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Abstract

We solve a Stackelberg game where a large uninformed seller executes optimally, fully cog-
nizant of the response of Cournot-competitive market makers. The game therefore endogenizes
both demand and supply of liquidity. The closed-form solution yields several insights. First,
stealth trading is both privately and socially costly because market makers incur additional cost
not knowing when execution ends. Second, the presence of a large seller does not unambigu-
ously benefit other participants. Market makers benefit only if there is enough risk-absorption
capacity or if the execution period is short. Other investors benefit only when the seller sells at
high enough intensity.
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1 Introduction

The past few decades have seen a gradual rise in intermediated investment in securities markets.
French (2008, Table 1) for example reports that direct holdings of U.S. equity declined from 47.9%
in 1980 to 21.5% in 2007." This has given rise to large institutional investors for whom asset re-
allocations trigger liquidity demands that are large relative to the markets they trade in. Regulators
started to worry about their liquidity-risk management and have taken various initiatives recently.’
This paper studies liquidity in this context. We investigate the optimal execution problem of a
strategic large investor who understands that the market makers who supply liquidity to him op-
timally respond to his strategy. Let us first frame this setting appropriately in the context of the
extant literature on liquidity.’

In a nutshell, liquidity is the market for immediacy. Demanders pay a premium for buying or
selling now. This premium compensates suppliers who enter a costly position to offload it to future
end-user investors. Grossman and Miller (1988), henceforth referred to GMSS, is a classic model
in this literature that offers an economic analysis of the size of this premium. Their model features
two periods and a finite number of (price-taking) market makers.

We generalize the GM88 setting with particular emphasis on time, replacing the two periods by
continuous time. More specifically, the liquidity demander enters at time zero and is (continuously)
present for a finite period of time (in this sense he demands immediacy). In other words, he needs
to be done trading by a time that is private information to him. He enters with an extremely large
sell order, in a sense larger than what the (small) market can supply liquidity for. He therefore
rations the quantity he sells in an optimal way to maximize proceeds. Such optimal execution by
the large seller replaces the exogenous sell order in the first period in GMS88.

In the model, the natural counterparty to the large seller’s trades are end-user buyers who arrive
according to a Poisson process. These random arrivals replace the GM88 buyers who (only) arrive
in the second period. Similar to GM88, there is a finite number of market makers connecting the
large seller with the buyers. Our model additionally features stochastic arrivals of end-user sellers.
Importantly, the quantity that sellers and buyers demand upon arrival depends on the bid and ask
prices posted by market makers.

Contrary to GM88, the market makers in our model are Cournot competitors (not price takers).
They earn an endogenous liquidity premium by, on average, net buying in the period when the

!'The Economist reports an even more dramatic trend with individual-investor ownership of U.S. equity declining
from 90% in 1950 to 30% in 2014. “Reinventing the Deal,” The Economist, Oct 24, 2015.

%In 2016 the Seurities and Exchange Commission (SEC) proposed Rule 22e-4 that requires open-end funds to dis-
close the liquidity risk associated with their holdings (SEC 2016). It triggered significant pushback from the industry
causing delays (see “SEC Tackles Fund Liquidity Complexity with Rule Proposal, Delay, New Guidance,” Reuters,
March 27, 2018). The European Securities and Markets Authority (ESMA) stopped short of any regulatory steps but
instead published guidelines on liquidity stress testing (ESMA 2019).

3Examples of articles surveying the literature are: Madhavan (2000), Vayanos and Wang (2013), and Amihud,
Mendelson, and Pedersen (2005). The most recent literature has focused on high-frequency traders (HFTs) as the
“new” market makers. Surveys of this recent literature include Jones (2013), O’Hara (2015), and Menkveld (2016).



large seller executes and net selling to end users arriving later. They effectively smear out the large
seller’s short-term sells to long-term natural buyers.

The key contribution relative to GMS8S is that liquidity demand is endogenized, in addition
to liquidity supply. To do so in a tractable way, we assume that the large seller is a Stackelberg
leader in the game with market makers. He fixes (and commits to) a constant optimal sell intensity
until his departure.* The innovation is that we solve for the optimal sell intensity where the seller
internalizes the optimal response of market makers.

More generally, we contribute to a large literature where thus far either liquidity demand or
liquidity supply was endogenized, but typically not both.” The following papers are the exceptions.
Vayanos (2001) studies a single uninformed investor who trades strategically. His order size is
unknown to market makers who are price takers. Pritsker (2009) studies strategic trading of agents
who are aware of future trade needs of a distressed seller. Goettler, Parlour, and Rajan (2005)
present a numerical analysis of a limit-order market where agents endogenously decide to post
a limit order (i.e., supply liquidity) or take a limit order (i.e., demand liquidity). Gabaix et al.
(2006) sketches the contours of a model that explains why investor size distribution is more fat
tailed than the optimal order sizes they pick and therefore the price impact distribution. They
explicitly invite others to develop a complete dynamic model (p. 487): “We leave to future research
the important task of modeling the specifics of the cascade that followed the initial impulse.”
(An invitation we gladly accepted.) Choi, Larsen, and Seppi (2018a) add a strategic uninformed
portfolio rebalancer to a Kyle (1985) type setting with a strategic informed investor, noise traders,
and competitive risk-neutral market makers. Finally, Choi, Larsen, and Seppi (2018b) study the
equilibrium interaction between multiple strategic investors with different trading targets but the
same trading duration. In contrast, the strategic agents in our model have different durations as we
focus on the time dimension of liquidity. Rostek and Weretka (2015) consider a dynamic model
of large institutional traders who submit demand schedules mindful of their price impact. Fardeau
(2019) studies equilibria in which such traders anticipate a supply or demand shock.

