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Abstract

In this paper, I model a shock whereby financial intermediaries can better diversify borrowers’
idiosyncratic risks. A sector-specific diversification improvement induces intermediaries to real-
locate funds toward the shocked sector. As lending spreads fall, intermediaries build up leverage
over time. The result is a fragile sectoral boom that can end in an economy-wide bust. This cycle
is amplified if the diversification-shocked sector is higher-risk or more external-finance depen-
dent. I apply the model quantitatively to the recent housing cycle. Feeding in a novel mortgage
diversification index, the model generates the measured increase in household credit coincident
with a 1-2% decline in mortgage spreads. In the subsequent bust, spreads in all sectors spike by
2% as aggregate output drops.
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1 Introduction

Many booms feature a sectoral bias – for example, a US “railroad boom” in the 1850s, an “agriculture
boom” in the 1880s, and a “housing boom” in the 2000s. Sectoral booms, however, can end in
economy-wide busts. The aforementioned booms ended with the “Panic of 1857,” the “Panic of
1893,” and the “Great Recession.” Securitization is an intriguing factor connecting these three
episodes. In each case, loans to the booming sector were increasingly pooled into securities and
sold to investors.1 Motivated by these observations, this paper offers a financial theory that links
sectoral booms to economy-wide busts.

I present a model in which financiers provide funds to two distinct productive sectors. A criti-
cal function of financiers’ is to diversify within-sector idiosyncratic risks, which they accomplish by
holding a large portfolio of loans. In practice, financiers diversify by making a variety of loans or
holding securitized portfolios.

Suppose financiers’ diversification improves within one of the sectors, as might occur with the
advent of securitization. In the short run, a reallocation effect arises: facing an improved risk-reward
trade-off, financiers redirect funds toward the sector with newly improved diversification, which
raises sectoral investment. The reallocation effect helps explain why many booms feature a sec-
toral bias. Indeed, both the boom and its sectoral bias originate from sector-specific diversification
improvements.

Meanwhile, better diversification reduces sectoral risk premia. A series of low risk premia earned
by financiers results in a redistribution of wealth from financiers toward the rest of the economy. To
maintain their funding activities, financiers must borrow more, which I call the leverage effect. If
financial leverage is destabilizing, the leverage effect explains why a sectoral boom can lead to an
economy-wide bust.

I adopt a particular connection between leverage and stability. Assume financiers face a leverage
constraint. If the leverage effect is strong enough, financiers endogenously hit their constraint, at
which point they must de-lever. A less-qualified type of financier, whom I call distressed investors,
purchases financiers’ liquidated loan portfolios and serves as the marginal supplier of any new loans.
The de-leveraging thus disturbs both sectors, not only the sector that recently boomed. Lending
spreads in both sectors rise sharply at the constraint, resembling a financial crisis.

A financial crisis might generate “real effects” on variables such as consumption and investment
for several reasons. In the baseline model, I suppose the participation of distressed investors triggers
deadweight losses. In reality, such losses might be justified by distressed investors’ lower productivity
in the advisory, monitoring, and screening activities that the financial sector typically provides. With
deadweight losses, the de-leveraging episode triggers an inefficient bust. In the paper, I explore
alternatives linking a financial crisis to an economy-wide bust.

1See Riddiough and Thompson (2012) and Calomiris and Schweikart (1991) for an account of the securitization
of railroad-adjacent farm loans in the 1850s. See Eichengreen (1984), Snowden (1995), and Snowden (2007) for an
account of farm mortgage securitizations in the 1880s. See below for evidence pertaining to the 2000s housing cycle.
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Given this inefficiency, why do financial crises occur in equilibrium? The answer is a risk-taking
externality in financiers’ portfolio decisions. When individual financiers take risk, they do not account
for the downward pressure they put on risk premia and, by extension, the profitability of other
financiers. Lower financier profitability raises the prospect of future binding constraints, and hence
a crisis. Although this prospect is socially undesirable, financiers privately ignore it.

The entire cycle is amplified if diversification improves in a lower-quality sector, i.e., a sector that
is higher-risk or more reliant on external financing. Low-quality borrowers offload more risk onto
financier balance sheets, and diversification has a larger marginal benefit when applied to a riskier
balance sheet. This generates larger reallocation and leverage effects, meaning a larger and more
asymmetric boom, but also a higher chance of a broad bust.

In a quantitative exercise, I apply the model to the recent US housing cycle. I create a novel index
of idiosyncratic mortgage banking risk, in order to measure mortgage diversification. My approach
has two key advantages relative to the existing empirical literature. First, the index encapsulates
deregulation, financial innovations, and mergers, which tend to have similar qualitative effects but
are difficult to compare quantitatively.2 Second, the index has interpretable risk-based units, which
is relevant for calibrating economic models. Using this index, I extract a time series measure of
mortgage diversification, which increased substantially from 1990 to 2006; see figure 13.3
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Figure 1: “HH Credit Share”
denotes households’ share of
total non-financial corporate
credit, from the Flow of Funds;
“Intermediary Leverage” denotes
broker-dealer leverage, from
Adrian, Etula and Muir (2014).

Figure 1 shows the 1990-2006 increase in diversification is correlated with the reallocation and
leverage effects. Reallocation is proxied by the household credit share, and leverage is proxied
by broker-dealers’ assets-to-equity ratio. Inserting my diversification time series into the calibrated

2For example, deregulations that allowed banks to operate across state borders clearly improved loan portfolio diver-
sification. But the exact magnitude of this improvement is difficult to compare with the rise of securitization.

3I do not measure diversification in non-mortgage lending markets. But several facts suggest that deregulations and
securitization were geared primarily towards household finance. First, the results of Rice and Strahan (2010) and Favara
and Imbs (2015) together provide causal evidence that bank branching deregulations in the late 1990s and early 2000s
disproportionately affected mortgage finance, relative to firm finance. Second, securitization of mortgages grew much
faster in this period than securitization of commercial loans. The ratio of outstanding mortgage securities (primarily MBS)
to corporate securities (primarily corporate bonds and CLOs) grew by 50% from 1990-2006. See Appendix D.2.
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model, I match the household credit share in figure 1 and the 2% drop inmortgage rates documented
in the literature.4 Model-implied financier leverage also rises in the boom, qualitatively in line with
figure 1. Because leverage constraints start binding in the bust, financiers’ implied funding costs
increase by over 2%, in line with data on financial crises.5 The credit spreads of both sectors, not
just housing, spike by the same magnitude of financiers’ funding costs. In a counterfactual exercise
without diversification improvements, there is no episode resembling a financial crisis, with spikes
in funding costs or credit spreads.

While diversification improvements trigger a cycle characterized by sectoral reallocation and
financier leveraging, other financial shocks might do the same. Motivated by the literature, I study
five other financial shocks in the model – a loan-to-value shock,6 a capital-requirement shock,7

a risk-tolerance shock,8 an uncertainty shock,9 and a foreign-savings shock.10 Among these, none
generate both reallocation and leverage. The core rationale for this result is, unlike the other shocks,
a diversification improvement differentially impacts one sector and differentially improves financiers’
investment-opportunity set relative to other agents’. Although this analysis depends on the present
framework, the forces uncovered are likely to be present in other model economies.

Contributions to the Literature

This paper contributes to three broad literatures: (1) the literature on the effects of financial inter-
mediation on the macroeconomy; (2) the literature on diversification and other financial shocks;
and (3) the literature on the recent housing cycle.

By focusing on the financial sector, my framework shares many features with the “financial ac-
celerator” literature on macroeconomic dynamics with financial frictions. Net worth of borrowers,
producers, or financiers acts as a buffer to fundamental economic shocks in these models, building
off of insights by Bernanke and Gertler (1989) and Kiyotaki and Moore (1997). Like He and Krish-
namurthy (2013) and Brunnermeier and Sannikov (2014), I employ continuous-time methods, to
extend these ideas to study crisis dynamics and other nonlinearities.

The structure of my model and the structure common to this literature differ in three aspects.
First, a key role of financiers in my model is to diversify idiosyncratic risks. Most of this literature
studies financial intermediaries who are more productive investors but in fact less diversified than
other agents. Second, I include two sectors, to study financiers’ reallocation between them. Third,
I study diversification improvements, a type of financial shock, which lead to interesting and differ-

4See Justiniano, Primiceri and Tambalotti (2017).
5See Fleckenstein and Longstaff (2018).
6LTV-type shocks are studied by Jermann and Quadrini (2012), Kiyotaki, Michaelides and Nikolov (2011), Justiniano,

Primiceri and Tambalotti (2015b), Favilukis, Ludvigson and Van Nieuwerburgh (2017), and Greenwald (2016).
7This resembles the relaxation of banks’ “lending constraints” in Justiniano, Primiceri and Tambalotti (2015a).
8For example, Kindleberger (1978) says, “The monetary history of the last four hundred years has been replete with

financial crises. The pattern was that investor optimism increased as economies expanded, the rate of growth of credit
increased and economic growth accelerated, and an increasing number of individuals began to invest for short-term capital
gains...” See Kaplan, Mitman and Violante (2017) for an analysis of optimism shocks on housing markets.

9See Di Tella (2017) for a model of intermediation with idiosyncratic volatility shocks.
10See the “global savings glut” hypothesis of Bernanke (2005). Favilukis et al. (2017) study foreign savings in a model.
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ent boom-bust dynamics. Most financial-accelerator papers focus on standard fundamental shocks,
which are amplified by the endogenous concentration of risk in the financial sector. These models
generate a bust only after a long sequence of negative fundamental shocks, because intermediaries
are well-capitalized following a boom.11

By contrast, my economy can experience an endogenous bust which is then amplified by small
negative fundamental shocks, because of the “leverage effect” and the presence of the financier
leverage constraint. The leverage effect, whereby diversification lowers fundamental risk but is
offset by higher risk-taking, relates to the “Peltzman effect” in automobile safety (Peltzman (1975))
or the “volatility paradox” in macro-finance (Brunnermeier and Sannikov (2014)).12 The leverage
constraint means that booms characterized by rising financial leverage can destabilize the economy,
as asserted by Minsky (1992).13

The leverage constraint also has implications for efficiency. As financiers approach the constraint,
less-qualified lenders are more likely to enter. To the extent that misallocation within the financial
sector incurs real costs, this entry is inefficient. Without a leverage constraint, efficiency improves
as financiers’ risks fall (e.g., Brunnermeier and Sannikov (2014)).

The theoretical possibility that financial innovation may be inefficient is well-known. For exam-
ple, Hart (1975) shows that partially “completing the market” by adding new securities markets can
lead to lower welfare (see also Elul (1995)). In my paper, better financier diversification is a form of
financial innovation that improves market completeness but can decrease welfare. The mechanism
is through exacerbation of a pecuniary externality, whereby individual financiers do not internalize
how their risk-taking decisions reduce the total equity of the financial system (see also Acharya, Le
and Shin (2017)).

My approach to modeling diversification is related to the model in Gârleanu, Panageas and Yu
(2015), which uses a Brownian bridge on a circle of locations to model correlated shocks. Investors
allocate funds along arcs of the circle, which prevents full diversification of idiosyncratic risks. I use
the theory of Gaussian processes to develop a new stochastic process, which I call a Brownian cylin-
der, that maintains cross-sectional correlations on a circle but accommodates an infinite-horizon,
continuous-time setting. This apparatus could be useful in other settings where continuous-time
methods have proved fruitful (e.g., optimal stopping problems, occasionally-binding portfolio con-

11This includes models like Di Tella (2017), in which the presence of uncertainty shocks endogenously induces risk
concentration. Some models not based on net worth can generate busts following few adverse shocks. For example,
Boissay, Collard and Smets (2016) present a model based on information asymmetries that generates a finance-centric
boom-bust cycle. Gorton and Ordoñez (2016) generates cycles based on the interaction between real productivity and
financiers’ incentives to accept collateral.

12Demsetz and Strahan (1997) document this effect empirically for larger bank holding companies, whose better di-
versification is offset by increased risk-taking. Adrian, Friedman and Muir (2015) argue the negative correlation between
financial sector ROE and expected returns supports the profitability mechanism in my paper. Also related, Wagner (2008,
2010, 2011) develops a series of theoretical models to illustrate downsides of financial diversification. Closest to my
paper is Wagner (2008), in which the banking sector features a risk-taking externality. Individual banks do not take into
account that high-risk, low-liquidity portfolio choices increase other banks’ probability of inefficient liquidation. Better
diversification improves risk-reward trade-offs, thereby worsening the externality.

13For example, Minsky (1992) says, “...Over periods of prolonged prosperity, the economy transits from financial rela-
tions that make for a stable system to financial relations that make for an unstable system.”
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straints, heterogeneous-agent macro models).
In my quantitative analysis, I apply the framework to the recent US housing boom. Motivating

this exercise is a large empirical literature arguing credit-supply increases were the key driver of
the boom.14 For example, Favara and Imbs (2015) study the effect of credit on house prices using
bank-branching deregulations of the late 1990s and early 2000s as a credit-supply instrument. The
deregulations plausibly allowed banks to achieve better-diversified loan portfolios. My paper argues
better mortgage diversification is an important credit-supply shock driving the boom and bust.

A quantitative modeling literature examines the plausibility of various financial shocks in the
housing boom and bust. These papers are among the many papers (cited in the previous section)
motivatingmy choice of “other financial shocks” to compare with diversification shocks. For example,
Justiniano, Primiceri and Tambalotti (2015a) argue that a relaxation of lending constraints (a credit-
supply shock) can generate a house-price boom, whereas a relaxation of borrowing constraints (a
credit-demand shock) cannot, because of their opposing effects on real interest rates.

Regarding the bust, most of this quantitative literature incorporating financial shocks generates
a bust only after applying a negative financial shock.15 Missing from this literature is the idea that
the nature of the boom can make the subsequent bust more likely and larger. Specifically, my model
differs in that a diversification-induced boom creates financial instability.

Even under the narrative of a deterioration of household balance sheet (e.g., Mian and Sufi
(2015)), the timing and extreme severity of the Great Recession are puzzling. Bernanke (2018)
uses such arguments to conclude that the housing bust is not enough; the 2008 financial panic is
key to a coherent narrative. My paper provides a model taking this finance view.

The remainder of the paper is organized as follows. Section 2 studies a baseline model to under-
stand the reallocation and leverage effects from a diversification shock. Section 3 extends a baseline
model to allow for the possibility of financial crises in response to the diversification shock. Section
4 shows how other financial shocks behave differently. Section 5 calibrates the model to quantify
the effects of diversification improvements in the recent US housing cycle. Section 6 concludes. Ap-
pendix A contains model proofs. Appendix B details the construction and properties of the Brownian
cylinder. Appendix C contains model extensions. Appendix D contains some empirical results.

14Adelino, Schoar and Severino (2012) use a regression-discontinuity design to show that (conforming) mortgage
securitization reduces lending rates and raises house prices. Mian and Sufi (2018) provide causal evidence that the
abrupt increase in private-label MBS activity dramatically increased house prices and led to the bust. See also Mian and
Sufi (2009), Mian and Sufi (2011), and Di Maggio and Kermani (2017). This credit-supply view is not uncontroversial.
For example, Haughwout, Lee, Tracy and Van der Klaauw (2011), Chinco and Mayer (2015), and Albanesi, De Giorgi and
Nosal (2017) point to housing investors (who mortgage more than one property) as a key driver of the 2000s boom-bust
cycle. Adelino, Schoar and Severino (2016) argue that mortgage credit increased proportionally to all income groups.
These findings are at odds with the traditional rationing-based view, in which lower-quality borrowers are the largest
beneficiaries of the credit-supply increase.

15For example, see Favilukis et al. (2017) and Kaplan et al. (2017). Guerrieri and Lorenzoni (2017) provide a thorough
analysis of the effects of tightening borrowing constraints. Tightening constraints can generate a large bust and slow
recovery, through a large deleveraging episode.
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2 Two-Sector Model: Reallocation and Leverage

The model of this section is meant to introduce the primary mechanisms of my framework: reallo-
cation and leverage. I introduce two sectors that produce with their own capital stocks. I will show
that an increase in diversification of one sector’s risks leads to reallocation towards that sector and,
in the long run, to increased overall leverage by financial intermediaries.

2.1 Setup

Time is continuous t ≥ 0. The model features two groups of agents: insiders and outside financiers.
Insiders are additionally split into two groups, depending on which of two productive sectors they
inhabit, A or B. These insiders invest in capital, and consume. To finance their capital purchases,
insiders issue outside securities and put up some of their own net worth. These outside securities
are held by financial intermediaries, which are operated by financiers. To finance their investment
activities, financiers use their own net worth as well as risk-free debt. To start, financiers cannot
directly manage productive capital. Agents in each group are indexed by i ∈ [0, 1], which will
represent an agent’s location, to be described below. Figure 2 summarizes the model, with the flow
of funds between insiders and financiers.

Capital (A)

Insiders (A) Insiders (B)

Capital (B)

Financiers (F )

Riskless
<latexit sha1_base64="XCse98Si0gtGgruIQWGOVWc55Us=">AAAB73icbZA9TwJBEIbn8AvxA9TSZiMxsSJ3NFKS2FiikY8ELmRvmYMNe3vn7p4JufAnbCw0xta/Y+e/cYErFHyTTZ68M5OdeYNEcG1c99spbG3v7O4V90sHh0fH5crJaUfHqWLYZrGIVS+gGgWX2DbcCOwlCmkUCOwG05tFvfuESvNYPphZgn5Ex5KHnFFjrd4911OBWg8rVbfmLkU2wcuhCrlaw8rXYBSzNEJpmKBa9z03MX5GleFM4Lw0SDUmlE3pGPsWJY1Q+9ly3zm5tM6IhLGyTxqydH9PZDTSehYFtjOiZqLXawvzv1o/NWHDz7hMUoOSrT4KU0FMTBbHkxFXyIyYWaBMcbsrYROqKDM2opINwVs/eRM69Zpn+a5ebTbyOIpwDhdwBR5cQxNuoQVtYCDgGV7hzXl0Xpx352PVWnDymTP4I+fzBz/ZkA4=</latexit><latexit sha1_base64="XCse98Si0gtGgruIQWGOVWc55Us=">AAAB73icbZA9TwJBEIbn8AvxA9TSZiMxsSJ3NFKS2FiikY8ELmRvmYMNe3vn7p4JufAnbCw0xta/Y+e/cYErFHyTTZ68M5OdeYNEcG1c99spbG3v7O4V90sHh0fH5crJaUfHqWLYZrGIVS+gGgWX2DbcCOwlCmkUCOwG05tFvfuESvNYPphZgn5Ex5KHnFFjrd4911OBWg8rVbfmLkU2wcuhCrlaw8rXYBSzNEJpmKBa9z03MX5GleFM4Lw0SDUmlE3pGPsWJY1Q+9ly3zm5tM6IhLGyTxqydH9PZDTSehYFtjOiZqLXawvzv1o/NWHDz7hMUoOSrT4KU0FMTBbHkxFXyIyYWaBMcbsrYROqKDM2opINwVs/eRM69Zpn+a5ebTbyOIpwDhdwBR5cQxNuoQVtYCDgGV7hzXl0Xpx352PVWnDymTP4I+fzBz/ZkA4=</latexit><latexit sha1_base64="XCse98Si0gtGgruIQWGOVWc55Us=">AAAB73icbZA9TwJBEIbn8AvxA9TSZiMxsSJ3NFKS2FiikY8ELmRvmYMNe3vn7p4JufAnbCw0xta/Y+e/cYErFHyTTZ68M5OdeYNEcG1c99spbG3v7O4V90sHh0fH5crJaUfHqWLYZrGIVS+gGgWX2DbcCOwlCmkUCOwG05tFvfuESvNYPphZgn5Ex5KHnFFjrd4911OBWg8rVbfmLkU2wcuhCrlaw8rXYBSzNEJpmKBa9z03MX5GleFM4Lw0SDUmlE3pGPsWJY1Q+9ly3zm5tM6IhLGyTxqydH9PZDTSehYFtjOiZqLXawvzv1o/NWHDz7hMUoOSrT4KU0FMTBbHkxFXyIyYWaBMcbsrYROqKDM2opINwVs/eRM69Zpn+a5ebTbyOIpwDhdwBR5cQxNuoQVtYCDgGV7hzXl0Xpx352PVWnDymTP4I+fzBz/ZkA4=</latexit><latexit sha1_base64="XCse98Si0gtGgruIQWGOVWc55Us=">AAAB73icbZA9TwJBEIbn8AvxA9TSZiMxsSJ3NFKS2FiikY8ELmRvmYMNe3vn7p4JufAnbCw0xta/Y+e/cYErFHyTTZ68M5OdeYNEcG1c99spbG3v7O4V90sHh0fH5crJaUfHqWLYZrGIVS+gGgWX2DbcCOwlCmkUCOwG05tFvfuESvNYPphZgn5Ex5KHnFFjrd4911OBWg8rVbfmLkU2wcuhCrlaw8rXYBSzNEJpmKBa9z03MX5GleFM4Lw0SDUmlE3pGPsWJY1Q+9ly3zm5tM6IhLGyTxqydH9PZDTSehYFtjOiZqLXawvzv1o/NWHDz7hMUoOSrT4KU0FMTBbHkxFXyIyYWaBMcbsrYROqKDM2opINwVs/eRM69Zpn+a5ebTbyOIpwDhdwBR5cQxNuoQVtYCDgGV7hzXl0Xpx352PVWnDymTP4I+fzBz/ZkA4=</latexit>

Figure 2: Typical Flow of Funds. Arrows
show the direction of investment.

Preferences

All agents are infinitely-lived and have logarithmic utility over the single consumption good that
may be produced in either sector. Mathematically,

Ut := Et
[ ∫ ∞

t
ρe−ρ(s−t) log(cs)ds

]
, ρ > 0. (1)

Locations and Idiosyncratic Risk

Agents are arranged on a circle, which has locations indexed by i ∈ [0, 1]. Locations will be special
because they feature different idiosyncratic shocks.

7
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These shocks directly hit the evolution of productive capital. Mathematically, capital held by an
insider at location i evolves dynamically as

dkAi,t = dIAi,t + kAi,t[σA · dZt + σ̂AdW
A
i,t] (2)

dkBi,t = dIBi,t + kBi,t[σB · dZt + σ̂BdW
B
i,t]. (3)

In (2)-(3), dIA, dIB are desired investment, Z := (ZA, ZB) is a standard Brownian motion (aggre-
gate shock), andWA,WB are idiosyncratic shocks (more on these stochastic processes below). For
simplicity, I assume σA · σB = 0, i.e., orthogonal aggregate shocks. These “capital-quality shocks”
are a simple way to capture permanent productivity or depreciation shocks, without introducing
additional state variables.

For two reasons, I assume no investment adjustment costs, as in Cox, Ingersoll and Ross (1985).
First, my focus is on incomplete financial markets rather than investment frictions. A minimal num-
ber of frictions affords maximum theoretical clarity, as my results on boom-bust cycles must be at-
tributed to the remaining frictions.16 Second, zero adjustment costs allows me to obtain analytical
solutions to the equilibrium of this economy.

I assume the idiosyncratic shocks WA
i,t and WB

i,t are independent copies of a stochastic process
with the following properties.

Assumption 1 (Shock Structure). Assume the following forW := {Wi,t : i ∈ [0, 1], t ≥ 0}.

(i) At each location i ∈ [0, 1],Wi,t is a standard Brownian motion, independent of Zt.

(ii) For any two locations i, j ∈ [0, 1], the shock correlation is

corr(dWi,t, dWj,t) = 1− 6dist(i, j)(1− dist(i, j)), (4)

where dist(i, j) := min(|i− j|, 1− |i− j|) is a distance metric on the circle of circumference 1.

(iii) Wi,t is continuous in (i, t) almost-surely, under the Euclidean distance metric on the cylinder
d̃ist((i, s), (j, t)) := [|s− t|2 + dist(i, j)2]1/2.

Given part (i) of Assumption 1, dWi,t is iid over time, for fixed location i. Part (ii) of Assumption
1 means the shock correlations between locations decrease with their distance from one another.17

Nearby locations have nearly perfect shock correlation. Two locations that are “far away” from one
another (e.g., i = 1/4 and j = 3/4) will have a large negative correlation. A key question is whether
any such stochastic process exists.

16By contrast, models such as Brunnermeier and Sannikov (2014) rely on capital adjustment costs to generate real
effects of financial frictions. Indeed, in that model, the probability of capital misallocation vanishes as adjustment costs
shrink to zero. Intuitively, the most productive users can avoid selling capital at a discount if they can disinvest costlessly.

17This presumption on the shock correlation owes to Gârleanu et al. (2015). Using the Brownian bridge on a “circle,”
they construct discrete-time idiosyncratic shocks that are cross-sectionally correlated but contain zero aggregate risk. In
doing so, they find the dividend correlation is exactly 1− 6dist(i, j)(1− dist(i, j)). The proof of Lemma 2.1 would apply
for any appropriate correlation function v(i, j) that depends only on dist(i, j) (i.e., stationary correlation function).

8
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Lemma 2.1. A stochastic processW := {Wi,t : i ∈ [0, 1], t ≥ 0} exists which satisfies Assumption 1.

The preceding lemma, proved in Appendix B, establishes existence ofW . The key step is proving
W can be constructed as a Gaussian process with the appropriate covariance function, which needs
to be symmetric and positive semi-definite. Because W evolves on a circle over time, which looks
like a cylinder, I will call it the Brownian cylinder.

With the properties in Assumption 1, we can establish some distributional properties of the Brow-
nian cylinder, in particular that it contributes no aggregate risk. These properties are stated below
in Lemma 2.2.

Lemma 2.2. Under Assumption 1, there is no aggregate risk, i.e.,
∫ 1

0 (dWi,t)di = 0 almost-surely. More
generally, the local variance of a unit investment divided amongst the shocks along an arc of length ∆

is equal to (1−∆)2, i.e.,18

Vart
(∫ i+∆

i
∆−1dWj,tdj

)
= (1−∆)2dt.

Consequently, the processW∆
i,t := (1−∆)−1∆−1

∫ i+∆
i Wj,tdj is a standard Brownian motion.

Given Lemma 2.2, the shock dWi,t is correlated across locations but washes out in the aggregate,
the sense in which it is idiosyncratic. The surprising part of this result is that we only needed to
specify the covariance structure of the shocks, and this property alone allows us to pin down the
integral of all the shocks.

Figure 3 plots one simulation of the Brownian cylinder for t ∈ [0, 1] at 500 evenly spaced locations
i. See Appendix B for details on how to simulateW . Each cross-section of the cylinder represents the
circle of locations. To represent the shocks, the cylinder is shaded according to the size ofWi,t/

√
t.

Figure 3: One shock realization of the
Brownian cylinder {Wi,t : t ∈ [0, 1]}, for
i at 500 evenly spaced locations. Each
cross-section of the cylinder is the circle
of locations. Colors represent the size of
Wi,t/

√
t.

18I always take the notational convention that “i+∆” represents i+∆−bi+∆c when indexing a position on the circle.
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Asset Markets

I assume sectoral capital is homogeneous, which implies the location-invariant unit prices qA,t and
qB,t. With zero investment adjustment costs, we will have qA,t ≡ qB,t ≡ 1 in equilibrium.

There is also a zero-net-supply futures market for trading claims directly on aggregate risk.
Investing one unit of net worth in this claim earns the excess return πtdt + dZt, where πt is the
market price of risk associated with the dZt shock. These futures contracts are continuously settled.
Finally, there is a zero-net-supply riskless bond market that returns rtdt. All agents can access both
the futures and riskless bond markets frictionlessly.

Return on Capital

A firm is just a collection of capital, which produces according to an “AK” technology. The repre-
sentative insiders at location i produce GAkAi,t and GBkBi,t. As a result, and due to the absence of
adjustment costs, the return on capital is given by

dRAi,t = GAdt+ σA · dZt + σ̂AdW
A
i,t (5)

dRBi,t = GBdt+ σB · dZt + σ̂BdW
B
i,t. (6)

Thus, capital returns have a location-invariant distribution and time-invariant risk.

Insider Problem

Because of symmetry between the two sectors and their insiders, I describe the problem of an insider
in generic sector z ∈ {A,B}. On the asset side, insiders hold capital that returns (5)-(6). They are
also marginal in the risk-free debt market, at the interest rate rt. On the liability side, insiders can
obtain funding from financiers against their capital, by signing a contract promising the return of

dR̃zi,t := (rt + szi,t)dt+
(
dRzi,t − Et[dRzi,t]

)
, z ∈ {A,B}.

This liability is a way for insiders to shed some of the idiosyncratic risk associated with production.
The “spread” charged by financial intermediaries is given by szi,t.

I assume insiders finance a fixed fraction φz of the value of their enterprise from intermediaries in
the form of outside equity. With the fixed fraction, insiders pay φzkzi,tdR̃zi,t to financiers. In Appendix
A.4, such a risk-sharing arrangement is the (approximately) optimal solution to a standard moral-
hazard problem.19

19Under that interpretation, the restriction that insiders keep 1 − φz fraction of capital risk on their balance sheets is
called a “skin-in-the-game” constraint. Given sufficient skin in the game, the exact composition of outside contracts is
irrelevant. Indeed, once moral hazard problems are resolved between insiders and outsiders, the outside securities issued
by insiders are indeterminate due to Modigliani-Miller holding on these securities. In particular, there are no taxes, costs
of default, incomplete financial markets, or any other frictions that would violate MM, after agency problems are resolved.
Therefore, the equity-like contract is without loss of generality under this interpretation.

10
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Combining the assumptions above, insider net worth nzi,t evolves as

dnzi,t = (nzi,trt − czi,t)dt︸ ︷︷ ︸
consumption-savings

+ kzi,t(dR
z
i,t − rtdt)︸ ︷︷ ︸

capital ownership

−φzkzi,t(dR̃zi,t − rtdt)︸ ︷︷ ︸
outside funding

+ nzi,tθ
z
i,t · (πtdt+ dZt)︸ ︷︷ ︸

aggregate risk hedging

, z ∈ {A,B}. (7)

Given the ability to frictionlessly trade aggregate risk but not the idiosyncratic risk of capital, one
can think of the differential kzi,tEt[dRzi,t− rtdt−φz(dR̃zi,t− rtdt)] as a compensation for idiosyncratic
risk. Mathematically, households solve

max
nzi ,c

z
i ,k

z
i ,θ

z
i

Uzi,t, z ∈ {A,B}, (8)

subject to (7), nzi,t ≥ 0, kzi,t ≥ 0, where Uzi,t is given by the logarithmic utility function (1).

Financier Problem

Financiers serve a diversification and safe-asset-creation role. Financiers hold a partially diversified
portfolio of equity in each of the two sectors. They fund these activities by borrowing in riskless
debt and using their own net worth.

Location iLocation i + �

Financier i portfolio

Insiders j 2 [i, i + �]

Figure 4: Circle of locations and fi-
nanciers’ partially diversified portfolios.
Financiers have potentially different di-
versification parameters ∆A and ∆B for
each sector.

