with

randomly selected genes and profiles obtained from true DEGs.

(D) The same analysis was performed at the EPU level. Statistical analysis shows a significantly less overlap between EPUs containing SPN- and glia-specific

DEGs than EPUs identified from randomly selected genes for each contrast, revealing that at least a part of the cell-type-enriched genesmay originate from EPUs

specific to SPN and those specific to glia.

(E) TF-binding site prediction obtained for the DEGs belonging to EPUs with a ratio of DEG to the total number of genes >50% for the SPN and glia contrasts. The

profiles are consistent with the results obtained for total DEGs, suggesting that the transcriptional control of genes belonging to EPUs containing a significant

number of cell-type-enriched genes may be mediated by TFs with a high probability of regulating the DEG.

See also Table S5.
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Finally, we performed a comparison of the network signatures
obtained in our database to the whole striatum network signa-
tures previously obtained in the allelic series of HD knockin
mice (Hdh) (Langfelder et al., 2016). Such a comparison showed
that several cell-type-enriched genes may be strongly deregu-
lated in a polyQ- and age-dependent manner in the striatum of
Hdh mice (Table S3, sheet 2, last columns after selecting
‘‘True’’ for all columns under a specific cell type). For example,
network analysis revealed that Eda2r, a member of the tumor
necrosis factor (TNF) receptor family associated with reactive
astrogliosis (Zamanian et al., 2012), and the cell-to-cell or cell-
to-matrix glycoprotein Thbs2 are two genes that are selectively
and highly enriched in astrocytes and strongly upregulated in
the striatum of Hdh mice over time. These comparisons also
highlighted the glutathione peroxidase Gpx6, the interferon-
alpha-inducible protein 27 like 2B Ifi27l2b, and the protein
tyrosine phosphatase Ptpn7 as three genes that are significantly
enriched in dSPNs and strongly downregulated in the striatum of
Hdh mice over time.
Overall, our analysis shows that transcriptional alterations

caused by mutant Huntingtin (mHTT) are clearly distinct among
the four main cell populations of the striatum and that mHTT
may trigger a strong decrease in the expression of neuronal
genes accompanied by increased expression of glial genes, sug-
gesting that the transcriptional and/or epigenetic machinery is
altered in a cell-type-specific manner.

Application of Our Database to Study the HD Epigenetic
Signature
We next studied the acetylation state of H3K27 (H3K27ac),
which has been linked to gene downregulation in HD mouse
striatum (Achour et al., 2015; Le Gras et al., 2017), to further un-
derstand how mHTT might alter transcriptional regulation in a
cell-type-specific manner. We performed H3K27ac ChIP-seq
using the striatum (e.g., caudate nucleus) of grade 2 HD patients
and control individuals. H3K27ac ChIP-seq data were also
generated using their cerebellum, a tissue spared by the disease
(Figures S5A–S5C). As expected, H3K27ac was specifically en-
riched at striatal markers (e.g., PPP1R1B/DARPP32) in striatal
samples and enriched at cerebellar markers (e.g., NEUROD2)
in cerebellar samples (Figure S5D). We then assessed regions
that were differentially enriched in H3K27ac in HD versus control
striata using a method that allows computing single H3K27ac
values per gene. In the striatum, 185 and 200 genes were asso-

ciated with significantly decreased and increased H3K27ac sig-
nals, respectively. No substantial changes in H3K27ac signals
were observed in cerebella tissues, as expected (Table S6).
GO analysis showed that genes with decreased H3K27ac levels
in the striatum of HD patients were enriched in neuronal-related
processes (Figure S5E). In contrast, fewer GO terms were signif-
icantly enriched when analyzing genes associated with
increased H3K27ac levels, and they were associated with extra-
cellular matrix (Figure S5E). We then integrated human H3K27ac
ChIP-seq with microarray data generated in HD patients to
assess H3K27ac levels at deregulated genes (Hodges et al.,
2006). H3K27ac levels were lower at downregulated genes in
the striatum of HD patients than in control individuals, particu-
larly at dSPN-specific genes (Figure 7A). In contrast, H3K27ac
levels were not significantly different at upregulated genes
and/or glia-specific genes in HD patients, despite a trend toward
their increasing (Figure 7A).
Downregulated genes in the striatum of HDR6/1mice are pref-

erentially controlled by super-enhancers (i.e., broad enhancers
encompassing and controlling cell-type-specific genes that regu-
late cellular identity) (Achour et al., 2015). We investigated
whether such a super-enhancer signature is present in the stria-
tum of HD patients. Kmeans clustering was performed using a
density map of H3K27ac profiles, generating six distinct clusters
(A–F) (Figures 7B). Clusters A and C, which contained genes with
H3K27ac signals distributed across all the genes, were enriched
in super-enhancer-regulated genes (Figure 7B). Glial-specific
genes were enriched in cluster A (Figure 7C), which contained
genes linked to functions related to exosomes, transcription,
and myelin (Figure S5F). In contrast, neuron-specific genes
were not enriched in cluster A, but they were enriched in cluster
C (Figure 7C), which displayed a significant neuronal signature
(Figure S5G). Accordingly, clusters A and C were enriched in
up- and downregulated genes in HD patients, respectively (Fig-
ure 7D). More specifically, upregulated genes originating from
both astrocytes and microglia were strongly enriched in cluster
A, whereas downregulated genes originating from both dSPNs
and iSPNs were strongly enriched in cluster C (Figure 7E). We
then performed a similar analysis, but integrating our database
with the H3K27ac ChIP-seq and RNA-seq datasets previously
generated using R6/1 striatum (Achour et al., 2015). R6/1 analysis
essentially confirmed the human results (Figure S6). Remarkably,
H3K27ac levels were lower in neuron-specific genes and higher
in glia-specific genes (Figure S7). Thus, opposite epigenetic

Figure 6. SPNs, Astrocytes, and Microglia Are Differentially Affected in Huntington’s Disease
(A) Barplot showing the normalized expression levels ofHtt in dSPNs (dark blue), iSPNs (turquoise), astrocytes (green), and microglia (red). Results are presented

as the mean ± SD.

(B and C) Volcano plots representing the logFC and"log10(FDR) from the SPN-glia contrasts for HD upregulated (B) or downregulated (C) genes. The horizontal

red-dotted line represents the FDR threshold (0.05) ion a "log10 scale, whereas the vertical black-dotted lines show the logFC = 0.58 and logFC = "0.58. Violet

dots represent transcripts with a significant FDR and an absolute logFCR 0.58, turquoise dots represent transcripts with a significant FDR but a lower logFC, and

green dots represent non-significant transcripts with an absolute logFC R 0.58.

(D and E) Heatmaps of the top 100 significant HD upregulated (D) and HD downregulated (E) genes according to the logFC. The color scale represents the z-

scaled expression levels in dSPNs, iSPNs, astrocytes, and microglia from our study. The analysis reveals a higher number of HD upregulated genes enriched in

astrocytes and microglia, whereas a higher number of HD downregulated transcripts are enriched in dSPNs and iSPNs.

(F–I) Treemap representations of Gene Ontology (GO) analysis performed on HD downregulated genes significantly enriched in dSPNs (F) or iSPNs (G) and HD

upregulated genes significantly enriched in astrocytes (H) or microglia (I). Each significant GO (small squares) was grouped according to its parental ontology to

underline highly represented functions.

See also Figure S4 and Table S6.
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mechanismsgovern the principal transcriptional responses of HD
neurons and glial cells (i.e., transcriptional down- and upregula-
tion in neurons and glial cells, respectively).