Our contribution relative to these papers is a fully tractable model that features a large seller
who understands the equilibrium response of strategic market makers. The model yields an en-
dogenous price impact function that includes a bid-ask spread, depth at both the bid and the ask
quote, and price pressure (i.e, the wedge between the midquote and fundamental value) due to
market maker inventory. It is the latter that large investors arguably care much about when they

4This simplification buys us tractability. It is not an innocuous assumption as it excludes, for example, the seller
being able to reduce his sell intensity after observing fewer-than-expected buyer arrivals. Execution at fixed intensity
however seems to occur often in real-world markets where VWAP execution strategies are popular (for a detailed
argument see the end of Section 2.)

SExamples of the former are the optimal execution models of Bertsimas and Lo (1998), Almgren and Chriss
(2001), Huberman and Stanzl (2005), Obizhaeva and Wang (2013), Gatheral and Scheid (2011), Boulatov, Bernhardt,
and Larionov (2016), and van Kervel, Kwan, and Westerholm (2018). Examples of the latter other than GM88 are
Amihud and Mendelson (1980), Ho and Stoll, Hans R. (1981), Weill (2007), Hendershott and Menkveld (2014), Liu
and Wang (2016), and Bank, Ekren, and Muhle-Karbe (2018).



submit repeated buy or sell trades during the execution of a large order.

In addition to contributing academically, we believe that the paper will be of interest to industry
professionals, regulators, and retail investors. Institutional investors are likely to benefit from the
paper’s normative results. How much is one able to trade in a “small market” within a particular
time frame? How does the implied optimal trade intensity depend on market conditions (i.e., the
model’s deep parameters, e.g., the rate of investor arrivals, the size of their liquidity demand, the
number of market makers, or funding costs)? It is for these same reasons that the study should also
interest those who offer optimal execution services such as Goldman Sachs (GSET), BlackRock
(Aladdin), or ITG (ACE).®

The paper’s analytic results on how large orders affect all market participants is of interest
to regulators and retail investors. The effects of large orders on Poisson investors speak to retail
investors’ interests, and to regulators who often have a mandate to protect them. More gener-
ally, the fine description of how all agents are affected by the presence of a large order enables
them to assess market quality, which necessarily concerns all market participants (i.e., welfare).
And, specifically, the paper’s results on “price instabilities” caused by large orders are high on
the agenda of regulators who worry about sizable liquidity costs. The recent SEC regulation on
liquidity risk management requires open-end funds to report “days-to-cash” thus emphasizing the
time dimension of liquidity that is at the heart of our model (SEC 2016).’

Another example is the cover-2 capital requirement regulators set for central counterparties
(CCPs). This requirement forces CCPs to assess the liquidity premium paid for unwinding the
positions that they inherit from two failed accounts. They need to do so in a pre-specified close-out
period.

Results. The model yields several results. First, there is a unique symmetric equilibrium in pure
strategies where intermediaries act as market makers. Note that this result differs markedly from
Brunnermeier and Pedersen (2005) where predatory-trading is the unique equilibrium. We believe
that the key difference between their setting and ours that explains this result is that large sellers’
trades have permanent price impact in their setting, not in ours. This, combined with their assumed
exogenous “transitory price impact” (p. 1831), rules out prices immediately dropping to reflect the
long-term impact in equilibrium. The price decline thus has to be smooth, which explains why in
their setting, predatory trading becomes profitable and, in fact, the unique equilibrium strategy.

®As a matter of fact, ACE is based on an (undisclosed) structural model. Investment Technology Group (ITG)
(2007) explicitly advertises its advantage by stating: “The ITG ACE model is not a purely econometric model cali-
brated based on transaction cost data. Rather, it is a structural model that uses parameters estimated econometrically.”
Grinold and Kahn (1999, Ch. 15) emphasize the importance of a structural dynamic model for transactions cost in
their comprehensive analysis of active portfolio management.

7A by-product of our analysis is the so-called model-implied liquidity surface that graphs an order’s total price
impact as a function of its size and duration. If one fixes the order size and maximum price impact, such surface
shows what the (minimum) duration of the order will have to be (i.e., days-to-cash). See Section 5.2.4 for a detailed
discussion.