I model diversification as follows. Financiers are tied to locations, just as insiders are. A financier
located at i ∈ [0, 1] invests in a portfolio of insiders’ securities located “nearby” in the sense that they
lie in a connected interval adjacent to location i. Define ∆z ∈ [0, 1] to be the length of this interval for

For example, we may think of changing the degree of risk in the outside contract by setting

dR̃zi,t := (rt + szi,t)dt+ ζ(dRzi,t − Et[dRzi,t]),

for ζ ≤ 1. The parameter ζ might capture the fact that insiders empirically borrow in debt which is less risky than
the underlying asset. If ζ = 1, the contract is equity. As ζ → 0, the contract approaches riskless debt. However, the
parameter ζ is irrelevant in the following sense. One can verify that φzζ enters all formulas multiplicatively, and so enters
all equilibrium expressions multiplicatively. What matters is that φzζ of risk is sold off to outsiders.

11
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insiders in sector z ∈ {A,B}. Insiders financed by finanicer i are those with j ∈ [i, i+∆z] mod [0, 1].
Here, the ∆z are exogenously fixed numbers, not choices by financiers. I explore endogenous ∆z

choices in Appendix C.2. This partial but imperfect diversification arc on the circle may be visualized
in figure 4.

For simplicity, I assume financiers fund all insiders within their investment arc symmetrically.
Let λzi,t represent location-i financiers’ funding, per unit of their net worth, of sector-z insiders. In
other words, location-i financiers supply λzi,t∆−1

z nFi,t of funds to each sector-z insider j ∈ [i, i +

∆z] mod [0, 1], rather than allowing λzi,t to also vary by destination.20

Putting everything together, the financier’s net worth evolves dynamically as follows:

dnFi,t = (nFi,trt − cFi,t)dt︸ ︷︷ ︸
consumption-savings

+nFi,tθ
F
i,t · (πtdt+ dZt)︸ ︷︷ ︸

aggregate risk hedging

+ λAi,tn
F
i,t∆

−1
A

∫ i+∆A

i
(dR̃Aj,t − rtdt)dj

︸ ︷︷ ︸
funding portfolio (sector A)

+λBi,tn
F
i,t∆

−1
B

∫ i+∆B

i
(dR̃Bj,t − rtdt)dj

︸ ︷︷ ︸
funding portfolio (sector B)

. (9)

Financiers solve
max

nFi ,c
F
i ,λ

A
i ,λ

B
i ,θ

F
i

UFi,t (10)

subject to (9), nFi,t ≥ 0, λAi,t ≥ 0, λBi,t ≥ 0, where UFi,t is given by the logarithmic utility function (1).

Free Mobility

At this point, I make an important technical assumption that keeps the equilibrium construction
tractable. Specifically, I assume a free-mobility condition between locations, which allows us to
study a symmetric equilibrium.21

Assumption 2 (Free Mobility). Insiders and financiers are freely mobile among locations i.

Under Assumption 2, idiosyncratic shocks will wash out in aggregate, but the expectation that
they will hit matters for individual behavior. A similar free-mobility assumption has been used across
the idiosyncratic “islands” of Gertler and Kiyotaki (2010). For details on an equilibrium of a similar
model without Assumption 2, see Khorrami (2018). In that setting, a symmetric equilibrium is not
possible. Instead, the entire distribution of net worth across locations becomes a state variable.

20Relaxing this assumption does not change the results significantly. With the maintained symmetry assumptions,
{λi→j,t} could be chosen in two stages (if spreads sj,t are independent of location j). First, leverage λi,t :=

∆−1
∫ i+∆

i
λi→j,tdj could be chosen to trade off return and risk, as in the main text. Second, risky share allocations

λi→j,t/λi,t could be chosen to minimize the portfolio variance of a unit investment. One can verify that the resulting
portfolio is exactly a symmetrically funded portfolio, with point masses on the extremal locations i and i+ ∆.

21Unlike location choices, agents’ occupations (e.g., “sector A insider”; “financier”) are fixed and cannot be chosen.
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2.2 Equilibrium

Definition 1. An equilibrium consists of price and allocation processes, adapted to the aggregate and
idiosyncratic shocks {(ZAt , ZBt ,WA

i,t,W
B
i,t) : i ∈ [0, 1], t ≥ 0}, such that all agents solve their opti-

mization problems and all markets clear. Prices consist of the interest rate rt, aggregate risk price πt,
and spreads sAi,t, sBi,t. Allocations consist of capital and equity holdings (kAi,t, k

B
i,t, λ

A
i,t, λ

B
i,t), consumption

choices (cAi,t, c
B
i,t, c

F
i,t), and aggregate risk hedging choices (θAi,t, θ

B
i,t, θ

F
i,t). A symmetric equilibrium is an

equilibrium in which all objects are independent of i for each t. The market-clearing conditions at every
point in time are as follows.

• Goods markets:
∫ 1

0
[GAk

A
i,t +GBk

B
i,t]didt =

∫ 1

0
[cAi,t + cBi,t + cFi,t]didt+

∫ 1

0
[dIAi,t + dIBi,t]di.

• Funding markets:

∫ i

i−∆z

∆−1
z λzj,tn

F
j,tdj = φzk

z
i,t, ∀i ∈ [0, 1], z ∈ {A,B}.

• Aggregate risk market: ∫ 1

0
[θAi,tn

A
i,t + θBi,tn

B
i,t + θFi,tn

F
i,t]di = 0.

• Bond market: ∫ 1

0
[nAi,t + nBi,t + nFi,t]di =

∫ 1

0
[kAi,t + kBi,t]di.

First, we have a lemma which shows that, under additional restrictions, any equilibrium will be
“location invariant” in a certain sense.

Lemma 2.3 (Location Invariance). Let Assumptions 1 and 2 hold. If an equilibrium is such that

nAi,t

nAi,t + nBi,t
and

nFi,t

kAi,t + kBi,t
and kAi,t + kBi,t

are independent of i, that equilibrium must be location invariant in the sense that kAi,t/kBi,t, kAi,t/nAi,t,
kBi,t/n

B
i,t, λAi,t, λBi,t, sAi,t, and sBi,t are independent of i. Furthermore, a symmetric equilibrium is feasible.

Among such location-invariant equilibria, I analyze the special one in which locations are exactly
identical in their net worths, which is feasible (and weakly optimal) under free-mobility. Studying
this equilibrium allows me to avoid keeping track of the full distribution of wealth among locations,
which would otherwise be necessary to know the evolution of aggregates such as wealth.
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For construction of the symmetric equilibrium, define aggregate capital Kt :=
∫ 1

0 [kAi,t + kBi,t]di

and the capital distribution κt := K−1
t

∫ 1
0 k

A
i,tdi. Define the wealth shares

αt :=
NA,t

NA,t +NB,t
and ηt :=

NF,t

NF,t +NA,t +NB,t
,

where NA,t :=
∫ 1

0 n
A
i,tdi, NB,t :=

∫ 1
0 n

B
i,tdi, and NF,t :=

∫ 1
0 n

F
i,tdi are aggregate net worths. The only

state variables in a symmetric equilibrium will be (αt, ηt,Kt). Therefore, in what follows, I drop
location i subscripts from all variables whenever the meaning is clear. All stationary variables will
be solely functions of (αt, ηt), whereas growing variables will form a stochastic trend around Kt.
The state dynamics are

dαt = µαt dt+ σαt · dZt
dηt = µηt dt+ σηt · dZt
dKt = Kt[ιtdt+ σt · dZt],

where the aggregate investment rate ιt is determined from ιtKtdt := dIAt + dIBt and the aggregate
diffusion vector is given by σt := κtσA + (1− κt)σB.22 The equilibrium is computed explicitly.

Proposition 2.4 (Two-Sector Equilibrium). Let Assumptions 1 and 2 hold. Then, there exists a unique
symmetric equilibrium with state variables (α, η). The equilibrium is non-stochastic in the sense that
σα ≡ ση ≡ 0. The state drifts are

µα = α(1− α)[π̂2
A − π̂2

B] (11)

µη = η(1− η)[π̂2
F→A + π̂2

F→B − απ̂2
A − (1− α)π̂2

B], (12)

where

π̂A :=
κ(1− φA)σ̂A
α(1− η)

and π̂B :=
(1− κ)(1− φB)σ̂B

(1− α)(1− η)
(13)

π̂F→A :=
κφA(1−∆A)σ̂A

η
and π̂F→B :=

(1− κ)φB(1−∆B)σ̂B
η

(14)

are shadow idiosyncratic risk prices. The aggregate risk price vector is π = κσA+(1−κ)σB. The capital
distribution is given by

κ = min(1, max(0, κ̃)), where (15)

κ̃ :=
GA −GB + ‖σB‖2 +

[ (1−φB)2

(1−α)(1−η) +
φ2
B(1−∆B)2

η

]
σ̂2
B

‖σA‖2 + ‖σB‖2 +
[ (1−φA)2

α(1−η) +
φ2
A(1−∆A)2

η

]
σ̂2
A +

[ (1−φB)2

(1−α)(1−η) +
φ2
B(1−∆B)2

η

]
σ̂2
B

.

22Note that, although sectoral investment dIAt and dIBt will not, in general, be absolutely continuous with respect to
time (Lebesgue measure), the sum must be absolutely continuous as a consequence of goods market clearing.
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Finally, the growth rate ι and interest rate r are given by

ι = κGA + (1− κ)GB − ρ (16)

r = ρ+ ι− ‖π‖2 − (1− η)[απ̂2
A + (1− α)π̂2

B]− η[π̂2
F→A + π̂2

F→B]. (17)

I should make a few preliminary comments on the equilibrium in Proposition 2.4. First, even
though the two sectors produce the same consumption good, each sector can receive a non-trivial
allocation of resources because of their risk properties. Indeed, the sectoral shocks (ZA,WA) and
(ZB,WB) are independent, so it is efficient to diversify these shocks by producing some output in
each sector. The same qualitative insights survive in a model with differentiated goods (imperfect
substitutability), which provides an additional rationale for production diversification. See Appendix
C.3 for the model with Cobb-Douglas preferences over the consumption goods.

Second, the expected excess return on each capital stock can be decomposed into the aggregate
risk premium, plus idiosyncratic risk premia earned by insiders and financiers. These idiosyncratic
risk premia are non-trivial due to imperfect diversification by both insiders (who must hold 1 − φ
fraction of their capital risk) and financiers (who can only diversify ∆ fraction of the locations).
Indeed, for sectors z ∈ {A,B},

Gz − r︸ ︷︷ ︸
total risk premium

= σz · π︸ ︷︷ ︸
agg risk premium

+ (1− φz)σ̂zπ̂z︸ ︷︷ ︸
insiders’ idio risk premium

+ φz(1−∆z)σ̂zπ̂F→z︸ ︷︷ ︸
financiers’ idio risk premium

. (18)

For example, σz · π is the aggregate risk premium in sector z, as the product of the quantity of
risk (loading on dZt) and the aggregate risk price π. Similarly, the latter two terms represent id-
iosyncratic risk premia: (1 − φz)σ̂z and φz(1 − ∆z)σ̂z represent the quantity of idiosyncratic risk
held by insiders and financiers, respectively, and π̂z and π̂F→z are the prices of these risks. These
idiosyncratic risk prices measure the marginal utility response to a negative idiosyncratic shock.

In addition, the non-stochastic nature of the economy is due to the combination of identical risk
preferences and complete markets over aggregate risk. In particular, agents may frictionlessly pick
their level of exposure to dZt, given the existence of a hedging securities market (i.e., θAi,t, θBi,t, and
θFi,t are unconstrained). I will relax this frictionless hedging in the quantitative application below.

Finally, because the state variables are deterministic, a reasonable conjecture is that the system
eventually reaches a “steady state” as t→∞. This is the subject of the following proposition.

Proposition 2.5 (Steady State). In the equilibrium of Proposition 2.4, if initial wealth shares α0, η0 >

0, and if GA −GB is sufficiently small, then there exists a steady state given by (α∞, η∞), where

α∞ :=
κ∞(1− φA)σ̂A

κ∞(1− φA)σ̂A + (1− κ∞)(1− φB)σ̂B
(19)

η∞ :=

√
(κ∞φA(1−∆A)σ̂A)2 + ((1− κ∞)φB(1−∆B)σ̂B)2

√
(κ∞φA(1−∆A)σ̂A)2 + ((1− κ∞)φB(1−∆B)σ̂B)2 + κ∞(1− φA)σ̂A + (1− κ∞)(1− φB)σ̂B

,

(20)
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and where κ∞ is given by the time-limit of equation (15).

The equilibrium from Propositions 2.4 and 2.5 can be conveyed graphically. The left panel of
figure 5 plots the supply and demand in sector A’s lending market, with the idiosyncratic risk price
π̂F→A against the financier portfolio λA.

⇡̂F!A

�A

�A =
⇡̂F!A

(1 ��A)�̂A

�A =
�A(⇡̂F!A)

⌘
⌘

µ⌘

µ⌘ = 0

µ⌘ = ⌘(1 � ⌘)
h
⇡̂2

F!A + ⇡̂2
F!B � ↵⇡̂2

A � (1 � ↵)⇡̂2
B

i

Figure 5: Steady-state equilibrium.

The increasing line is funding supply: financiers’ optimal portfolio λA is simply a mean-variance
portfolio trading off idiosyncratic risk compensation, π̂F→A, against the idiosyncratic volatility of the
portfolio, (1 − ∆A)σ̂A. This investment can be chosen using only idiosyncratic risk considerations
because of the frictionless market for trading aggregate risk.

The downward-sloping curve plots funding demand, which is constructed from insiders’ optimal
capital choice. Sector A capital demand, relative to aggregate capital, is

κ =
GA − r − φAsA − (1− φA)σA · π

(1− φA)2σ̂2
A

(1− η)α.

Insiders retain (1 − φA) of their capital risk as inside equity and optimally trade off its variance,
(1− φA)2σ̂2

A, against its expected return. Inside equity earns the expected excess return GA − r on
capital, net of the lending spread sA paid to financiers on φA of outside equity. Because insiders
are able to hedge aggregate risk inherent in capital ownership, they may additionally remove the
aggregate risk premium on inside equity, (1−φA)σA ·π. Because the spread sA is fair, it compensates
financiers for both aggregate and idiosyncratic risk:

sA = σA · π + (1−∆A)σ̂Aπ̂F→A.

All else equal, a higher risk price π̂F→A increases spreads sA and lowers capital demand κ. Lower
capital demand reduces funding demand through the equity-market-clearing relationship φAκ =

λAη, which is the downward-sloping curve plotted in figure 5.
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The right panel shows the dynamics of η. The drift µη balances the relative profitabilities of
financiers and insiders, which are governed by their idiosyncratic risk prices:

µη = η(1− η)
[
π̂2
F→A + π̂2

F→B︸ ︷︷ ︸
financier profitability

− (απ̂A + (1− α)π̂B)︸ ︷︷ ︸
insider profitability

]
.

As a function of η, µη is typically strictly decreasing, because π̂F→A and π̂F→B are decreasing in
η, whereas π̂A and π̂B are increasing in η. This downward-sloping property is why the economy
converges to the steady state, with µη = 0, from any starting point.

2.3 Long-Run Effects of Better Diversification

In this section, I illustrate the reallocation and leverage effects discussed in the introduction. Suppose
diversification improves in sector A, i.e., ∆A ↑. Figure 6 illustrates the adjustment of the economy
to the new steady state.
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Figure 6: Equilibrium before and after an increase in diversification, ∆A ↑.

In the short run, better diversification increases sectoral funding supply because it improves
financiers’ risk-reward trade-off. Graphically, this improvement is captured by the outward rotation
of the supply curve (left panel), which results in a shift from the diamond to the hollow circle.23

This shift reduces equilibrium risk compensation π̂F→A and generates a discontinuous increase in
the sector A capital share κ. Although aggregate capital will never jump in equilibrium, its sectoral
allocation can, due to frictionless investment.

This short-run outcome is the reallocation effect. Diversification-induced reallocation can partly
explain the stylized fact that sectoral capital shares are negatively correlated with sectoral risk pre-
mia, documented by Bansal, Ward and Yaron (2017). Reallocation can also occur with fundamental

23Note that there is a small outward shift in the supply on impact because equation (15) shows κ is increasing in ∆A,
independently of π̂F→A. One can show this is second order relative to the shift in the supply curve, i.e., π̂F→A still falls
on impact, holding η fixed.
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shocks dZA > 0, but such fundamental reallocation tends to raise the sectoral risk premium through
its aggregate component σA ·π = κ‖σA‖2, exactly as in Cochrane, Longstaff and Santa-Clara (2007).

At the same time, lower risk compensation π̂F→A reduces financier profitability, so the drift µη

shifts downwards (right panel). Over time, η drifts downwards. Financiers are happy to decumu-
late, because a lower quantity of idiosyncratic risk necessitates a lower precautionary savings buffer.
However, lower relative wealth means financiers must accumulate leverage to continue their scale
of financing operations. This dynamic effect is captured by the gradual outward shift in the demand
curve (left panel), which results in a shift from the hollow circle to the solid circle. Because financiers
are present in both sectors, a similar effect occurs in sector B’s funding market.

I call this dynamic force the leverage effect. Indeed, financier leverage (assets/equity) is

leverage := λA + λB =
φAκ+ φB(1− κ)

η
, (21)

so declines in η tend to increase leverage. The following result formalizes the preceding analysis.

Proposition 2.6 (Reallocation and Leverage). Consider the steady-state equilibrium of Proposition
2.5, with GA = GB, φA = φB, σ̂A = σ̂B, ‖σA‖ = ‖σB‖, and ∆A = ∆B. The following hold:

(i)
dκ∞
d∆A

> 0 and
dη∞
d∆A

< 0;

(ii)
dκ∞
d∆

= 0 and
dη∞
d∆

< 0, where ∆ := ∆A = ∆B;

(iii)
dκ∞
d∆A

> 0 and
dη∞
d∆A

= 0, if φA = φB = 1.

Part (i) of Proposition 2.6 demonstrates a case in which both reallocation and leverage effects
are in play. The assumption of initially symmetric sectors is made to derive unambiguous compar-
ative statics in this case.24 Parts (ii) and (iii) demonstrate necessary conditions for the reallocation
and leverage effects. Part (ii) shows some asymmetric diversification increase is necessary for the
reallocation channel. Sectoral allocations are immune to a broad increase in diversification. Part (iii)
shows some segmented markets (through borrowing limits) are necessary for the leverage channel.
Without segmented markets between insiders and financiers, the insiders of both sectors have zero
long-run wealth, meaning there can be no financial sector leverage.25

The reason ηt falls slowly over time is that profits take time to accumulate. Said differently,
the absence of entry/exit between sectors slows convergence. When the relative profitability in

24Another particularly simple case is the model with φB = ∆B = 1. Under these parameters, α∞ = 1 and

η∞ =
φA(1−∆A)

1− φA + φA(1−∆A)
and κ∞ =

GA −GB + ‖σB‖2

‖σA‖2 + ‖σB‖2 + (1− φA∆A)2σ̂2
A

.

Observe that part (i) of Proposition 2.6 is satisfied in this case, as long as κ∞ ∈ (0, 1).
25An alternative that preserves segmented markets but allows insiders unlimited equity issuance is to assume financiers’

discount rate is greater than insiders’, i.e., ρF > ρA = ρB := ρ, so that insiders have wealth in the long run. Under this
assumption, one can show that κ∞ is increasing in ∆A and η∞ is decreasing in ∆A, even if φA = φB = 1.
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one sector falls, entry/exit should occur until profitabilities are equalized. With free entry/exit,
immediate convergence obtains, as stated in the proposition below.

Proposition 2.7 (Free Entry). Consider the equilibrium of Proposition 2.4. At every point in time,
suppose all agents can freely choose their “occupations” in the following sense: agents can costlessly
decide to be financiers, sector A insiders, or sector B insiders. Then, (αt, ηt) = (α∞, η∞) for all t.

2.4 Dynamic Response to a Diversification Shock

In this section, I translate the graphical analysis of figure 6 into a time-path, or an “impulse response
function” (IRF). See Appendix A.8 for more details on these IRFs and proofs of the lemmas below.
Due to the tractability offered by logarithmic utility and frictionless physical investment, computing
IRFs is not problematic. An important feature is that this model contains no “impact response.”

Lemma 2.8. There is no state variable impact response to an unanticipated shock to ∆A or ∆B at time
t, i.e., (αt, ηt) = (αt−, ηt−).

The key intuition for Lemma 2.8 is that portfolio holdings are pre-determined before a shock,
so wealth can only jump if asset prices jump. But frictionless investment implies capital prices are
always equal to one; in particular, they cannot jump.

In figure 7, I illustrate the time-path of a one-time unanticipated shock from ∆A. The shock
occurs at time t = 0 and the system has reached steady state at that time. The left panel shows
the time-path for ∆A. The middle and right panels illustrate the responses of κt and λAF + λBF – the
reallocation and leverage effects.
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Figure 7: IRFs to a one-time shock from ∆A = 0.5 to ∆A = 1 at time t = 0. In this example, ‖σA‖ = ‖σB‖ =
0.04, GA = GB = 0.1, σ̂A = σ̂B = 0.20, φA = φB = 0.50, ρ = 0.02, and ∆B = 0.5.

Alternatively, we also may want to consider a gradual increase in ∆A. Performing this experi-
ment raises the question of how to interpret repeated increases in ∆A. One type of IRF treats the
improvement in ∆A as unanticipated, in the sense that economic agents perceive zero probability
of diversification improvements, even though improvements repeatedly occur. This IRF can be com-
puted by repeating the analysis of figure 7 with a series of smaller ∆A shocks.

A second type of IRF treats the improvement as fully anticipated, in the sense that news about
the future diversification path breaks at time τ , and after that time, agents know the entire future
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time-path of diversification. A third type of IRF treats the improvement as partially anticipated, in
the sense that agents know diversification levels follow a particular stochastic process. As shown by
the lemma below, these three types of IRFs are equivalent.

Lemma 2.9. Suppose either of the following holds:

(i) (∆A,t,∆B,t) follows a deterministic path. At time τ , agents are informed about a new future path
{(∆A,t,∆B,t) : t ≥ τ}.

(ii) (∆A,t,∆B,t) follows an arbitrary Itô process. All agents are unconstrained in markets for Arrow
claims on the shocks d∆z,t − Et[d∆z,t].

Then, the economy is in the equilibrium of Proposition 2.4 with (∆A,t,∆B,t) representing (∆A,∆B) at
every point in time t.

As a consequence of Lemma 2.9, IRFs to a series of diversification shocks need not be interpreted
as repeatedly fooling agents in the model with a sequence of zero-probability events. Instead, all we
need to assume is either that agents are perfectly informed about the future diversification path, or
that they can hedge future uncertainty to diversification paths. The crucial model feature for these
lemmas is the optimally-myopic behavior of log utility agents, who care only about the current level
of diversification, not its future probability distribution.

With these equivalence results in hand, the IRF from a gradual diversification improvement is
displayed in figure 8, which is qualitatively a smoothed-out version of figure 7.
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Figure 8: IRFs to a gradual increase from ∆A = 0.5 to ∆A = 1 from time t = 0 to t = 10. In this example,
‖σA‖ = ‖σB‖ = 0.04, GA = GB = 0.1, σ̂A = σ̂B = 0.20, φA = φB = 0.50, ρ = 0.02, and ∆B = 0.5.

These time-paths connect the model to the 1990s-2000s housing boom. As shown in figure 1,
this episode featured a large sectoral reallocation from corporate credit to household credit and
a rise in financial intermediary leverage. Thus, if we interpret sector A as housing and sector B
as productive capital, a gradual increase in ∆A, corresponding to rising mortgage securitization or
gradual banking deregulation, can match these qualitative patterns.

2.5 Lax Screening

The diversification-induced leverage build-up (“leverage effect”) springs from a reduction in financier
profitability, through lower equilibrium spreads. Empirically, there is some support for this during
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the 2000s housing boom, as mortgage spreads fell and commercial bank profitability saw a modest
decline.26

That said, the leverage build-up is a general response to better diversification and can be observed
even in the absence of a profitability decline. For example, with better diversification, financiers
initially reduce their lending spreads, so insiders may optimally borrow more by increasing their
outside funding (i.e., φA and φB). Greater outside funding and better diversification have opposing
effects on equilibrium spreads, so financier profitability may increase or decrease. At the same time,
higher φA or φB directly raises financiers’ assets/equity ratio by equation (21).

To analyze such a situation, Appendix A.5 generalizes the moral-hazard problem of insiders to
generate the possibility of time-varying φA and φB. In this setup, the moral-hazard problem is
smoothed in such a way that optimal short-term contracts cannot eliminate agency costs. Opti-
mal issuance φA equates the marginal diversification benefits from offloading risk (arising because
financiers are better-diversified than insiders) to marginal moral-hazard costs (arising because in-
siders will divert more resources when they keep less skin in the game). Improved financier diversifi-
cation increases the marginal benefit of issuance, so φA rises with ∆A. Although a lower skin-in-the-
game requirement exacerbates insiders’ agency problem, now-better-diversified financiers tolerate
this cost. Credit standards are optimally relaxed, analogous to the story “securitization led to lax
screening” in Keys, Mukherjee, Seru and Vig (2010). Thus, endogenizing credit standards demon-
strates the leverage effect does not rely on falling financier profitability.27

3 Diversification-Induced Financial Crises

The model of Section 2 is meant to illustrate the reallocation and leverage mechanisms in a simple
way. The key shortcoming of that model is the absence of any financial fragility: even though diver-
sification reduces the financier wealth share, macroeconomic fluctuations are unaffected. Below, I
modify the model to allow for the possibility of financial crises.

3.1 New Features

Leverage Constraints

First, I introduce a financier leverage constraint:

λAF,t + λBF,t ≤ λ̄, λ̄ > 1. (22)

26See Justiniano et al. (2017) for evidence on mortgage spreads. See Appendix D.2 for commercial bank profitability.
27The dynamics of financier leverage are ambiguous in this story. If the net effect of higher ∆A and higher φA is to

reduce financier profitability, then ηt will fall over time, and leverage will continue to build. Otherwise, leverage will
increase initially but decline over time.
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Borrowing constraints like (22) can be a reduced-form for financier default costs that rise sharply
with high leverage, or they may arise due to incentive problems.28 In Appendix A.6, I micro-found
the constraint with a simple agency problem. In that case, the endogenously-determined maximal
leverage λ̄ will in fact be a function of the economic state and model parameters. As I demonstrate,
λ̄ is not increasing in diversification ∆A,∆B, which is particularly important for the analysis below.

The leverage constraint modifies portfolio choices by introducing an auxiliary variable (Lagrange
multiplier) that I denote ζt. Thus, financiers’ optimal portfolios are given by

λAF =
(sA − σA · π − ζ)+

(1−∆A)2σ̂2
A

and λBF =
(sB − σB · π − ζ)+

(1−∆B)2σ̂2
B

, (23)

where u+ = max(0, u). The standard complementary slackness condition determines when leverage
constraints bind:

0 = min
{
ζ, λ̄− λAF − λBF

}
. (24)

The portfolio choices (23) are simple because the constraints (leverage and shorting) are homoge-
neous in wealth, and because all agents have log utility. See Appendix A.1 for a complete derivation
using convex duality methods as in Cvitanić and Karatzas (1992). The presence of ζ helps us un-
derstand that a binding leverage constraint works similarly to a rise in intermediary funding costs.
Indeed, as (23) suggests, the equilibrium with a leverage constraint is identical to an unconstrained
economy in which financiers perceive a funding cost of r+ ζ rather than r. Hence, I will sometimes
refer to ζ as the “shadow funding cost.”

Distressed Investors

Next, I introduce a fourth category of agent, which I call “distressed investors,” who may also extend
financing to insiders, but are less qualified to do so. In particular, for each unit of financing, dis-
tressed investors must pay a pecuniary cost χ out of their returns. Such costs may be a reduced-form
for search costs, information-acquisition costs, fundraising costs, etc.29 I implicitly assume these
activities take time and other resources that would otherwise be used in production, so that this pe-
cuniary cost is a deadweight loss to the economy. Although they are less skilled lenders, distressed
investors do not face the leverage constraint (22). Finally, for quantitative purposes below, mainly
to control average financier leverage, I assume financiers have a higher discount rate, ρF > ρ, than
distressed investors and insiders. Otherwise, distressed investors are identical to financiers.

With distressed investors, equilibrium requires that we keep track of distressed investors’ aggre-
gate net worthND,t. In symmetric equilibrium, the wealth distribution is now characterized by three

28See, for example, Kehoe and Levine (1993), Hart and Moore (1994), Kocherlakota (1996), Kiyotaki and Moore
(1997), Holmstrom and Tirole (1997), Gertler and Kiyotaki (2010), and Di Tella and Sannikov (2016).

29Distressed investors may also be interpreted as the marginal buyers of loans and securities on the secondary market,
after the first-best financiers begin defaulting. For example, Chernenko, Hanson and Sunderam (2016) study mutual fund
holdings of asset-backed securities, which grew in the financial crisis. Relatedly, He, Khang and Krishnamurthy (2010)
study ABS holdings of hedge funds, commercial banks, and investment banks.
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state variables:
α :=

NA

NA +NB
, η :=

NF +ND

K
, and x :=

NF

NF +ND
.

Competition among insiders ensures distressed investors must also charge spreads sA and sB.
Consequently, their return-on-investment is given by

∆−1
A

∫ i+∆A

i
(dR̃Aj,t − χdt)dj + ∆−1

B

∫ i+∆B

i
(dR̃Bj,t − χdt)dj.

Their portfolio choices are given by

λAD =
(sA − σA · π − χ)+

(1−∆A)2σ̂2
A

and λBD =
(sB − σB · π − χ)+

(1−∆B)2σ̂2
B

. (25)

Financial distress is said to occur when either spread rises beyond χ, such that λAD + λBD > 0.
Because the participation cost is modeled as a pecuniary cost, any equilibrium financial distress

leads to inefficiency. The costs of financial distress appear in the modified resource constraint:

ι+ xηρF + (1− xη)ρ︸ ︷︷ ︸
Investment + Consumption

= κGA + (1− κ)GB︸ ︷︷ ︸
Output

−χη(1− x)(λAD + λBD)︸ ︷︷ ︸
Costs of Financial Distress

. (26)

These costs are mechanically tied to periods of distress, although they scale with the degree of
distress, i.e., the size of the costs depends on the level of participation by distressed investors.

Limited Hedging

Third, I introduce stochastic fluctuations into the economy by limiting aggregate risk hedging. In
particular, I assume insiders cannot trade aggregate risk at all, i.e., θAi,t ≡ θBi,t ≡ 0. In reality, insiders
of firms may be prevented from market trading due to incentive problems. Financiers and distressed
investors may still trade aggregate risk with no constraints. This assumption generates stochastic
fluctuations, because aggregate risk cannot be shared perfectly among agents.