DISCUSSION

Multicellular interactions in the CNS are at the basis of complex
and high-level functions. Understanding this rich cellular envi-
ronment requires standardized and sensitive procedures. Break-
throughs in high-throughput profiling methods, from that of DNA
to proteins, are at the basis of large international initiatives aim-
ing to characterize specific brain regions (Hawrylycz et al., 2012;
Thompson et al., 2014) (http://portal.brain-map.org/). However,
approaches to define the roles and characterize individual CNS
cell populations in adult mammals are still challenging. Here,
we provide a method combining existing technologies to dissect
independent cell populations in the adult CNS. Application of this
method to the mouse striatum produced the first mRNA and
miRNA database for the four major striatal cell types, allowing
the possibility to investigate the regulation mechanisms of cell-
type-specific gene expression and the differential involvement
of these cells in physiological and pathological conditions.

Power, Accessibility, and Flexibility of the Procedure
The procedure combines tissue processing, LCM, and high-
throughput analysis of cellular content under physiological
conditions. Previous LCM and Translating Ribosome Affinity
Purification (TRAP)-based studies relied on the development of
specific fluorescent strains expressing reporter genes in the tar-
geted cell population, which is time consuming (Doyle et al.,
2008; Heiman et al., 2008; Rossner et al., 2006). Our method is
compatible with any strain among the hundreds developed by
the Gene Expression Nerve System Atlas (GENSAT) project
(Gerfen et al., 2013; Gong et al., 2003). Additionally, crossing
thesemice with existing models of neurological disorders makes
it possible to assess cell-type-specific alterations under patho-
logical conditions.
We used a modified tissue-slicing procedure based on elec-

trophysiological protocols to prevent the loss of fluorescence
during sample freezing (Rossner et al., 2006). We demonstrate
that brain tissue slicing in oxygenated artificial cerebrospinal
fluid (aCSF) at 4#Censures preservation of both the fluorescence

and RNA integrity, offering the possibility to extract large coding
and non-coding RNA (mRNA and lincRNA), as well as small
non-coding RNA (miRNA) from individual adult brain cells. This
method also limits the cellular stress commonly observed with
trituration and homogenization procedures (Lobo et al., 2006;
Molyneaux et al., 2015).

Cell-Type-Specific Transcriptomic Signatures and Their
Relevance to Transcriptional Reprogramming in HD
Previous studies have investigated cell-type-specific transcrip-
tomic signatures in the mouse striatum (Gokce et al., 2016),
providing insight into the signaling pathways that may distin-
guish cell types. Here, we provide a novel resource for probing
the molecular diversity and studying the biology of specific cell
types in themouse striatum, covering dSPNs, iSPNs, astrocytes,
and microglia. Importantly, our data include transcriptomic sig-
natures that are retained by our network analysis (i.e., spectral
decomposition), in which data are analyzed against probabilistic
functional networks (i.e., MouseNet) and the risk of false posi-
tives and false negatives is reduced by virtue of the integration
of orthogonal datasets. Spectral decomposition of gene expres-
sion levels against probabilistic functional networks may retain
genes not retained by traditional analysis of transcriptomic
data, and vice versa. These network signatures are therefore
strongly associated with the signaling systems that may underlie
cellular identity in the mouse striatum. We detected no overlap
with previously reported and larger signatures of human striatal
neurons (Kelley et al., 2018) and mouse D1 striatal neurons
(Gokce et al., 2016), as inferred from the data made available
in this latter study. These comparisons suggest that network
analysis is able to extract precise functional signatures not
necessarily put forth by traditional analysis of transcriptomic
data. These comparisons also suggest that mouse and human
striatal neurons could differ in terms of molecular identity and
the genes that are mostly enriched in these cell types. Addition-
ally, network analysis notably showed that Eda2r, a member of
the TNF receptor family associated with reactive astrogliosis,
and the cell-to-cell or cell-to-matrix glycoprotein Thbs2 are
two genes selectively and highly enriched in astrocytes. These
genes are also strongly upregulated in the striatum of Hdh
mice over time, highlighting their relevance to the reprogram-
ming of transcription in the disease. Network analysis also

Figure 7. H3K27ac Is Reduced at Neuron-Specific and Downregulated Genes in HD Patients
(A) Boxplot representation of H3K27ac signals (RPK) at down- and upregulated genes in HD patients and neuronal- and glial-specific genes in human striatum

(top). Boxplot representations of H3K27ac signals are also shown for downregulated neuron-specific genes in HD striatum, downregulated glia-specific genes in

HD striatum, upregulated neuron-specific genes in HD striatum, upregulated glia-specific genes in HD striatum (middle), and dSPN (D1)-, iSPN (D2)-, astrocyte

(GLT)-, and microglia (Cx3)-specific genes in human striatum (bottom). H3K27ac signals for controls (CT; light blue) and patients (HD; dark blue) were compared

using the Wilcoxon test (*p < 0.05).

(B) Heatmap of the 41,088 annotated transcripts, integrating H3K27ac gene profiles and showing six distinct epigenetic profiles (clusters A–F; left). The arrow

indicates the orientation of the genes. TSS, transcription start site; TTS, transcription termination site.

(C) Bar graph showing the distribution of neuron-specific, glia-specific, and all genes in clusters A–F. Human cluster A contains predominantly glial super-

enhancers (glial SE), whereas human cluster C is enriched in neuronal super-enhancers (neuronal SE).

(D) Bar graphs representing the number of genes in each cluster that are neuron-specific and/or downregulated in HD striatum or glia-specific and/or upregulated

in HD striatum.

(E) Bar graphs representing the number of genes in each cluster that are dSPN (D1)- or iSPN (D2)-specific and downregulated in HD striatum or astrocyte (GLT)- or

microglia (Cx3)-specific and upregulated in HD striatum.

In (D) and (E), the observed numbers were compared with the expected numbers using a binomial test (*p < 0.05; **p < 0.01; ***p < 0.001; NS, not significant). See

also Figures S5 and S6 and Table S6.
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showed that the glutathione peroxidase Gpx6, the interferon,
alpha-inducible protein 27 like 2B Ifi27l2b, and the protein tyro-
sine phosphatase Ptpn7 are three genes selectively and highly
enriched in dSPNs and strongly downregulated in the striatum
of Hdhmice over time. Collectively, our data suggest that unrav-
eling the molecular basis of striatal cell identity benefits from the
use of complementary approaches for the isolation of specific
cell types and unbiased assessment of molecular and cellular
identity.

Nuclear-Related Transcriptional Control: The
Importance of Combining Multiple Levels of Analysis
We took advantage of our transcriptomic database to assess
potential mechanisms leading to these cell-type-specific pat-
terns. Cell-type-specific miRNA profiles did not predict mRNA
enrichment profiles. This result is consistent with previous
studies showing the absence of a correlation between miRNA
and mRNA expression levels in cancer cells (Li et al., 2015). It
has been shown that other crucial steps for miRNA activity occur
before loading into the RNA-induced silencing complex (RISC),
such as the control of RISC loading by the endonuclease dicer
(DICER) complex or the removal of the passenger strand to
generate a mature complex, as well as the regulation of miRNA
activity by other noncoding RNA (for review, see Ha and Kim,
2014). However, our analysis only focused on mRNA degrada-
tion and did not consider the fact that the physiological regula-
tion of mRNA expression by miRNA often leads to translational
inhibition. Therefore, a more precise analysis with a cell-type-
specific proteomic profile would be necessary to infer the role
of miRNA on mRNA profiles.

We therefore performed an analysis of TFBSs to identify po-
tential TFs responsible for the cell-type-specific profiles and
found some to be coherent with the dynamics of the epigenetic
control of mRNA expression. In the developing brain, SOX9 is a
potent regulator of TFs implicated in the differentiation of
neuronal or glial fates (Baroti et al., 2016). High SOX9 expression
is associated with glial differentiation, and its inhibition blocks
the cellular cycle (Kang et al., 2012). The associated activity of
SOX9 with SOX5 or MEF2A was described in developmental
brain or in peripheral cell populations (Gohlke et al., 2008).