In our setting, in contrast, the transitory price impact is endogenous and derived from first
principles. Large orders command a short-term price impact to compensate market makers, but
no long-term price impact as eventually enough buyers will be found (although this could take a
very long time). In such setting, selling together with the large seller initially to prey on his trades
is inherently costly as, in equilibrium, one sells below the fundamental value (i.e., the long-term
price). In sum, the Brunnermeier and Pedersen (2005) setting is one of “stressed” sells where
the position needs to land on finitely many investors in finite time, so that the price has to adjust
permanently. In our setting, investors are in infinite supply albeit spaced out across an (infinitely)
long period.®

Second, stealth trading by the large seller is costly. More precisely, if market makers observe
his sell intensity but do not know when it ends, then the large seller pays a larger liquidity premium.
The counterfactual here is sunshine trading where the large seller reveals when his execution ends.
The larger premium compensates market makers for the uncertainty about how long the directional
flow will last. Our calibration to actively traded stocks shows that this premium can be sizeable
and amount to 4.2% for large-cap stocks.” '°

Third, not only is there a direct cost associated with stealth trading (previous point), there is
also an indirect cost because hiding requires the large seller to use the same trade intensity for
all of his durations (as otherwise market makers learn). Unlike stealth, sunshine trading allows
the large seller to make the intensity depend on duration (we discuss how to think about sunshine
trading in practice at the end of the introduction). And, indeed, solving the model we find that the
optimal intensity differs across durations. More precisely, it strictly decreases in duration. Short
trades execute at high intensity, long trades at low intensity. The calibration shows that this indirect
effect raises net proceeds by another 1.3% so that the direct and indirect effect combined amount
t0 4.2+1.3=5.5%.

Fourth, zooming out of the large seller, do others benefit from the large seller’s presence? Do
market makers benefit? Do end-users benefit? The model yields some non-trivial results. The
presence of a large seller benefits market makers as competition is soft and guaranteed flow is a
source of rents for them. However, this result only holds if the risk-absorption capacity (henceforth
referred to as risk-capacity) of the market is large enough or if the large-seller’s order is of short
enough duration. The risk-capacity condition is met when, for example, market makers are risk

8There exist other studies that, after endogenizing the transitory price impact, find no predatory trading in equi-
librium. Choi, Larsen, and Seppi (2018b) and Pritsker (2009) discuss predatory trading in their setting and either
conjecture it not to be there (former) or find its effect to be small (latter).

9The paper’s main result on sunshine versus stealth goes through if, instead of observing a time limit and deciding
on quantities, the seller would observe a quantity and decide optimally on the duration. However, the endogenous
quantities (prices and sell intensities) would not be analytic thus providing less economic insight. The case where both
size and duration are fixed is uninteresting because it effectively pins down the (average) sell intensity and therefore
leaves little to optimize over for the strategic liquidity demander. We return to this analysis in Section 3.3.

10The large seller is assumed to truthfully reveal his duration in the sunshine trading case. We do not provide a
micro foundation for this assumption, but conjecture that it could be done by extending the model to a repeated game
with appropriate punishment strategies. This however is out of scope here.



tolerant, there are many of them, or if investors arrive frequently. The risk-capacity condition holds
in the calibrated model and the market makers value function is 7.6% higher when there is a large
seller relative to the baseline of no large seller (for the case of sunshine trading).

For other investors the result again is a conditional one. Only if the large seller trades at
sufficiently high intensity do they benefit. The model exposes the channels that lead to this finding.
The presence of a large seller increases the bid-ask spread in equilibrium and causes negative price
pressure. The spread effect hurts investors but the pressure benefits them as they, on average, buy
at depressed prices. If the large seller trades at a high enough intensity, then the pressure effect
dominates. The intuition is that market makers’ position increases rapidly in such case and since
price pressure scales with it, investors enjoy higher subsidies on their net buying. In the calibration,
the large seller trades intensively enough as investors’ realized surplus relative to the baseline is
11.5% higher.

Fifth, we solve a social planner’s problem to gauge how efficient the sunshine equilibrium
is. The solution yields a constrained first-best as we allow the planner to only set prices in the
second stage of the Stackelberg game. We believe that this is the most natural planner problem to
solve since prices can in principle be regulated (e.g., through circuit breakers), but agents’ trade
decisions cannot. In this planner problem, prices turn out to be more responsive to market making
inventories. The reason is that the planner internalizes the benefit that such pressure creates for
investors. As a result, inventories mean-revert more quickly and this reduces the deadweight loss
imposed by market makers carrying inventory. The calibration shows that the social inefficiency
(i.e., the wedge between welfare in sunshine and the planner problem) is relatively small: 1.4%.
An important reason for this is that there are many market makers. A monopoly or duopoly would
cost the market dearly: 24.4% and 11.1%, respectively.