Overlapping Generations

Lastly, I introduce a “perpetual youth” overlapping-generations (OLG) structure, to ensure a gener-
ically stationary wealth distribution, similar to Gârleanu and Panageas (2015). All agents perish
independently at the Poisson rate δ. Since this assumption augments all agents’ subjective dis-
count rate by +δ, parameters ρ and ρF should be thought of as inclusive of δ (see Lemma A.2).
There are no markets to hedge these idiosyncratic death shocks. To keep the population size con-
stant, newborns arrive at the same rate. Among newborns, the fraction entering sector z is νz, with
νA + νB + νF + νD = 1. Dying agents’ wealth is pooled and redistributed equally to newborns.
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3.2 Equilibrium

Proposition 3.1 (Stochastic Equilibrium with Distress). Let Assumptions 1 and 2 hold, and augment
financiers’ problem with constraint (22). Let (π̂A, π̂B) be insiders’ idiosyncratic risk prices, defined in
(13), and let (π̂F→A, π̂F→B) be financiers’ idiosyncratic risk prices, defined by (14) with xη in place of
η. In a symmetric equilibrium, (κ, ζ) solve a nonlinear system given by (24) and

0 = min
{

1− κ, H+
}
−min

{
κ, (−H)+

}
(27)

H := GA −GB − φAsA + φBsB − (1− φA)[σA · πA + σ̂Aπ̂A] + (1− φB)[σB · πB + σ̂Bπ̂B],

where (sA, sB) are equilibrium spreads,

sz − σz · π = x
[
(1−∆z)σ̂zπ̂F→z + ζ −

(
ζ − χ− x

1− x(1−∆z)σ̂zπ̂F→z
)+]

+ (1− x)
[
χ−

(
χ− ζ − (1−∆z)σ̂zπ̂F→z

)+]
, z ∈ {A,B}, (28)

π is the traded aggregate risk price, and (πA, πB) are insiders’ shadow aggregate risk prices. If insiders
may frictionlessly trade aggregate risk (unconstrained θA, θB), then πA = πB = π = κσA + (1− κ)σB.
If insiders may not trade (θA = θB ≡ 0), then π = η−1[κφAσA + (1− κ)φBσB], πA = π̂AσA/σ̂A, and
πB = π̂BσB/σ̂B. Define the following profitability functions:

ΠA := π̂2
A + ‖πA‖2 and ΠB := π̂2

B + ‖πB‖2 (29)

ΠF := λAF (sA − σA · π) + λBF (sB − σB · π) + ‖π‖2 (30)

ΠD := λAD(sA − σA · π − χ) + λBD(sB − σB · π − χ) + ‖π‖2. (31)

State dynamics are given by

µα = α(1− α)[ΠA −ΠB]− (απA + (1− α)πB) · σα + δ((νA + νB)−1νA − α) (32)

σα = α(1− α)[πA − πB], (33)

µη = η(1− η)[x(ρ− ρF ) + xΠF + (1− x)ΠD − αΠA − (1− α)ΠB] (34)

− (ηπ + (1− η)(απA + (1− α)πB)) · ση + δ(νF + νD − η)

ση = η(1− η)[π − απA − (1− α)πB], (35)

µx = x(1− x)[ρ− ρF + ΠF −ΠD] + δ((νF + νD)−1νF − x) (36)

σx = 0. (37)

In Appendix A.3, Proposition A.3 states the analytical solution to this equilibrium by explicitly
solving equations (24) and (27). An explicit solution is possible because the nonlinearity of this
system is induced solely by the various portfolio constraints (i.e., leverage, shorting constraints).
Such constraints bind on endogenous subsets of the state space, which I solve for analytically.

Figure 9 illustrates several properties of the equilibrium from Proposition 3.1. When η and x are
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Figure 9: Equilibrium functions of (η, x) with α = 0.5 fixed. Parameters: ‖σA‖ = ‖σB‖ = 0.04, σ̂A = σ̂B =
0.20, φA = φB = 0.50, GA = GB = 0.1, ∆A = 0.5, ∆B = 1, ρ = 0.02, ρF = 0.06, χ = 0.05, and λ̄ = 10.

low, financiers hit their leverage constraints. In this region, financial distress emerges as distressed
investors enter the market and begin lending. Financial distress generates a sharp increase in the
spreads of both sectors, even in sector B where ∆B = 1. The real effects of financial distress are
summarized in the bottom-right panel, which shows a large decline in consumption plus investment
relative to total capital, as expected from the resource constraint, equation (26).

3.3 Endogenous Bust and Financial Instability

The effects of a sectoral diversification improvement (increase in ∆A) are summarized by the IRFs
in figure 10. Importantly, Lemmas 2.8-2.9 continue to hold in this stochastic economy with leverage
constraints. Thus, these IRFs can be interpreted as responses to anticipated improvements rather
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than a series of zero-probability events.
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Figure 10: IRFs to a gradual increase from ∆A = 0.5 to ∆A = 1 from time t = 0 to t = 10. Solid lines are
median responses, and dashed lines are 5th and 95th percentile responses. Parameters: ‖σA‖ = ‖σB‖ = 0.04,
σ̂A = σ̂B = 0.20, φA = φB = 0.50, GA = GB = 0.1, ∆B = 0.5, ρ = 0.02, ρF = 0.06, χ = 0.05, and λ̄ = 10.

The responses are similar to those in figure 8 of Section 2.4, with two differences. First, the
stochastic state dynamics induced by imperfect hedging imply a distribution of responses. I plot the
5th, 50th, and 95th percentile responses in figure 10. Second, the leverage constraint prevents an
unmitigated rise in financier leverage.

A stark finding in this setting is the possibility of an endogenous bust in response to a diversifi-
cation improvement. We say an endogenous bust occurs if there is a predicted future decrease in
investment or consumption, relative to capital, in response to a shock at time τ , i.e.,

∃t ≥ 0 : Eτ−[Yτ+t − Yτ−] < 0, where Y := ι+ xηρF + (1− xη)ρ. (38)

Notice, from the resource constraint (26), investment and consumption are equal to “endogenous
productivity” κGA + (1− κ)GB net of “distress costs” χη(1− x)(λAD + λBD). For theoretical clarity, I
will temporarily focus on an economy with symmetric sectors (in particular, GA = GB), so that the
endogenous productivity term is constant. Furthermore, I will temporarily focus on a deterministic
environment to easily identify the presence of an endogenous bust.

Proposition 3.2. Consider the equilibrium of Proposition 3.1, with symmetric sectors and deterministic
dynamics, i.e., νA = νB, GA = GB ≡ G, φA = φB ≡ φ, ∆A = ∆B ≡ ∆, σ̂A = σ̂B ≡ σ̂, and
σA = σB = 0. Suppose there is a one-time increase ∆τ −∆τ− > 0 at time τ and that α0 = 1/2. If ∆τ

is large enough, if (1− φ/λ̄)2(λ̄χ+ ρ− ρF ) + (1− φ)2σ̂2 < 0, and if

(1− φ/λ̄)2(λ̄χ+ ρ− ρF ) +
2δ(1− φ/λ̄)

νF + νD
[(νF λ̄/φ)1/2 − νF − νD]− (1− φ)2σ̂2 < 0 < χ, (39)

then an endogenous bust occurs, i.e., (38) holds.

Intuitively, Proposition 3.2 says the following. If diversification improves enough, then financiers
will deterministically hit their leverage constraint in finite time. At that time, distressed investors
will begin participating which triggers two effects: (i) a potential loss in output through “distress
costs” that scale with participation; and (ii) a sudden increase in expected returns that rebuilds
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financier wealth and pushes them away from the leverage constraint. If the rebuilding effect (ii) is
sufficiently weak, then the economy gets stuck at the leverage constraint, inducing non-negligible
participation by distressed investors, hence non-negligible distress costs. Condition (39) ensures a
weak rebuilding effect.

A diversification improvement can generate financial instability as well as an endogenous bust.
One measure of instability is the sensitivity of investment and consumption, relative to capital, to
fundamental shocks, i.e.,

Vart[dYt], where Y := ι+ xηρF + (1− xη)ρ. (40)

When Vart[dYt] > 0, then investment and consumption aremore volatile than capital. This instability
is tightly associated with a binding leverage constraint.

Proposition 3.3. Consider the equilibrium of Proposition 3.1, with GA = GB ≡ G, φA = φB ≡ φ,
and suppose ∆A,∆B are large enough. Then, there is instability, i.e., Vart[dYt] > 0, if and only if the
leverage constraint (22) binds.

Instability shows up in both sectors’ risk premia. Figure 11 shows the IRFs of lending spreads to
an improvement in sectorA diversification. Once leverage constraints begin to bind, a large right tail
appears suddenly in both sectors. Even though the diversification improvement was sector-specific,
the sudden possibility of extreme spreads affects both sectors, because distressed investors typically
enter both sectors when financiers are leverage-constrained. This tail event, with spillovers to all
sectors, resembles a financial crisis.
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Figure 11: IRFs to a gradual increase from ∆A = 0.5 to ∆A = 1 from time t = 0 to t = 10. Solid lines are
median responses, and dashed lines are 5th and 95th percentile responses. Parameters: ‖σA‖ = ‖σB‖ = 0.04,
σ̂A = σ̂B = 0.20, φA = φB = 0.50, GA = GB = 0.1, ∆B = 0.5, ρ = 0.02, ρF = 0.06, χ = 0.05, and λ̄ = 10.

3.4 Necessity of Leverage Constraints

To see the crucial role the leverage constraint plays in the results above, now suppose λ̄ = +∞.
Figure 12 shows financial distress is almost completely absent. Distressed investors rarely enter the
market, lending spreads respond much more smoothly to changes in the state variables, and sector
B spreads are minuscule across the state space.
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Figure 12: Equilibrium functions of (η, x) with α = 0.5 fixed. Parameters: ‖σA‖ = ‖σB‖ = 0.04, σ̂A = σ̂B =
0.20, φA = φB = 0.50, GA = GB = 0.1, ∆A = 0.5, ∆B = 1, ρ = 0.02, ρF = 0.06, χ = 0.05, and λ̄ = +∞.

The following proposition formalizes this result by characterizing when financial distress occurs.

Proposition 3.4 (Distress without Leverage Constraints). Consider Proposition 3.1 with λ̄ = +∞.
Distressed investors lend to sector z ∈ {A,B} if and only if financiers’ wealth share xtηt < ω∗z,t, where

ω∗A,t := χ−1κtφA(1−∆A)2σ̂2
A (41)

ω∗B,t := χ−1(1− κt)φB(1−∆B)2σ̂2
B. (42)

Proposition 3.4 illustrates the theoretical possibility of financial distress. If financiers’ wealth is
low relative to the amount of idiosyncratic risk they must bear, distressed investors have an incentive
to enter the market. These incentives are summarized by the thresholds (ω∗A, ω

∗
B). That said, even

for moderate diversification, these thresholds are tiny. Consider the case of symmetric sectors, such
that κt = 0.5. Under χ = 0.05 and σ̂A = σ̂B = 0.2, φA = φB = 0.5, and ∆A = ∆B = 0.5, we have
ω∗A,t = ω∗B,t = 0.05. If financiers hold more than 5% of total wealth, distress is impossible.

Furthermore, as ∆A,∆B → 1, distressed investors never take positive positions, as (41)-(42)
show. Under perfect diversification, financiers can perfectly hedge all the risks on their funding
portfolio, so their leverage decisions are completely decoupled from the risks they must bear. Less
efficient lenders never enter if they can finance more efficient lenders to do the same. This result
explains why models without leverage constraints, such as Brunnermeier and Sannikov (2014),
feature inefficiency that falls with financiers’ fundamental risks.
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Conversely, why does financial distress occur when λ̄ < +∞? The following proposition charac-
terizes distress in this case.

Proposition 3.5 (Distress with Leverage Constraints). In Proposition 3.1, the following hold:

(i) If φA = φB, then λAF,t + λBF,t = λ̄ implies λAD,t + λBD,t > 0.

(ii) Suppose χ ≥ λ̄max{(1−∆A)2σ̂2
A, (1−∆B)2σ̂2

B}. Then, λAF,t +λBF,t < λ̄ implies λAD,t +λBD,t = 0.

Part (i) of Proposition 3.5 is a case in which distressed investors participate whenever (22) binds.
Intuitively, because financiers are unable to raise new equity, they will be forced to de-lever upon
hitting constraint (22), independent of their risk exposures and degree of hedging activities. De-
leveraging automatically results in inefficient participation by distressed investors. In this sense,
leverage constraints can introduce periods of financial distress.

Part (ii) says that, under certain parameterizations, distress can only occur if (22) binds. In this
sense, distress is unlikely without leverage constraints. For example, under ∆A = ∆B = 1, this
economy experiences distress if and only if leverage constraints bind.

4 Comparison to Other Shocks

Diversification improvements offer an answer to why booms are often sectoral (reallocation) and
why sectoral booms may produce broad busts (financial leverage). In this section, I study several
other “financial shocks” in my model: an LTV shock, a capital-requirement shock, a risk-tolerance
shock, an uncertainty shock, and a foreign-savings shock. The motivation to study these shocks is
that the extant literature has linked them at some point to boom-bust cycles, most recently related
to the 2000s US housing boom. I show that, other than the diversification shock, none can produce
both a sectoral reallocation and intermediary leveraging in my model. The results of this analysis
are summarized in Table 1.

4.1 LTV Shock

Another important financial shock is an increase in φ, which reduces the idiosyncratic risk insiders
must bear when investing in capital. Like a loan-to-value ratio, φ is the fraction of assets that insiders
can borrow against, so I refer to this shock as an LTV shock. This type of shock is widely studied in the
quantitative modeling literature, with somewhat disparate results.30 Here, I study the implications
of this shock in my model. We have the following result.

Proposition 4.1 (LTV Shock). Consider the equilibrium of Proposition 2.4, with GA = GB, φA = φB,
σ̂A = σ̂B, ‖σA‖ = ‖σB‖, and ∆A = ∆B. Then, dη∞dφA > 0, and if ∆A is sufficiently large, dκ∞dφA > 0.

30See, for example, Kiyotaki et al. (2011), Justiniano et al. (2015b), Favilukis et al. (2017), and Kaplan et al. (2017).
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Stylized Facts
Financial
Shocks

Sectoral
Reallocation

Financial
Leverage

Diversification + +

LTV + ∼
Capital requirements ∼ +

Financier risk-tolerance ∼ +

Insider risk-tolerance + −
Idiosyncratic sectoral risk + ∼
Foreign savings ∼ +

Table 1: Stylized facts and financial shocks. “+” indicates a positive response in the stylized fact to the
referenced shock. “−” indicates a negative response in the stylized fact to the shock. “∼” indicates a neutral
or ambiguous response in the stylized fact to the shock.

The key point to note about φ is that it is a risk transfer between insiders and financiers. Because
financiers are better diversified than insiders, this risk transfer is value-enhancing and generates
sectoral reallocation. Mathematically, equation (18) shows that higher φA lowers sector A’s idiosyn-
cratic risk premia, which are equal to

idio rpA = κ
[(1− φA)2

α(1− η)
+
φ2
A(1−∆A)2

η

]
σ̂2
A.

This quantity is decreasing in φA for a well-diversified sector.
That said, the risk transfer to financiers shifts idiosyncratic risk compensation from insiders to

financiers. In response to the LTV shock, lending spreads increase, which is why LTV shocks are some-
times interpreted as “credit demand shocks.” Thus, an increase in φA unambiguously raises financier
profitability and their long-run wealth share. Although short-run financier leverage κφA+(1−κ)φB

η can
increase with φA, the effect on long-run financier leverage is ambiguous through the rise in η.

4.2 Capital-Requirement Shock

Another possible finance-centric explanation for boom-bust cycles is improved financier access to
outside equity. Perhaps financiers are equity-issuance constrained, perhaps because of capital re-
quirements or more fundamental agency frictions. A relaxation in capital requirements improves
financiers’ risk-sharing with the rest of the economy. To model this scenario, I allow financiers to
partially issue equity against their assets, requiring them to keep 1−φF fraction of skin in the game,
like the insiders of sectors A and B.31 Shocks to the parameter φF can be called capital requirement
shocks. We have the following result.

31This outside equity is assumed to be pooled, thus perfectly diversified, and sold to the market. The equilibrium of
this modified economy is detailed in the appendix.
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Proposition 4.2 (Capital-Requirement Shock). Consider the equilibrium of Proposition 2.4, with capi-
tal requirement 1−φF . If ∆ := ∆A ≡ ∆B, then φF -shocks and ∆-shocks are equivalent in the following
sense: the equilibrium only depends on ∆∗ := 1− (1−∆)(1− φF ) and not φF or ∆ independently.

Capital-requirement shocks (φF ) are similar to diversification shocks (∆) in that both provide
ways for financiers to diversify idiosyncratic risks. For this reason, both parameters appear together
in the expression for financiers’ idiosyncratic risk prices, i.e.,

π̂F→A =
κφA(1−∆A)(1− φF )σ̂A

η
and π̂F→B =

(1− κ)φB(1−∆B)(1− φF )σ̂B
η

.

Indeed, Proposition 4.2 shows that looser capital requirements act like broad, sectorally-agnostic
increases in diversification. It follows that looser capital requirements will generate financial lever-
age. But a key distinction is that φF applies symmetrically to both sectors, whereas ∆A,∆B can be
asymmetric. Although a sector-specific diversification shock generates a reallocation, looser capi-
tal requirements will tend to raise asset prices and allocations across the board, as would a broad
diversification improvement.

This is empirically relevant. Referring back to the motivational figure 1, we see household credit
rose as a share of total private non-financial credit. From the multi-asset perspective, diversification
shocks are more likely to generate these features than a general capital-requirement shock.

This is also relevant to theory. Justiniano et al. (2015a) adopt a reduced-form credit-supply
shock, a relaxation of “lending constraints,” as a plausible explanation for why house prices rose.
But in that paper, the only positive net supply asset is housing, so lending constraints do indeed raise
house prices. With multiple assets, house prices may rise with relaxed lending constraints, but they
will rise in concert with other asset prices.

4.3 Risk-Tolerance Shock

A popular culprit of boom-bust cycles has been excessive optimism or excessive risk tolerance, e.g.,
Kindleberger (1978). Because of the nature of asset pricing, beliefs and risk tolerance always enter
risk premia jointly. I thus consider shocks to risk tolerance in this section.

Now, agents are endowedwith recursive utility as in equation (63) in the appendix. See Appendix
A.2 for details on solving agents’ portfolio problems under these preferences. For simplicity, I assume
all agents have unitary elasticity of intertemporal substitution, but they differ in their risk-aversion
parameters, γA, γB, γF . Risk-tolerance shocks are shocks to these parameters individually.

Proposition 4.3 (Risk-Tolerance Shock). Consider equilibrium with risk aversions γA, γB, and γF .

(i) Suppose GA = GB, φA = φB, σ̂A = σ̂B, ‖σA‖ = ‖σB‖, and ∆A = ∆B. Suppose at time t,
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γA = γB = γF and the economy is in steady state.32 The following hold:

(insider risk-tolerance)
dκt

dγ−1
A

> 0 and
dµη(ηt)

dγ−1
A

> 0

(financier risk-tolerance)
dκt

dγ−1
F

= 0 and
dµη(ηt)

dγ−1
F

< 0

(both risk-tolerance)
dκt

dγ−1
A

+
dκt

dγ−1
F

> 0 and
dµη(ηt)

dγ−1
A

+
dµη(ηt)

dγ−1
F

< 0.

(ii) Suppose the assumptions of part (i) hold, except σ̂A > σ̂B = 0. Then, dµ
η(ηt)
dγA

+ dµη(ηt)
dγF

= 0.

Intuitively, an increase in γ−1
A lowers discount rates in sector A, which generates a sectoral allo-

cation. However, with lower discount rates, insiders are willing to pay higher spreads to financiers,
increasing their long-run wealth share. In this sense, a γA-shock is a credit-demand shock, just like
the LTV shock to φA. An increase in γ−1

F is a credit-supply shock, because it lowers required lending
spreads. But because γF applies symmetrically to both sectors, lending spreads decrease across the
board. A sectoral reallocation is less likely, as with the capital requirement shock to φF . Only if
γ−1
A and γ−1

F both increase, with γ−1
B left unchanged, can the model generate both reallocation and

leverage.33 That said, the leveraging effect is muted by the fact that both lender and borrower id-
iosyncratic risk prices are reduced by the risk-tolerance shock. As part (ii) of Proposition 4.3 shows,
this offsetting can be complete if the other sector has no idiosyncratic risk. Finally, one must ask what
sprouted the sector-specific optimism, whereas diversification shocks are more readily measurable.

4.4 Uncertainty Shock

Uncertainty shocks have been proposed as a possible driver of cycles: when uncertainty is low, banks
may take greater leverage, and the economy suffers when uncertainty reverts. A sectoral uncertainty
shock would be a reduction in σ̂A. We have the following result, which shows that lower sectoral
uncertainty generates a reallocation but may not generate financier leveraging.

Proposition 4.4 (Uncertainty Shock). Consider the equilibrium of Proposition 2.4, with GA = GB,
φA = φB, ‖σA‖ = ‖σB‖, and ∆A = ∆B. Suppose the economy is in steady state at time t. If σ̂A = σ̂B,
then

dκt
dσ̂A

< 0 and
dµη(ηt)

dσ̂A
= 0.

If instead σ̂A > σ̂B = 0, then
dκ∞
dσ̂A

< 0 and
dη∞
dσ̂A

= 0.

32Note that with identical risk preferences, even if they are non-log preferences, and only fundamental shocks, the
economy features a non-stochastic equilibrium that converges onto a balanced growth-path, for the same reasons as in
Proposition 2.5.

33If sector A is interpreted as housing, such a shock corresponds most closely to the survey evidence in Case and Shiller
(2003) and the evidence in Foote et al. (2012). Kaplan et al. (2017) and Glaeser and Nathanson (2017) have model
economies where agents become optimistic only about housing. Even though Landvoigt (2016) incorporates securitiza-
tion, a key element of his story is the underpricing of mortgage risk by lenders.
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To understand this result, consider a hypothetical economy with no diversification (∆A = ∆B =

0) but two values of idiosyncratic volatility that apply to insiders and financiers separately, i.e., σ̂A,A
and σ̂A,F . The economy is otherwise exactly identical. One can show the equilibrium of this economy
is isomorphic to the equilibrium of Proposition 2.4, if σ̂A,A = σ̂A and σ̂F,A = (1−∆A)σ̂A. Therefore,
a diversification shock operates by lowering σ̂F,A and keeping σ̂A,A fixed.

An uncertainty shock has the effect of lowering both σ̂F,A and σ̂A,A proportionally. The result of
this type of shock is to scale down all agents’ idiosyncratic risk premia equally. The long-run effect
of low idiosyncratic uncertainty is ambiguous in the sense that ηt could be higher or lower, precisely
because both insiders and financiers are affected.34

4.5 Foreign-Savings Shock

A final alternative to consider is an increase in demand for safe assets, which tends to reduce inter-
est rates and may fuel the boom, e.g., Bernanke (2005). Because much of this safe-asset demand
manifested empirically as foreign agents buying US Treasury securities and other close substitutes,
I call this a foreign-savings shock. This is also consistent with the documented increase in foreign
demand for highly-rated securitized products, which behave like safe assets.

To model foreign savings, I introduce a wedge into the bond-market-clearing condition, which
now becomes

NA,t +NB,t +NF,t +N∗t = Kt.

I assume N∗t follows some exogenous process. A foreign-savings shock can be modeled as an exoge-
nous change to N∗t . Note that foreign savings also affects the goods market, because net interest
payments to foreigners must come out of consumption. This modified economy has three state vari-
ables, the relative wealth between financiers, insiders, and foreigners:

αt :=
NA,t

NA,t +NB,t
, ηt :=

NF,t

NF,t +NA,t +NB,t
, and η∗t :=

N∗t
Kt

.

The equilibrium of this modified economy is detailed in the appendix. We have the following result.

Proposition 4.5 (Foreign-Savings Shock). Suppose ‖σA‖ = ‖σB‖, σ̂A = σ̂B, φA = φB, and ∆A =

∆B. Suppose there is a one-time increase, η∗t − η∗t− > 0, in foreign savings. Suppose (αt−, ηt−, κt−) =

(α∞, η∞, 1/2) prior to the shock. Then, κt = κt− and ηt = ηt−.

The key to Proposition 4.5 is that foreign inflows raise all domestic agents’ leverage proportion-
ally. Foreign savings of η∗t per unit of domestic wealth result in leverage of (1−η∗t )−1 for the domestic
representative agent. In particular, financier leveraging does occur after a foreign-savings shock.

34This speaks to an important difference between how I am modeling the financial sector and how it has been modeled
in the literature. Because both financiers and insiders are taking idiosyncratic risks, they both demand idiosyncratic
risk compensation that rises with higher uncertainty. In Appendix C.1, I show my way of setting up the model leads to
substantively different conclusions about uncertainty shocks than Di Tella (2017). Indeed, I show uncertainty shocks do
not lead to excessive intermediary risk concentration, because both insiders and financiers have negative hedging demands
against high uncertainty states. From a deeper theoretical perspective, diversification shocks, which are uncertainty shocks
aimed directly at the financial sector, are more likely to be a source of risk concentration.
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But the leverage is distributed equally across all domestic agents. As a result, all idiosyncratic
risk prices are given by the formulas in (13)-(14), with an additional scaling by (1−η∗t )−1. Formulas
(11)-(12) then show the dynamics of (α, η) are merely scaled by (1 − η∗t )−2, explaining why ηt is
unaffected by foreign savings near the steady state. Applying this logic to formula (15) also explains
why κt is unaffected by foreign savings near the steady state. Intuitively, foreign savings are not
directed toward any particular sector, so reallocation does not occur.

5 Quantification: US Housing Cycle

Section 2 showed that better sectoral diversification generates a reallocation and financier leverage.
The objective of this section is to quantify these effects in the context of the 1990s-2000s US housing
cycle. The first step is to determine a reasonable size for the diversification shock (Section 5.1). The
second step is to calibrate the model to fit this particular episode (Section 5.2). The validation
of the model is judged by its ability to generate plausible dynamics for series not targeted by the
calibration – financier leverage and lending spreads in both sectors. I show that the model without
diversification improvements cannot even qualitatively generate the same dynamics.

5.1 Measuring Diversification

In this section, I construct a quantitative measure of mortgage-market diversification. At a high
level, the steps involved are as follows. First, I construct synthetic mortgage portfolios for mortgage
lenders, using originations data in the HMDA dataset. For loans that are sold or securitized, I
assume they are 100% diversified. Loans that are held on the lender’s balance sheet are imperfectly
diversified, and computing the exact degree of diversification follows the instructions below. The
result is therefore a holistic measure of diversification, accounting for loan sales to Fannie/Freddie,
securitizations, and geographic diversification.

Second, I compute the one-year-ahead volatility of each lender’s mortgage portfolio, using location-
specific house-price changes as the proxy for each loan’s return.35 The lender’s portfolio return is
simply a weighted average of these loan-level returns, and I compute the volatility of this return.
Importantly, this method automatically accounts for the empirical correlation between loans held
on a lender’s balance sheet. Denote the average lender-level volatility σ̂∆,t. Then, I proxy loan-
level risk by measuring the average of all locations’ one-year-ahead house-price volatility. Denote
this average location-level volatility σ̂t. Finally, I back out time-varying diversification ∆t using the
model-implied relationship (1−∆t)σ̂t = σ̂∆,t. Details on this procedure are in Appendix D.3.

35In doing this, I am assuming the risk on lender’s mortgage portfolios can be proxied by the risk inherent in the house
prices to which the mortgages are attached (or at least assuming the mortgage risk is proportional to the house-price
risk). This proportionality assumption is incorrect per se, mainly because mortgages are debt contracts, which can be
thought of as nonlinear functions of the local house price (e.g., default in bad states). But my assumption is reasonable as
long as the covariances between the house prices in different locations are similar to the covariances between mortgage
payments in different locations, because these covariances are the key inputs in how I measure diversification.
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In figure 13, I plot the diversification index, ∆t. In 1990, under 60% of housing risk was diversi-
fied by lenders.36 By 2005, over 90% of such risk was diversified. During the same time period, the
idiosyncratic volatility of housing (σ̂t) was not significantly reduced, indicating lenders faced lower
housing risks primarily due to diversification.
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Figure 13: Diversification Index.
“Idio Vol of Housing” plots esti-
mates of σ̂t. “Mortgage Diversifi-
cation” plots estimates of ∆t. In
this figure, the definition of “loca-
tion” is a county. Source: HMDA
and CoreLogic.

Why did diversification increase so dramatically? I find both securitization and geographic di-
versification were significant factors. Figure 14 shows the number of counties represented by loans
in an average lender’s portfolio increased from 10 to 30 during the boom. During the same time,
the fraction of mortgage loans sold (either to Fannie/Freddie or to private-label securitizations) in-
creased from 45% to 60%. The geographic diversification seems to have been under-appreciated
during this episode.
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Figure 14: Diversification Com-
ponents. “Share of Originations
Securitized” shows the fraction
of mortgage originations that
are securitized within the same
year of origination. “Geogra-
phies/Lender” computes the av-
erage number of counties per
lender for loans held on lender’s
balance sheets. Source: HMDA.

36I do not go back to the 1980s because of HMDA data limitations. As discussed in Mian et al. (2017b) and Fieldhouse
et al. (2018), banking deregulations and mortgage securitizations (by GSEs) began aggressively in the 1980s.
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5.2 Calibrated Model

In this section, I interpret sector A as the housing sector, and sector B as all other productive capital.
The parameters and targets for this model are listed in table 2.

Parameter Value Targets

Panel A: Fundamentals

GA productivity 0.04 housing average return 0.04
GB productivity 0.06 capital-housing wealth ratio* 3
‖σA‖ aggregate vol 0.03 aggregate house price vol 0.03
‖σB‖ aggregate vol 0.053 output growth vol* 0.04
σ̂A idiosyncratic vol 0.11 idiosyncratic house price vol 0.11
σ̂B idiosyncratic vol 0.25 idiosyncratic stock price vol 0.25

Panel B: Preferences / OLG

ρ discount rate 0.02 riskless rate* 0.02
ρF discount rate 0.06 output growth rate* 0.03
δ birth/death rate 0.02 life expectancy 50
νF population share 0.01 financier+distressed leverage* 5
νA population share 0.09 housing consumption share* 0.22
νB population share 0.85 aggregate Sharpe ratio* 0.20
νD population share 0.05 νF + νD + νA + νB = 1

Panel C: Financing

φA liability-asset ratio 0.4 aggregate housing LTV 0.4
φB liability-asset ratio 0.26 household credit share* 0.42
∆A diversification 0.59 1990 mortgage diversification 0.59
∆B diversification 0.90 syndicated bank loan spread* 0.015
λ̄ maximal leverage 14 binding constraint probability* 0.03
χ distress cost 0.03 maximal funding cost increase* 0.02− 0.03

Table 2: Parameter values and targets. Housing moments are taken from Piazzesi and Schneider (2016) and
Davis and Van Nieuwerburgh (2015). Idiosyncratic stock volatility is from Di Tella (2017). Financial leverage
and crisis probability (binding constraint probability) are fromHe and Krishnamurthy (2014). The syndicated
loan spread is from Sufi (2007). The 0.42 household credit share is the 1985 value of the series in figure 1.
In the model, household credit share is computed as (κ + 0.1)φA/((κ + 0.1)φA + (1 − κ)φB) to account for
the approximately 1/3 share of household finance that was non-mortgage finance in the 1980s (κ = 0.25
with a capital-housing ratio of 3). The maximal funding cost increase is taken from the > 2% estimate of
Fleckenstein and Longstaff (2018). Targets with stars (*) are only matched approximately.