RUNX1 is a major actor in microglial differentiation and prolif-
eration, and Zfp423 was also described as a potential negative
regulator of genes involved in neuronal differentiation (Alcaraz
et al., 2006). In peripheral cells, Zfp423 is an inhibitor of EBF1
expression, which is consistent with our finding showing an
enrichment of Zfp423 in glial cells and a significant non-enrich-
ment of EBF1 in glial cells (Tsai and Reed, 1997). Notably, TFs
with a high probability of regulating cell-type-enriched genes
were often not DE. This suggests that they are good regulators
of cell-type-specific profiles not because they are enriched in
the cell population but rather because other, unknown factors
make them potent regulators of DE genes. In particular, it has
been previously demonstrated that DNA conformation is a
strong regulator of TF activity and access to the promoter and
that smaller EPUs can be distinguished based on DNA interac-
tions (Dixon et al., 2012; Patel et al., 2018; Zaytseva and Quinn,
2018). Indeed, we found the DNA structure in EPUs could be
linked to cell-type-enriched genes in our data using previously

published databases. This is coherent data showing that sam-
ples from different organs can display different EPU profiles
and suggests a smaller and more integrated level of regulation
by DNA folding (Dixon et al., 2012). Our dataset on striatal cell-
type-specific transcriptome in adult glial and neuronal subpopu-
lations provides an opportunity to model and partially explain the
transcriptional profiles by integrating current knowledge about
TFs, their interactions with each other, and the DNA conforma-
tion that regulates TF binding at promoter levels. These analyses
suggest that multiple factors, both at the epigenetic and confor-
mational levels, may be involved in the specification of cell-type-
enriched genes.

HD: A Ubiquitously Expressed Disease Gene with a Cell-
Type-Specific Response
Transcriptional dysregulation is a major feature of HD brain tis-
sues. Although establishing causal relationships with functional
outcomes has not yet been possible, transcriptional dysre-
gulation is believed to contribute to HD pathogenesis. Many
transcriptomic studies have been performed using either brain
tissues of HD mouse models or postmortem tissues of HD
patients (for review, see Francelle et al., 2017; Seredenina and
Luthi-Carter, 2012). These studies have identified defined signa-
tures associated with down- and upregulated genes. The dy-
namics of transcriptional changes has been particularly refined
through a recent comprehensive transcriptomic study, based
on HD knockin (KI) mice expressing murine Htt with various
CAG repeat sizes (Langfelder et al., 2016). Specifically, it was
shown that transcriptional changes in HD mice start at early
symptomatic stages and are progressive and CAG-repeat-
length dependent. Previous studies have also shown that down-
regulated genes in the striatum of HD patients and mice are
enriched in identity genes of medium-spiny neurons (Achour
et al., 2015; Hodges et al., 2006; Langfelder et al., 2016; Vashish-
tha et al., 2013). In addition, it was found that downregulated
genes in HDmouse striatum are predominantly under the control
of super-enhancers, a class of broad enhancers that regulate
cellular identity genes, suggesting that altered regulation of his-
tone acetylation might underlie the loss of striatal identity
(Achour et al., 2015; LeGras et al., 2017). However, these studies
did not address the contribution of neurons and glial cells. Here,
we unambiguously show that the striatal identity signature of HD
downregulated genes originates from neurons, including dSPNs
and iSPNs, and not from glial cells. Downregulated genes in HD
striatum not only define the identity of striatal neurons but also
control neuronal activity, including neuronal transmission, syn-
aptic plasticity, and adaptive behavior. Thus, it is likely that
downregulation of neuronal-identity genes in HD striatum has
deleterious functional consequences.
The functional signature of upregulated genes in the striatum

of HD patients and mice is less well defined and conserved
across models than that of downregulated genes (Achour
et al., 2015; Hodges et al., 2006; Langfelder et al., 2016). Previ-
ous studies show that upregulated genes in HD striatum include
GO terms related to development, metabolism, inflammation,
and more generally stress responses (Achour et al., 2015;
Hodges et al., 2006; Langfelder et al., 2016). Our epigenetic
and transcriptomic analyses show that glial cells, including

2490 Cell Reports 26, 2477–2493, February 26, 2019



astrocytes and microglia, are predominantly responsible for this
signature. It is possible that glial cells may adapt their meta-
bolism through epigenetic and transcriptional regulation in
response to the HD mutation, thereby activating stress resis-
tance and survival mechanisms.
Collectively, our results demonstrate that predominant epige-

netic and transcriptional responses are opposite in HD striatal
neurons and glial cells, which might underlie their differential
vulnerability and/or responses to the HD mutation. Indeed, it
was recently shown that expression of a mutant form of a frag-
ment of Huntingtin in either neurons or astrocytes led to distinct
phenotypes in mice (Meunier et al., 2016). Differential epigenetic
and transcriptional responses in these two cell types may well
underlie the observed pathophysiological and behavioral differ-
ences. Future studies are required to elucidate the underlying
mechanisms.
Overall, these data emphasize the importance of using cell-

type-specific approaches for genome-wide analyses and pro-
vide a new level of resolution and mechanistic insight of HTT
biology and cell-type-specific adaptation to the disease state.
The samples generated with the new protocol are compatible
with non-coding RNA profiling, alternative splicing, and genomic
variant and high-throughput protein quantification (Ha and Kim,
2014; He et al., 2013; Hebbar et al., 2014). The opportunity to
combine these high-throughput methods with the new proced-
ure will contribute to our understanding of the ‘‘cellular interac-
tome’’ from the gene to protein activity, which is at the core of
individual cell function.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit polyclonal anti-GS antibody Sigma-Aldrich, Buchs Cat# G2781, RRID: AB_259853

rabbit polyclonal anti-Iba1 antibody Wako Chemicals GmbH Wako Cat# 019-19741, RRID:

AB_839504

rabbit polyclonal anti-pENK antibody Neuromics, Edina, MN, USA Neuromics Cat# RA14124,

RRID:AB_2532106

goat anti-rabbit IgG anti-rabbit IgG

AlexaFluor-488

Invitrogen, Life Technologies, Zug, Switzerland Thermo Fisher Scientific Cat#

A32731, RRID:AB_2633280

goat anti-rabbit IgG AlexaFluor-594 Invitrogen, Life Technologies, Zug, Switzerland Molecular Probes Cat# A-11005,

RRID:AB_141372

goat anti-mouse IgG AlexaFluor-488 Invitrogen, Life Technologies, Zug, Switzerland Thermo Fisher Scientific Cat#

A-11001, RRID:AB_2534069

goat anti-mouse IgG AlexaFluor-594 Invitrogen, Life Technologies, Zug, Switzerland Molecular Probes Cat# A-11005,

RRID:AB_141372

Chemicals, Peptides, and Recombinant Proteins

sodium pentobarbital Esconarkon, Streuli, Uznach, Germany N/A

artificial cerebrospinal fluid Sigma-Aldrich, Buchs, Switzerland N/A

phosphate-buffered saline (PBS GIBCO, Life Technologies, Zug, Switzerland N/A

paraformaldehyde PFA, Electron Microscopy Sciences, Hatfield, USA N/A

sucrose Sigma-Aldrich, Buchs, Switzerland N/A

2-methylbutane Sigma-Aldrich, Buchs, Switzerland N/A

RNAqueous lysis buffer N/A

normal goat serum (NGS) Interchim, Montluçon, France N/A

Triton X-100 Fluka, Sigma-Aldrich, Buchs, Switzerland N/A

superfrost microscope slides VWR International, Dietikon, Switzerland N/A

Vectashield Fluorescence mounting

medium with DAPI

Reactolab, SA, Servion, Switzerland N/A

GeneAmp Thin-Walled Reaction tube Applied Biosystems, Life Technologies, Buchs,

Switzerland

N/A

sodium acetate Ambion, Life Technologies, Buchs, Switzerland N/A

RNase/DNase-free water GIBCO, Life Technologies, Buchs, Switzerland N/A

dNTPs Invitrogen, Life Technologies, Zug, Switzerland N/A

Random Hexamer primer Invitrogen, Life Technologies, Zug, Switzerland N/A

Critical Commercial Assays

KAPA SYBRFAST kit Sigma-Aldrich, Buchs, Switzerland N/A

RNAqueous Micro kit for LCM Ambion, Life Technologies, Buchs, Switzerland N/A

NuGen Ovation kit NuGen, San Carlos, California, USA N/A

Illumina TruSeq Nano kit Illumina Switzerland GmbH, Zurich, Switzerland N/A

Agilent Mouse miRNA Microarray Release 19.0, 8x60K; Catalog number G4872A-046065,