Sunshine trading in practice. Do uninformed investors engage in sunshine trading in practice?
Admati and Pfleiderer (1988) are the first to analyze sunshine trading and find that the portfolio
insurance company of Leland, O’Brien, and Rubinstein was the first to engage in it. Admati and
Pfleiderer, however, consider sunshine trading as pre-announcing a large trade a few hours before
it takes place. When discussing real-world markets, they point out that although sunshine trading
may theoretically be optimal for uninformed traders, regulation strains such practice as it is hard
to distinguish it from “prearranged trading” which is illegal. '

One could argue that this issue has become mute in today’s electronic markets. A large seller
does not need to pre-announce because he can effectively communicate the duration by making
trade intensity depend on duration. By observing the intensity, market participants are able to learn
duration, perfectly so if the relationship is strictly monotonic. This happens to be the case for
optimal execution in the case of sunshine trading where intensity is low for long durations and

"1Schoeneborn and Schied (2009) propose a different rationale for sunshine trading. They argue that it could avoid
costly predation. In their model however, unlike our model or the one proposed by Admati and Pfleiderer (1988),
prices are exogenous functions of order flow.



high for short durations. This negative monotonic relationship appears to supported by evidence
on realized executions (e.g., Zarinelli et al. 2015, Fig. 2 or Brough 2010, Tab. 2.6).

Perhaps the most discriminatory empirical support for our model is the finding in Zarinelli
et al. (2015, Fig. 8) that price pressure subsides before an institutional trader stops executing.
This pattern arises endogenously in the sunshine equilibrium because market makers know when
execution ends and find it optimal to reduce price pressure before this ending time. This pattern is
absent in the stealth trading equilibrium. More importantly, this sets our model apart from other
optimal execution models where liquidity supply is exogenous (hence the term “discriminatory
evidence”).

2 Model primitives

The model primitives capture a setting where a large seller maximizes net proceeds and accounts
for market makers’ equilibrium response to his execution strategy.'> The seller is large in the
sense that he has an unlimited supply of the same security to sell and effectively only faces a
time constraint. Market makers are Cournot competitors who absorb the seller’s flow and resell
to stochastically arriving end-user buyers and sellers. In a nutshell, the seller exerts continuous
pressure on the market makers who only occasionally are able to mean-revert inventory by the
lumpy arrival of end-users. We believe this is a reasonable description of a large order in small
markets.

Before describing the primitives in detail, it is useful to illustrate the environment graphically.
Figure 1 provides such illustration. The top graph depicts trades where the large seller sends a
continuous flow to the market up until d which is his time constraint (red line). End-user investors
arrive at random points in time and trade an amount (black line) that depends on where bid and
ask prices are relative to fundamental value. A buyer, for example, buys more when the bid price
is further below the fundamental.

The middle graph illustrates how the position of market makers evolves with time. As markets
need to clear, their positions equal the negative cumulative net flow from the top graph. Notice
how the market maker position increases linearly due to the continuous net selling by the large
seller until it jumps down when an end-user buyer happens to arrive. Then the market maker
position continues to grow again until it jumps up due to an end-user seller arriving and offloading
inventory.

The bottom graph illustrates the bid and ask price relative to fundamental. The bid and ask
are both skewed downwards from the very start as market makers observe the sell intensity and
respond optimally. The middle of the bid and ask quote, henceforth referred to as the midquote,
becomes pressured downwards. The negative pressure means that if an end-user buyer arrives, then
he demands a large quantity as the low ask makes it relatively cheap to buy. However, an end-user

12The symmetric case of a large buyer can be treated using completely symmetric arguments.
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Figure 1. Model visualization. This figure illustrates the model by plotting a realization of the
various quantities. The top graph plots the (continuous) net flow of the seller as well as discrete
arrivals of buyers and sellers. The middle graph plots market makers’ positions which result from
the net flows in the top graph. The bottom graph plots the bid and ask prices relative to fundamental
value.



seller sells less on arrivals because the low bid quote makes it unattractive to sell. Note that in the
top graph, the trade size of buy orders is larger than what it is for sell orders.

The remainder of this section describes the model primitives in full detail. It requires a sub-
stantial amount of notation. To keep track of it all, Appendix A provides a summary of all notation
used in the paper. The model is set in continuous time, features a single security and three types of
agents: a large seller, N market makers, and stochastically arriving buyers and sellers.

Security. The security’s fundamental (common) value follows a Brownian motion with volatility
o>0:
dm, = odB,. (D)

The fundamental value is common knowledge to all agents in the model and therefore not a source
of asymmetric information.

End-user investors. End-user investors are modeled in reduced form. They consist of either
buyers or sellers. Buyers arrive according to a Poisson process with rate 4. Let N? denote the
cumulative number of buyers arriving in the interval [0, 7]. Upon arrival the quantity they wish to
buy depends on how much the ask price is below their (relative) reservation value w:

q! = q"(p}) = 6 ((m; + w) = (m; + p{)) = 6 (w - pyf), 2)

where the scalar ¢ is the size of their demand at the various price levels and p¢ is the ask quote
minus the fundamental value m;, at time ¢. Without loss of generality, p¢ is defined as the relative
ask quote and, for short, will be referred to as ask quote throughout. This avoids unnecessary
clutter in mathematical expressions. Similarly, p? is defined as bid quote minus m, (and therefore
is expected to be mostly negative).

Sellers are modeled symmetrically. N® denotes the cumulative number of sellers by time ¢
which also follow a Poisson process with rate A. The quantity they wish to sell at the bid is:

@ =g () =6(p! +w). 3)

where —w is the relative reservation value of sellers. The Poisson processes are assumed to be
mutually independent, and independent of the Brownian motion driving the fundamental value
process.