Into the model, I feed in a series for ∆A,t that approximately matches figure 13. I assume ∆A,t =

0.59 for t ∈ [1980, 1990]. Then, ∆A,t increases linearly from 1990 until 2006, where ∆A,2006 = 0.91.
The resulting series is depicted in the left panel of figure 15.

To extract the two-dimensional Brownian shocks (ZAt , Z
B
t ), I approximately match two model-

implied series to the data, from 1980 to 2015: (a) log GDP and (b) the log household credit share
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(each with 50% weights) i.e.,

log(GDP) = log
(
K[κGA + (1− κ)GB − (1− x)η(λAD + λBD)]

)

log(household credit share) = log
( (κ+ 0.1)φA

(κ+ 0.1)φA + (1− κ)φB

)
.

The 0.1 wedge in the household credit share is to account for the fact that mortgage credit only
accounts for approximately 2/3 of household credit. The extracted shock series are depicted in the
right panel of figure 15. In all figures, “model” refers to the model with shocks to both ∆A and
(ZA, ZB). “Counterfactual” refers to the model with the same shocks to (ZA, ZB) but assumes ∆A

constant. In both the model with diversification shocks and the counterfactual exercise, I use the
binomial approximation to Brownian motion, i.e., dZ = ±

√
dt. Both exercises are initialized with

the state variables (α, η, x) at their stationary averages.
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Figure 15: Shocks. Parameters are in table 2.

The data series used for shock extraction, and their model counterparts, are depicted in figure
16. Both models roughly match aggregate output and household credit. However, referring back
to figure 15, we see the counterfactual model’s shocks are larger, thus less likely from an ex-ante
perspective. For example, the probability of observing |ZA − ZB| increase by at least 22 over 10
years, as the counterfactual shocks display in the period 2000-2010, is equal to 8.6× 10−7. By con-
trast, the model with diversification improvements implies |ZA−ZB| increases by 12 over the same
period, which has probability 7.3 × 10−3, four orders of magnitude larger.37 The large counterfac-
tual expansion of |ZA − ZB| from 2000-2010 helps explain the large growth in household credit,
which diversification improvements naturally generate through the reallocation effect. Repeating
this analysis for 2005-2010 reveals probabilities of 0.0057 (counterfactual) and 0.1714 (model).

Without diversification shocks, financier leverage does not build up, and leverage constraints are
no concern. Figure 17 compares the significant model-generated financial distress in the 2008-10
period, compared to a complete lack of distress in the counterfactual model. Referring back to figure
16, notice the distress period generates an acute housing bust, even moreso than in the data.

37These probabilities are calculated using the fact that M := |ZA − ZB |/
√

2 is a reflected Brownian motion. The
probability distribution is given by P(Mt ≥ m) = 2Φ(−m/

√
t), where Φ(·) denotes the standard normal cdf.
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Figure 16: Log GDP (left panel) and household credit share (right panel). Parameters are in table 2.

Before the distress, during the boom years, diversification improvements reduce sectorA spreads,
as in the data. This force operates somewhat independently of sector B spreads, as shown in figure
18. But as distress arises, sA and sB spike about 2.5% and move together thereafter, nearly one-
for-one. Spreads move more closely together in busts, because their behavior is determined by
financiers’ health issues, rather than sectoral concerns. In this period, spreads reflect almost exactly
the behavior of the shadow-funding cost ζ, which approximately matches the 2+% estimate of
Fleckenstein and Longstaff (2018).
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Figure 17: Financier leverage (left panel) and shadow funding cost (right panel). Parameters are in table 2.
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Figure 18: Lending spreads. Parameters are in table 2.
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Quality Gradient

The previous calibration uses parameters (e.g., LTV φA and idiosyncratic risk σ̂A) relevant for the
average household borrower. In this section, I ask howmuch stronger are the effects of diversification
improvements if the model is instead calibrated to marginal household borrowers, who tend to be
riskier (higher σ̂A) and more external-finance dependent (higher φA).

This question is interesting for two reasons. First, diversification improvements in the 1990s
and especially 2000s were likely larger for lower-quality borrowers. For example, securitization of
non-conforming loans (private-label MBS containing subprime, alt-A, and jumbo loans) increased
dramatically in the 2000s, even relative to conforming loans (see Appendix D.2). By contrast, figure
13 only shows the average increase in diversification over all mortgage originations, which hides any
potential heterogeneity.

Second, for a given increase in diversification, the effects are likely to be stronger for these
marginal borrowers. Theoretically, suppose sectorA has a greater amount of idiosyncratic risk (σ̂A >
σ̂B) and borrows against a greater fraction of its asset purchases (φA > φB).38 Then, a diversification
boom in sectorA tends to produce larger reallocation and leverage effects than a diversification boom
in sector B. The intuition for this statement comes from idiosyncratic risk prices, e.g., π̂F→A. Larger
σ̂A or larger φA imply a larger reduction in risk prices from diversification improvements, i.e.,

d2π̂F→A
d∆Adσ̂A

< 0 and
d2π̂F→A
d∆AdφA

< 0, holding fixed κ.

This is why improved diversification of lower-quality borrowers’ idiosyncratic risks might lead to a
large cycle, and it helps reconcile the timing of the 2000s housing boomwith the timing of the 2000s
private-label MBS boom, rather than an earlier increase in diversification of conformingmortgages.39

In the quantitative experiment, I increase φA from 0.40 to 0.60 and σ̂A from 0.11 to 0.20. Tomatch
the targets in table 2, I also adjust the following parameters: GA = 0.05; ρF = 0.155; νA = 0.50;
νB = 0.44; φB = 0.389; and λ̄ = 27.40 The procedure for extracting (ZA, ZB) is the same as before.

Figures 19 and 20 show financier leverage, financiers’ shadow-funding cost, and both sectoral
spreads. Under this marginal borrower calibration, the boom coincides with a sustained decline in
sA, on the order of 2%, in line with the drop in spreads documented in Justiniano et al. (2017), and
twice as large as the baseline parameterization. At the same time, diversification-induced leveraging
is massive: financiers lever up from 12 to 27 between 1990 and 2007, which is a similar order
of magnitude to the broker-dealer leverage increase documented in figure 1. These strengthened

38One microfoundation for why lower-quality insiders might have higher issuance is to introduce asymmetric informa-
tion about insider types. In a standard signalling equilibrium, higher-quality types must retain a greater share of risk
in order to separate themselves from low-quality types. When interpreting φz as a borrowing constraint, it is not clear
why lower-quality borrowers would have looser borrowing constraints. But when interpreting φz as a reduced-form for
borrowing demand, it becomes reasonable to assume lower-quality types (who are typically poorer) will have higher φz.

39See Mian and Sufi (2018) for evidence that the private-label MBS boom caused a large housing boom.
40This calibration, primarily due to the high value of λ̄, reflects an approximately 0.1% probability of leverage constraints

binding, under ∆A = 0.59. This is significantly lower than the 3% target from table 2, but this target is intentionally
underestimated, because diversification improvements are much stronger under this calibration, as figures 19 and 20
illustrate.
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effects can be attributed to the discussion above: diversification improvements have a larger impact
on riskier (higher σ̂A) and more external-finance-dependent (higher φA) borrowers.

In 2007, leverage constraints are hit, and a financial crisis occurs, upon which spreads in both
sectors jump by about χ = 3%. Under this calibration, spreads remain elevated for longer than in
the baseline calibration. Finally, the counterfactual without diversification improvements generates
no financial crisis at all.
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Figure 19: Financier leverage (left panel) and shadow funding cost (right panel). Parameters are in table 2,
with the exception of the modifications in the text.
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Figure 20: Lending spreads. Parameters are in table 2, with the exception of the modifications in the text.

6 Conclusion

I show that a sector-specific diversification improvement can generate a sectoral boom followed by
a broader bust. The recent US housing cycle appears to be a good example, with evidence of rising
diversification in mortgage markets, followed by high house prices and rising intermediary leverage.
The key to these dynamics is that the diversification shock be both asset- and agent-specific. Future
research on this subject can go in several directions, and I briefly mention a few.

A weakness of my framework is the exogeneity of diversification. In reality, marketing of securi-
tized products, creation of robust banking networks, and even financial deregulations are endoge-
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nous. Furthermore, there are likely to be linkages between diversification and other financial vari-
ables, such as credit standards and collateral constraints. Understanding these dynamics requires
more detailed theoretical analysis of the interplay between economic conditions and diversification.

My quantitative application focuses on the recent housing boom, because diversification plausi-
bly increased more in mortgages than business credit. But as Mian, Sufi and Verner (2017a) show,
household credit is generally a better predictor of future recessions than non-household credit. What
is special about housing, as it pertains to boom-bust cycles? Future work should go beyond exoge-
nous housing-specific shocks and try to understand why the effects of neutral-seeming financial
shocks (such as a global savings glut) might be stronger in housing markets.

In my model, consistent with Mian et al. (2017a), growing household debt does predict low
growth and macroeconomic instability. However, the channel operates entirely through financier
leverage, as opposed to household distress and defaults. Mian, Sufi and Verner (2017b) show the
1980s housing boom, like the 2000s boom, was accompanied both by a significant amount of bank
failures and household defaults. Quantitatively, are busts more sensitive to weak household balance
sheets or weak intermediary balance sheets?

Finally, we can extend the framework of this paper to study an asymmetric equilibrium with geo-
graphic heterogeneity, motivated by the large heterogeneity in timing and scale of regional housing
cycles. In such a model, how large are the spillovers across regions from localized shocks? How do
these spillovers depend on the degree of market integration? Studying such an asymmetric equilib-
rium is challenging, but Khorrami (2018) provides one step in this direction.
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A Model Proofs and Derivations

A.1 Optimal Choices

In this section, I apply the convex duality approach of Cvitanić and Karatzas (1992) to solve agents’ portfolio
problems. This is a generalization of the martingale approach of Karatzas et al. (1987) and Cox and Huang
(1989) to allow for portfolio constraints. I solve a slightly more general portfolio problem that nests the
problems of insiders, financiers, and distressed investors.

Problem Setup

In general, all agents have a version of the following budget constraint:

dnt = nt[µ
n
t dt+ σnt dZt + σ̂nt dẐt], n0 > 0, (43)

where Z and Ẑ are two independent standard Brownian motions of dimensions D andM (Z is the vector of
aggregate shocks), and

µnt = rt −
ct
nt

+ θtπt + λt(at − rt1)

σnt = θt + λtbt

σ̂nt = λtb̂t.

By appropriate definition of the variables at ∈ RM , bt ∈ RM × RD, and b̂t ∈ RM × RM , equation (43)
can replicate insiders’, financiers’, or distressed investors’ net worth evolutions. For example, diversification
∆A,∆B is accounted for by putting b̂F,t = diag(b̂F,A,t, b̂F,B,t) with b̂F,z,t = (1 − ∆z)σ̂z and considering
Ẑt = (WA,∆

i,t ,WB,∆
i,t )′, withW z,∆

i,t := (1−∆z)
−1∆−1

z

∫ i+∆z

i
W z
j,tdj a Brownian motion by Lemma 2.2.

In addition, we have the following portfolio constraints:

λt ∈ Λ and θt ∈ Θ (44)

for Λ := {λ : λ ≥ 0, λ1 ≤ λ̄} ⊂ RM and either Θ := RD or Θ := {0}D. For insiders and distressed investors,
λ̄ = +∞. For insiders, in the case they cannot trade any aggregate risks, Θ = {0}D. When they can trade
aggregate risks, Θ = RD. This is always the case for financiers and distressed investors.

We are now in position to state agents’ optimization problems, which are all sub-cases of the following.
For U the logarithmic utility function defined in (1), agents solve

U∗t := sup
n,c,λ,θ

Ut (45)

subject to (43), (44), and nt ≥ 0.
The heuristic derivation of optimal controls is as follows. The necessary technical arguments are presented

in Cvitanić and Karatzas (1992). For any convex set A, define the penalty function

ϕA(x) :=





0, if x ∈ A;

−∞, if x /∈ A.
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Augment the wealth dynamics by ϕΛ and ϕΘ to account for the portfolio constraints (44):

dnt = nt[µ
n
t dt+ ϕΛ(λt)dt+ ϕΘ(θt)dt+ σnt dZt + σ̂nt dẐt].

Introduce an Itô process (which will represent the state-price density or Lagrange multiplier process):

dξt = −ξt
[
αtdt+ βt · dZt + β̂t · dẐt

]
. (46)

Itô’s formula implies

ξτnτ = ξ0n0 +

∫ τ

0

ξtnt

(
− αt + µnt + ϕΛ(λt) + ϕΘ(θt)− σnt βt − σ̂nt β̂t

)
dt

+

∫ τ

0

ξtnt

(
− β′t + σnt

)
dZt +

∫ τ

0

ξtnt

(
− β̂′t + σ̂nt

)
dẐt. (47)

Now, we want to take expectations to eliminate the stochastic integrals, and then to take τ → +∞. Doing
this requires a series of technical arguments.

First, τ may be a stopping time rather than a deterministic time. In particular, the equilibrium of the
model will imply, in principal, that −rt and πt can be arbitrarily large, so I localize the integral with τ ≡
τL := T ∧ τ−rL ∧ τ−αL ∧ τπL ∧ τβL ∧ τ β̂L , where T > 0 is deterministic and for any process x we have defined
τxL := inf{t ≥ 0 : xt ≥ L} for some L > 0. However, equilibrium will have the property that limL→∞ τL = T

almost-surely, because the probability of large −rt or πt vanishes (this can be verified ex-post using the
equilibrium state dynamics from Proposition 3.1). Consequently, we may take expectations, followed by the
limit L→ +∞, to obtain

E[ξTnT ] = ξ0n0 + E
∫ T

0

ξtnt

(
− αt + µnt + ϕΛ(λt) + ϕΘ(θt)− σnt βt − σ̂nt β̂t

)
dt,

where τ is replaced with T inside the expectations by the dominated convergence theorem, which holds as
long as λ ∈ Λ and θ ∈ Θ. Indeed, the coefficients of ξ and n are uniformly bounded up to time T .

Becausemaximizationwill imply a transversality condition on discountedwealth, assume limT→∞ ξTnT =

0 almost-surely. The transversality condition will have to be verified in equilibrium. If it holds, then we
may apply appropriate convergence theorems to take T → +∞. Indeed, we may split ξtnt(−αt + µnt +

ϕΛ(λt) + ϕΘ(θt) − σnt βt − σ̂nt β̂t) into positive and negative parts and apply the monotone convergence
theorem separately to the integrals of these parts. Furthermore, by ignoring the negative part, we have
E[ξTnT ] ≤ ξ0n0 + E

∫∞
0
ξtnt(−αt + µnt + ϕΛ(λt) + ϕΘ(θt) − σnt βt − σ̂nt β̂t)

+dt. This upper bound implies
we may apply the dominated convergence theorem to take limT→∞ E[ξTnT ] = 0. The result of taking these
limits is

0 = ξ0n0 + E
∫ ∞

0

ξtnt

(
− αt + µnt + ϕΛ(λt) + ϕΘ(θt)− σnt · βt − σ̂nt · β̂t

)
dt. (48)

The “static” budget constraint (48) is an implication of the dynamic wealth constraint (47), which means that
the result of the unconstrained problem

sup
n≥0,c,λ,θ

E
[ ∫ ∞

0

(
ρe−ρt log ct + ξtnt

(
− αt + µnt + ϕΛ(λt) + ϕΘ(θt)− σnt βt − σ̂nt β̂t

))
dt+ ξ0n0

]
(49)

is technically an upper bound on themaximized constrained objective (64). The point of Cvitanić and Karatzas
(1992), Theorem 10.1, is to show that by minimizing over the process ξ in (46), one can obtain the value of
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the maximized constrained objective, i.e.,

U∗0 = inf
ξ

sup
n≥0,c,λ,θ

E
[ ∫ ∞

0

(
e−ρt log ct + ξtnt

(
−αt +µnt +ϕΛ(λt) +ϕΘ(θt)− σnt βt− σ̂nt β̂t

))
dt+ ξ0n0

]
. (50)

Furthermore, the order of minimization and maximization may be exchanged. With this equivalence, optimal
policies can be found from the unconstrained problem (49) for some process ξ that is suitably minimal.

Solving the Problem

First, we solve the maximization problem. The first-order condition with respect to c is typical:

ρe−ρt
1

ct
= ξt. (51)

To solve for optimal portfolios, introduce the “slackness” processes

ν := bβ + b̂β̂ + r1− a (52)

ω := β − π. (53)

Maximizing over (λ, θ) are thus equivalent to maximizing ϕΛ(λ)−λν and ϕΘ(θ)− θω. With that in mind, for
any convex set A define the convex support function ϕ̃A(x) := supy ϕA(y) − yx = supy∈A(−yx). Defining
ν̄ := min(ν), these conjugate functions are given by (regardless of whether Θ = RD or Θ = {0}D)

ϕ̃Λ(ν) = λ̄max(0,−ν̄) (54)

ϕ̃Θ(ω) = 0. (55)

Note that, when Θ = RD, it must be the case that ωt ≡ 0. Finally, substituting (51), (54), and (55) back into
the objective (49), we have

sup
n≥0

E
[ ∫ ∞

0

(
ρe−ρt[−1 + log ρ− ρt− log ξt] + ξtnt[−αt + rt + λ̄max(0,−ν̄t)]

)
dt+ ξ0n0

]
.

Assuming nt > 0 for all t (which can be verified ex-post by the optimal wealth dynamics), maximizing over n
implies that

−αt + rt + max(0,−λ̄ν̄t) = 0. (56)

Next, minimizing over ξ in (50) amounts to minimizing over (ν, ω) and the initial value ξ0. This is because
the coefficients of ξ depend on market prices and the process (ν, ω), as seen in the necessary conditions (52),
(53), and (56). To emphasize this dependence, write ξν,ω, αν,ω, βν,ω, and β̂ν,ω for the Lagrange multiplier
process and its coefficient processes. In particular, note that

ξν,ωt = ξ0 exp
{
−
∫ t

0

(
αν,ωs +

1

2
‖βν,ωs ‖2 +

1

2
‖β̂ν,ωs ‖2

)
ds−

∫ t

0

βν,ωs · dZs −
∫ t

0

β̂ν,ωs · dẐs
}

(57)

αν,ωt = rt + λ̄max(0,−ν̄t) (58)

βν,ωt = ωt + πt (59)

β̂ν,ωt = b̂−1
t [at − rt1− bt(ωt + πt) + νt] (60)

44



Diversification and Boom-Bust Cycles Paymon Khorrami

We are led to solve the dual problem

inf
ν,ω,ξ0

−E
[ ∫ ∞

0

ρe−ρt log ξν,ωt dt− ξ0n0

]
, (61)

subject to (57), (58), (59), (60), and additionally ωt = 0 if we set Θ = RD.
Substituting ξν,ω into the objective (61), we immediately solve for the initial condition and find that

ξ0 =
1

n0
. (62)

Then, assuming we can perform appropriate localizations on the stochastic integrals in (57) as before, the
processes (ν, ω) are determined from solving

inf
ν,ω

E
[ ∫ ∞

0

ρe−ρt
∫ t

0

(
rs + λ̄max(0,−ν̄s) +

1

2
‖ωs + πs‖2 +

1

2
‖b̂−1
s (as − rs1− bs(ωs + πs) + νs)‖2

)
dsdt

]
.

Crucially, notice that the minimization can be taken pointwise, i.e.,

ωt = arg min
x∈RD

{1

2
‖x+ πt‖2 +

1

2
‖b̂−1
t (at − rt1− bt(x+ πt) + νt)‖2

}

and
νt = arg min

x∈RM

{
λ̄max(0,−min(x)) +

1

2
‖b̂−1
t (at − rt1− bt(ωt + πt) + x)‖2

}
.

These are convex problems and have unique solutions. For reference, these are the same as equation (11.4)
in Cvitanić and Karatzas (1992).

Recall that ωt = 0 if Θ = RD. If Θ = {0}D instead, then by inspection we see that ωt = −πt is the optimal
choice.

Now we solve for ν. In all of the applications in the paper, b̂ is a diagonal matrix with dimensionM = 2.
To solve this problem, I specialize to this case, which simplifies the calculations. Now

‖b̂−1(a− r1− b(ω + π) + ν)‖2 =

2∑

i=1

( [a]i − r − [b(ω + π)]i + [ν]i

[b̂]ii

)2

,

where [x]i and [y]ij represent the ith element of the vector x and (i, j)th element of the matrix y. Define
π̂i := [b̂]−2

ii ([a]i − r − [b(ω + π)]i). Minimizing with respect to ν requires a case-by-case analysis, similar to
example 14.9 in Cvitanić and Karatzas (1992):

• π̂1 ≤ 0, π̂2 ≤ 0.

Optimal choice: [ν]1 = −[b̂]211π̂1 and [ν]2 = −[b̂]222π̂2.

Rationale: If either π̂i ≤ 0, the optimal choice for [ν]i can be made independent of [ν]−i and that choice
is [ν]i = −[b̂]2iiπ̂i.

• π̂1 > 0, π̂2 ≤ 0.

Optimal choice: [ν]1 = −[b̂]211(π̂1 − λ̄)+ and [ν]2 = −[b̂]222π̂2.

Rationale: [ν]2 can be chosen according to the previous case.

If π̂1 > λ̄, then the choice of [ν]1 = −[b̂]211(π̂1 − λ̄) = ν̄ < 0 minimizes −λ̄ν̄ + 1
2 [b̂]−2

11 ([b̂]211π̂1 + ν̄)2.

If π̂1 ≤ λ̄, then it must be that ν̄ ≥ 0 in which case [ν]1 = 0 minimizes 1
2 [b̂]−2

11 ([b̂]211π̂1 + [ν]1)2.
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• π̂1 ≤ 0, π̂2 > 0.

Optimal choice: [ν]1 = −[b̂]211π̂1 and [ν]2 = −[b̂]222(π̂2 − λ̄)+.

Rationale: This case is symmetrical to the previous one.

• π̂1 > 0, π̂2 > 0 and π̂1 + π̂2 ≤ λ̄.
Optimal choice: [ν]1 = 0 and [ν]2 = 0.

Rationale: Choosing either (or both) [ν]1, [ν]2 < 0 is not feasible because first-order optimality cannot
be satisfied. Moreover, choosing [ν]1, [ν]2 > 0 is not optimal, leaving the zero solution.

• π̂1 > 0, π̂2 > 0 and π̂1 + π̂2 > λ̄.

Here, it must be the case that ν ≤ 0 with at least one of [ν]1, [ν]2 strictly negative. Consider the
three sub-cases [ν]1 < [ν]2 ≤ 0, [ν]2 < [ν]1 ≤ 0, and [ν]1 = [ν]2 < 0. In the first case, the optimal
choices are [ν]1 = [b̂]211[λ̄ − π̂1] and [ν]2 = −[b̂]222π̂2, and these two must be ordered as anticipated.
The second case is symmetrical. The third case with [ν]1 = [ν]2 = ν̄ has the optimality condition
ν̄ = ([b̂]−2

11 + [b̂]−2
22 )−1[λ̄− π̂1 − π̂2]. Thus, we have the three corresponding sub-cases.

* π̂1 − [b̂]−2
11 [b̂]222π̂2 ≥ λ̄.

Optimal choice: [ν]1 = [b̂]211[λ̄− π̂1] and [ν]2 = −[b̂]222π̂2.

* π̂2 − [b̂]−2
22 [b̂]211π̂1 ≥ λ̄.

Optimal choice: [ν]1 = −[b̂]211π̂1 and [ν]2 = [b̂]222[λ̄− π̂2].

* λ̄ > max
{
π̂1 − [b̂]−2

11 [b̂]222π̂2, π̂2 − [b̂]−2
22 [b̂]211π̂1

}
.

Optimal choice: [ν]1 = [ν]2 = ([b̂]−2
11 + [b̂]−2

22 )−1[λ̄− π̂1 − π̂2].

Consumption and Portfolios

Now, we use the solution of the dual problem to determine optimal policies. First, substitute the optimality
conditions (52), (53), (54), (55), and (56) into the time-t version of the static budget constraint (48), which
shows that optimal wealth is given by

ξν,ωt nt = Et
[ ∫ ∞

0

ξν,ωt+sct+sds
]
.

Using (51), we obtain the familiar log utility consumption rule ct = ρnt. Second, substitute these optimality
conditions, and (62), into the dynamic budget constraint (47) to obtain

0 =

∫ T

0

ξtnt(−(βν,ωt )′ + σnt )dZt +

∫ T

0

ξtnt(−(β̂ν,ωt )′ + σ̂nt )dẐt, i.e., (σnt )′ = βν,ωt and (σ̂nt )′ = β̂ν,ωt .

Thus, using our explicit solution for ν in theM = 2 case with b̂ a diagonal matrix, the optimal λ is determined
as

λt = b̂−1
t β̂ν,ωt = b̂−2

t (at − rt1− bt(ωt + πt)− ζt)+,

where ζt := −max(0,−ν̄t). This is the generalization of equations (25) and (23), which are obtained using
ωt = 0 (since financiers and distressed investors can access aggregate Arrow markets without constraints)
and substituting appropriate a, b, b̂ from the model. One can verify that ζt > 0 only when b̂−2

t (at − rt1 −
bt(ωt+πt))

+ ·1 ≥ λ̄. Given our formula for λt and this observation, this verifies the complementary slackness
formula (24).
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A.2 General Consumption-Portfolio Problem for Recursive Utility Agents

In some extensions, I will want to consider more general preferences than log, which requires a dynamic
programming method, unlike Appendix A.1. Relatedly, to analyze mobility decisions under Assumption 2, it
is important to have agents’ dynamic programming equations.

Suppose agents’ have recursive Duffie and Epstein (1992) utility recursions, given by

Ut := Et
[ ∫ ∞

t

ϕ(cs,Us)ds
]
,

where ϕ(c,U) :=
ρ(1− γ)U

1− ς
(
c1−ς [(1− γ)U ]−

1−ς
1−γ − 1

)
. (63)

In (63), ρ > 0 represents the subjective discount rate, γ > 0 represents the coefficient of relative risk aversion
(RRA), and ς−1 > 0 represents the elasticity of intertemporal substitution (EIS). Setting ς = γ, these pref-
erences reduce to von Neumann-Morgenstern preferences. Setting ς = 1, the utility aggregator function ς
becomes logarithmic over the consumption bundle.41 Then, as in Appendix A.1 all agents’ portfolio problems
can be written as

max
n,c,θ,λ

Ut (64)

subject to (43), nt ≥ 0, λt ∈ Λ, and θt ∈ Θ for closed, convex sets Λ ⊂ RM and Θ ⊂ RD. To simplify
exposition, I assume Λ = {λ : λ ≥ 0, λ1 ≤ λ̄} as in (44) and Θ = (θ1, θ̄1) × · · · × (θD, θ̄D) for θ :=

(θ1, . . . , θD) ∈ RD− ∪ {−∞}D and θ̄ := (θ̄1, . . . , θ̄D) ∈ RD+ ∪ {−∞}D. This assumption on Θ generalizes (44).
All agents except financiers have λ̄ = +∞. Whenever agents can freely trade aggregate risk in Arrow markets
(e.g., both financiers and distressed investors can always do this), we have θ = {−∞}D and θ̄ = {+∞}D.
When agents cannot trade at all in these markets (e.g., in the model of Section 3, insiders cannot trade), we
have θ = θ̄ = {0}D.

To solve (64), we first use its scaling properties to simplify the problem. Given the homotheticity of
preferences combined with the linearity of wealth evolution, value functions take the form

Ut =
(ntξt)

1−γ

1− γ ,

where
dξt = ξt

[
µξtdt+ σξt dZt

]
. (65)

The process ξt represents the investment opportunity set of the agent and responds only to the aggregate
shock Z, due to the free mobility condition, Assumption 2.42

Then, the HJB equation of such an agent is given by

0 = max
c,λ∈Λ,θ∈Θ

{
ϕ(c,U) + nµn∂nU +

1

2
n2[‖σn‖2 + ‖σ̂n‖2]∂nnU + ξµξ∂ξU +

1

2
ξ2‖σξ‖2∂ξξU + nξσn(σξ)′∂nξU

}
.

41By taking the limit ς → 1 with L’Hôpital’s rule, the aggregator becomes

ϕ(c,U) = ρ(1− γ)U
[

log(c)− 1

1− γ log[(1− γ)U ]
]
.

42Verifying this equilibrium property is straightforward. Indeed, if ξt were affected by idiosyncratic shocks W , then
different locations would have different levels of ξt. Free mobility implies agents would immediately migrate to locations
with higher levels of ξt and attain a higher value function, which is a contradiction.
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Substituting the form of U and its derivatives, then dividing the entire HJB equation by the positive quantity
(nξ)1−γ , we obtain

0 = max
c,λ∈Λ,θ∈Θ

{
ρ

( c
nξ )1−ς − 1

1− ς + µn − γ

2
[‖σn‖2 + ‖σ̂n‖2] + µξ − γ

2
‖σξ‖2 + (1− γ)σn(σξ)′

}
,

First-order optimality for this agent implies for consumption:

ct = ρ1/ςξ
1−1/ς
t nt (66)

Optimal portfolios must satisfy the following complementary slackness conditions:

0 = min
{
λ′, −a+ (r + ζ)1 + γb(σn)′ + (γ − 1)b(σξ)′ + γb̂(σ̂n)′

}
(67)

0 = min
{
ζ, λ̄− λ1

}
(68)

0 = max
{
θ′ − θ̄′, min

{
θ′ − θ′, −π + γ(σn)′ + (γ − 1)(σξ)′

}}
. (69)

Plugging these choices back into the HJB equation, we obtain the following:

0 = ρ
ς(ξ/ρ)

ς−1
ς − 1

1− ς + r + λ̄ζ + θ
[
π − γ(σn)′ − (γ − 1)(σξ)′

]
+
γ

2

[
‖σn‖2 + ‖σ̂n‖2

]
+ µξ − γ

2
‖σξ‖2, (70)

where θ and ζ are determined using conditions (67)-(69). Note that ρ ς(ξ/ρ)
1−1/ς−ρ

1−ς → ρ(log(ρ/ξ) − 1) as
ς → 1. Because ξ will be a function of aggregate state variables in a Markovian equilibrium, µξ and σξ may
be determined in terms of the derivatives of ξ by Itô’s formula. Thus, (70) is a differential equation for ξ. In
principle, one could develop an infinite-horizon extension of the “verification”-type arguments of Schroder
and Skiadas (2003), which nests the choice problem above aside from the finite horizon. This would show
that solving equation (70) is sufficient for optimality of the choices outlined above.