Agilent Technologies

N/A

RNasezap Sigma-Aldrich, Buchs, Switzerland N/A

CapSure XS LCM caps Arcturus, Bucher, Basel, Switzerland N/A

DNAzap Ambion, Life Technologies, Buchs, Switzerland N/A

DNase I Ambion, Life Technologies, Buchs, Switzerland N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

NCBI https://www.ncbi.nlm.nih.gov/Traces/study/?acc=

PRJNA510761

PRJNA510761

Experimental Models: Organisms/Strains

BAC-GLT1-eGFP transgenic mice kindly provided by Prof. J Rothstein, Baltimore, MD, USA N/A

BAC Tg(Drd1a-tdTomato)6Calak The Jackson Laboratory, ref 016204 016204

Tg(Drd2-EGFP)S118Gsat/Mmnc Mutant Mouse Regional Resource Center, Chapel Hill, NC,

USA, ref 230

230

B6.129P-Cx3cr1tm1Litt/J The Jackson Laboratory, ref 005582 005582

Primers

Slc1a3-F TCTCCAGTCTCGTCACAGGAATG GLAST1 (Solute Carrier Family

1 Member 3SLC1A3)

Slc1a3-R TGCCAATCACCACAGCAATG GLAST1 (Solute Carrier Family

1 Member 3SLC1A3)

Ccr1l1-F TGCCCAGGAAGAGCCTGCTA chemokine (C-C motif) receptor

1-like 1

Ccr1l1-R AATCATGGCCAACAGAGGCA chemokine (C-C motif) receptor

1-like 1

Gad2-F ACCTATGAGATCGCCCCTGT GAD65 (Glutamate

Decarboxylase 2; GAD2)

Gad2-R AAGATTCCATCGCCAGAGCC GAD65 (Glutamate

Decarboxylase 2; GAD2)

Gpx6-F TATGACCAAAGCCCACAGCA Glutathione Peroxidase 6

Gpx6-R TAACCGGCCAGTGCTTTGAA Glutathione Peroxidase 6

PPIA-F ATGGCAAATGCTGGACCAAA cyclophilin A (peptidyl propyl

isomerase A; PPIA)

PPIA-R GCCTTCTTTCACCTTCCCAAA cyclophilin A (peptidyl propyl

isomerase A; PPIA)

Software and Algorithms

LSM software Zeiss, Carl Zeiss Microscopy GmbH, Göttingen, Germany N/A

CASAVA software v1.8.2: Sequencing

quality control and read demultiplexing

Illumina, Switzerland GmbH, Zurich, Switzerland N/A

FastQC_0.11.5 software Read quality: http://www.bioinformatics.babraham.ac.uk/

projects/fastqc

N/A

Cutadapt https://cutadapt.readthedocs.io/en/stable/index.html N/A

PrinSEQ http://prinseq.sourceforge.net/index.html N/A

Tophat aligner https://ccb.jhu.edu/software/tophat/index.shtml N/A

SAMtools suite http://samtools.sourceforge.net N/A

HTSeq software https://htseq.readthedocs.io/en/release_0.11.1/ N/A

RTA v1.18.61 N/A

DimerRemover v0.9.2 https://sourceforge.net/projects/dimerremover

Bioconductor NOISeq package https://www.bioconductor.org N/A

Agilent Feature Extraction Software

v 10.7.3.1

Agilent Technologies, Basel, Switzerland N/A

Trimmomatic-0.36 tool http://www.usadellab.org/cms/?page=trimmomatic N/A

bowtie2_2.2.8 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml N/A

Other

Zeiss LSM 510 META inverted confocal

microscope

Carl Zeiss Microscopy GmbH, Göttingen, Germany N/A

Zeiss AxioVision microscope Zeiss, Carl Zeiss Microscopy GmbH, Göttingen, Germany N/A

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by, the corresponding author Nicole Déglon
(nicole.deglon@chuv.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Adult male BAC Tg(Drd1a-tdTomato)6Calak (Drd1-Tomato, 3.5 months-old) (Ade et al., 2011), Tg(Drd2-EGFP)S118Gsat/Mmnc
(Drd2-eGFP, 7 months old) (Gong et al., 2003), BAC GLT1-eGFP (GLT1-eGFP, 6.5 months-old, courtesy of Pr. J. Rothstein, Balti-
more, MD, USA) (Regan et al., 2007), and B6.129P-Cx3cr1tm1Litt/J (Cx3cr1-eGFP, 4.5 months-old) (Jung et al., 2000) were used
for the study (Jax and Mutant Mouse Regional Resource Center, Chapel Hill, NC, USA).

Human samples
Post-mortem brain tissue from the caudate nucleus and cerebellumwere obtained from the Neurological Foundation of New Zealand
HumanBrain Bank, Centre for Brain Research, University of Auckland, NewZealand. Three human grade 2HDpost-mortem samples
were selected for ChIPseq. Three non-neurological controls of similar age, sex, and post-mortem interval were also selected, as
controls.

METHOD DETAILS

Animals
Mice were housed in a specific pathogen-free (SPF) facility in IVC cages GM500 (Tecniplast) or rat R.BTM.U x /R.ICV.6 cages
(Innovive, Paris, France) and Innorack racks, simple face (cat# RS.5.8.40), containing corn cob bedding with five mice per cage
maximum. The animals were maintained in a controlled-temperature room (22 ± 1#C), under a 14-hour light/10-hour dark cycle.
The breeding program depends on strain or productivity requests but regularly involves trio or couple breeders. Enrichments
consisted of two pieces of wipes, one cardboard tunnel, and one cardboard or polysulfide house with two entrances/exits. Food
(global rodent diet XP-18, vitamin-fortified, irradiated at 25 kGy (Kliba Nafag AG, Kaiseraugst, Switzerland; Cat# 3242) and water
were provided ad libitum. All experimental procedures were performed in strict accordance with Swiss regulations concerning the
care and use of laboratory animals (veterinary authorizations: 2782, 2888 and 3073).Mice were anesthetized with a lethal dose of
sodium pentobarbital (NaCl, B-Braun, Sampach, Germany; Esconarkon, Streuli, Uznach, Germany) and the brains quickly extracted
for slicing with a vibratome in cold (4#C) and oxygenated artificial cerebrospinal fluid (aCSF: 85 mM NaCl, 75 mM sucrose, 2.5 mM
KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 3.5 mM MgSO4, 0.5 mM CaCl2, 10 mM glucose; Sigma-Aldrich, Buchs, Switzerland).
Coronal slices were then mounted on Superfrost slides (Superfrost) and dried before progressive dehydration. Dehydrated slices
were then conserved in a desiccator to avoid rewetting. LCMwas performed on an ArcturusXTmicroscope (Arcturus). Individual cells
were dissected with an infrared laser to avoid damage to the cellular content. Total RNA was directly extracted on the cap with the
RNAqueous kit (Ambion) and then stored at "80#C until further purification.