Large seller. The large seller arrives at time zero and submits an order of duration d. He strate-
gically chooses and commits to a deterministic sell intensity f that maximizes his net proceeds.
These proceeds are defined as the trading revenue minus his reservation value, where the relative



reservation value for the large seller is assumed to be —w, thus equal to that of end-user sellers:

d
Pin = [ P pt)ar )
0
The large seller sets the intensity such that net proceeds are maximized:

arg J{naxE [Pa()] (5)

Note that f is unconstrained by assumption as the seller has an infinite supply of the securities. This
is by construction and focuses the analysis on a seller who is truly large relative to the securities
markets he trades in.

Importantly, d is private information to him but it is common knowledge that d is drawn from
an exponential distribution with parameter v (i.e., its mean is 1/v). d therefore is the only source
of asymmetric information in the model. Revelation of this quantity turns out to be a first-order
driver of the equilibrium. We will return to this issue when discussing two types of equilibria in
Section 3.1: “sunshine” and “stealth.” The equivalents of (5) in these two types are (36) and (37),
respectively.

Market makers. The market makers are Cournot competitors who trade in continuous time.
They decide how much to offer at each candidate bid or ask quote. Denote by ¢ = ¢5(p;) the
amount market maker j offers at the ask price p¢ at time ¢. Then the total quantity offered at that
price is Z?’zl q},- Market clearing requires the amount an end-user buyer desires upon arrival to

equal the amount offered to him at the ask price:

N
4= di (©6)
j=1

This market-clearing condition combined with (2) therefore nails the ask price as a function of the
quantities that market makers offer. A similar derivation holds for the bid price and the resulting
expressions for the equilibrium ask and bid price are, respectively:'?

N
a 1 a 1
pl:w——Zqﬂ and pf:ngl}t—w. 7

3Note that the total depth at the ask price is g%. At the bid price the total amount is ¢”. Note that the bid also
contains the amount sold to the large seller but that is a vanishingly small amount (i.e., fdf).

10



These pricing equations relate equilibrium prices to the quantities offered by market makers that is
likely to depend on their inventory state which evolves as follows:
dijy = yeq ot = gL ANP + ¢ AN? 8
0 = Lusay g dt = i dN; + g AN, ®)
where 1,4 is the indicator function that is one when A holds and zero otherwise. The first term cap-
tures the symmetric sharing of the large seller’s flow in the period that the large seller is executing.
A market maker’s wealth changes based on his ability to sell at (ask) prices above fundamental

value or buy at (bid) prices below fundamental values. Wealth is defined as trading revenues
relative to the fundamental. Formally, a market maker’s (gross) wealth therefore evolves as:

1 N . . 1 N f
det = (‘U - 5 Z qnt) qjldN[B - [_w + 5 Z QZt] (q?thtS + l{tsd}ﬁdt) . ©)

n=1 n=1

The disutility of a non-zero position appears explicitly in the market maker’s objective function as
a pecuniary cost that scales with inventory squared. A market maker’s value function can now be
defined explicitly as:

vﬂ” (i, f,1) = sup E [f e P (des - Ul?SdS) |ijt = i] , (10)
t

@’lq

where q{ is shorthand notation for (qc;t, ‘11;;) which contains the quantity sold (at the ask) and pur-

chased (at the bid) by market maker j at time ¢, g~/ denotes the processes of all market makers
except j, and n parameterizes the flow cost associated with non-zero inventory. 7 is a catchall
parameter that, for example, increases in a security’s fundamental volatility (o), in market-maker
risk-aversion, or in funding cost.

A Cournot equilibrium can now be defined as a strategy profile ¢ == (¢', ..., ¢") where each
¢’ solves (10) taking ¢~/ as given. We focus on symmetric strategy profiles only (as is standard in
the literature, e.g., Brunnermeier and Pedersen (2005)). Note that once equilibrium quantities are
solved for, equilibrium prices follow immediately by plugging the quantities into (7).

Finally we assume that if there is a large seller, the market makers immediately observe his
presence in the market. This is admittedly a stark assumption, but supported by recent advances
in technology. After all, it is in the interest of market makers to invest in sophisticated computing
infrastructures so to learn as quickly as they can that the market has entered a period of unbalanced,
directional order flow.

Stackelberg game With all building blocks developed earlier in this section, we can now define
equilibrium formally. It is a Stackelberg equilibrium where the large seller moves first and the
market makers follow by taking the large-seller’s action as input. Formally, the equilibrium is

11



defined as follows.

Definition 1. A Stackelberg equilibrium (g*, f*) consists of a profile of market maker (symmetric)
strategies q* and a trade intensity by the large seller f* such that

1.

Given f*, the strategy profile q* is a Cournot equilibrium for the market maker game in the
second stage as specified in (10).

Given the strategy profile q* and its implied price process, f* maximizes the large seller’s
net proceeds as specified in (5).