Appendix A.1 proves the convex duality approach yields exactly these optimality conditions for log utility.
There is no need to solve (70) in this case.

A.3 Derivation of Equilibrium

Proof of Lemma 2.3. I prove a more general version of Lemma 2.3, which applies to the model of Section
3 and allows for general Epstein-Zin preferences with common risk aversion γ and common intertemporal
substitution elasticity ς−1 as in Appendix A.2. To accommodate the presence of distressed investors, an
additional assumption is required, that nDi,t/(kAi,t + kBi,t) is independent of i. Lemma 2.3 can be deduced
by setting γ = ς = 1, ρF = ρ, δ = 0, λ̄ = +∞, and either χ = +∞ (so that xt → 1 as t → ∞) or χ = 0 (so
that financiers and distressed investors are equivalent, such that x is irrelevant in equilibrium).

First, the capital return distribution from (5)-(6) is location invariant (“LI” for short in this proof). This im-
plies that all insiders’ consumption and portfolio choices are LI, see Appendix A.1 and A.2 (for non-logarithmic
utility). Consequently, σ̂nA and σ̂nB must be LI. Since we know σ̂nA = (kA/nA)σ̂A and σ̂nB = (kB/nB)σ̂B are
LI, we have kA/nA and kB/nB are LI. Under the stated assumption that nA/(nA + nB) is LI, it must be that
kA/kB is LI.

Second, if insiders cannot trade aggregate risk, σnA = (σ̂nA/σ̂A)σA and σnB = (σ̂nB/σ̂B)σB are both LI by
extension. If insiders can trade aggregate risk, σnA and σnB must be LI, as the centralized Arrow market has
an LI aggregate risk price π. Similarly, σnF and σnD must be LI, as financiers and distressed investors make
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unconstrained trades in the centralized Arrow market.
Then, all agents’ value processes ξA,t, ξB,t, ξF,t, and ξD,t (defined in Appendix A.2) are automatically LI

under free mobility, as explained in footnote 42. In particular, (µξz, σ
ξ
z) are LI for z ∈ {A,B, F,D}. Using the

fact that (σn, µξ, σξ) is LI in the general HJB equation (70) shows that λ̄ζ + γ
2 ‖σ̂n‖2 must be LI.

Now, I will show that this implies σ̂nF and σ̂nD are LI. Indeed, distressed investors face no leverage con-
straint. Also, using the notation of Appendix A.1 and A.2, b̂Fi,t = b̂Di,t = diag((1 − ∆A)σ̂A, (1 − ∆B)σ̂B) is
independent of i for both financiers and distressed investors. Thus, the condition that λ̄ζ + γ

2 ‖σ̂n‖2 is LI
translates into

λ̄ζi,t+
γ

2
[(λAF,i,t(1−∆A)σ̂A)2 + (λBF,i,t(1−∆B)σ̂B)2] is LI (71)

and
γ

2
[(λAD,i,t(1−∆A)σ̂A)2 + (λBD,i,t(1−∆B)σ̂B)2] is LI. (72)

We also have equation (68) for financiers, which is

0 = min{ζi,t, λ̄− λAF,i,t − λBF,i,t}. (73)

We finally have the equity market clearing condition, a modification of the condition in Definition 1 to incor-
porate distressed investors, which says

φzk
z
i,t = ∆−1

z

∫ i

i−∆z

[λzF,j,tn
F
j,t + λD,j,tn

D
j,t]dj, z ∈ {A,B}.

Define the LI quantities κz,t := kzi,t/(k
A
i,t +kBi,t) and xtηt := nFi,t/(k

A
i,t +kBi,t) and (1−xt)ηt := nDi,t/(k

A
i,t +kBi,t).

Also using the fact that kAi,t + kBi,t is LI, we may re-write the equity market clearing condition as

φzκz,t = ∆−1
z

∫ i

i−∆z

ηt[xtλ
z
F,j,t + (1− xt)λD,j,t]dj, z ∈ {A,B}. (74)

By differentiating (74) with respect to i and combining with (71), (72), and (73), we have 5 independent
expressions involving LI combinations of (ζi,t, λ

A
F,i,t, λ

B
F,i,t, λ

A
D,i,t, λ

B
D,i,t), implying that each of them are LI.

Next, I will show that spreads are LI. Using the notation of Appendix A.1 and A.2, we have

aFi,t =
(

∆−1
A

∫ i+∆A

i

sAj,tdj, ∆−1
B

∫ i+∆B

i

sBj,tdj
)′

aDi,t =
(

∆−1
A

∫ i+∆A

i

(sAj,t − χ)dj, ∆−1
B

∫ i+∆B

i

(sBj,t − χ)dj
)′
.

Thus, combining equations (67), (68), and (69), using the fact that Θ = R2 is the constraint set for financiers
and distressed investors, we obtain

λzF,i,t =
[∆−1

z

∫ i+∆z

i
szj,tdj − rt − σz · πt − ζi,t]+
γ(1−∆z)2σ̂2

z

and λzD,i,t =
[∆−1

z

∫ i+∆z

i
szj,tdj − rt − σz · πt − χ]+

γ(1−∆z)2σ̂2
z

, z ∈ {A,B}.

Using the result that (ζi,t, λ
A
F,i,t, λ

B
F,i,t, λ

A
D,i,t, λ

B
D,i,t) are LI, we have (sAi,t, s

B
i,t) are LI. This completes the veri-

fication of an LI equilibrium.
Finally, note that it is feasible to have a symmetric equilibrium where all quantities are LI. Indeed, As-

sumption 2 implies that nzi,t can be independent of i for z ∈ {A,B, F,D}. The fact that capital investment is
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frictionless implies that kAi,t, kBi,t can be independent of i. The preceding arguments then imply that all other
equilibrium objects must be LI. Such mobility of net worth is weakly optimal in a symmetric equilibrium, since
it is costless, and similarly for capital since its investment is frictionless.

Proof of Proposition 2.4. This is a special case of Proposition 3.1 with λ̄ = +∞, χ = 0, δ = 0, and ρF = ρ,
as well as unconstrained θA, θB (such that πA = πB = π). Substituting ζ = χ = 0 into equation (28), and
then substituting the result into equation (27), we obtain equation (15). Similarly, χ = 0 and ρF = ρ in
equation (26), we obtain equation (16). By time-differentiating the goods market clearing condition, we
obtain equation (17). The state dynamics of (α, η) are obtained by substituting δ = 0 and ρF = ρ and
πA = πB = π.

Existence/uniqueness follows from uniqueness of optimal choices from Appendix A.1, the explicit solution
(15) for κt, and the explicit solutions for all other equilibrium objects, conditional on (α, η, κ).

Proof of Proposition 2.5. If a steady state exists, it must satisfy µα = µη = 0. Solve this system, conditional on
κ. Denote the unique solution by α∗(κ) and η∗(κ) assuming both are interior to (0, 1). Similarly, equation (15),
which holds for any values of (α, η), gives a function κ∗(α, η). For y ∈ [0, 1] define F (y) := κ∗(α∗(y), η∗(y))−y.

Therefore, to prove a steady state exists, it suffices to prove that F (y) = 0 has a root in [0, 1] call it κ∞.
In that case, an interior steady state is given by α∞ := α∗(κ∞) and η∞ := η∗(κ∞).

I analyze the case σ̂A > 0, σ̂B > 0, φA ∈ (0, 1), φB ∈ (0, 1). The corner cases can be analyzed in a similar
fashion. The function F (y) is given by

F (y) := −y + min{1, max{0, κ̃∗(y)}}, (75)

where

κ̃∗(y) :=
GA −GB +MB(y)

MA(y) +MB(y)

MA(y) := ‖σA‖2 + [
(1− φA)2

α∗(y)(1− η∗(y))
+
φ2
A(1−∆A)2

η∗(y)
]σ̂2
A

MB(y) := ‖σB‖2 + [
(1− φB)2

(1− α∗(y))(1− η∗(y))
+
φ2
B(1−∆B)2

η∗(y)
]σ̂2
B

α∗(y) :=
y(1− φA)σ̂A

y(1− φA)σ̂A + (1− y)(1− φB)σ̂B

η∗(y) :=

√
(yφA(1−∆A)σ̂A)2 + ((1− y)φB(1−∆B)σ̂B)2

√
(yφA(1−∆A)σ̂A)2 + ((1− y)φB(1−∆B)σ̂B)2 + y(1− φA)σ̂A + (1− y)(1− φB)σ̂B

.

By inspection, F (0) = F (1) = 0. Thus, a steady state exists. Furthermore, if GA − GB is sufficiently small,
then it is possible to find y∗+ ∈ (0, 1) such that F (y∗+) > 0 and y∗− ∈ (0, 1) such that F (y∗−) < 0. As F is
continuous, there exists interior y∗ ∈ (0, 1) such that F (y∗) = 0.

Lemma A.1. Consider the steady-state equilibrium of Proposition 2.5, assuming parameters are such that κ∞ ∈
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(0, 1). Let p denote any parameter. Then,

dα∞
dp

=
1

1−Dα,κDκ,α −Dη,κDκ,η

[
(1−Dη,κDκ,η)Cα,p +Dα,κDκ,ηCη,p +Dα,κCκ,p

]
(76)

dη∞
dp

=
1

1−Dα,κDκ,α −Dη,κDκ,η

[
Dη,κDκ,αCα,p + (1−Dα,κDκ,α)Cη,p +Dη,κCκ,p

]
(77)

dκ∞
dp

=
1

1−Dα,κDκ,α −Dη,κDκ,η

[
Dκ,αCα,p +Dκ,ηCη,p + Cκ,p

]
(78)

where Cα,p := ∂α∞
∂p , Cη,p := ∂η∞

∂p , Cκ,p := ∂κ∞
∂p ,

Dα,κ := α∞(1− α∞)κ−1
∞ (1− κ∞)−1

Dη,κ := (1− η∞)η∞π̂
−2
∞
[
κ−1
∞ (π̂2

F→A,∞ − α∞π̂2
∞)− (1− κ∞)−1(π̂2

F→B,∞ − (1− α∞)π̂2
∞)
]

Dκ,α :=
1

MA +MB
(1− η∞)κ−1

∞ (1− κ∞)−1π̂2
∞

Dκ,η :=
1

MA +MB

[
κ−1
∞ (π̂2

F→A,∞ − α∞π̂2
∞)− (1− κ∞)−1(π̂2

F→B,∞ − (1− α∞)π̂2
∞)
]
,

π̂∞ = π̂A,∞ = π̂B,∞ is defined by

π̂∞ :=
√

(κ∞φA(1−∆A)σ̂A)2 + ((1− κ∞)φB(1−∆B)σ̂B)2 + κ∞(1− φA)σ̂A + (1− κ∞)(1− φB)σ̂B

and whereMA,MB are defined by

MA := ‖σA‖2 + [
(1− φA)2

α∞(1− η∞)
+
φ2
A(1−∆A)2

η∞
]σ̂2
A

MB := ‖σB‖2 + [
(1− φB)2

(1− α∞)(1− η∞)
+
φ2
B(1−∆B)2

η∞
]σ̂2
B .

Proof of Lemma A.1. By Proposition 2.5, there exists a steady-state. Assuming parameters are such that κ∞ ∈
(0, 1), we may apply the implicit function theorem to totally differentiate the expressions relating α∞, η∞, κ∞
with respect to p. After some algebra, and using the fact that π̂∞ = π̂A,∞ = π̂B,∞ =

√
π̂2
F→A,∞ + π̂2

F→B,∞,
we obtain the following three-dimensional system:

dα∞
dp

= Cα,p +Dα,κ
dκ∞
dp

dη∞
dp

= Cη,p +Dη,κ
dκ∞
dp

dκ∞
dp

= Cκ,p +Dκ,α
dα∞
dp

+Dκ,η
dη∞
dp

We may solve this system to obtain the desired result.

Assumption 3. Parameters are such that Dα,κDκ,α +Dη,κDκ,η < 1 in Lemma A.1.

Remark 1. Assumption 3 can be satisfied for a variety of parameter choices. Some examples are listed below (one
can verify these parameter constellations satisfy Assumption 3 with simple but tedious algebra):

(i) One sector is completely diversified, i.e., either ∆A = 1 or ∆B = 1 with any arbitrary values for the other
parameters.
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(ii) Symmetric sectors, i.e., set GA = GB , φA = φB , ∆A = ∆B , σ̂A = σ̂B , and ‖σA‖ = ‖σB‖.

(iii) One-sector economy, i.e., GA = −∞ or GB = −∞ (resulting in κ∞ = α∞ equal to 0 or 1).

(iv) Sufficient aggregate volatility, i.e., large enough ‖σA‖ and ‖σB‖ with any arbitrary values for the other
parameters.

Proof of Proposition 2.6. Using the notation of Lemma A.1, we have the partial derivatives (for any parameter
values)

Cα,∆A
= 0

Cη,∆A
= −1− η∞

η∞
(1−∆A)(κ∞φAσ̂A)2π̂−2

∞

Cκ,∆A
=

2κ∞φ2
A(1−∆A)2σ̂2

A

(MA +MB)η∞
.

By imposing symmetric parameters, one obtains α∞ = κ∞ = 1/2. As a result, Dη,κ = Dκ,η = 0 andDα,κ = 1

andDκ,α = 2
M (1−η∞)−1(1−φ)2σ̂2 < 1. Then, use expressions (77)-(78) to verify part (i) of the proposition.

Part (ii) is obtained immediately by noticing κ∞ = 1/2 for any values of ∆ := ∆A = ∆B . Part (iii) is
obtained immediately by noting that η∞ = 1 under φA = φB = 1.

Proof of Proposition 2.7. Conjecture (and verify) that dαt = dηt = 0 in equilibrium. If so, then indirect utility
is given by U = log(n) +H, where n is the agent’s net worth and H is an occupation-specific constant. Then,
agents’ HJB equations, conditional on an occupation, are given by

ρH = ρ log(ρ) + r − ρ+
1

2
‖π‖2 +

1

2
‖π̂‖2,

where π̂ is the (shadow) vector of idiosyncratic risk prices earned by the agent. Free occupational choice
implies HF = HA = HB . Consequently, equilibrium requires π̂2

F→A + π̂2
F→B = π̂2

A = π̂2
B . This system of

equations exactly characterizes dαt = dηt = 0. Through the same line of arguments, it is easily verified that
there cannot be any equilibrium with dαt 6= 0 or dηt 6= 0.

Proof of Proposition 3.1. In the model with distressed investors, market clearing conditions are modified from
Definition 1 to the following:

• Goods:
∫ 1

0

[GAk
A
i,t +GBk

B
i,t]di =

∫ 1

0

[cAi,t + cBi,t + cFi,t + cDi,t]di+
1

dt

∫ 1

0

[dIAi,t + dIBi,t]di

+ χ

∫ 1

0

nDi,t(λ
A
D,i,t + λBD,i,t)di.

• Funding:

∫ i

i−∆z

∆−1
z [λzF,j,tn

F
i,t + λzD,j,tn

D
i,t]dj = φzk

z
i,t, ∀i ∈ [0, 1], z ∈ {A,B}.

• Aggregate risk: ∫ 1

0

[θAi,tn
A
i,t + θBi,tn

B
i,t + θFi,tn

F
i,t + θDi,tn

D
i,t]di = 0.
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• Bond: ∫ 1

0

[nAi,t + nBi,t + nFi,t + nDi,t]di =

∫ 1

0

[kAi,t + kBi,t]di.

In the proof below, I restrict attention to symmetric equilibria, in which all equilibrium objects are in-
dependent of i. To simplify notation, I drop all i subscripts when the meaning is clear. Within the class of
symmetric equilibria, I solve for the equilibrium objects in two steps. In the first step, I assume (κt, ζt) are
known and use them to solve for all other objects. In the second step, I solve for (κt, ζt) via a system of
nonlinear equations. In this proof, I treat the case δ = 0. The general case with δ > 0 is accounted for by
Lemma A.2 below.

Step 1. Solving for equilibrium given (κ, ζ).

Using the optimal consumption decisions from Appendix A.1, we can write the goods market clearing
condition as (26). Thus, the aggregate investment rate ι is solved, given κ and λAD, λBD.

Next, apply optimal portfolio choice as special cases of the general formulas derived in Appendix A.1.
If insiders can hedge their exposures to aggregate risk dZt, i.e., if θA and θB are unconstrained, then their
optimal capital portfolio choice is given by the mean-variance portfolio

κ

(1− η)α
=

[GA − r − φAsA − (1− φA)σA · π]+

(1− φA)2σ̂2
A

and
1− κ

(1− η)(1− α)
=

[GB − r − φBsB − (1− φB)σB · π]+

(1− φB)2σ̂2
B

.

(79)
If insiders cannot hedge, i.e., if θA ≡ θB ≡ 0 are constrained, then their optimal capital portfolio choice is
given by

κ

(1− η)α
=

[GA − r − φAsA]+

(1− φA)2(σ̂2
A + ‖σA‖2)

and
1− κ

(1− η)(1− α)
=

[GB − r − φBsB ]+

(1− φB)2(σ̂2
B + ‖σB‖2)

. (80)

In the hedging case, define πA := π and πB := π. In the non-hedging case, define πA := π̂AσA/σ̂A and
πB := π̂BσB/σ̂B where π̂A = κ(1− φA)σ̂A/(1− η)α and π̂B = (1− κ)(1− φB)σ̂B/(1− η)(1−α) are defined
by (13). With this notation, (79) and (80) are both equivalent to the following more general expressions,
which also account for the shorting constraints:

(1− φA)[σ̂Aπ̂A + σA · πA] ≥ GA − r − φAsA with equality when κ > 0 (81)

(1− φB)[σ̂Bπ̂B + σB · πB ] ≥ GB − r − φBsB with equality when κ < 1. (82)

By taking the difference between (81) and (82), and noting that at least one of these is always an equality,
we obtain

0 = min(1− κ, max(−κ,H)), (83)

where H is defined in (27). Equation (83) can be re-written as (27). The interest rate r can be determined
by multiplying (81) and (82) by κ and 1− κ, respectively, and summing the conditions.

Exposures to aggregate risk dZt are determined as follows. Due to log utility, πA, πB represent insiders’
optimal exposures regardless of whether or not insiders can trade aggregate risk. Thus, insiders set θA + (1−
φA)(1−η)−1α−1κσA = πA and θB +(1−φB)(1−η)−1(1−α)−1(1−κ)σB = πB . For financiers and distressed
investors, who can always trade aggregate risk without constraints, their optimal exposure is equal to the
aggregate risk price vector π. Thus, θF + λAFσA + λBF σB = θD + λADσA + λBDσB = π.

In equilibrium, the aggregate risk price vector is determined by applying aggregate risk market clearing,
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which can be restated as

η[xπ + (1− x)π] + (1− η)[απA + (1− α)πB ] = κσA + (1− κ)σB .

If insiders can trade aggregate risk without constraints (πA = πB = π), then we solve for π = κσA+(1−κ)σB .
If insiders cannot trade aggregate risk (πA = π̂AσA/σ̂A and πB = π̂BσB/σ̂B), then we use the definitions of
π̂A, π̂B in (13) to solve for π = η−1[κφAσA + (1− κ)φBσB ].

Next, we determine spreads by using funding market clearing, which aggregates to

xλAF + (1− x)λAD =
κφA
η

and xλBF + (1− x)λBD =
(1− κ)φB

η
.

Substituting the optimal positions (23) and (25), we have

x(sA − σA · π − ζ)+ + (1− x)(sA − σA · π − χ)+ =
κφA(1−∆A)2σ̂2

A

η
:= x(1−∆A)σ̂Aπ̂F→A,

and symmetrically for sector B. Note that sA − σA · π > min(ζ, χ) is required for this equation to hold. The
remaining exhaustive cases are as follows. If sA − σA · π ≥ max(ζ, χ), then

sA − σA · π = xζ + (1− x)χ+ x(1−∆A)σ̂Aπ̂F→A.

Thus, this case obtains when ζ − χ − x
1−x (1 −∆A)σ̂Aπ̂F→A ≤ 0 and χ − ζ − (1 −∆A)σ̂Aπ̂F→A ≤ 0, which

implies (28) holds. If χ ≥ sA − σA · π > ζ, then

sA − σA · π = ζ + (1−∆A)σ̂Aπ̂F→A.

Thus, this case obtains when χ− ζ− (1−∆A)σ̂Aπ̂F→A ≥ 0, which implies (28) holds. If ζ ≥ sA−σA ·π > χ,
then

sA − σA · π = χ+
x

1− x (1−∆A)σ̂Aπ̂F→A.

Thus, this case obtains when ζ − χ − x
1−x (1 − ∆A)σ̂Aπ̂F→A ≥ 0, which implies (28) holds. An identical

analysis holds for sector B. Combining these results, equation (28) holds in all cases.
Finally, we determine state variable dynamics. Define the following expressions:

ΠF := θF · π + λAF sA + λBF sB

ΠD := θD · π + λAD(sA − χ) + λBD(sB − χ)

ΠA := θA · π + (1− η)−1α−1κ(GA − r − φAsA)

ΠB := θB · π + (1− η)−1(1− α)−1(1− κ)(GB − r − φBsB).

Note that KA/NA = κ/(1 − η)α and KB/NB = (1 − κ)/(1 − η)(1 − α) by bond market clearing. Thus, ag-
gregating agents’ net worth evolutions, which eliminates any contributions from {dWi,t}i∈[0,1] due to Lemma
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2.2, and substituting these expressions for ΠF ,ΠD,ΠA,ΠB , we obtain

dNF
NF

=
[
r − ρF + ΠF

]
dt+

[
θF + λAFσA + λBF σB

]
dZt (84)

dND
ND

=
[
r − ρ+ ΠD

]
dt+

[
θD + λADσA + λBDσB

]
dZt (85)

dNA
NA

=
[
r − ρ+ ΠA

]
dt+

[
θA + (1− η)−1α−1κσA

]
dZt (86)

dNB
NB

=
[
r − ρ+ ΠB

]
dt+

[
θB + (1− η)−1(1− α)−1(1− κ)σB

]
dZt. (87)

Using expressions (81)-(82), we have shown that ΠF ,ΠD,ΠA,ΠB are equivalent to the expressions in (29),
(30), and (31) of Proposition 3.1. Furthermore, using the net worth evolutions in (84)-(86) and substituting
the optimal aggregate risk exposures derived above, then applying Itô’s formula to the definitions of (α, η, x),
we obtain the state variable evolutions in (32)-(37) of Proposition 3.1.

Step 2. Solving for (κ, ζ).

Substituting π, (23), (28) into (24), we obtain a single equation in (κ, ζ). Substituting π, πA, πB , (28)
into (27), we obtain a second equation in (κ, ζ). A solution exists, as demonstrated by Proposition A.3.

Proof of Proposition 3.2. First, note that the stated assumptions imply κ = α = 1/2 at all times. Next, ∆ = ∆τ

large enough implies the leverage constraint (22) binds in the future. Indeed, ∆ large enough guarantees

χ >
1

2
λ̄(1−∆)2σ̂2 (88)

holds. Using the thresholds computed in Proposition 3.4, as well as part (i) of Proposition 3.5, inequality (88)
implies that λAD +λBD > 0 if and only if λAF +λBF = λ̄. Hence, computing the equilibrium drift of log(xη) away
from the constraint, using the fact that the drift computed using λAD = λBD = 0, we have

µlog(xη) = (1− η)[x(ρ− ρF ) +
x

2
(
φ(1−∆)σ̂

xη
)2 − (

(1− φ)σ̂

1− η )2] +
δ

η
(νF + νD − η)

+ (1− x)[ρ− ρF +
1

2
(
φ(1−∆)σ̂

xη
)2] +

δ

x
((νF + νD)−1νF − x)

= (1− xη)(ρ− ρF ) +
1

2
(1− xη)(

φ(1−∆)σ̂

xη
)2 − (1− φ)2σ̂2

1− η +
δ

xη
[η

νF
νF + νD

+ x(νF + νD)− 2xη].

Note that

sup
x,η : xη<φ/λ̄

[η
νF

νF + νD
+ x(νF + νD)] = max

x,η : xη=φ/λ̄
[η

νF
νF + νD

+ x(νF + νD)] =
2(νFφ/λ̄)1/2

νF + νD
.

Also using the facts that x ≤ 1, xη > φ/λ̄, and χ > 1
2
φ(1−∆)2σ̂2

xη away from the constraint, we have

µlog(xη) < (1− xη)(λ̄χ+ ρ− ρF )− (1− φ)2σ̂2

1− xη +
2δ

νF + νD
[(νF λ̄/φ)1/2 − νF − νD]

<
1

1− xη
[
(1− xη)2(λ̄χ+ ρ− ρF )− (1− φ)2σ̂2 +

2δ(1− xη)

νF + νD
[(νF λ̄/φ)1/2 − νF − νD]

]

Maximizing over xη ≥ φ/λ̄ and using (1−φ/λ̄)2(λ̄χ+ρ−ρF ) + (1−φ)2σ̂2 < 0, the corner solution xη = φ/λ̄
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must hold, so

µlog(xη) <
1

1− φ/λ̄
[
(1− φ/λ̄)2(λ̄χ+ ρ− ρF )− (1− φ)2σ̂2 +

2δ(1− φ/λ̄)

νF + νD
[(νF λ̄/φ)1/2 − νF − νD]

]
< 0

by (39). This shows that if ∆τ is made large enough, then log(xτ+tητ+t) must have a negative drift at least
until the leverage constraint (22) is hit, i.e., xτ+T ητ+T = φ/λ̄. Suppose the constraint is hit at time τ + T .

Using Proposition A.3, we may compute

ζτ+T = χ− 1

2
λ̄(1−∆)2σ̂2 > 0

by (88). We may then repeat calculations similar to those above, substituting xη = φ/λ̄, to find that µlog(xη)
τ+T <

0 under condition (39) as well. Equity market clearing says η(1 − x)λAD = η(1 − x)λBD = 1
2φ − ηx 1

2 λ̄. Using
(28), we have that spreads are equal to χ so that λAD,τ+T = λBD,τ+T = 0. Thus, dλAD,τ+T > 0 and dλBD,τ+T > 0,
which implies distress costs

χητ+T+ε(1− xτ+T+ε)(λ
A
D,τ+T+ε + λBD,τ+T+ε) > 0

for some ε small enough. This proves that (38) holds.

Proof of Proposition 3.3. First, note that Y = G− χη(1− x)(λAD + λBD) so that

Vart[dYt] = χ2
(
η2
t (1− xt)2Vart[d(λAD,t + λBD,t)] + (λAD,t + λBD,t)

2Vart[d(ηt(1− xt))]
)
.

With ∆A,∆B chosen high enough, the conditions of Proposition 3.5 hold so that λAD + λBD > 0 if and only if
λAF +λBF = λ̄. Therefore, Vart[dYt] = 0 when the leverage constraint is slack and Vart[dYt] > 0 otherwise.

Proof of Proposition 3.4. Let λ̄ = +∞ so that ζ = 0 in Proposition 3.1. Specializing (28) to this case, we have
Then, substituting sA and π into λAD in (25), we find λAD > 0 if and only if (1−∆A)σ̂Aπ̂F→A > χ. Substituting
π̂F→A := κφA(1 − ∆A)σ̂A/(xη), this implies ω∗A := χ−1κφA(1 − ∆A)2σ̂2

A > xη. An identical analysis holds
for sector B.

Proof of Proposition 3.5. Suppose λAF + λBF = λ̄, but λAD + λBD = 0. The latter, plus funding market clearing,
implies λAF = κφA/xη and λBF = (1 − κ)φB/xη. Summing these results yields κφA + (1 − κ)φB = λ̄xη. If
φA = φB , then this implies xη = λ̄−1, which contradicts the diffusive nature of xtηt. This proves part (i).

Now, suppose λAF + λBF < λ̄ so that ζ = 0. Then, using the stated assumption of part (ii) and equation
(23), we have χ ≥ λ̄(1 −∆A)2σ̂2

A ≥ λAF (1 −∆A)2σ̂2
A ≥ sA − σA · π, so that λAD = 0 by (25). Repeating this

analysis for sector B proves part (ii).

Lemma A.2. Consider the OLG framework of Section 3. Equilibrium holds with subjective discount rate ρz for
agent z ∈ {A,B, F,D} replaced by ρ̃z := ρz+δ, and with µα, µη, and µx augmented with δ((νA+νB)−1νA−α),
δ(νF + νD − η), and δ((νF + νD)−1νF − x) i.e., replaced by

µα = µα0 + δ((νA + νB)−1νA − α)

µη = µη0 + δ(νF + νD − η)

µx = µx0 + δ((νF + νD)−1νF − x),

where µα0 , µ
η
0 , µ

x
0 come from the economy with δ = 0.
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Proof of Lemma A.2. A proof of the fact that subjective discount rates in recursive preferences are simply
augmented by the Poisson death rate can be found in the appendix of Gârleanu and Panageas (2015). OLG
adds the following terms to the dynamics of aggregate net worth:

dNz,t = . . .− δNz,tdt+ νzδKtdt.

Applying Itô’s formula to the wealth shares (α, η, x) yields the result on the state drifts.

Proposition A.3. In the equilibrium of Proposition 3.1, the solution (κ, ζ) to (24) and (27) is determined as
follows. Consider the state space Ω := [0, 1]3 for (α, η, x). First define the following objects on Ω:

ΓA =





1, if insiders may frictionlessly trade aggregate risk (unconstrained θA, θB)
φ2
A

η + (1−φA)2

α(1−η) , if insiders may not trade aggregate risk (θA = θB ≡ 0),

ΓB =





1, if insiders may frictionlessly trade aggregate risk (unconstrained θA, θB)
φ2
B

η + (1−φB)2

(1−α)(1−η) , if insiders may not trade aggregate risk (θA = θB ≡ 0),

and

ΣA :=
(1−∆A)2σ̂2

A

η(1− x)

ΣB :=
(1−∆B)2σ̂2

B

η(1− x)

MA := ΓA‖σA‖2 +
[ (1− φA)2

α(1− η)
+
φ2
A(1−∆A)2

η

]
σ̂2
A

MB := ΓB‖σB‖2 +
[ (1− φB)2

(1− α)(1− η)
+
φ2
B(1−∆B)2

η

]
σ̂2
B .