Brain processing
For immunostaining, the mice were killed by intraperitoneal injection of sodium pentobarbital (B-Braun Mediacal SA, Sempach,
Switzerland) and transcardially perfused at a flow rate of 20mL/min with phosphate-buffered saline (PBS, GIBCO, Life Technologies,

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Semi-automated vibratome Leica VT1000 S, Biosystems Switzerland, Nunningen,

Switzerland

N/A

ArcturusXT microscope Bucher Biotec AG, Basel, Switzerland N/A

Illumina HiSeq 2500 system Illumina, Switzerland GmbH, Zurich, Switzerland N/A

sledge microtome Leica SM2010R, Biosystems Switzerland, Nunningen,

Switzerland

N/A

cryostat Leica CM1860, Biosystems Switzerland, Nunningen,

Switzerland

N/A

Fragment Analyzer system Agilent Technologies, Basel, Switzerland N/A

Rotor gene QIAGEN, Basel, Switzerland N/A
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Zug, Switzerland) for 1 min and then 4% paraformaldehyde (PFA, Electron Microscopy Sciences, Hatfield, USA) for 5 min. Brains
were removed and post-fixed by incubation in 4% PFA for 12 h at 4#C. They were then cryoprotected by incubation in 20% sucrose
(Sigma-Aldrich, Buchs, Switzerland) in 1 x PBS for 6 h and then in 30% sucrose in 1 x PBS for 24 h. Brains were then stored at"80#C
until use. We cut 20 mm-thick coronal brain sections using a sledge microtome with a freezing stage at "30#C (Leica SM2010R,
Biosystems Switzerland, Nunningen, Switzerland). Slices throughout the striatum were collected and maintained in tubes as
free-floating slices in anti-freeze solution (25% glycerol; Sigma-Aldrich, Buchs, Switzerland, 30% Ethylene glycol; Merck, Notting-
ham, UK, 25% 1 X PBS, and 20% nanopure water).
For the evaluation of fluorescence loss, fresh brain samples from GLT1-eGFP transgenic mice were directly snap frozen in cold

2-methylbutane (Sigma-Aldrich, Buchs, Switzerland) and conserved at"80#C until use. Brains were then slicedwith a cryostat (Leica
CM1860, Biosystems Switzerland, Nunningen, Switzerland), mounted on Superfrost microscope slides (VWR International, Dietikon,
Switzerland), and directly observed under a fluorescence microscope.
For evaluation of the perfusion effect on RNA integrity, we transcardially perfused mice with 4% PFA at a flow rate of

20 mL/min for 1 min and directly snap-froze the brain. Ten-micrometer slices were prepared with a cryostat (Leica CM1860,
Biosystems Switzerland, Nunningen, Switzerland) and directly mounted on Superfrost slides. Slices were then dehydrated
as previously described (Merienne et al., 2017). The feasibility of microdissection was addressed as described in the
section describing the LCM. RNA stability was tested by scratching the slices with a razor blade and incubating it in RNAqueous
lysis buffer (Invitrogen, Life Technologies, Zug, Switzerland) at 42#C for 30 min. The resulting RNA was purified and pro-
cessed as previously described. RNA integrity was measured with the Fragment Analyzer system (Agilent Technologies, Basel,
Switzerland).

Immunostaining
Immunofluorescence staining was performed on 20-mm free-floating slices as previously described (Merienne et al., 2017). The slices
were washed three times, for 10 min each, in 1 x PBS and blocked by incubation for 1 h in 1 x PBS supplemented with 10% normal
goat serum (NGS)(Interchim, Montluçon, France) and 0.1% Triton X-100 (Sigma-Aldrich, Buchs, Switzerland). The following primary
antibodies were used: rabbit polyclonal anti-GS antibody (1/1000, Sigma-Aldrich, Buchs, Switzerland), rabbit polyclonal anti-Iba1
antibody (1/1000, Wako Chemicals GmbH, Instrumenten Gessellschaft, Zurich, Switzerland), and rabbit polyclonal anti-pENK
antibody (1/1000, Neuromics, Edina, MN, USA). The following day, slices were washed three times, for 10 min each, in 1 x PBS
and incubated for 2 h at room temperature with goat anti-rabbit IgG AlexaFluor-488 (Invitrogen, Life Technologies, Zug, Switzerland),
goat anti-rabbit IgG AlexaFluor-594 (Invitrogen, Life Technologies, Zug, Switzerland), goat anti-mouse IgG AlexaFluor-488 (Invitro-
gen, Life Technologies, Zug, Switzerland), or goat anti-mouse IgG AlexaFluor-594 (Invitrogen, Life Technologies, Zug, Switzerland),
diluted in 1 x PBS-5%NGS-0.1%Triton X-100. Slices were thenwashed three times, for 10minutes each, in 1 x PBS andmounted on
Superfrost+ slides, in Vectashield Fluorescence mounting medium with DAPI. Images showing the specificity of transgenic mice
were acquired on an inverted Zeiss LSM 510 confocal microscope with LSM software (Zeiss, Carl Zeiss Microscopy GmbH, Göttin-
gen, Germany). Images showing the loss of eGFP following direct freezing and the preservation of eGFP fluorescence with partial 4%
PFA perfusion or our new procedure were acquired with a Zeiss AxioVision microscope (Zeiss, Carl Zeiss Microscopy GmbH, Göt-
tingen, Germany).

Brain processing and laser-capture microdissection (LCM)
Brains were sliced at 35-mm (iSPN and dSPN) or 20-mm thickness (astrocytes and microglia), at a speed of 2 and a frequency of 10
(arbitrary units) in cold oxygenated aCSF (85 mM NaCl, 75 mM sucrose, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 3.5 mM
MgSO4, 0.5mMCaCl2, 10mMGlucose, Sigma-Aldrich, Buchs, Switzerland) with a semi-automated vibratome (Leica VT1000 S, Bio-
systems Switzerland, Nunningen, Switzerland). Mounted slices were maintained at room temperature (RT) in a dark environment
before dehydration with the following protocol: 65% (astrocytes and microglia) or 60% (iSPN and dSPN) ethanol (Sigma-Aldrich,
Buchs, Switzerland) in aCSF for 20 s with up and down shaking, 100% ethanol 20 s with up and down shaking, butanol:ethanol
25:1 for 90 s with up and down shaking (Sigma-Aldrich, Buchs, Switzerland), and xylene:butanol 25:1 for 60 s with up and
down shaking (Sigma-Aldrich, Buchs, Switzerland). After dehydration, slides are stored inside a desiccator connected to a
vacuum pump. The LCM area and all materials were cleaned with RNasezap before each procedure (Sigma-Aldrich, Buchs,
Switzerland). For convenience, three slides were processed in parallel in series of !30 minutes. During cell isolation, the
remaining slices were maintained in a desiccator connected to a vacuum pump. Cells from three slices were isolated on three
different CapSure XS LCM caps during the 30 min of serial processing (Arcturus, Bucher, Basel, Switzerland). At the end of
the dissection (or 30 min), an Arcturus alignment tray was placed over each of the three caps, and 20 mL RNAqueous Micro kit
lysis buffer added to the middle of the cap (Ambion, Life Technologies, Buchs, Switzerland). A 0.5 mL GeneAmp thin-walled reaction
tube (Applied Biosystems, Life Technologies, Buchs, Switzerland) was plugged into the cap tray and the three caps incubated
at 42#C in an Arcturus Incubation Block for 30 min. During the incubation, three other slices were processed. At the end of the
extraction, the tubes linked to caps were inverted and briefly centrifuged to recover the lysis buffer containing total RNA. The
caps were then discarded and extracted RNA directly frozen at "80#C before RNA. The same procedure was repeated for all slices
from each animal.
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RNA purification and quality check
All samples were purified at the same time after LCM dissection of all animals. Given the high number of independent tubes (up to
80 single GeneAmp tubes per animal), samples from the different cell types were randomized and extracted in two slots to avoid
batch effects. All surfaces and materials were cleaned with RNasezap (Sigma-Aldrich, Buchs, Switzerland) and DNAzap (Ambion,
Life Technologies, Buchs, Switzerland) to avoid RNase and exogenous DNA contamination, respectively. Each tube contained
20 mL total RNA from one slice of each animal. Given the maximal volume allowed in RNAqueous Micro kits for LCM purification
columns, 7-8 tubes were pooled together on the same column, limiting the number of columns to !10 for each animal. The rest of
the procedure was performed according to the manufacturer’s recommendations (Ambion, Life Technologies, Buchs,
Switzerland). Final RNA preparations were eluted in 2 3 10 mL elution buffer and treated with DNase I, as described in the kit in-
structions (Ambion, Life Technologies, Buchs, Switzerland). RNA samples from the same animal were then pooled following
DNase I treatment.