In sum, the model features market makers who effectively provide a continuous quote stream, a
large seller who trades at a pre-specified intensity and is constantly in the market for a fixed period
of time, and other investors who arrive in the market at discrete (random) times. We believe that
this setting captures the following salient features of a modern electronic market:

e Market makers can be interpreted to be high-frequency market makers (HFMs, i.e., high-

frequency traders who act as market makers). They invested in technology that enables them
to interact with the market at high speed and to process (public) information almost instantly.
In principle, others could also trade by posting quotes but they are highly likely to be ad-
versely selected on public information by the faster HFMs (see Jovanovic and Menkveld
(2015) and Budish, Cramton, and Shim (2015)). It is further a stylized fact that HFTs pro-
vide nearly half of the best quotes in U.S. equity markets (see, e.g. Brogaard, Hendershott,
and Riordan 2014, Figure 3).

The large seller is unable to send his large (parent) order to the market at once. He therefore
has to stay for a period of time and send a stream of small (child) orders to the market.
He is likely to do so algorithmically. A popular algorithm is the volume-weighted average
price (VWAP), where one aims to trade at the VWAP pertaining in the period during which
the execution occurs. This effectively means trading in a fixed proportion to total volume
throughout the interval. This feature matches the fixed sell intensity in the model if time is
interpreted to run on a volume-clock (as opposed to a wall clock). The idea of securities
markets running in operational time has long been in the literature and re-emerged recently
(Clark 1973, Easley, Lopez de Prado, and O’Hara 2012, Kyle and Obizhaeva 2016).

Finally, other investors whose trade demand is moderate are likely to trade all they want
upon arrival and then leave. We believe this lumpy nature of their trading matches real-
world markets where investors with small orders arrive, trade, and leave.'* This lumpy
nature could be relaxed in the model by taking an appropriate limit (i.e., take arrival rate to

1“One could micro-found large investors trading continuously in an interval versus others who trade a lumpy quan-
tity at once as follows. Suppose there is a fixed cost of setting up an agency algorithm to execute continuously instead
of lump sum. The large investors can amortize such cost over the large quantities they trade whereas others cannot.
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infinity and at the same time reduce their trade desire to zero). The resulting equilibrium is
not necessarily more tractable but, more importantly, it loses the additional price volatility
that lumpy arrivals generate.

3 Equilibrium

In this section we identify equilibria in the Stackelberg game. As the model is solved backwards
we first discuss the second stage where market makers determine their optimal response to the
large seller’s action in the first stage. Given these results, we then discuss the first stage where
the large seller strategically chooses his action knowing how market makers respond in the second
stage.

3.1 Stackelberg second stage: Market-making equilibrium
3.1.1 Baseline case (no large seller)

Proposition 1 (Baseline case: No large seller). In the baseline case there is no large seller. There
is a unique solution to the Stackelberg equilibrium as defined in Definition 1. The equilibrium
quantities are time invariant. They only depend on a market maker’s inventory state i. (Note that
total inventory is Ni as all market makers are symmetric.) The equilibrium bid and ask price
pressures are (expressed in terms of an individual market maker’s inventory i):

pP(i) = Ag — ByNi, (Ask price) (11)
pP(i) = —Ay — ByNi, (Bid price) (12)

and the bid-ask spread therefore is
s(@) = p() — ph(i) = 2Ay, (Bid-ask spread) (13)
Each market maker contributes the following quantity to the ask and bid price, respectively,

q“(i) = Cy + Dy, (Ask quantity) (14)
q"(i) = Cy — Dyi. (Bid quantity) (15)

The value function for a market maker is
(i) = Ey — Foi°. (Value market makers) (16)
where Ay, ..., Fy > 0 are closed-form expressions in the deep parameters collected in 6.

(All proofs of technical results are delegated to Appendix C.)
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Remark 1. Our setup is related to that considered by Hendershott and Menkveld (2014). The main
difference is that, in their discrete-time model, end-user investors arrive continuously and there is
a monopolistic market maker. This leads to different expressions for the bid-ask spread, which in
our setup not only depends on the investor reservation-value parameter w, but also on the discount
parameter 8 and the inventory flow cost parameter n. This is because, in our model, volatility of
inventory is due to the random arrival of investors, whereas in their model it is only driven by their
private-value shocks. In Corollary A1 of Appendix C we show that the setting of Hendershott and
Menkveld (2014) may be obtained as a limiting case of our baseline model by setting N = 1 and
letting the intensity of the Poisson processes go to infinity and their jump size to O.

To generate economic insight, in the following corollary we assume that the number of market
makers tends to infinity. It focuses on some key characteristics of liquidity. These include the
bid-ask spread, total depth at the best bid and ask, and conditional price pressure. The latter is
defined as the extent to which quotes get skewed per unit of aggregate market maker inventory
Ni (Hendershott and Menkveld 2014). This aspect of liquidity is particularly important for large
investors who, through their continued directional trading, push market makers into inventories
and thus push the prices away from fundamental. For example, in the period that a large seller is
executing the average position of market makers increases and quotes therefore become pressured
downwards. This adds to the total execution cost for the large seller.