Next, for each (α, η, x) ∈ Ω, define the following function mapping [0, 1] 7→ R:

λ̃(κ) := 1{∆A=1}
κφA
xη

+ 1{∆A<1}
{
x
κφA
xη

+ (1− x)
χ

(1−∆A)2σ̂2
A

− (1− x)
[ χ

(1−∆A)2σ̂2
A

− κφA
xη

]+}

+ 1{∆B=1}
(1− κ)φB

xη
+ 1{∆B<1}

{
x

(1− κ)φB
xη

+ (1− x)
χ

(1−∆B)2σ̂2
B

− (1− x)
[ χ

(1−∆B)2σ̂2
B

− (1− κ)φB
xη

]+}
.
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Also define the following functions mapping R 7→ R:

κ̃(ζ) :=
GA −GB +MB − (φA − φB)(xζ + (1− x)χ)

MA +MB

κ̃F 6→A(ζ) :=
GA −GB +MB − φAχ+ φB(xζ + (1− x)χ)

MA +MB + x(1− x)−1η−1φ2
A(1−∆A)2σ̂2

A

κ̃F 6→B(ζ) :=
GA −GB +MB − φA(xζ + (1− x)χ) + φBχ+ x(1− x)−1η−1φ2

B(1−∆B)2σ̂2
B

MA +MB + x(1− x)−1η−1φ2
B(1−∆B)2σ̂2

B

κ̃D 6→A(ζ) :=
GA −GB +MB − φAζ + φB(xζ + (1− x)χ)

MA +MB + (1− x)x−1η−1φ2
A(1−∆A)2σ̂2

A

κ̃D 6→B(ζ) :=
GA −GB +MB − φA(xζ + (1− x)χ) + φBζ + (1− x)x−1η−1φ2

B(1−∆B)2σ̂2
B

MA +MB + (1− x)x−1η−1φ2
B(1−∆B)2σ̂2

B

κ̃D 6→A,B(ζ) :=
GA −GB +MB + (1− x)x−1η−1φ2

B(1−∆B)2σ̂2
B

MA +MB + (1− x)x−1η−1φ2
A(1−∆A)2σ̂2

A + (1− x)x−1η−1φ2
B(1−∆B)2σ̂2

B

[1− 1{ζ>0,φA 6=φB}]

+
xηλ̄− φB
φA − φB

1{ζ>0,φA 6=φB}.

Using these functions, for each (α, η, x) ∈ Ω, define the following objects:

κ̃∗0 := [κ̃(0)]+ ∧ 1

κ̃∗0,D 6→A := [κ̃D 6→A(0)]+ ∧ 1

κ̃∗0,D 6→B := [κ̃D 6→B(0)]+ ∧ 1

κ̃∗0,D 6→A,B := [κ̃D 6→A,B(0)]+ ∧ 1,

and

ζ̃∗ :=
(Σ−1

A + Σ−1
B )χ+ κ̃(0)φA + (1− κ̃(0))φB − ηλ̄

Σ−1
A + Σ−1

B + x[MA +MB ]−1(φA − φB)2

ζ̃∗F 6→A :=
Σ−1
B χ+ (1− κ̃F 6→A(0))φB − ηλ̄

Σ−1
B + x[MA +MB + x(1− x)−1η−1φ2

A(1−∆A)2σ̂2
A]−1φ2

B

ζ̃∗F 6→B :=
Σ−1
A χ+ κ̃F 6→B(0)φA − ηλ̄

Σ−1
A + x[MA +MB + x(1− x)−1η−1φ2

B(1−∆B)2σ̂2
B ]−1φ2

A

ζ̃∗D 6→A :=
Σ−1
B χ+ κ̃D 6→A(0)x−1φA + (1− κ̃D 6→A(0))φB − ηλ̄

Σ−1
B + x[MA +MB + (1− x)x−1η−1φ2

A(1−∆A)2σ̂2
A]−1(x−1φA − φB)2

ζ̃∗D 6→B :=
Σ−1
A χ+ κ̃D 6→B(0)φA + (1− κ̃D 6→B(0))x−1φB − ηλ̄

Σ−1
A + x[MA +MB + (1− x)x−1η−1φ2

B(1−∆B)2σ̂2
B ]−1(φA − x−1φB)2

ζ̃∗D 6→A,B :=
1{φA 6=φB}

(φA − φB)2

[
(GA −GB)(φA − φB) +

(
MB +

1− x
x

φ2
B(1−∆B)2

η
σ̂2
B

)
(φA − xηλ̄)

+
(
MA +

1− x
x

φ2
A(1−∆A)2

η
σ̂2
A

)
(φB − xηλ̄)

]
,
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and

κ̃∗ζ := κ̃(ζ̃∗)

κ̃∗ζ,F 6→A := κ̃F 6→A(ζ̃∗F 6→A)

κ̃∗ζ,F 6→B := κ̃F 6→B(ζ̃∗F 6→B)

κ̃∗ζ,D 6→A := κ̃D 6→A(ζ̃∗D 6→A)

κ̃∗ζ,D 6→B := κ̃D 6→B(ζ̃∗D 6→B)

κ̃∗ζ,D 6→A,B := κ̃D 6→A,B(ζ̃∗D 6→A,B),

and

ζ̃κ=1 := χ+ (Σ−1
A + Σ−1

B )−1[φA − ηλ̄]

ζ̃κ=1
D 6→A := χ+ ΣB [x−1φA − ηλ̄]

ζ̃κ=0 := χ+ (Σ−1
A + Σ−1

B )−1[φB − ηλ̄]

ζ̃κ=0
D 6→B := χ+ ΣA[x−1φB − ηλ̄].

Finally, for each (α, η, x) ∈ Ω, define the following functions mapping [0, 1]× R 7→ R:

d̃A(κ, ζ) := (xη)−1κφA(1−∆A)2σ̂2
A + ζ − χ

d̃B(κ, ζ) := (xη)−1(1− κ)φB(1−∆B)2σ̂2
B + ζ − χ

f̃A(κ, ζ) := ((1− x)η)−1κφA(1−∆A)2σ̂2
A − ζ + χ

f̃B(κ, ζ) := ((1− x)η)−1(1− κ)φB(1−∆B)2σ̂2
B − ζ + χ.

Using all the definitions above, construct the following subsets of Ω:

Ω0 :=
{

(α, η, x) ∈ Ω : d̃A(κ̃∗0, 0) ∧ d̃B(κ̃∗0, 0) ≥ 0, λ̃(κ̃∗0) ≤ λ̄
}

Ω0,D 6→A :=
{

(α, η, x) ∈ Ω : d̃A(κ̃∗0,D 6→A, 0) < 0 ≤ d̃B(κ̃∗0,D 6→A, 0), λ̃(κ̃∗0,D 6→A) ≤ λ̄
}

Ω0,D 6→B :=
{

(α, η, x) ∈ Ω : d̃B(κ̃∗0,D 6→B , 0) < 0 ≤ d̃A(κ̃∗0,D 6→B , 0), λ̃(κ̃∗0,D 6→B) ≤ λ̄
}

Ω0,D 6→A,B :=
{

(α, η, x) ∈ Ω : d̃A(κ̃∗0,D 6→A,B , 0) ∨ d̃B(κ̃∗0,D 6→A,B , 0) < 0, λ̃(κ̃∗0,D 6→A,B) ≤ λ̄
}

Ω1 := Ω\(Ω0 ∪ Ω0,D 6→A ∪ Ω0,D 6→B ∪ Ω0,D 6→A,B),
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and

Ωζ :=
{

(α, η, x) ∈ Ω1 : d̃A(κ̃∗ζ , ζ̃
∗) ∧ d̃B(κ̃∗ζ , ζ̃

∗) ≥ 0,

f̃A(κ̃∗ζ , ζ̃
∗) ∧ f̃B(κ̃∗ζ , ζ̃

∗) ≥ 0, 0 ≤ κ̃∗ζ ≤ 1, ζ̃∗ > 0
}

Ωζ,D 6→A :=
{

(α, η, x) ∈ Ω1 : d̃A(κ̃∗ζ,D 6→A, ζ̃
∗
D 6→A) < 0 ≤ d̃B(κ̃∗ζ,D 6→A, ζ̃

∗
D 6→A),

f̃A(κ̃∗ζ,D 6→A, ζ̃
∗
D 6→A) ∧ f̃B(κ̃∗ζ,D 6→A, ζ̃

∗
D 6→A) ≥ 0, 0 ≤ κ̃∗ζ,D 6→A ≤ 1, ζ̃∗D 6→A > 0

}

Ωζ,D 6→B :=
{

(α, η, x) ∈ Ω1 : d̃B(κ̃∗ζ,D 6→B , ζ̃
∗
D 6→B) < 0 ≤ d̃A(κ̃∗ζ,D 6→B , ζ̃

∗
D 6→B),

f̃A(κ̃∗ζ,D 6→B , ζ̃
∗
D 6→B) ∧ f̃B(κ̃∗ζ,D 6→B , ζ̃

∗
D 6→B) ≥ 0, 0 ≤ κ̃∗ζ,D 6→B ≤ 1, ζ̃∗D 6→B > 0

}

Ωζ,D 6→A,B :=
{

(α, η, x) ∈ Ω1 : d̃A(κ̃∗ζ,D 6→A,B , ζ̃
∗
D 6→A,B) ∨ d̃B(κ̃∗ζ,D 6→A,B , ζ̃

∗
D 6→A,B) < 0,

f̃A(κ̃∗ζ,D 6→A,B , ζ̃
∗
D 6→A,B) ∧ f̃B(κ̃∗ζ,D 6→A,B , ζ̃

∗
D 6→A,B) ≥ 0, 0 ≤ κ̃∗ζ,D 6→A,B ≤ 1, ζ̃∗D 6→A,B > 0

}

Ωζ,F 6→A :=
{

(α, η, x) ∈ Ω1 : f̃A(κ̃∗ζ,F 6→A, ζ̃
∗
F 6→A) < 0 ≤ f̃B(κ̃∗ζ,F 6→A, ζ̃

∗
F 6→A),

d̃A(κ̃∗ζ,F 6→A, ζ̃
∗
F 6→A) ∧ d̃B(κ̃∗ζ,F 6→A, ζ̃

∗
F 6→A) ≥ 0, 0 ≤ κ̃∗ζ,F 6→A ≤ 1, ζ̃∗F 6→A > 0

}

Ωζ,F 6→B :=
{

(α, η, x) ∈ Ω1 : f̃B(κ̃∗ζ,F 6→B , ζ̃
∗
F 6→B) < 0 ≤ f̃A(κ̃∗ζ,F 6→B , ζ̃

∗
F 6→B),

d̃A(κ̃∗ζ,F 6→B , ζ̃
∗
F 6→B) ∧ d̃B(κ̃∗ζ,F 6→B , ζ̃

∗
F 6→B) ≥ 0, 0 ≤ κ̃∗ζ,F 6→B ≤ 1, ζ̃∗F 6→B > 0

}

and

Ωκ=1
ζ :=

{
(α, η, x) ∈ Ω1 : d̃A(1, ζ̃κ=1) ≥ 0, f̃A(1, ζ̃κ=1) ≥ 0, κ̃(ζ̃κ=1) > 1, ζ̃κ=1 > 0

}

Ωκ=1
ζ,D 6→A :=

{
(α, η, x) ∈ Ω1 : d̃A(1, ζ̃κ=1

D 6→A) < 0, f̃A(1, ζ̃κ=1
D 6→A) ≥ 0, κ̃D 6→A(ζ̃κ=1

D 6→A) > 1, ζ̃κ=1
D 6→A > 0

}

Ωκ=0
ζ :=

{
(α, η, x) ∈ Ω1 : d̃B(0, ζ̃κ=0) ≥ 0, f̃B(0, ζ̃κ=0) ≥ 0, κ̃(ζ̃κ=0) < 0, ζ̃κ=0 > 0

}

Ωκ=0
ζ,D 6→B :=

{
(α, η, x) ∈ Ω1 : d̃B(0, ζ̃κ=0

D 6→B) < 0, f̃B(0, ζ̃κ=0
D 6→B) ≥ 0, κ̃D 6→B(ζ̃κ=0

D 6→B) < 0, ζ̃κ=0
D 6→B > 0

}
.

Then, the solutions for κ : Ω 7→ O and ζ : Ω 7→ O, where O are the finite subsets of R+, are43

κ 3





κ̃∗0, on Ω0

κ̃∗0,D 6→A, on Ω0,D 6→A

κ̃∗0,D 6→B , on Ω0,D 6→B

κ̃∗0,D 6→A,B , on Ω0,D 6→A,B

κ̃∗ζ , on Ωζ

κ̃∗ζ,D 6→A, on Ωζ,D 6→A

κ̃∗ζ,D 6→B , on Ωζ,D 6→B

κ̃∗ζ,D 6→A,B , on Ωζ,D 6→A,B

κ̃∗ζ,F 6→A, on Ωζ,F 6→A

κ̃∗ζ,F 6→B , on Ωζ,F 6→B

1, on Ωκ=1
ζ ∪ Ωκ=1

ζ,D 6→A

0, on Ωκ=0
ζ ∪ Ωκ=0

ζ,D 6→B

and ζ 3





ζ̃∗, on Ωζ

ζ̃∗D 6→A, on Ωζ,D 6→A

ζ̃∗D 6→B , on Ωζ,D 6→B

ζ̃∗D 6→A,B , on Ωζ,D 6→A,B

ζ̃∗F 6→A, on Ωζ,F 6→A

ζ̃∗F 6→B , on Ωζ,F 6→B

ζ̃κ=1, on Ωκ=1
ζ

ζ̃κ=1
D 6→A, on Ωκ=1

ζ,D 6→A

ζ̃κ=0, on Ωκ=0
ζ

ζ̃κ=0
D 6→B , on Ωκ=0

ζ,D 6→B

0, on Ω\Ω1.

43Correspondences are needed because of the possibility of multiple equilibria, which I have not ruled out in my proof.
Multiple equilibria are captured mathematically by non-empty intersections of the sets defined above. Numerically, I have
found parameterizations of the model in which Ωζ,F 6→A ∩ Ωκ=0

ζ and Ωζ,F 6→B ∩ Ωκ=1
ζ are non-empty. In those cases, I

choose assign to (κ, ζ) the values dictated by Ωκ=0
ζ and Ωκ=1

ζ .
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Proof of Proposition A.3. One can substitute these formulas into (24) and (27) to verify that the equations are
solved. It remains to show that the union of the regions defined is equal to the entire state space, i.e.,

Ω0 ∪ Ω0,D 6→A ∪ Ω0,D 6→B ∪ Ω0,D 6→A,B ∪ Ω1 = Ω (89)

and
Ω∗1 = Ω1, (90)

where Ω∗1 := Ωζ ∪ Ωζ,D→A ∪ Ωζ,D→B ∪ Ωζ,D→A,B ∪ Ωζ,F→A ∪ Ωζ,F→B ∪ Ωκ=1
ζ ∪ Ωκ=0

ζ ∪ Ωκ=1
ζ,D→A ∪ Ωκ=0

ζ,D→B .
Statement (89) is trivially true by definition of Ω1. Furthermore, Ω∗1 ⊂ Ω1 holds trivially, by definition of the
sets constituting Ω∗1.

It remains to prove Ω∗1 ⊃ Ω1. Note that ζ > 0 on Ω∗1. Thus, λAF +λBF = λ̄ on Ω∗1. The remaining constraints
are the shorting constraints of insiders (κ ∈ [0, 1]), distressed investors (λAD ≥ 0, λBD ≥ 0), and financiers
(λAF ≥ 0, λBF ≥ 0), a total of 6 constraints. To help characterize these constraints, note the following:

{f̃A(κ, ζ) > 0, d̃A(κ, ζ) > 0} = {λAF > 0, λAD > 0} (91)

{f̃A(κ, ζ) > 0, d̃A(κ, ζ) ≤ 0} = {λAF > 0, λAD = 0} (92)

{f̃A(κ, ζ) ≤ 0, d̃A(κ, ζ) > 0} = {λAF = 0, λAD > 0} (93)

{f̃A(κ, ζ) ≤ 0, d̃A(κ, ζ) ≤ 0} = {λAF = 0, λAD = 0}, (94)

and, for sector B,

{f̃B(κ, ζ) > 0, d̃B(κ, ζ) > 0} = {λBF > 0, λBD > 0} (95)

{f̃B(κ, ζ) > 0, d̃B(κ, ζ) ≤ 0} = {λBF > 0, λBD = 0} (96)

{f̃B(κ, ζ) ≤ 0, d̃B(κ, ζ) > 0} = {λBF = 0, λBD > 0} (97)

{f̃B(κ, ζ) ≤ 0, d̃B(κ, ζ) ≤ 0} = {λBF = 0, λBD = 0}, (98)

Importantly, {λAF = 0, λAD = 0} = {κ = 0} and {λBF = 0, λBD = 0} = {κ = 1}, by funding market clearing.
In addition, {ζ > 0, λAF = 0, λBD = 0} = {ζ > 0λBF = 0, λAD = 0} = ∅, by combining equations (28), (23),
and (25). Consequently, the sets constituting Ω∗1 are exactly the intersection of {ζ > 0} with the pairwise
combinations of the sets in (91)-(94) with the sets in (95)-(98), which are a completely exhaustive set of
combinations, i.e., {ζ > 0} = Ω∗1. Finally note, by the definition of ζ in the statement of Proposition A.3, that
Ω\Ω1 ⊂ {ζ = 0} so that Ω1 ⊂ {ζ > 0}.

A.4 Moral Hazard and Skin-in-the-Game

In the model of Section 2, an insider sells an exogenous fraction φ of the capital stock to outsiders (financiers).
The insider keeps a fraction of 1 − φ of the capital risk on his own balance sheet. In this appendix, I derive
this risk-sharing arrangement as the approximate solution to a standard moral hazard problem.

Let the capital stock of a generic insider evolve as follows:

dki,t = ki,t[(ιi,t − δi,t)dt+ σdZt + σ̂dWi,t].

The new object is δi,t, which captures hidden diversion. In particular, insiders may divert δkdt units of capital
to obtain (1 − φ)δkdt, where φ determines the inefficiency from diversion. This may also be thought of as
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diverting effort away from capital upkeep.
Insiders hold assets, borrow/lend in risk-free debt markets, and make contractual payments to outsiders.

Contractual payments are −ki,tdΩi,t per unit of time, since the price of capital is unity in the absence of in-
vestment adjustment costs. Since diversion is unobservable, Ωi must be adapted to the principal’s information
set, which is generated by (Z,W δ

i ), where dW δ
i,t := dWi,t−δi,tdt is the ex-diversion shock. Contract payments

thus take the form dΩi,t = ζi,t[($i,t−δi,t)dt+ σ̂dWi,t]+γi,t ·dZt for some processes (ζi,t, $i,t, γi,t) adapted to
(Z,W δ

i ).44 If both insiders and outsiders may frictionlessly trade claims on the aggregate shock Z, the choice
of γi is irrelevant. When we assume insiders may not trade claims on Z, i.e., θ ≡ 0, then we are implicitly
restricting γi = ζiσ. Thus, we use this latter assumption, as it is without loss of generality in the former case.
Incorporating these contract payments, insiders’ net worth evolution is

dni,t = (ni,trt − ci,t)︸ ︷︷ ︸
consumption-savings

dt+ (1− φ)δi,tki,t︸ ︷︷ ︸
diversion benefits

dt+ ki,t(dRi,t − rtdt)︸ ︷︷ ︸
excess return-on-assets

− ki,tζi,t
[
($i,t − δi,t)dt+ σ̂dWi,t + σ · dZt

]

︸ ︷︷ ︸
contract payments

+ni,tθi,t · (πtdt+ dZt)︸ ︷︷ ︸
aggregate risk hedging

.

This budget constraint has a simple interpretation. Insiders retain a stake 1− ζ in their asset risks and issue
ζ to outsiders. This can be thought of as an equity stake, which has expected excess return $.

Definition 2. Optimal contracts consist of possible risk exposures and promised payments (i.e., ζi,t, $i,t) that
implement no diversion (i.e., δi,t ≡ 0 for all i, t) and maximize total surplus in the following sense. Taking
as given future contracts {ζi,t+s, $i,t+s}s>0, time-t contracts (ζi,t, $i,t) maximize total instantaneous surplus
among contracting parties.

An important feature of these contracts is that they are short-term, which is captured by the last statement
in Definition 2. Contracts are chosen to maximize instantaneous surplus, rather than total long-term surplus,
which aids tractability. These short-term contracts would be optimal long-term contracts as well, if agents
cannot commit to future contracts and if those future contracts are made in anonymity.

To derive optimal contracts, note that diversion of δk units of capital yields (1− φ)δk in net worth to the
insider. On the other hand, the insiders’ return-on-assets is reduced by δ, which translates into a (1 − ζ)δk

lower payoff from inside equity. Consequently, the insider will not divert any capital as long as ζi,t ≤ φ,
which is insiders’ incentive-compatibility constraint. In other words, 1− φ is the minimum skin-in-the-game
requirement.

Given competition in the financier sector, $ is determined by their marginal utility process, i.e., $ =

σ̂π̂+ σ · π, where π̂ is an idiosyncratic risk price (in equilibrium, π̂ = (1−∆)π̂F ). The important thing about
π̂ is that it is independent of the ζ from this particular contracting problem. We can now write the return on
inside equity without diversion,

dRIi,t := rtdt+
µt − rt − ζi,tσ̂π̂i,t − ζi,tσ · πt

1− ζi,t
dt+ σ · dZt + σ̂dWi,t,

where µt is the expected return-on-capital. Insiders’ net worth can be re-written in terms of its inside equity
position ei,t := (1− ζi,t)ki,t and the return dRI as

dni,t = (ni,trt − ci,t)dt+ ei,t(dR
I
i,t − rtdt) + ni,tθi,t · (πtdt+ dZt).

44Adaptability to W δ
i implies the weights of dΩi,t on σ̂dWi,t and −δi,tdt must be identical. This weight is ζi,tσ̂. The

additional term ζi,t$i,tdt allows for time-varying flow payments.
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The following facts simplify the analysis: (1) insiders can control their exposure ei,t; and (2) financiers’
surplus is accounted for by $i,t. Consequently, optimal ζi,t may be chosen by insiders as they wish, subject
to the incentive constraint ζi,t ≤ φ. Although I assume ζi,t = φ in the main text, I detail the actual solution
below which helps understand how good the assumption ζi,t = φ is.

Since ζi,t only affects Et[dRIi,t] and not dRIi,t−Et[dRIi,t], optimal ζi,t is chosen to maximize Et[dRIi,t]−rtdt,
i.e.,

max
ζ∈[0,φ]

{µ− r − ζσ̂π̂ − ζσ · π
1− ζ

}
.

It is optimal to set ζ = φ when µ− r− σ̂π̂− σ · π > 0 and to otherwise set ζ such that µ− r− σ̂π̂− σ · π = 0.
Doing this requires knowledge of the equilibrium risk prices, which depends on the market structure (e.g.,
whether or not θ is constrained or unconstrained). As an example, use the expressions from Proposition 2.4
for sector A, with ζ in place of φ, to get

µ− r − σ̂π̂ − σ · π = (1− ζ)κσ̂2
[ 1− ζ

(1− η)α
− ζ(1−∆)2

η

]
.

The solution is
ζi,t = min

(
φ,
[
1 + (1−∆)2αt(1− ηt)

ηt

]−1)
. (99)

Notice that ζi,t = φ is optimal across the state space if ∆ = 1, which is the case commonly studied in the
literature (e.g., Di Tella (2017)). When financiers are imperfectly diversified, ζi,t < φ is possible for very
low values of ηt, because financiers’ required rate of return diverges to infinity. However, notice that in the
steady-state equilibrium of Proposition 2.5, wealth shares are such that maximal issuance ζi,t = φ is optimal.
Furthermore, as ∆ increases, the possibility of unconstrained risk-sharing shrinks. Notice that ζi,t < φ when
ηt < η∗t , where

η∗t :=
φαt(1−∆)2

1− φ+ φαt(1−∆)2
,

which shrinks to 0 at a quadratic rate as ∆→ 1, i.e.,

d log η∗

d log(1−∆)
=

2[1− φ+ φα(1−∆)2 − φα(1−∆)2]

1− φ+ φα(1−∆)2
= 2(1− η∗).

Hence, for relatively high values of ∆ such as those considered in the quantitative section, the assumption of
ζi,t = φ is innocuous.

A.5 Endogenous Credit Standards

By smoothing out the moral hazard problem of Appendix A.4, we can address the question of how diversi-
fication affects credit standards. To make these concepts precise, consider a more general hidden diversion
technology. Suppose diverting δkdt units of capital yields an income flow of h(δ)kdt to the insider, where h(·)
satisfies the following.

Assumption 4 (Diversion Benefit). Assume the function h : R+ 7→ R+ is twice-differentiable with the following
properties: h(0) = 0, h′(δ) ≤ 1 for all δ, h′′(δ) ≤ 0 for all δ, and h′(+∞) = 0.

In Appendix A.4, we had assumed a linear diversion technology h(δ) = (1−φ)δ, which satisfies Assumption
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4. In this more general formulation, insiders’ net worth evolves as

dni,t = (ni,trt − ci,t)︸ ︷︷ ︸
consumption-savings

dt+ h(δi,t)ki,t︸ ︷︷ ︸
diversion benefits

dt+ ki,t(dRi,t − rtdt)︸ ︷︷ ︸
excess return-on-assets

− ki,tζi,t
[
($i,t − δi,t)dt+ σ̂dWi,t + σ · dZt

]

︸ ︷︷ ︸
contract payments

+ni,tθi,t · (πtdt+ dZt)︸ ︷︷ ︸
aggregate risk hedging

.

As before, (ζi,t, $i,t) characterize contract payments.
With this general specification of h, it may not be desirable to implement zero diversion. For instance, if

h′(0) = 1, implementing no diversion requires insiders to keep 100% skin-in-the-game, i.e., ζi,t ≡ 0. But such
a contract may impose too much risk onto insiders’ balance sheets. Thus, “optimal contracts” in this setting
remove from Definition 2 the requirement δi,t ≡ 0.

To solve this contracting problem, we may repeat a similar analysis to Appendix A.4. Given a skin-in-the-
game ζ, optimal diversion maximizes h(δ) − (1 − ζ)δ. Thus, h′(δ) ≤ 1 − ζ. Since h′ is weakly decreasing,
optimal diversion is a weakly increasing function f(ζ). Next, optimal payments are $ = f(ζ) + σ̂π̂ + σ · π,
which now compensates financiers for the possibility that δ > 0. As before, this means that it suffices to
consider insiders’ surplus, which is governed solely by their expected return on inside equity, i.e.,

max
ζ∈[0,1]

{µ− r − f(ζ) + h(f(ζ))− ζσ̂π̂ − ζσ · π
1− ζ

}
.

Supposing f is differentiable and that optimal diversion is positive, δ > 0, we have the first-order optimality
condition

µ− r − σ̂π̂ − σ · π = ζ(1− ζ)f ′(ζ) + f(ζ)− h(f(ζ)).

Modify the equilibrium expressions from Proposition 2.4 for sectorA by putting ζ in place of φ and accounting
for diversion benefits and costs:

µ− r − f(ζ) + h(f(ζ))− σ · π = (1− ζ)σ̂
κ(1− ζ)σ̂

(1− η)α
+ ζ(1−∆)σ̂

κζ(1−∆)σ̂

η
.

Substitute the optimality condition for ζ to get the equilibrium condition:

(1− ζi,t)ζi,tf ′(ζi,t)︸ ︷︷ ︸
marginal cost of issuance

= κt(1− ζi,t)σ̂2
[ 1− ζi,t

(1− ηt)αt
− ζi,t(1−∆)2

ηt

]

︸ ︷︷ ︸
marginal benefit of issuance

. (100)

After dividing both sides by 1−ζ, the left-hand-side of (100) is strictly increasing in ζ, whereas the right-hand-
side is strictly decreasing. Thus, there is a uniquely optimal skin-in-the-game in equilibrium. This equilibrium
equates the “marginal benefit of issuance,” comprised by diversification benefits from offloading risk, to the
“marginal cost of issuance,” defined by themarginal increase in diversion, net of the marginal private diversion
benefits.45

With this smooth moral hazard setup, we can analyze the effects of diversification. From (100), higher
∆ reduces optimal skin-in-the-game 1− ζ, which is a generalization of the results in Appendix A.4. In other
words, insiders issue more securities to better-diversified outsiders. But interestingly, this now comes with a
cost. Higher ζ increases equilibrium diversion f(ζ) and thus deadweight losses f(ζ)− h(f(ζ)). This result is

45That is, the marginal cost is (1− ζ) d
dζ

[f(ζ)− h(f(ζ))] = (1− ζ)[f ′(ζ)− (1− ζ)f ′(ζ)] = ζ(1− ζ)f ′(ζ).
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analogous to the story that “securitization leads to lax screening” as in Keys, Mukherjee, Seru and Vig (2010).

A.6 Micro-founding the Leverage Constraint

In section 3, I have assumed the leverage constraint (22) is defined an exogenous and constant maximum
λ̄. Several macro-finance papers derive a bank leverage constraint from an underlying agency friction, e.g.,
the simple limited commitment problem in Gertler and Kiyotaki (2010). In that case, the constraint is not a
constant level, but rather a function of the economic state and model parameters.

What is particularly important for my model is how diversification could affect the leverage constraint.
Does better diversification relax the leverage constraint such that it would never bind in equilibrium? In this
section, I use a simple agency problem similar to Gertler and Kiyotaki (2010) to derive the leverage constraint
and show that it is insensitive to diversification improvements. Thus, the constraint is indeed more likely to
bind as diversification improves.

We consider the model of Section 3 with symmetric discount rates (ρ), no OLG (δ = 0), and a single
productive sector (GA = G,GB = −∞ such that κ = 1; I drop all A subscripts accordingly). Suppose
financiers can abscond with a fraction γ ∈ (0, 1) of their assets and renege on repayment of their short-term
bonds. After doing this diversion, financiers would have net worth ñFi,t := γλtn

F
i,t. I consider two cases. After

diversion, financiers move to another location and either (i) set up a new financial intermediary anonymously;
or (ii) retire to become insiders in the single productive sectorA. A fact I will use in both cases is the following:
one can show that the value functions of financiers and insiders are given by log(nFi,t)+ξF,t and log(nIi,t)+ξI,t,
respectively.

In case (i), diversion delivers utility log(ñFi,t) + ξF,t, which must be ruled out by the incentive constraint
log(ñFi,t) + ξF,t ≤ log(nFi,t) + ξF,t. As a result,

λt ≤ γ−1

is required. Therefore, the leverage limit λ̄ ≡ γ−1 is completely independent of diversification.
In case (ii), the same analysis delivers the incentive constraint

λt ≤ γ−1 exp(ξF,t − ξI,t).

Here, the leverage limit λ̄ ≡ γ−1 exp(ξF − ξI) plausibly depends on diversification through the relative invest-
ment opportunities of financiers and insiders, captured by ξF − ξI . However, in a steady state in which the
leverage constraint is conjectured to not bind for all other financiers (besides the one whose agency problem
we are focusing on), simple calculations show ξF,∞ − ξI,∞ = 0. Intuitively, the long-run wealth distribution
adjusts such that all agents earn the same idiosyncratic risk prices, which are the key determinants of ξF and
ξI . Again, the leverage constraint is independent of diversification.