RNAqueousMicro kit wash solutions contain guanidine thiocyanate, which is known to be elutedwith RNA and further contaminate
the RNA samples. We therefore performed an additional purification step to remove the remaining chemical contamination. After
DNase I treatment of all samples (13 final tubes), four volumes of 100% cold ethanol (Sigma-Aldrich, Buchs, Switzerland) and
a1:10 volume of 3 M sodium acetate (Ambion, Life Technologies, Buchs, Switzerland) were added to each total RNA sample. No
carrier was added to avoid inhibition reverse transcriptase. Tubes were vortexed and incubated overnight at "20#C. The following
day, suspensions were centrifuged at 21,000 x g at 4#C for 30 min. The supernatant was removed and the RNA pellet washed in
500 mL 80% cold ethanol and centrifuged for 10 min at 21,000 x g at 4#C. The procedure was repeated once. After the second
wash, RNA pellets were dried under the hood and resuspended in 50 mL RNase/DNase-free water (GIBCO, Life Technologies, Buchs,
Switzerland). Total RNA was kept at "80#C until use. The RNA concentration and quality was evaluated using an Agilent Fragment
Analyzer apparatus as described in the manufacturer’s procedure (Agilent Technologies, Basel, Switzerland). Reverse-transcription
and amplification of total RNA were performed with the NuGen Ovation kit following the supplier recommendations (NuGen, San
Carlos, California, USA).

Library preparation and sequencing
Reverse-transcription of extracted RNA was performed with the NuGene Ovation v2 kit in small quantities as described in the
manufacturer’s recommendations with an input of 10 ng total RNA (NuGen, San Carlos, California, USA). Reverse-transcribed
cDNA was then used for sequencing library construction with the Illumina TruSeq Nano kit as indicated in the supplier’s recommen-
dations (Illumina Switzerland GmbH, Zurich, Switzerland). One hundred base-pair single-stranded reads were sequenced on an
Illumina HiSeq 2500 system with multiplexing across three sequencing lanes. Sequencing was performed to obtain at least 5x107

reads for each sample. Gokce et al. demonstrated that 1x106 to 5x106 reads are sufficient to detect most expressed genes (Gokce
et al., 2016). Read quality and demultiplexing was performed with CASAVA software to generate .fastq files for each sample (Illumina
Switzerland GmbH, Zurich, Switzerland).

miRNA microarray
One hundred nanograms total RNA of each sample was labeled according to the instructions of the Agilent miRNA Complete Label-
ing and Hybridization Kit (Agilent Technologies, Basel, Switzerland). The labeled RNAs were hybridized to Agilent Mouse miRNA
Microarrays (Release 19.0, 8x60K; Agilent Technologies, Basel, Switzerland) with 1,247 mouse miRNAs represented, for 20 h at
55#C with rotation. After hybridization and washing, the arrays were scanned with an Agilent microarray scanner using high dynamic
range settings as specified by the manufacturer. Agilent Feature Extraction Software v 10.7.3.1 was used to extract the data. Sam-
ples were processed on two different microarray slides at six-month intervals, with one sample present on both batches to be used
for batch-effect correction. Samples were quantile normalized based on summarized expression levels of probe sets. DE miRNAs
were determined using a moderated t test implemented in the R Bioconductor package limma. P values were adjusted using the
Benjamini-Hochberg method, controlling for the false discovery rate.

RT-qPCR
NuGen reverse-transcribed cDNA was used to confirm RNaseq expression levels for some genes by RT-qPCR. One nanogram of
cDNA from each sample was usedwith the KAPA SYBRFAST kit with primers described in the Key resource table (KAPABiosystems,
Labgene, Chatel-Saint-Denis, Switzerland). We then performed real-time quantitative PCR using a Rotor gene (QIAGEN, Basel,
Switzerland) and the following cycle parameters: 95#C for 180 s, then 40 cycles of 95#C for 3 s and 60#C for 10 s. Expression levels
were normalized to the expression values of cyclophilin A (PPIA), as previously described (Merienne et al., 2017). The following
formula was used to determine the relative normalized expression level of target genes in each sample:

E =

!
2"Ct ðGOIÞ

2"Ct ðPPIAÞ

"
+ 1

We then computed the linear regression between log2(E) and log2 normalized and transformed RNaseq expression levels to deter-
mine the reliability between the RT-qPCR and RNaseq measurements.
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QUANTIFICATIONS AND STATISTICAL ANALYSIS

RNaseq and microarray data processing
RNaseq raw data quality was first evaluated with FastQC_0.11.1 software (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Reads were trimmed with Cutadapt 1.4.1 (https://cutadapt.readthedocs.io/en/stable/index.html) and PrinSEQ (http://
prinseq.sourceforge.net/index.html) to remove low-quality bases and adapters, and the quality reassessed with FastQC. Alignment
was performed with Tophat 2.0.12 aligner (https://ccb.jhu.edu/software/tophat/index.shtml) on the mouse mm10 genome release.
Aligned reads from each sample were converted to BAM files with SAMtools 0.2.0 suite (http://samtools.sourceforge.net/) and used
for gene-count measurements with HTSeq 0.6.1 software and with the Mus musculus GRCm38.76 release for annotation (https://
htseq.readthedocs.io/en/release_0.11.1/) The resulting count file was then imported into R software for further analysis. Post-anno-
tation and count quality control (e.g., RNA biotype distribution) were performed with R software using custom scripts or the Bio-
conductor NOISeq package (https://www.bioconductor.org/). Data were filtered to keep only detected mRNA (16,058) with at least
one correctly aligned read.
Microarray fluorescence signals were measured with the Agilent Technologies features extraction software (Agilent Technologies,

Basel, Switzerland). Expression files for each animal were imported into R software and merged together. Fluorescence background
and control probes were subtracted and detected miRNA (371) were filtered with custom scripts.

DE gene analysis
RNaseq read counts were log2 transformed and normalized using the TMM algorithm from the edgeR package. The resulting data
were transformed with the voom function from the limma package to fit a binomial-like distribution and the mean-variance bias was
determined for further correction.
MicroRNA expression levels were log2 transformed and normalizedwith the quantile normalization from the preprocessCore pack-

age (https://github.com/bmbolstad/preprocessCore). In both cases, the impact of normalization and transformation was determined
by comparing the data distribution before and after processingwith the custom scripts. Correct data distributionwas essential before
performing the next steps.We used principal component analysis (PCA) and hierarchical clustering to cluster samples based on their
expression levels. PCA was performed on all detected samples (16,058 mRNAs and 371 miRNAs) using the prcomp function with
unscaled parameters. The data representation of the PCA was generated using the ggplot2 package (https://ggplot2.tidyverse.
org/). Euclidean distances between the cell types were determined for the top 20% mRNA and miRNA with the highest variation
coefficients across cell types and plotted using the heatmap.2 package. This analysis allowed us to detect a batch effect between
the two different microarray slides for miRNA measurements. We thus used the limma package (duplicateCorrelations function) to
create a linear model taking into account cell population membership and the slide batch to correct expression values. Hierarchical
clustering and PCA after correction revealed a strong reduction of the batch effect and were therefore used for data representation.
For both mRNA and miRNA profiles, a linear model was created to determine group membership of the samples (dSPN, iSPN,

astrocytes, microglia) with the limma package (Ritchie et al., 2015). We determined the transcripts enriched in one cell population
compared to all the others with the following contrasts:

dSPN=dSPN" ðiSPN+Astrocytes+MicrogliaÞ
3

iSPN= iSPN" ðdSPN+Astrocytes+MicrogliaÞ
3

Astrocytes=Astrocytes" ðiSPN+dSPN+MicrogliaÞ
3

Microglia=Microglia" ðiSPN+dSPN+AstrocytesÞ
3

Given that dSPN and iSPN are two members of the same neuronal class, we performed an additional contrast to compare the SPN
with glial cells:

SPN=

!
dSPN+ iSPN

2

"
"
!
Astrocytes+Microglia

2

"

The resulting data were transformed following the empirical Bayes (eBayes) algorithm and a fold change (in log2, logFC) and p value
were computed for each gene for each contrast. We applied the Benjamini-Hochberg (BH) correction to control for false-discovery
rates (FDR) across the detected transcript. Considering that the four cell-type specific contrasts are from a single biological question
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and therefore performed in a single function, we also corrected for the FDR due to the repetition of these four statistical tests. We
finally selected DE genes with a FDR threshold < 0.1 for cell type-specific contrasts and 0.05 for SPN/Glia contrast. Venn diagrams
showing the number of DE genes were generated with the vennDiagram function from limma package. Volcano plots for SPN/Glia
contrasts were manually built with the ggplot2 package.

Evaluation of cell markers, stress and strain effect
We evaluated the specificity of known cell markers. Based on the literature, we manually selected validated markers for each cell
type. We also selected some markers for non-dissected cells present in the striatum, i.e., oligodendrocytes, endothelial cells, and
striatal interneurons. For each gene marker, we plotted the enrichment score (abs(-log10(FDR)) adjusted for the sign of logFC) for
each contrast to confirm the presence/absence of markers in the appropriate cell population.

For the comparison with Gokce et al. (2016), top cell-type enriched markers were identified and used to represent the normalized
average expression levels in our four cell populations.

We used mice crossed on a C57BL/6 strain background, except for the Drd2-eGFP transgenic mice, which are on an FvB
background. We used the PCA performed during the exploratory analysis on mRNA and miRNA to evaluate the impact of mouse
strain on expression levels. Variance scree plots showed most of the variance to be explained by the four first components. We
therefore pairwise plotted each principal component and demonstrated that no sample clustering occurred based on the mice being
of the C57BL/6 or FvB strain.

For the evaluation of the impact of our method on cellular stress, we used the list of genes supplied with the Mouse Stress and
Toxicity RT2 Profiler PCR array (QIAGEN). We used RSEM tool to compute FPKM from our raw data and compared the FPKM values
with expression values obtained by Zhang and collaborators (Zhang et al., 2014). An heatmap was made to compare the expression
levels of the selected genes between LCM and FACS method.

Sample correlation and comparison with the Allen Brain Atlas
Following RNaseq data preprocessing, we computed the pairwise Pearson correlations between each sample for the expression
levels of all detected mRNAs to determine the reproducibility between our samples. We then used the heatmap.2 package for
graphical representation of correlations, without sample clustering.

We next evaluated the reproducibility of our method with published transcriptome studies. We separated the detected genes into
low, medium, and highly expressed genes based on the quartile distribution of averaged log2 transformed and normalized expres-
sion levels between all cell populations. We randomly selected 100 genes of each of three categories and compared their expression
by linear regression with probe intensity data obtained by the Allen Brain Study in mouse striatum to demonstrate the reproducibility
of our database with already published expression profiles (http://mouse.brain-map.org/).

Network analysis of cell-type specific mRNA-seq data
The raw sequencing reads were pre-processed to discard both adaptor sequences and low-quality reads using the Trimmomatic.
The filtered reads were then mapped to the mouse reference genome mm10 (UCSC 2013 release) using Bowtie2 (http://
bowtie-bio.sourceforge.net/bowtie2/index.shtml). Read distributions were calculated using the featureCounts tool. We used
DESeq2, available as an R package in Bioconductor (www.bioconductor.org), to generate the log fold-change (logFC) values. The
ratio used to generate the logFC values is the ratio between gene expression levels in individual cell types and the average gene
expression levels across cell types. We generated the networks that describe each cell type by performing spectral decomposition
of the RNA-seq signal (logFC values) against the probabilistic functional network Mousenet v2, as previously described (Tourette
et al., 2014). Briefly, this approach maps entire gene expression datasets onto Mousenet v2 to identify sub-networks of closely-
deregulated genes, reducing the risk of false positives and false negatives in raw gene expression data and highlighting bio-topolog-
ical essentiality and centrality in these data. We then generated artificially-permuted datasets by randomly permuting the pairs of
logFC values from the original logFC distribution to assess the specificity of the sub-networks generated using spectral decompo-
sition of the signal. Using this approach, the global distribution of logFC values in permuted datasets remained the same compared to
the original data. The number of permuted genes was set from 10% to 100% by 10% increments. For each permutation, we
constructed the corresponding sub-networks and compared them to the original sub-networks by assessing the number of edges
in common between the original and permuted sub-networks. Such permutation analysis showed the sub-networks generated using
Mousenet v2 for spectral decomposition of the signal to be specific to the RNA-seq datasets analyzed herein (data not shown). We
explored the biological content of the network signature obtained for each cell type using the Enrichr database, selecting for GO
annotations (Biological processes, KEGG pathways) and Reactome annotations. Annotations supported by a minimal number of
nodes set to N > 9 and a P value < 10"6 were considered optimal. These analyses were complemented with PubMed searches.

miRNA clustering
We selected miRNAs specifically enriched in SPN or glia from the SPN-glia contrast. We assessed the overrepresentation of miRNA
clusters in these two cell populations to determine whether a common transcriptional control could explain cell-type enrichment of
themiRNA.We first determined the distribution of all detectedmiRNAs on chromosomes, to exclude chromosomal detection bias, by
plotting the miRNA density of each chromosome. We performed the same analysis with DE miRNA, between SPN and glia and
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observed overrepresentation of two chromosomes between these two cell types, possibly revealing miRNA cluster enrichment. We
then retrieved the composition of known miRNA clusters from the miRbase website and imported the information in R (http://www.
mirbase.org/). For each DE miRNA, we determined their miRNA cluster membership and performed a hypergeometrical analysis
(phyper function) to evaluate the overrepresentation of the clusters. Graphical representation of miRNA cluster enrichment was
performed by plotting the number of miRNAs belonging to each cluster detected for the DE miRNA. Representations of the genomic
positions of the miRNAs of chromosomes 12 and 2 for SPN and glia, respectively, were generated using the Gviz package. For both
graphs, the positions of known miRNAs in the analyzed genomic window were recovered from biomaRt (upper part) and cell-type
enriched miRNAs were identified based on our statistical contrasts by plotting their expression levels in each group.

mRNA regulation by DE miRNA
We selected DE mRNAs and miRNAs from the SPN-glia contrast and hypothesized that if miRNAs strongly contribute to the cellular
identity, target mRNAs of DE miRNA should be decreased in the cell population in which the miRNA is enriched. We manually
recovered the known target sequence of SPN- and glia-enriched miRNA from the miRBase website. Following duplicate removal,
we crossed this list of target mRNA with SPN- and glia-enriched mRNA. For each group of DE miRNAs (i.e., SPN and glia miRNA),
we obtained an overlap between their potential target sequences and mRNAs enriched in SPN or glia and performed the Chi-square
test to determine whether a significant overlap occurred. We represented overlaps with the vennDiagram function of the limma
package.