Corollary 1 (Full competition). The liquidity supplied by market makers yields relatively simple
expressions for the fully competitive case (i.e., N — o). The bid-ask spread becomes

lim p°(i) — Pl = lim 24, =0, a7
the conditional price pressure is
lim By = 22, (18)
W T p
and the total quantities offered become governed by
1\1/11101o NCy = dw, (19)
lim ND, = 25;—;. (20)
If market makers start off with zero inventory (i.e., iy = 0), then one obtains
]\1]1_{130 =0 V>0, (21)
lim v (0) = 0. (22)
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Table 1
Comparative statics bid-ask spread and conditional price pressure

This table summarizes how the bid-ask spread and the conditional price pressure change with the
primitive parameters in the baseline equilibrium. These are based on signing partial derivatives (see
the online appendix). The conditional price pressure is defined as the absolute value of midquote
change per unit of total inventory change (Ni).

Conditional price

Parameter Bid-ask spread pressure (By)

Inventory-holding cost (17) + +
Investor arrival rate (A1) - -
Number of market makers (N) - -
Discount rate (3) - —
Size of liquidity demand (¢) + -
Maximum private value investors (w) + Unchanged

Corollary 1 yields several insights. First, the bid-ask spread disappears when infinitely many
market makers enter. Second, this does not hold for price pressure as market makers continue to
charge non-zero (conditional) price pressure (By). Third, the sum of bid and ask depth 2NCy =
26w) reaches its maximum value.'”

The expression for conditional price pressure By yields some more insight. First, if holding
inventory becomes more costly for market makers (i.e., higher 1), then price pressure increases.
This result is rather intuitive. Second, if market makers care less about the future (i.e., higher )
then price pressure declines. This finding is less trivial. The reason is that S affects the fundamental
trade-off underlying the equilibrium price pressure. The trade-off is spending more money now
to mean-revert out of non-zero inventory (i.e., higher price pressure) against staying longer on
the inventory and suffer the pecuniary costs associated with it (captured by n). If the future is
discounted more, then the trade-off is in favor of spending less now and therefore reducing price
pressure. Note that this effect cushions liquidity deterioration at times of crisis when market makers
much prefer a dollar now over a dollar tomorrow.

Table 1 provides comparative statics on the bid-ask spread and the conditional price pressure.
It serves mostly as a sanity check. It signs the partial derivatives of two key illiquidity measures:

15This result follows from the following two observations. First, from (2) and (3) and the observation in footnote 13
it follows that total depth is:

g +4q, =520 =(pf - p7)). (23)

Second, the bid-ask spread is constrained to be non-negative. It then immediately follows that the maximum value of
the right-hand side of (23) is 20w.
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the bid-ask spread and conditional price pressure. Table 1 indicates that both of these measures
increase (i.e., the market becomes more illiquid) when the costs of holding the security are higher,
fewer investors arrive, or fewer market makers supply liquidity.

The other results in Table 1 are less trivial. First, the market becomes more liquid when the
discount rate increases. The reason is that the discount rate affects the trade-off between more
money now and less disutility in the future. It is intuitive that market makers with a higher beta
prefer to not pay as much money now for reverting to zero inventory, and thus apply lower (con-
ditional) price pressure (see the discussion of Corollary 1 for detailed argument). If the spread
were unchanged, then this would imply spending more time in non-zero states. Market makers,
however, remedy this cost to some extent by lowering the bid-ask spread and thus iterate through
inventory states more quickly. The additional benefit of a lower bid-ask spread is to generate more
traffic, and thus higher instantaneous revenue which the (impatient) higher S types appreciate.

Second, more liquidity demand (i.e., higher 0) affects both measures of liquidity differently. It
raises the spread but reduces conditional price pressure. The latter effect is intuitive because, say, a
10% higher ¢ will raise liquidity demand by 10% at all price levels. As a result, demand becomes
more sensitive to price changes and market makers do not have to skew quotes as much. The bid-
ask spread effect is less clear. Essentially, more demand at all prices gives market makers leeway
to raise prices without giving in on volume (relative to the case of less demand). As competition is
soft, the equilibrium result shows that this is what market makers do. This effect disappears as we
approach a fully competitive market making sector (see Corollary 1). Third, if investors arrive with
higher reservation values (i.e., higher w) then the bid-ask spread increases and conditional price
pressure remains unchanged. This result is not surprising after having discussed the demand-size
effect in the previous paragraph. The spread again rises because market makers compete softly and
manage to squeeze out additional rent from the larger demand surplus. However, the price pressure
remains unchanged because, unlike price sensitivity, raising private values does not change the
sensitivity of net imbalance to price skews. Raising w adds an equal amount of securities from the
buy and sell side, and therefore does not affect net imbalance.