A.7 Welfare

Under construction.

A.8 Impulse Responses

Define the IRF of a stationary variable Y by

I[Y ](t, x; ∆) := E[Yτ+t − Yτ− | Xτ− = x], t ≥ 0, (101)
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where Xt is the vector of state variables, i.e., Xt = (αt, ηt) in Section 2, and ∆ is the variable receiving an
unanticipated shock at time τ , i.e., ∆τ 6= ∆τ−. Equation (101) can be decomposed into the sum of an “impact
response” E[Yτ − Yτ− | Xτ− = x] and a “transition path” E[Yτ+t − Yτ | Xτ = x′].

In the baseline model of Section 2, we first considered one-time unanticipated shocks to (∆A,∆B). An
important simplifying property of this model is that these shocks do not generate any impact response to
the state variables in the model, as stated in Lemma 2.8. Thus, I[X](t, x; ∆) = E[Xτ+t − Xτ | Xτ = x] for
this type of shock. Figure 7 in the main text does this IRF analysis for a one-time shock to ∆A. Figure 8
repeats the analysis for a gradual increase in ∆A, which may be interpreted in three equivalent ways – fully
unanticipated, fully anticipated, or partially anticipated – in the sense of Lemma 2.9.

Proof of Lemma 2.8. We want to show that the impact responses E[ητ − ητ− | Xτ− = x] = E[ατ − ατ− |
Xτ− = x] = 0 in response to a shock to ∆A at time τ . A similar analysis holds for state variable α and for a
shock to ∆B . Note that aggregated net worths can be written as

NF,t = [κtφA + (1− κt)φB ]Kt +MF,t + ptθ̃F,tNF,t

NA,t = κt(1− φA)Kt +MA,t + ptθ̃A,tNA,t

NB,t = (1− κt)(1− φB)Kt +MB,t + ptθ̃B,tNB,t,

whereMz,t are the riskless assets, θ̃z,tNz,t are the hedging securities (Arrow securities on the aggregate shock)
held, and pt the price of these securities. Bond market clearing is thatMF,t +MA,t +MB,t = 0. Notice that
equity market clearing is already imposed. Since the Arrow securities pay an excess return, their price is zero,
i.e., pt = 0 for all t. We can thus rewrite the net worth equations immediately prior to the shock as

NF,τ− = [κτ−φA + (1− κτ−)φB ]Kτ− −MA,τ− −MB,τ−

NA,τ− = κτ−(1− φA)Kτ− +MA,τ−

NB,τ− = (1− κτ−)(1− φB)Kτ− +MB,τ−.

Upon the shock, the variables K,κ, 1 − κ,MA,MB cannot jump. Indeed, a jump in K cannot be consistent
with goods market clearing, whereasMA,MB represent trading positions (asset holdings) and are assumed
fixed at the time of the shock. Furthermore, the Arrow securities are settled every dt time periods, so they
have no continuation value that could possibly jump. Then, after the shock,

NF,τ = [κτ−φA + (1− κτ−)φB ]Kτ− −MA,τ− −MB,τ−

NA,τ = κτ−(1− φA)Kτ− +MA,τ−

NB,τ = (1− κτ−)(1− φB)Kτ− +MB,τ−.

Therefore, Nz,τ = Nz,τ− for all agents z. As a result, ητ − ητ− = ατ − ατ− = 0.

Proof of Lemma 2.9. Part (i) is a special case of part (ii) for t 6= τ . For t = τ , we make use of Proposition 2.8.
Part (ii) follows from the fact that optimal choices of all log utility agents in the model are independent of the
Itô processes driving expected returns and volatilities, see Appendix A.1. Hence, Proposition 3.1 still holds
even in this more general case. The equilibrium of Proposition 2.4 follows as a special case of Proposition 3.1,
as before.
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A.9 Other Shocks

This section presents proofs and details for the results of Section 4.

Proof of Proposition 4.1. Using the notation of Lemma ??, we have partial derivatives (for any parameter
values)

Cα,φA = − κ∞α∞σ̂A
κ∞(1− φA)σ̂A + (1− κ∞)(1− φB)σ̂B

Cη,φA = π̂−2
∞
[1− η∞

η∞
φAκ

2
∞(1−∆A)2σ̂2

A + η∞π̂∞κ∞σ̂A
]

Cκ,φA = − 2κ∞
MA +MB

[φA(1−∆A)2σ̂2
A

η∞
− (1− φA)σ̂2

A

α∞(1− η∞)

]
.

Imposing symmetric parameters, we have α∞ = κ∞ = 1/2 so that Dη,κ = Dκ,η = 0 and Dα,κ = 1 and
Dκ,α = 2

M (1− η∞)−1(1− φ)2σ̂2 < 1. Then, use expressions (77)-(78) to verify that

dκ∞
dφA

= [1−
√

2(1−∆A)]π̂∞σ̂A

dη∞
dφA

= (1−Dα,κ)Cη,φA .

Note that dη∞dφA > 0 unambiguously, while dκ∞
dφA

> 0 if and only if ∆A > 1− 1/
√

2.

Proof of Proposition 4.2. Repeat the steps of Proposition 2.4 with λz replaced by (1 − φF )λz, with funding
market clearing replaced by (1− φF )

∫ i
i−∆z

∆−1
z [λzj,tn

F
j,tdj = φzk

z
i,t, and with aggregate risk market clearing

replaced by
∫ 1

0
[θAi,tn

A
i,t + θBi,tn

B
i,t + θFi,tn

F
i,t]di = (1− φF )

∫ 1

0
(λAi,tσA + λBi,tσB)nFi,tdi.

Proof of Proposition 4.3. Under construction.

Proof of Proposition 4.4. Under construction.

Proof of Proposition 4.5. Under construction.
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B Results on the Brownian Cylinder W

B.1 Aggregate risk along investment arcs

Proof of Lemma 2.2. To examine the degree of aggregate risk in this economy, consider investing one unit of
consumption, divided equally amongst each market in [ 1−∆

2 , 1+∆
2 ] (the fact that it is centered at 1/2 is without

loss of generality, by symmetry). This results in:

Vart
(∫ 1+∆

2

1−∆
2

∆−1dWi,tdi
)

= ∆−2Covt
(∫ 1+∆

2

1−∆
2

dWi,tdi,

∫ 1+∆
2

1−∆
2

dWj,tdj
)

= ∆−2

∫ 1+∆
2

1−∆
2

∫ 1+∆
2

1−∆
2

Covt(dWi,t, dWj,t)didj

=
(

1− 6

∫ 1+∆
2

1−∆
2

∫ 1+∆
2

1−∆
2

∆−2|i− j|(1− |i− j|)didj
)
dt

=
(

1− 6

∫ 1

0

∫ 1

0

∆|x− y|(1−∆|x− y|)dxdy
)
dt

=
(

1− 6

∫ 1

−1

(1− |u|)(1−∆|u|)∆|u|du
)
dt

= (1−∆)2dt.

In the third line, I have substituted the covariance and distance metric: Covt(dWi,t, dWj,t) = 1 − 6 min(|i −
j|, 1 − |i − j|)(1 − min(|i − j|(1 − |i − j|)) = 1 − 6|i − j|(1 − |i − j|). In the fourth line, I have performed
the change-of-variables i = 1−∆

2 + ∆x and j = 1−∆
2 + ∆y. In the fifth line, I have substituted u = x − y

and used the fact that if X and Y are independent uniform random variables, then X − Y has the triangular
distribution. Given this formula, we may take ∆ → 1 to see that Vart(

∫ 1

0
dWi,tdi) = 0. As this expectation is

zero, this shows that
∫ 1

0
dWi,tdi = 0 almost-surely.

B.2 Existence of W

One may ask whether or not such a stochastic processW := {Wi,t : i ∈ [0, 1], t ≥ 0} exists on any probability
space. In other words, are the properties assumed above mutually consistent? Below, I prove that such shocks
exist by an implicit method, using the theory of Gaussian processes.

This relates to the class of Gaussian random fields that are used to model forward rates in Kennedy
(1994), which to my knowledge is the first use of such processes in financial economics. The key property
aiding the analysis of that paper, as in this paper, is the independent increments property of the random field
in the “time” direction. Santa-Clara and Sornette (2001) study a similar stochastic process, which they call
“string” shocks. They obtain these shocks using the theory of stochastic partial differential equations (SPDEs),
although I prove existence in a different way. That said, the W process is not a special case of the class of
processes they consider. Furthermore, my existence proof is general enough to apply analogously to their
entire class of processes.

First, I build a particular Gaussian process. Second, I show that this stochastic process has the desired
properties. Given the construction, which posits the covariance in the t-direction and i-direction as multiplica-
tively separable, and the property that the process acts as a continuum of Wiener processes in the t-direction,
W is thus an example of a cylindrical Wiener process (see a reference on SDEs in infinite dimensions, e.g.,
Da Prato and Zabczyk (2014)).
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Proof of Lemma 2.1. The existence of a mean-zero Gaussian process having covariance function

V ((i, s), (j, t)) =
[
1− 6dist(i, j)(1− dist(i, j))

]
×min(s, t)

is guaranteed if and only if V is symmetric and positive semi-definite (see any reference on Gaussian processes,
e.g., proposition I.24.2 in Rogers and Williams (2000)). Clearly, V is symmetric. To check positive semi-
definiteness, construct the Gram matrix: let i1, . . . , iN ∈ [0, 1] and t1, . . . , tN ∈ R+, and define the matrix G
by

G := [V ((im, tm), (in, tn))]m,n∈{1,...,N}.

We need to show that G is positive semi-definite. To do this, define the “univariate” covariance functions
v1(i, j) := V ((i, 1), (j, 1)) and v2(s, t) := V ((0, s), (0, t)), and the associated Gram matrices

G1 := [v1(im, in)]m,n∈{1,...,N} and G2 := [v2(tm, tn)]m,n∈{1,...,N}.

Notice that
G = G1 ◦G2,

where ◦ denotes the Schur product (element-wise multiplication). By the Schur product theorem, it suffices
to show that G1 and G2 are both positive semi-definite, because then so is G.

Consider a standard Brownian bridge process {W ◦i : i ∈ [0, 1]} and define the process

Bi :=
√

12
[
W ◦i −

∫ 1

0

W ◦j dj
]
.

Note that EBi = 0 for all i and

EBiBj = 12E[(W ◦i −
∫ 1

0

W ◦k dk)(W ◦j −
∫ 1

0

W ◦k dk)]

= 12
[
EW ◦i W ◦j + E

∫ 1

0

∫ 1

0

W ◦kW
◦
l dkdl − E

∫ 1

0

W ◦i W
◦
k dk − E

∫ 1

0

W ◦jW
◦
k dk

]

= 12
[

min(i, j)− ij +

∫ 1

0

∫ 1

0

[min(k, l)− kl]dkdl −
∫ 1

0

[min(i, k)− ik]dk −
∫ 1

0

[min(j, k)− jk]dk
]

= 12
[

min(i, j)− ij +

∫ 1

0

l(1− l)
2

dl − i(1− i)
2

− j(1− j)
2

]

= 1− 6|i− j|(1− |i− j|).

In the third and fourth equality, I have used the Brownian bridge covariance function to compute EW ◦i W ◦j =

min(i, j)− ij, as well as the integral
∫ 1

0

[min(i, j)− ij]dj =

∫ i

0

j(1− i)dj +

∫ 1

i

i(1− j)dj

=
1

2
i2(1− i) +

1

2
i(1− i)2

=
i(1− i)

2
. (102)

Therefore, v1 is the covariance function for B. As a valid covariance function, we immediately conclude that
G1 is positive semi-definite. Finally, v2 is the covariance function of standard Brownian motion, so the matrix
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G2 is positive semi-definite.
Thus, define W to be a Gaussian process with covariance function V . We want to show that W has the

desired properties from Assumption 1 of the text: (1) at each location,W acts as a Brownian motion; (2) dW
has the correct cross-sectional correlations; (3)W has a path-continuous version.

First, fixing i, the time-series process W (i) := {Wi,t : t ≥ 0} is a standard Brownian motion. Indeed,
E[W 2

i,0] = 0 implies Wi,0 = 0 almost-surely. Since W (i) is a centered Gaussian process with V ((i, s), (i, t)) =

min(s, t), it has the same probability law as a standard Brownian motion. Having the same probability law, it
is well-known thatW (i) can be chosen to be path-continuous. Independent increments can be established as
follows. Using the covariance function and the Normal distribution, we have E[(Wi,t2−Wi,t1)(Wi,t1−Wi,t0)] =

0 for t2 ≥ t1 ≥ t0 ≥ 0. Orthogonality plus joint Normality implies independence of Wi,t2 − Wi,t1 from
Wi,t1 −Wi,t0 .

Second, the increments to W (i) and W (j) have the desired pairwise correlations. Indeed, using the co-
variance function V , we have

1

s
E[(Wi,t+s −Wi,t)(Wj,t+s −Wj,t)] = 1− 6dist(i, j)(1− dist(i, j)).

As s > 0 is arbitrary, and using the Markov property of Brownian motion, we have that

corr(dWi,t, dWj,t | Ft) = 1− 6dist(i, j)(1− dist(i, j)).

Third, we can use the Kolmogorov-Chentsov continuity criterion (see any reference on Gaussian processes,
e.g., theorem I.25.2 in Rogers and Williams (2000)) to show that W has a version with continuous sample
paths.46 To do this, we may fix an arbitrary T > 0 and show that there exist C > 0, ε1 > 0, and ε2 > 0 (which
may all depend on T ) such that

E|Wi,s −Wj,t|ε1 ≤ C × dist((i, s), (j, t))2(1+ε2), ∀s, t ≤ T, (103)

where dist(·, ·) is Euclidean distance in C◦1 × R, where C◦1 is the circle of circumference one.47 In particular,

dist((i, s), (j, t)) :=
√
|s− t|2 + |i− j|2(1− |i− j|)2.

Assume s > t (the opposite case follows symmetrically). Set ε2 > 0 arbitrarily, and set ε1 = 4(1 + ε2). Then,
becauseW is Gaussian, there exists a constantM such that

E|Wi,s −Wj,t|ε1 = E|Wi,s −Wj,t|4(1+ε2)

= ME[|Wi,s −Wj,t|2]2(1+ε2).

46One might think we could prove continuity by appealing to the fact that {Wi,t : i ∈ [0, 1]} is a translated, scaled
Brownian bridge for each t, and {Wi,t : t ≥ 0} is a Brownian motion for each i. Thus, we could construct continuous
versions of each of these at the rational indexes, and use a density argument to construct a continuous W in the limit.
The problem with this approach is that we don’t know that the limiting process has the desired distributional properties.

47This is a slight generalization of the conventional Kolmogorov-Chentsov theorem, in which the index set is not R2.
But the exact same condition applies.
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Compute, using the triangle inequality, the covariance function, and the assumption that t < s < T :

E|Wi,s −Wj,t|2 = V ((i, s), (i, s)) + V ((j, t), (j, t))− 2V ((i, s), (j, t))

≤ |V ((i, s), (i, s))− V ((i, s), (j, t))|+ |V ((j, t), (j, t))− V ((i, s), (j, t))|
≤ 2|V ((i, s), (j, t))− V ((j, t), (j, t))|+ |s− t|
= 2|min(s, t)(1− 6|i− j|(1− |i− j|))− t|+ |s− t|
= 12t|i− j|(1− |i− j|) + |s− t|
≤ 24 max(T, 1/12)[|s− t|2 + |i− j|2(1− |i− j|)2]1/2

= 24 max(T, 1/12)dist((i, s), (j, t))

Consequently,
E|Wi,s −Wj,t|ε1 ≤M(24 max(T, 1/12))2(1+ε2)dist((i, s), (j, t))2(1+ε2),

which is condition (103) with C = M(24 max(T, 1/12))2(1+ε2).

B.3 Simulating W

Given that Lemma 2.1 only implicitly definesW , one might wonder how such a process could be simulated. In
this section, I provide a method for simulatingW . I do not show that this construction satisfies all the technical
measurability requirements, but I do show that the simulated process has all of the relevant properties if those
technical requirements are satisfied.

Let (Ω,F ,P) be a complete probability space satisfying the usual conditions, on whichW ∗ := {W ∗t : t ≥
0} is a standard Brownian motion adapted to the filtration {Ft : t ≥ 0}. In addition, let B̂t := {B̂i,t : i ∈
[0, 1]} be a standard Brownian bridge for every t > 0. Then, let {ut} be iid Uniform[0, 1] random variables,
independent ofW ∗ and B̂, and define

Bi,t :=




B̂ut+i,t, if i ∈ [0, 1− ut]
B̂ut+i−1,t, if i ∈ (1− ut, 1].

Thus, Bt is essentially a Brownian bridge for every t, but with a random initial index on the circle, ut. In fact,
Bi,t−B0,t is a standard Brownian bridge.48 Assume that the sequence of Brownian bridges B := {Bt : t > 0}
is progressively measurable. Define the process

Wi,t :=
√

12

∫ t

0

(
Bi,s −

∫ 1

0

Bj,sdj
)
dW ∗s (104)

so that the increment is dWi,t =
√

12
(
Bi,t −

∫ 1

0
Bj,tdj

)
dW ∗t . I will show that Wi,t satisfies Assumption 1. In

that case, simulating the process requires an approximation to a single aggregate Brownian motion {W ∗t : t =

0, dt, 2dt, . . . }, a sequence of iid uniform random variables {ut : t = 0, dt, 2dt, . . . }, and a Brownian bridge
drawn independently at each time step, {B̂i,t : i = 0, di, 2di, . . . , 1, t = 0, dt, 2dt, . . . }.49

48One can check this by simply by verifying that this process has the correct covariance function, i.e., for i ≤ j,
Cov(Bi,t −B0,t, Bj,t −B0,t) = i(1− j).

49This last step can even be relaxed for speed. Due to the iid nature of ut, one may draw a single Brownian bridge only
and achieve the desired properties.
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First, I verify property (i) that Wi,t is a standard Brownian motion for each i. As a stochastic integral,
Wi,t is a continuous local martingale in t. Next, the processW 2

i,t − t is a local martingale, since

Et[W 2
i,t+T ] = 12Et

[( ∫ t+T

0

(
Bi,s −

∫ 1

0

Bj,sdj
)
dW ∗s

)2]

= W 2
i,t + 12E

[ ∫ t+T

t

(
Bi,s −

∫ 1

0

Bj,sdj
)2

ds
]

= W 2
i,t + 12

∫ t+T

t

[
E(Bi,s −B0,s)

2 + E
(∫ 1

0

(Bj,s −B0,s)dj
)2

− 2E(Bi,s −B0,s)

∫ 1

0

(Bj,s −B0,s)dj
]
ds

= W 2
i,t + 12

∫ t+T

t

[
i(1− i) +

∫ 1

0

j(1− j)
2

dj − i(1− i)
]
ds

= W 2
i,t + t+ (T − t).

Note that Et denotes conditional expectation using the information set at time t, not including the information
on ut. In the second equality, I have used the independence of {Bi,t+s : i ∈ [0, 1], s > 0} and {W ∗t+s : s > 0}
from Ft as well as Itô’s isometry. In the third equality, I have used Fubini’s theorem. In the fourth equality, I
have used the fact that {Bi,t −B0,t : i ∈ [0, 1]} is a standard Brownian bridge, combined with the calculation
in (102). By Lévy’s characterization of Brownian motion,Wi,t is a standard Brownian motion for each i.

To prove property (ii) of Assumption 1, recall the quadratic covariation formula: for any two continuous
local martingales M and N , EtMt+TNt+T −MtNt = Et([M,N ]t+T ) − [M,N ]t. Using Mt = Wi,t and Nt =

Wj,t, and noting that these local martingales have theMarkov property (by virtue of being Brownianmotions),
we have an unconditional version of this covariation formula:

Et[(Wi,t+T −Wi,t)(Wj,t+T −Wj,t)] = E[(Wi,t+T −Wi,t)(Wj,t+T −Wj,t)] = E([Wi,Wj ]t+T )− E([Wi,Wj ]t).

The quadratic covariation is

[Wi,Wj ]t = 12

∫ t

0

(
Bi,s −

∫ 1

0

Bk,sdk
)(
Bj,s −

∫ 1

0

Bk′,sdk
′
)
ds,

so that, using similar moments for the Brownian bridge as above, we have for i < j,

Et[(Wi,t+T −Wi,t)(Wj,t+T −Wj,t)]

= 12E
∫ t+T

t

(
Bi,s −

∫ 1

0

Bk,sdk
)(
Bj,s −

∫ 1

0

Bk′,sdk
′
)
ds

= 12

∫ t+T

t

[
EBi,sBj,s + E

(∫ 1

0

Bk,sdk
)2

− EBi,s
∫ 1

0

Bk,sdk − EBj,s
∫ 1

0

Bk,sdk
]
ds

= 12
[
i(1− j) +

1

12
− i(1− i)

2
− j(1− j)

2

]
T = [1− 6(j − i)(1− (j − i))]T.

This shows that

1

dt
Et[dWi,tdWj,t] := lim

T→0

1

T
Et[(Wi,t+T −Wi,t)(Wj,t+T −Wj,t)] = 1− 6|i− j|(1− |i− j|).

and verifies property (ii).50 Thus,W satisfies Assumption 1.

50Property (ii) of Assumption 1 was made to ensure
∫ 1

0
(Wi,t+T −Wi,t)di = 0 almost-surely for any T > 0. Note that,

with the definition ofWi,t above, this integration can be verified directly.
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C Extensions and Auxiliary Results

C.1 Financial Shocks and Risk Concentration

In the baseline model of Section 2, so-called risk concentration channel is absent, i.e., the wealth distribution
evolves deterministically, which makes the entire economy evolve deterministically. Exactly as in Di Tella
(2017), this conclusion arises due to the combination of agents’ symmetric risk preferences and their ability
to frictionlessly access markets for trading aggregate risk. However, as Di Tella (2017) goes on to show,
idiosyncratic uncertainty shocks may break this neutrality result and lead financiers to take excess risk. In my
model, excess financier risk is more likely to generated by diversification shocks than by uncertainty shocks
(or LTV shocks).

To demonstrate this, I allow (∆, σ̂, φ) to be truly stochastic aggregate shocks and show that shocks to ∆

incentivize financiers to disproportionately incur aggregate risk, whereas shocks to σ̂ and φ do not. Since
financiers wealth tends to be more cyclical than households’ empirically, this suggests that financial shocks
like ∆ are needed in model economies.

Consider the following setting. Take the economy from Section 2 and setGB = −∞ so that there is a single
capital stock and single consumption good. Since there is only one type of insider, call them “households” and
label their variables with the subscript “H”. Endow financiers and households with symmetric Epstein-Zin
preferences, as in (63). Suppose all agents have unitary EIS, i.e., ς = 1.

Let (∆, σ̂, φ) follow the following exogenous stationary Markov processes:

d∆t = µ∆(∆t)dt+ σ∆(∆t)dZt

dσ̂t = µσ̂(σ̂t)dt+ σσ̂(σ̂t)dZt

dφt = µφ(φt)dt+ σφ(φt)dZt

Note that shocks to (∆t, σ̂t, φt) are locally perfectly correlated with aggregate TFP shocks, which is only for
simplicity and does not affect the results of this section. In fact, if TFP shocks are shut down completely,
everything here goes through. Assume σ∆ ≥ 0, σσ̂ ≤ 0, σφ ≥ 0 in accordance with conventional wisdom and
empirical evidence.51

Because shocks to (∆, σ̂, φ) are driven by the same aggregate shock as capital, the optimality conditions
outlined in Appendix A.2 continue to hold here. The additional complication is that ξF and ξH , the processes
measuring financier and household marginal utility of wealth, satisfy PDEs in (η,∆, σ̂, φ) rather than ODEs
in η. In equilibrium, we have the following idiosyncratic risk prices earned by financiers and households,

π̂F,t = γ
(1−∆t)φtσ̂t

ηt
and π̂H,t = γ

(1− φt)σ̂t
1− ηt

,

which are generalized from Section 2 because risk aversion γ 6= 1 and because (∆t, σ̂t, φt) are non-constant.

51There is some controversy over σφ ≥ 0. In this model, external finance is done via equity contracts, and higher φ
is a sign of a more efficient financial sector. From this perspective, the statement that φ is procyclical is intuitive. In the
data, stock market equity-issuance is procyclical. Similarly, the loan-to-value ratios of the marginal borrower tend to be
procyclical (e.g., Favilukis et al. (2017)). On the other hand, aggregate loan-to-value ratios in the housing market tend
to be countercyclical (e.g., Davis and Van Nieuwerburgh (2015)). This discrepancy can be partially accounted for by the
fact that borrowers typically issue debt contracts, whose values are mechanically less procyclical than levered equity. Still,
note that if σφ ≤ 0, the results of this section on hedging demands for φt all flip signs, and shocks to φt can also be a
source of risk concentration.
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The idiosyncratic risk premia (risk price times risk quantity) earned on idiosyncratic risks are given by

$F,t = γ
( (1−∆t)φtσ̂t

ηt

)2

and $H,t = γ
( (1− φt)σ̂t

1− ηt

)2

.

At this point, we can understand the intuition for how ∆t generates financial risk concentration. Notice
that $H,t is unaffected by ∆t, whereas $F,t is decreasing in ∆t. If σ∆

t > 0, negative shocks dZt < 0 will
decrease ∆t and lead to higher financier expected returns going forward, relative to households. Such an
improvement of the relative investment opportunity set of financiers is a hedge and suggests that financiers’
utility diffusion is smaller than households’, i.e., σξF,t < σξH,t.

Shocks to ∆t have aggregate implications through this mechanism. Indeed, clearing the aggregate risk
market, we obtain

πt = γσ + (γ − 1)
[
(1− ηt)σξH,t + ηtσ

ξ
F,t

]
.

Applying Itô’s formula to ηt, we find that its local volatility is

σηt = ηt(1− ηt)
1− γ
γ

[
σξF,t − σξH,t

]
.

If σξF,t < σξH,t, as conjectured above, then σηt > 0 if and only if γ > 1. Hence, the hedging demands induced
by financial shocks ∆t create risk concentration in the sense that financiers buy Arrow claims on dZt from
households. This stands in contrast to the situation in which ∆t is non-stochastic as in Section 2. In that
case, no shocks affect the relative investment opportunity sets of experts and financiers, so σηt ≡ 0. This
result echoes the results of Di Tella (2017): ∆t impacts the uncertainty faced by financiers, just as a direct
uncertainty shock does.

An exact opposite logic is true for shocks to φt. When σφ > 0, negative shocks dZt < 0 will decrease φt and
lead to lower financier expected returns going forward, relative to households. This exposure is the opposite
of a hedge, and suggests σξF,t > σξH,t. If γ > 1 so that hedging demands are strong, then it is households who
will hold concentrated aggregate risk positions and ση < 0.

The story is slightly different under uncertainty shocks (shocks to σ̂). Uncertainty shocks would affect both
$F and$H in the same direction, and the strength of this effect depends on the relative size of (1−∆t)φt/ηt

and (1 − φt)/(1 − ηt). Ultimately, this produces an ambiguous effect on financial risk concentration. In fact,
we have the following neutrality result.

Proposition C.1 (Neutrality of Uncertainty Shocks). Consider an economy with only uncertainty shocks (i.e.,
µ∆, σ∆, µφ, σφ ≡ 0, while σσ̂ < 0). If at any point of time ηt = η∞ := φ(1−∆)

1−φ∆ , then there exists an equilibrium
in which ηt = η∞ thereafter. If ∆ < 1 and 0 < φ < 1, in addition, then ξF = ξH in this equilibrium.

The key to Proposition C.1 is that the drift nets out financier and household risk compensation:

µη = γ−1η(1− η)[π̂2
F − π̂2

H ].

Since both π̂F and π̂H scale with σ̂, uncertainty shocks do not affect the “steady state” of this system (defined
by µη = 0). At this steady-state η = η∞, idiosyncratic risk prices are equalized, π̂F = π̂H . Hence, shocks
to σ̂ affect both agents equally. Formally, one can verify that both agents’ HJB equations and all equilibrium
conditions are satisfied if ξF = ξH at η = η∞. This leads to σξF (η∞) = σξH(η∞) and thus a non-stochastic
equilibrium with ση(η∞) = 0. This then verifies the conjecture that ξF = ξH , as ηt stays constant forever.52

52Furthermore, even starting with ηt 6= η∞, I conjecture that there are parameters such that ηt → η∞ almost-surely.
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The difference between Di Tella (2017) and this model is that ∆ < 1. When ∆ = 1, outsiders are
unaffected by idiosyncratic risk; only insiders’ investment opportunity sets are affected by uncertainty shocks.
Mathematically, ξH contains more exposure to σ̂ than ξF . In that case, uncertainty shocks provide insiders a
hedge against bad states, and they will take additional aggregate risk ex-ante. But this result is fragile, as it
is not generically true for any ∆ < 1. A similar discussion applies for the assumption 0 < φ < 1.

To provide an analytical result illustrating the induced hedging demands of (∆, φ) shocks, we simplify
the setting even further. Suppose at a known time τ , one of the following experiments will occur. We will
consider these experiments one-by-one.

(“∆ experiment”) : ∆τ =





∆+, with probability 1/2

∆−, with probability 1/2

(“φ experiment”) : φτ =




φ+, with probability 1/2

φ−, with probability 1/2

where ∆+ > ∆− and φ+ > φ−. In each experiment, allow both financiers and households to frictionlessly
trade Arrow claims on these shocks. Let the Arrow state prices be given by q+ and q−. After the shock, each
variable will remain constant, i.e., (∆t, φt) = (∆τ , φτ ) for all t ≥ τ .

Thus, financiers and households each solve the following problem prior to the shock:

max
n+,n−

1

2

(ξ+n+)1−γ

1− γ +
1

2

(ξ−n−)1−γ

1− γ
subject to q+n+ + q−n− = nτ−,

where n+, n− are net worths and ξ+, ξ− the marginal utility process in the (+) and (−) states at time τ . After
the shock, the economy is assumed to be in a Markov equilibrium in the state variable η. Let ξF (ηt; ∆t, φt) :=

ξF,t and ξH(ηt; ∆t, φt) := ξH,t be the equilibrium marginal utility processes in that equilibrium for all t ≥ τ .
We have the following results, the proofs of which are omitted because they follow closely Di Tella (2017).

Lemma C.2 (Relative Investment Opportunities). The function Ξ(η; ∆, φ) := ξF (η; ∆, φ)/ξH(η; ∆, φ) is strictly
decreasing in η, strictly decreasing in ∆, and strictly increasing in φ.

Proposition C.3 (Risk Concentration). Suppose γ > 1. In the “∆ experiment,” we have η+ > ητ− > η−. In the
“φ experiment,” we have η+ < ητ− < η−.