Analysis of TF binding sites on DE genes
For each contrast, significantly DE genes were selected as described above and enrichment for TFs binding sites (TFBS) assessed
with the oPOSSUM_3.0 tool (http://opossum.cisreg.ca/oPOSSUM3). Briefly, oPOSSUM 3.0 automatically recovered the genomic
sequences of each gene of interest in the Ensembl database of Mus musculus. The sequence of nucleotides localized at ±
5,000 bp of a transcription start site was next recovered and used to predict potential binding sites for TFs, according to the posi-
tion-weighted matrices of the CORE Jaspar library. For TFBS prediction, a minimum profile specificity of 8 bits was used, together
with a conservation cut-off of 0.40 and a matrix score threshold of 85%. Finally, for each TF, a Z-score was calculated, which
represents the enrichment of binding sites for a given TF across all genes of interest compared to background. The background
corresponds to all genes detected in the LCMdatabase (16,058 genes). The Z-score is an estimation of the likelihood that the number
of TFBS nucleotides detected for the target genes is significant relative to the number of TFBS nucleotides detected for the
background set. A Z-score R 10 was considered to be significant based on the author’s recommendations. In addition, for each
group, an equivalent number of genes was randomly selected among the 16,058 detected genes to compare with a random distri-
bution. The genomic localization, exact sequence, and distance to transcription start sites were extracted for each TFBS, according
to the Ensembl database, and incorporated into R for further analysis.
For each group, the number of enriched TFBSs was plotted using the ggplot2 package. The random distribution used for compar-

ison was obtained by taking themean of the data generated from the randomly selected genes for each group. For each contrast, the
association between enrichment of the TFBSs and enrichment of the associated TFs was evaluated using a linear regression model
to determine whether the TFs strongly associated with DE genes were themselves enriched in the same cell population.
We performed an anchored combination site analysis (aCSA) using oPOSSUM 3.0 to detect over-represented combinations of

TFBSs in genes of interest. We selected Sox9 as the anchoring TF and the same parameters and background as in the single-site
analysis. Here, oPOSSUM first evaluates all potential TFBSs for the anchoring TF on the genes of interest, and next predicts all
TFBS from the CORE Jaspar library located ± 100 bp from the binding site of the anchoring TF. Finally, a Z-score is calculated
that represents the probability of significant enrichment for binding sites of specific TFs close to the anchoring TF. The genomic local-
ization, exact sequence, and distance to transcription start sites were extracted for each TFBS, according to the Ensembl database,
and incorporated into R for further graphical representation, as previously described.

Evaluation of the role of DNA conformation on DE genes
Genomic coordinates of characterized DNA topological adjacent domains (TADs) were recovered from a previous study (Dixon et al.,
2012). TADs identified in the mouse cortex samples were used in this analysis. In parallel, the genomic coordinates of DE genes for
each contrast were recovered and each gene was associated with an identified TAD, based on overlap of the genomic coordinates.
An equivalent number of randomly selected genes were selected among the 16,058 detected genes for each contrast as a negative
control for comparison.
The total number of TADs associated with cell-type-enriched genes were plotted using the ggplot2 package and compared with

number of TADs identified with the randomly selected genes. Enrichment for TADs in SPN and glia samples was assessed with the
phyper function. Finally, Venn diagrams were constructed to evaluate the overlap of the TADs between SPN and glia, and compared
with that of the randomly selected genes from these populations using Fisher’s Exact test.
EPUswere extracted from the same study using the samemethod, based on genomic coordinates. The same analysis was used to

associate DE genes to EPUs for the SPN-glia contrast. The overlap of EPUs between the two cell populations was compared using
Venn diagrams and Fisher’s Exact test. Randomly selected genes were used as a control to show that the overlap between SPN and
glia EPU was less for cell-type enriched genes. Finally, for each cell type, EPUs containing > 1 DE gene were identified and the
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selected genes were used for an oPOSSUM analysis to determine whether TFBSs potentially regulating these EPUs displayed a
typical TFBS profile, as identified in the previous analysis. Graphical representations were generated using the ggplot2 package.

Cross-analysis with HD expression profiles
We compared our cell-type enriched expression profiles with a published database of transcriptional alterations in HD patients
(Hodges et al., 2006). Based on the publication, we selected significant genes with a p value < 0.001 and classed them as increased
(logFC > 0) or decreased (logFC < 0) in HD. We next converted the RefSeq IDs of significant probes to ENSEMBL IDs in each group
using biomaRt. For probes without a RefSeq ID, we used the HUGO gene symbol for conversion to a RefSeq ID and, finally, to an
ENSEMBL ID. Probes without RefSeq or HUGO gene IDs were discarded. Human ENSEMBL IDs from each group were then
converted to mouse ortholog ENSEMBL IDs using biomaRt. As two microarray slides were used, we removed the duplicated genes
at the end of the conversion to keep only single DE genes in HD with murine IDs. Finally, we crossed these two lists with those of
cell-type-enriched mRNAs to determine cellular enrichment of increased and decreased genes in HD. Volcano plots were built using
the ggplot2 package to represent the proportion of altered genes in HD patients enriched in SPN or glia in our study. Heatmaps were
generated with the heatmap.2 package, as described above. Finally, we grouped potential cell-type enriched altered genes in HD by
GO with the goseq package, as previously described in the package vignette, with a FDR threshold of 0.1. Treemaps were created
using the REVIGO graphical tool (http://revigo.irb.hr/).

ChipSeq data analysis
For human samples, libraries were prepared using the NEXTflex ChIP-Seq Kit (V12.10 2012) and sequenced on an Illumina Hiseq
2500 sequencer as single-end 50 bp reads following the manufacturer’s instructions. Image analysis and base calling were per-
formed using RTA v1.18.61 and CASAVA v1.8.2. Adaptor dimer reads were removed using DimerRemover v0.9.2 (https://
sourceforge.net/projects/dimerremover/). For the mouse samples, library preparation was described in (Achour et al., 2015). For hu-
man samples, reads were mapped to the human genome (hg19) using Bowtie1 v1.0.0 with the following arguments: -m 1–strata–
best -y -S -l 40 -p 2. Peak calling was performed using the SICER.sh script of SICER v1.1 with the following parameters: species:
hg19, threshold for redundancy allowed for chip reads: 1, threshold for redundancy allowed for control reads: 1, window size:
200 bps, effective genome size as a fraction of the reference genome of hg19: 0.77, gap size: 600 bps, E value for identification
of candidate islands that exhibit clustering: 1000, false discovery rate controlling significance: 1E-2. Fragment size was set according
to the value assessed byHomer v4.7.2makeTagDirectory. Peaks were annotated using Homer v4.7.2 with annotation extracted from
Ensembl v75. Formouse samples, theChipSeq analysis was described in (Achour et al., 2015). Global clustering of theChIP-seq data
and quantitative comparisons were performed using seqMINER software. We used the core gene coordinates as reference coordi-
nates, defined as the region between TSS"5kb and TSS +5kb; gene lists used as a reference were reduced according to the results
of the cell-specificity or differential expression RNA-seq analysis in the mouse. The k-means linear method was used to group genes
in six clusters called A-F. Functional analysis of gene lists was performed by searching for enrichment in KEGG and GO annotations
with DAVID and GREAT.

Differential binding analysis
Wedetected differential regions by generating ameta-peak list composed of the union of all H3K27ac peaks detected by SICER in all
patients and control samples with bedtools merge v2.21.0 (Quinlan and Hall, 2010). Striatal meta-peak list was composed of 58,635
non-overlappingH3K27ac peaks.We then counted the number of reads falling into the genomic coordinates of themeta-peaks using
bedtools intersect. The meta-peak list was annotated with Homer v4.7.2, associating one meta-peak to a single gene. We summed
up read counts of all meta-peaks of a given gene using a custom R script to have one read count value per gene (number of different
genes n = 25,808). Read counts were then normalized across samples with the method proposed by Anders and Huber (2010). We
finally compared patients and controls using the Bioconductor package DESeq2 v1.6.3 using two factor variables: condition (i.e.,
patient and ctrl) and gender (i.e., male and female). Increased and decreased H3K27ac regions were selected if their adjusted
p value % 0.05. Similar analysis was performed using cerebellar samples.

DATA AND SOFTWARE AVAILABILITY

The NCBI Bioproject accession number for the RNA-seq data reported in this paper is: PRJNA510761
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