In summary, by extending the logic of Proposition C.3, we expect that the financier wealth share ηt will
be positively correlated with ∆t shocks and negatively correlated with φt shocks. Procyclicality of ∆t induces
procyclicality of ηt – as in canonical models like Basak and Cuoco (1998), Brunnermeier and Sannikov (2014),
and He and Krishnamurthy (2013) – but without assuming the typical exogenous trading restrictions. On
the other hand, procyclicality of φt induces countercyclicality of ηt, opposite to these models. Finally, the
cyclicality of σ̂t is less likely to matter, due to the neutrality result of Proposition C.1, which is a key difference
from Di Tella (2017).

Indeed, µη > 0 for η < η∞ and µη < 0 for η > η∞. Thus, η∞ is an attracting point of the dynamical system. Whether the
state variable hits the attracting point (and thus stays forever) depends on the relative speed at which µη and ση vanish
when η → η∞.
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C.2 Endogenous Financial Innovation

To capture the idea that financial innovation can be an endogenous response to other shocks, I allow for the
endogenous choice of diversification ∆. Diversification is chosen optimally by financiers to balance risk and
exogenously specified costs. I assume that it is costly for a financier to participate in financial markets at all,
and it is costlier to finance firms located far away from location i, which is embedded in a cost function. In
particular, if intermediary i funds an arc of locations having length ∆i,t, she incurs the flow non-pecuniary cost
1
2ζ(∆i,t)dt. I make the following assumptions about the function ζ, borrowing from Gârleanu et al. (2015).

Assumption 5 (Diversification Costs). Assume the function ζ(∆) has the following properties:

(i) ζ(∆) ≥ 0, ζ ′(∆) ≥ 0, and ζ ′′(∆) > 0 for all ∆.

(ii) (1−∆)3ζ ′(∆) is increasing in ∆ for all ∆.

(iii) ζ(0) = ζ ′(0) = 0.

First, whereas Lemma 2.2 shows the benefits of increasing ∆ in the form of diversification, Assumption
5 describes the costs of diversification. Part (i) of the assumption says that the cost function is positive, and
increasing and convex in distance. Part (ii) additionally ensures that the individual financier’s problem is
well-defined in that the first-order conditions of the problem are sufficient for optimality. Part (iii) ensures
that some diversification is guaranteed.

Now, consider the model of Section 2 augmented with diversification costs. Financier’s problem is aug-
mented by these costs, and they now solve

max UFi,t −
1

2
Et
∫ ∞

t

e−ρs[ζA(∆A
i,s) + ζB(∆B

i,s)]ds

subject to (9). Due to orthogonality of sectoral idiosyncratic shocks and additive separability of the diver-
sification cost functions, let us focus on the financier investment in one of the sectors. Drop all sector sub-
scripts/superscripts for the time being.

In a symmetric equilibrium, there is a location-invariant sectoral lending spread, which is unaffected
by individual diversification choices. This means diversification is chosen to minimize the sum of portfolio
variance and diversification costs ζ. The portfolio variance is given by (λσ̂(1 −∆))2, where λ is the volume
of sector z lending per unit of net worth. This first-order condition says

ζ ′(∆) = (1−∆)(λσ̂)2.

Under Part (ii) of Assumption 5 implies that this condition is sufficient for optimality. Next, optimal risk-taking
implies λ = π̂F

(1−∆)σ̂ , so
(1−∆)ζ ′(∆) = π̂2

F .

Finally, in equilibrium, π̂F = η−1κφ(1−∆)σ̂, so

ζ ′(∆)

1−∆
=
(κφσ̂

η

)2

. (105)

Assumption 5 implies this equation has a unique interior solution for ∆. Let this solution be denoted ∆(α, η; ζ)

since (α, η) are the state variables in equilibrium.
We can do comparative statics on (105) for ∆(α, η; ζ). For example, we find that optimal ∆ falls in

response to a proportional reduction in the function ζ(·) for a particular sector. A direct financial innovation
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shock (akin to ∆ ↑ in the baseline model) can be achieved by a downward shock to the entire function ζ(·).
Lower diversification costs induce higher choices of diversification.

Moreover, the endogenous ∆ now responds to other financial shocks as well. By re-incorporating the
second sector and taking ratios, we have

ζ ′A(∆A)

ζ ′B(∆B)

1−∆B

1−∆A
=
( κφAσ̂A

(1− κ)φBσ̂B

)2

. (106)

The left-hand-side of (106) is increasing in ∆A/∆B . Thus, we may think about how relative diversification
incentives are affected by other shocks.

For example, consider φA ↑ and σ̂A ↓, both of which generate reallocation towards sector A (i.e., κ ↑),
as discussed in Section 4. An increase in φA, which increases sectoral borrowing from intermediaries, unam-
biguously increases relative diversification ∆A/∆B . Conversely, a decrease in σ̂A, which increases all market
participants’ incentives to invest in the affected sector, may actually decrease financiers’ relative diversification
∆A/∆B . Endogenous diversification thus amplifies reallocation when φA ↑ and dampens reallocation when
σ̂A ↓. Intuitively, φA ↑ is a credit demand shock, which induces a credit supply response, while σ̂A ↓ is a
credit supply shock, which induces some endogenous retrenchment of credit supply as paying large diversifi-
cation costs is no longer necessary. Lastly, any neutral credit supply shock, i.e., a shock that leaves κ relatively
unaffected, cannot affect relative diversification motives.

C.3 Differentiated Goods

For analytical tractability, I have assumed that the consumption goods of sectors A and B are perfect substi-
tutes. In this appendix, I allow the goods to be differentiated as a robustness exercise. In particular, I replace
agents’ utility functions (1) with

Ut := Et
[ ∫ ∞

t

ρe−ρ(s−t) log(cs)ds
]
,

where c := a1−βbβ is a Cobb-Douglas aggregate of the sectorA good a and the sectorB good b. Cobb-Douglas
implies the two consumption goods have expenditure shares of 1−β, β. I assume the composite good c is the
numeraire. Let the relative prices of a and b be pA and pB . All other features of the model are unchanged.

With this modification, the equilibrium of Section 2 is modified as follows. First, the resource constraint
from Definition 1 must replaced by three goods market clearing conditions:

∫ 1

0

GAk
A
i,tdi =

∫ 1

0

[aAi,t + aBi,t + aFi,t]di

∫ 1

0

GBk
B
i,tdi =

∫ 1

0

[bAi,t + bBi,t + bFi,t]di

∫ 1

0

(GAk
A
i,t)

1−β(GBk
B
i,t)

βdi =

∫ 1

0

[cAi,t + cBi,t + cFi,t]di+

∫ 1

0

[ιAi,tk
A
i,t + ιBi,tk

B
i,t]di.

The third condition aggregates output into the numeraire basket and splits this output into consumption and
investment, which I assume is denominated in units of the numeraire.
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Second, the equilibrium capital share κ and total capital growth ι are now determined via

ρ
[1− β

κ
− β

1− κ
]
− (κ‖σA‖2 − (1− κ)‖σB‖2) (107)

=
[
(1− φA)π̂A + φA(1−∆A)π̂F→A

]
σ̂A −

[
(1− φB)π̂B + φB(1−∆B)π̂F→B

]
σ̂B

and

ι = (GAκ)1−β(GB(1− κ))β − ρ, (108)

where π̂A, π̂B , π̂F→A, π̂F→B are given in (13)-(14). Equation (107) is a nonlinear equation, but it has a unique
solution. Indeed, as κ→ 0 or κ→ 1, the left-hand-side converges to +∞ and −∞, respectively, whereas the
right-hand-side stays bounded. Furthermore, the left-hand-side is strictly decreasing in κ, while the right-
hand-side is strictly increasing in κ. Notice that, all else equal, ∆A affects the equilibrium by reducing the
right-hand-side of equation (107). Consequently, κ is increasing in ∆A as before – the reallocation effect. The
leverage effect survives because the formula for µη is unchanged.

Third, the goods prices are equilibrium objects. The price ratio is given by

pA,t
pB,t

=
1− β
β

GB
GA

1− κt
κt

. (109)

This “exchange rate” allows an international economics interpretation. One could interpret sector A as do-
mestic producers and sector B as foreign producers, with funds intermediated by a single global financial
sector. The presence of κt in pA,t/pB,t implies exchange rates are determined by global capital flows, unlike
a frictionless complete-markets economy. As κt is influenced by financial variables like ∆A,∆B and inter-
mediary wealth ηt, global financial shocks affect exchange-rate dynamics, similar to the intermediary-centric
theoretical analysis of Gabaix and Maggiori (2015). A diversification boom in one country can thus have
spillovers to the global economy, through leverage increases in the global financial system.

C.4 Investment Adjustment Costs

Suppose each sector now faces investment adjustment costs. For capital of sector z ∈ {A,B} to grow by ιkdt,
an insider must pay Ψz(ι)kdt in investment costs. Standard q-theory holds, and optimal investment satisfies
Ψ′z(ιz,t) = qz,t, where qz is the location-invariant unit price of installed capital in sector z. This capital price
is presumed to follow a diffusion whose parameters will be determined in equilibrium:

dqz,t = qz,t[µ
q
z,tdt+ σqz,t · dZt].

I assume there is only one type of capital that can be freely traded across sectors, as in Brunnermeier and
Sannikov (2015). What is really necessary in a broad bust is that capital is illiquid in the aggregate, rather
than sector-by-sector. Under this assumption, qA = qB ≡ q, so it suffices to track

dqt = qt[µ
q
tdt+ σqt · dZt].

Thus, the return-on-capital from (5)-(6) are now given by

dRzi,t =
[Gz −Ψz(ιz,t)

qt
+ ιz,t + µqt + σz · σqt

]
dt+

[
σz + σqt

]
· dZt + σ̂zdW

z
i,t.
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Finally, the goods and bond market clearing conditions from Definition 1 are replaced by

∫ 1

0

[GAk
A
i,t +GBk

B
i,t]di =

∫ 1

0

[cAi,t + cBi,t + cFi,t + cDi,t]di+

∫ 1

0

[ΨA(ιAi,t)k
A
i,t + ΨB(ιBi,t)k

B
i,t]di

∫ 1

0

[nAi,t + nBi,t + nFi,t + nDi,t]di = qt

∫ 1

0

[kAi,t + kBi,t]di.

I no longer assume any deadweight losses from distressed investor participation. Instead, participation cost
χ is assumed to be a non-pecuniary flow cost.53

To obtain simple analytical solutions, I assume Ψz(ι) = ψ−1
z [exp(ψzι) − 1]. With this functional form, it

is possible to manipulate goods market clearing to solve for the symmetric equilibrium capital price:

q =
κ(GA + ψ−1

A ) + (1− κ)(GB + ψ−1
B )

ρ∗ + κψ−1
A + (1− κ)ψ−1

B

, (110)

where ρ∗ is the aggregate consumption-wealth ratio. In the equilibrium of Proposition 3.1, the resource
constraint is only ever used to obtain optimal investment. Now, it is used to obtain the equilibrium capital
price, and optimal investment is given by ιA = ψ−1

A log(q) and ιB = ψ−1
B log(q).

The rest of the equilibrium is determined as follows. The pricing equations for in each sector are given by

GA − ψ−1
A (q − 1)

q
+ ψ−1

A log(q) + µq + σA · σq − r ≥ (1− φA)[σA + σq] · πA + φA[σA + σq] · π

+ (1− φA)σ̂Aπ̂A + φA(sA − [σA + σq] · π)

GB − ψ−1
B (q − 1)

q
+ ψ−1

B log(q) + µq + σB · σq − r ≥ (1− φB)[σB + σq] · πB + φB [σB + σq] · π

+ (1− φB)σ̂Bπ̂B + φB(sB − [σB + σq] · π),

where πA and πB are insiders’ shadow aggregate risk prices, π is the traded aggregate risk price, and π̂A, π̂B , π̂F→A, π̂F→B
are idiosyncratic risk prices defined in Proposition 3.1. The formula for equilibrium spreads is the same as
Proposition 3.1 with σz replaced by σz + σq:

sz − [σz + σq] · π = x
[
(1−∆z)σ̂zπ̂F→z + ζ −

(
ζ − χ− x

1− x (1−∆z)σ̂zπ̂F→z
)+]

+ (1− x)
[
χ−

(
χ− ζ − (1−∆z)σ̂zπ̂F→z

)+]
, z ∈ {A,B}, (111)

Take the difference between the sectoral pricing equations (assuming equality) to obtain

H :=
GA −GB − (ψ−1

A − ψ−1
B )(q − 1)

q
+ (ψ−1

A − ψ−1
B ) log(q) + (σA − σB) · σq

− (1− φA)[σA + σq] · πA − φA[σA + σq] · π − (1− φA)σ̂Aπ̂A − φA(sA − [σA + σq] · π)

+ (1− φB)[σB + σq] · πB + φB [σB + σq] · π + (1− φB)σ̂Bπ̂B + φB(sB − [σB + σq] · π).

Since q is determined by (110), µq and σq can be obtained by Itô’s formula. Therefore, H is an explicit
function of the state variables (α, η, x), conditional on (κ, ζ). As in Proposition 3.1, (κ, ζ) are determined by

53To model this, we must assume distressed investors’ period utility function is augmented by−χΞi,t(λ
A
D,i,t+λBD,i,t)dt,

where Ξi,t is an appropriately-chosen process. For example, with Epstein-Zin preferences as in Appendix A.2, we must
choose Ξi,t := (ξtn

D
i,t)

1−γ in order for χ to be perceived as a scale-invariant reduction in investment returns. With
non-pecuniary costs of this form, one can verify that their portfolio choices are exactly the same as in Appendix A.2.
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the nonlinear system

0 = min
{
ζ, λ̄− λAF − λBF

}

0 = min
{

1− κ, H+
}
−min

{
κ, (−H)+

}
,

where H is defined above.

C.5 Busts as Flight-to-Safety Episodes

Here, we consider an alternative model which also generates busts due to financiers’ leverage constraint. Con-
sider the economy from Section 3 without distressed investors (i.e., set χ = +∞) and without the overlapping
generations structure (i.e., set δ = 0). Introduce a new production technology as follows.

With k ≥ 0 units of capital, this technology produces rk, with r < min(GA, GB). Despite being less
productive, this technology is safer, in the sense that capital is riskless while being used as an input in this
technology. There is a rental market for this capital, which must have rental rate r, because of the linear
production technology and absence of capital-quality shocks.

In this economy, the goods and bond market clearing conditions are modified to read

∫ 1

0

[GAk
A
i,t +GBk

B
i,t + r Kt]di =

∫ 1

0

[cAi,t + cBi,t + cFi,t]di+
1

dt

∫ 1

0

[dIAi,t + dIBi,t + dIi,t]di

∫ 1

0

[nAi,t + nBi,t + nFi,t]di =

∫ 1

0

[kAi,t + kBi,t +Kt]di,

where Kt and dIt are the capital stock and investment flow into the riskless sector. As before, I will study
a symmetric equilibrium, with state variables Kt :=

∫ 1

0
[kAi,t + kBi,t + Kt]di, ηt := (

∫ 1

0
nFi,tdi)/Kt, and αt :=

(
∫ 1

0
nAi,tdi)/(

∫ 1

0
[nAi,t + nBi,t]di).

Using the definition of the aggregate investment rate ιt and optimality conditions for consumption, we
may re-write the goods market clearing condition as

ω[κGA + (1− κ)GB ] + (1− ω)r = (1− η)ρ+ ηρF + ι, (112)

after scaling byKt. In (112), ω is the capital share in either of the risky technologies A or B, whereas κ is the
share, among the risky capital, in sector A. It is clear that, holding fixed η and κ, a decline in ω must reduce
economic growth ι.

Finally, I allow any agent to access this technology, which implies rt ≥ r by absence of arbitrage. This
implies the complementary-slackness condition

rt ≥ r, ωt ≤ 1, and (1− ωt)(rt − r) = 0. (113)

Because safe capital allocation implies lower production and growth, I will refer to times with ωt < 1 as
periods of misallocation.

By repeating the arguments of Propositions 3.1 and A.3, we may characterize the equilibrium. First, we
find that equation (24) for ζ still holds. However, we must modify equation (27) for κ to account for the fact
that risk prices are now scaled by the risky capital share ω. Indeed, insiders’ and financiers’ idiosyncratic risk
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prices are now given by

ωπ̂F→A, ωπ̂F→B , ωπ̂A, and ωπ̂B ,

where π̂F→A, π̂F→B , π̂A, π̂B are defined in (13) and (14). Similarly, aggregate risk prices are now given by

ωπ, ωπA, and ωπB ,

where π, πA, πB are defined in the statement of Proposition 3.1. Equilibrium spreads are now given by

sA − ωσA · π = ζ + ω(1−∆A)σ̂Aπ̂F→A

sB − ωσB · π = ζ + ω(1−∆B)σ̂Bπ̂F→B .

Using those definitions, we have the following equation for κ:

0 = min
{

1− κ, H+
}
−min

{
κ, (−H)+

}
(114)

H := GA −GB − φAsA + φBsB − ω(1− φA)[σA · πA + σ̂Aπ̂A] + ω(1− φB)[σB · πB + σ̂Bπ̂B ].

The equilibrium can be characterized by taking κ as given and solving for (ω, ζ, r). The result is in the
following lemma.

Lemma C.4. Equilibrium in the model with a positive-net-supply safe technology requires

ω = min(1, ω̄, ω∗(0)) (115)

ζ = 1{ω̄≤1}max(0, ζ∗) (116)

r = 1{ω<1}r + 1{ω=1}r
∗(ζ), (117)

where

ω̄ := (κφA + (1− κ)φB)−1ηλ̄ (118)

ω∗(ζ) :=
κGA + (1− κ)GB − r − ζ(κφA + (1− κ)φB)

η(‖π‖2 + π̂2
F→A + π̂2

F→B) + (1− η)[α(‖πA‖2 + π̂2
A) + (1− α)(‖πB‖2 + π̂2

B)]
(119)

ζ∗ :=
1

κφA + (1− κ)φB

[
κGA + (1− κ)GB − r − ω̄η(‖π‖2 + π̂2

F→A + π̂2
F→B) (120)

− ω̄(1− η)(α(‖πA‖2 + π̂2
A) + (1− α)(‖πB‖2 + π̂2

B))
]

r∗(ζ) := κGA + (1− κ)GB − ζ(κφA + (1− κ)φB) (121)

− η(‖π‖2 + π̂2
F→A + π̂2

F→B)− (1− η)[α(‖πA‖2 + π̂2
A) + (1− α)(‖πB‖2 + π̂2

B)].

Proof. When the leverage constraint in (24) binds, wemay substitute financiers’ optimal portfolios, along with
equilibrium spreads, to get ω = ω̄ from (118). At the same time, we may sum insiders’ pricing conditions, the
generalizations of (81) and (82) which account for ω, each weighted by κ and 1−κ respectively, to construct
an equation F (ω, ζ, r) = 0 that holds in equilibrium. When ω = 1, we have F (1, ζ, r) = 0. This defines r∗(ζ)

in (121). When ω < 1, we have r = r by complementary-slackness condition (113), and so F (ω, ζ, r) = 0.
This defines ω∗(ζ) in (119). Note that, by their definitions, ω∗(ζ) ≤ 1 if and only if r∗(ζ) ≤ r. Finally, define
ζ∗ by (120), which is the solution to ω̄ = ω∗(ζ).

Armed with these arguments, consider the following mutually exclusive and completely exhaustive cases:
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• Suppose ω̄ > 1. Then, η−1(κφA + (1 − κ)φB) < λ̄, so (24) implies ζ = 0. Thus, equation (116) holds
in this case. Consider the following sub-cases.

– Suppose ω∗(0) ≥ 1. This implies ω = 1 in which case r = r∗(0). Thus, (115) and (117) hold.

– Suppose ω∗(0) < 1. This implies ω = ω∗(0) in which case r = r. Thus, (115) and (117) hold.

• Suppose ω̄ ≤ 1. Consider the following sub-cases.

– Suppose ω∗(0) ≥ ω̄. Then, ζ∗ ≥ 0. Hence, we may set ω = ω̄, ζ = ζ∗, and r = r to satisfy (115),
(116), and (117). To see that this is the unique option, notice that either ω = ω∗(0) or ω = 1

imply ωη−1(κφA + (1− κ)φB) ≥ λ̄, which is a violation of (24) except in the trivial case ω = ω̄.

– Suppose ω̄ > ω∗(0). Then, ζ∗ < 0. Hence, we are required to set ω = ω∗(0), ζ = 0, and r = r in
order to satisfy (115), (116), and (117).

This completes the proof, since (115), (116), and (117) hold in all cases.

To solve for equilibrium κ, we solve equation (114), using the results of Lemma C.4. This is a nonlinear
equation, which must in general be solved numerically. In the case where sectors A and B are exactly sym-
metrical (i.e., GA = GB , φA = φB , σ̂A = σ̂B , ‖σA‖ = ‖σB‖, and ∆A = ∆B), the equilibrium simplifies as the
solution must be κ = 1/2 from (114). In this simple case, we can clearly illustrate the flight-to-safety episode
induced by the presence of the leverage constraint.

Indeed, we have
ω̄ < 1⇔ η < η∗1 := φ/λ̄

and

ω̄ < ω∗(0)⇔ η < η∗2 :=
(G− r)φ/λ̄− 1

2φ
2(‖σ‖2 + (1−∆)2σ̂2)

(G− r)φ/λ̄− 1
2φ

2(‖σ‖2 + (1−∆)2σ̂2) + (1− φ)2(‖σ‖2 + σ̂2)
.

Thus, ω = ω̄ < 1 if and only if54

η < η∗1 ∧ η∗2 .

Thus, the “leverage effect” we have described in the main text can lead to real effects through misallocation. If
diversification ∆ increases enough, such that ηt drifts downwards, eventually financiers’ leverage constraints
will bind. Binding constraints imply misallocation in the sense that ω̄ < 1. This is the notion of “endoge-
nous bust” discussed in the main text. Furthermore, a subsequent negative aggregate shock lowers ηt even
more, which reduces ωt one-for-one, evidently from equation (118). This is the leverage-induced “instabil-
ity” discussed in the main text. In summary, analogously to the main text, a model with the possibility of
flight-to-safety can generate diversification-induced cycles which are both endogenous and unstable.

54Note that if

(φ/λ̄)(1− φ/λ̄)(G− r) > (φ/λ̄)(1− φ)2(‖σ‖2 + σ̂2) + (1− φ/λ̄)
φ2

2
(‖σ‖2 + (1−∆)2σ̂2),

then η∗1 < η∗2 , so that a binding leverage constraint and and misallocation are equivalent, i.e., they occur at exactly the
same times. This result is analogous to part (ii) of Proposition 3.5.
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D Empirical Analysis

D.1 Historical Applications of Diversification Improvements

In the introduction, I have discussed the plausibility of a diversification-fueled boom in US housing markets
during the 1990s-2000s. Mortgage securitization occurred at least four other times in US history: in the
1850s, 1880s, 1920s, and 1980s. In the 1850s, a market developed for securitization of railroad-adjacent
farm loans, coinciding with a US railroad boom and preceding the broader Panic of 1857.55 In the 1880s,
US agriculture boomed as farm mortgages were increasingly securitized, preceding the Panic of 1893.56 In
the 1920s, prior to the Great Depression, residential and commercial real estate loans securitization boomed,
coinciding with a construction boom.57

In the 1980s, financial sector diversification increased for two separate reasons. First, a market for prime-
rated mortgage securitization emerged as government-sponsored enterprises (GSEs) Fannie Mae and Freddie
Mac increased their participation in residential mortgage markets.58 Second, state-level deregulations of the
commercial banking sector integrated many local lending markets, and this may have disproportionately
applied to household finance.59 The 1980s boom ended in a broad bust, the so-called savings and loan crisis.
My model could apply to these four episodes, insofar as diversification waves generate better risk-sharing for
financiers in these markets.

D.2 Qualitative Support: Why the Model Applies to the US Housing Cycle

In addition to the reallocation and leverage patterns documented in figure 1, here I provide some more qual-
itative support for the mechanism of the model. First, the model requires that the increase in securitization
actually improves diversification of mortgage loans. This is not necessarily true a priori: one possibility is that
securitization of mortgage loans increases simply because the volume of mortgage lending increases. Figure
21 rejects this by showing that RMBS increase dramatically as a share of total household credit in the US.
Moreover, non-agency MBS rise as a share of all MBS. Private label securitizations may be particularly impor-
tant for diversification, because prior to the securitization boom, the types of loans in these pools were those
most likely to be held on banks’ balance sheets until maturity.
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RMBS / Household Credit Non−Agency MBS Share

Figure 21: Securitization of household credit.
“RMBS / Household Credit” sums both agency
and non-agency RMBS and divides by the total
household credit outstanding. “Non-Agency
MBS Share” divides non-agency MBS by total
MBS outstanding. Source: SIFMA and Flow of
Funds.

55See Riddiough and Thompson (2012) and Calomiris and Schweikart (1991).
56See Eichengreen (1984), Snowden (1995), and Snowden (2007).
57See Goetzmann and Newman (2010), White (2009), Snowden (2010), and Eichengreen and Mitchener (2003).
58See Fieldhouse, Mertens and Ravn (2018).
59See Mian, Sufi and Verner (2017b) for cross-sectional evidence that these deregulations caused a credit boom and

made the subsequent bust larger.
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Second, it is crucial for my results that diversification in the housing market increases more than diversi-
fication in the corporate credit market. This turns out to be true, if we measure diversification by securities,
which are likely to be broadly held. Figure 22 shows that mortgage securities outstanding were equal to
corporate securities outstanding in 1990, but nearly double by 2007.
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Figure 22: Mortgage versus Corporate Secu-
rities. “Mortgage Securities” are traded secu-
rities where the underlying assets are mort-
gages. “Corporate Securities” sums corporate
bonds and any securitized bank loans. Source:
SIFMA.

Third, my model assumes that the financial sector will adapt to an environment with better mortgage di-
versification by taking more housing-related risks onto their balance sheets. Figure 23 shows that commercial
banks do indeed hold more housing-related assets on their balance sheets through the housing boom. Notice
this series qualitatively mimics the household credit share from figure 1.
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Figure 23: Commercial bank risk-taking in
housing markets. “RE Loans / Assets” refers
to real estate loans held on bank balance
sheets, relative by assets. “MBS / Assets” are
mortgage-backed securities held, relative to
assets. Source: Call Reports.

Similarly, figure 24 shows that price-to-cash-flow ratios in capital and housing markets do not move in
lockstep, suggestive of some sectoral asymmetry in this boom period.
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Figure 24: The price-dividend ratio on the
S&P 500 and a measure of house prices
relative to the rental rate on housing services.
The house price-rent ratio is obtained from
http://datatoolkits.lincolninst.edu/
subcenters/land-values. The plotted ratio
is scaled by 3.
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Finally, a key reason financial sector capitalization deteriorates in my model is through declining financier
profitability. As diversification improves in the model, financiers are willing to accept lower risk premia on
mortgages. Figure 25 shows that commercial banks’ profitability declined marginally between the boom years
2000-2007.
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Figure 25: Commercial bank profitability.
“Operating Inc / Assets” is operating income,
relative to assets. “Interest Inc / Assets” is in-
come from interest payments, relative to as-
sets. Source: Call Reports.

D.3 Quantifying Mortgage Diversification

In this appendix, I describe more specifically the methodology to compute the diversification index of Section
5.1. Start by defining an aggregate mortgage return during month k of year t:

Rt+ k−1
12 →t+ k

12
:=
∑

`

ω`,tR`,t+ k−1
12 →t+ k

12

where ω`,t :=
s`,t+m`,t∑
`′ s`′,t+m`′,t

are origination weights:

m`,t := portfolio mortgages originated to location ` in year t

s`,t := securitized mortgages originated to location ` in year t.

The location-specific mortgage returnR`,t+ k−1
12 →t+ k

12
is proxied by the housing return in location ` and month

k of year t, taken from CoreLogic. This is the return building block for all other returns. The aggregate return
Rt+ k−1

12 →t+ k
12

allows me to extract the idiosyncratic components of all other returns.
In an analogous fashion, define the mortgage return for intermediary i:

R
(i)

t+ k−1
12 →t+ k

12

:=
∑

`

ω
(i)
m,`,tR`,t+ k−1

12 →t+ k
12

+ ω
(i)
s,`,tRt+ k−1

12 →t+ k
12

where

ω
(i)
m,`,t :=

m
(i)
`,t∑

`′ s
(i)
`′,t +m

(i)
`′,t

and ω
(i)
s,`,t :=

s
(i)
`,t∑

`′ s
(i)
`′,t +m

(i)
`′,t

m
(i)
`,t := portfolio mortgages originated by lender i to location ` in year t

s
(i)
`,t := sold mortgages originated by lender i to location ` in year t.

Note that any mortgages originated by intermediary i which are then sold off within the same year are
captured by s(i)

`,t . I make the assumption that these sales return the aggregate return Rt+ k−1
12 →t+ k

12
, which
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is subject to no idiosyncratic risk. Loans not sold are captured by m(i)
`,t . These loans are assumed to get the

location-specific return R`,t+ k−1
12 →t+ k

12
.

Next, I define “idiosyncratic returns” by subtracting the aggregate return:

R`,t+ k−1
12 →t+ k

12
:= R`,t+ k−1

12 →t+ k
12
−Rt+ k−1

12 →t+ k
12

R(i)

t+ k−1
12 →t+ k

12

:= R
(i)

t+ k−1
12 →t+ k

12

−Rt+ k−1
12 →t+ k

12

The (monthly) idiosyncratic variances in year t are then given by

V2
`,t :=

1

12

12∑

k=1

(
R`,t+ k−1

12 →t+ k
12

)2

−
( 1

12

12∑

k=1

R`,t+ k−1
12 →t+ k

12

)2

V2
i,t :=

1

12

12∑

k=1

(
R(i)

t+ k−1
12 →t+ k

12

)2

−
( 1

12

12∑

k=1

R(i)

t+ k−1
12 →t+ k

12

)2

In this computation, I am using the fact that the returns are computed monthly, while the originations and
securitizations data are only available at a yearly frequency.

I average over locations and intermediaries to get the volatilities that I want:

σ̂t :=
∑

`

ω`,tV`,t

σ̂∆,t :=
∑

i

ωi,tVi,t

where

ωi,t :=
∑

`

m
(i)
`,t + s

(i)
`,t∑

`′,jm
(j)
`′,t + s

(j)
`′,t

.

Note that we necessarily have σ̂∆,t ≤ σ̂t, because correlations between the loans in lender’s portfolios are less
than 1, while loan-level volatilities are proxied by location-specific volatilities.

Finally, in the symmetric equilibrium, the following equation relates financiers’ housing risk σ̂∆ to the
fundamental housing risk σ̂ and the level of diversification ∆:

(1−∆)σ̂ = σ̂∆ = idio volatility of unlevered mortgage portfolio.

Thus, I define

∆t := 1− σ̂∆,t/σ̂t

by inverting this relation. The units of ∆t are the fraction of fundamental housing risk that are eliminated
from lender’s portfolios, either through loan sales and securitizations, or through geographic diversification.
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