3.1.2 Large seller, sunshine trading (‘I:I‘)

Proposition 2 (Sunshine trading: Large seller). When there is a large seller who sells at constant
intensity f = f* from t = 0 until t = d and this is common knowledge (i.e., sunshine trading)
then the results developed in Proposition | change in the following ways. The equilibrium remains
unique but the quantities are no longer time invariant. They depend on time (t) and market maker’s
inventory (i). (Note that total inventory is Ni as all market makers are symmetric.) The equilibrium
bid and ask price pressures are (expressed in terms of an individual market maker’s inventory i):

PG 1) = i) = e f (G (d = 1), (Ask price) (24)
PG 0 = pPG) = Lusarf (G5 (d =) + H), (Bid price) (25)
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where p® (i) and p® (i) are the ask and bid quotes in the baseline case (Proposition I). G? (1) is
zero for T = 0 and strictly increasing in T, and H;‘ is a positive constant. Therefore, the bid-ask
spread is

sﬁ(i, f,0) =s0)+ 1{,§d}fH§, (Bid-ask spread) (26)

where s(i) is the bid-ask spread in the baseline case. Each market maker contributes the following
quantity to the ask and bid price, respectively,

s

¢ 10 = 40 + Lz f 57 (G5 (d = 1), (Ask quantity) 27)
s

@G fo D) = @G = Lyea) 5 (G5 @d -0+ Hy). (Bid quantity) (28)

The value function for a market maker is
VG fu0) = VM) + Lea (I (d = 1. 0) + £ (d = 1)), (Val. mkt makers) (29)

where If(r, f) =0fort=0o0r f =0 and convex in f, and Jf(T) = 0 for T = 0 and strictly
decreases in T.

Proposition 2 presents the equilibrium outcome in case a large seller arrives in the market at
time zero, and sells at constant intensity f until d where the latter is common knowledge. We refer
to this equilibrium as sunshine trading because d is known to all agents. It is useful to compare
this equilibrium to the baseline one without a large seller. Such comparison yields the following
insights which are all statements conditional on inventory being equal to i. First, the bid and ask
prices are skewed downwards by an amount that is larger the further ¢ is from duration d. The ask
price smoothly converges to the corresponding value in the baseline case as ¢ approaches d. The
bid price, however, jumps up at time d by an amount equal to Hf > 0. This sudden change in the
bid price suggests that soft competition pulls non-zero rents from the large seller who consumes
the bid while liquidating.

Second, the bid-ask spread is higher during the period the large seller is liquidating. The
differential equals the amount by which the bid quote experiences additional pressure relative to
the ask quote (i.e., Hj*).

Third, the depth at the bid and ask prices stays unchanged after d, i.e, after the large seller has
left the market, but not before. During the liquidation period, there is more depth at the ask and
less depth at the bid relative to the baseline case. This arguably reflects market makers’ desire to
sell more to end-user investors (at the ask) and buy less from them (at the bid) when the large seller
is present. They anticipate that the large seller is selling in the time remaining until d, and therefore
compensate by accommodating positive net volume now.

Fourth, all else equal, the presence of a large seller has a non-trivial effect on a market maker’s
value. The difference in value function between the baseline and sunshine case consists of two
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terms: an (inventory) state-dependent term (f J§ (d —1)i) and a constant term If(d —t,f). The
state-dependent term captures the benefit of being short as a market maker while the large seller is
executing (i.e., Jf (1) < 0 for 7 > 0). In other words, it is good to be in a state where the inventory
reverts back to zero even without applying costly price pressure.

The state-independent term I:f(d — t, f) equals the difference in value between baseline and
sunshine when inventory is zero. This expression therefore captures whether market makers who
start off on a zero inventory are better off with or without the large seller (i.e., IZf(d — 1, f) positive
or negative, respectively). It turns out that the sign of [5‘ (d —t, f) critically depends on the duration
of the large seller’s presence (d) and a “risk-capacity condition,” as summarized in the following
lemma.

Lemma 1 (Market maker value sunshine trading). Market makers benefit from the presence of a
large seller for any given large-seller liquidation intensity (f) if

e cither the risk-bearing capacity of the market is sufficiently high (i.e, condition (A2) in Ap-
pendix C holds which is the case if the inventory-holding cost (1) is low enough, or there are
sufficiently many market makers (N), or if the investor arrival rate (1) is high enough),

e or the duration of the large-seller’s presence is short.

Lemma | suggests that market makers benefit from the large seller’s presence unless conditions
are truly adversarial: low risk-bearing capacity and a long-lasting sell order. The exact conditions
are somewhat involved and have therefore been relegated to the proof of the lemma in the appendix.
The analysis thus far suggests the following trade-off. The large-seller’s presence guarantees sell
traffic which enables the market makers to generate some rents off of bid side by skewing the bid
more than they otherwise would have done (i.e., the H;"’t term in (25)). The cost of this traffic is
that they need to hold on costly inventory for longer, in particular when the directionality in the
order flow lasts for a long time. This explains why for low enough risk-bearing capacity and long
enough duration market makers are worse off when there is a large seller.'°

Finally, the equilibrium yields tractable expressions for the expected path of the market maker
inventory and, relatedly, the expected bid and ask price paths. The following lemmas capture the
insights that these expressions yield.

Lemma 2 (Expected market maker inventory path). The expected inventory of market makers
e strictly increases in time while the large seller is executing,
e is homogeneous of degree one in the large seller’s trade intensity,

o exhibits exponential decay towards zero after the seller disappears.

16These results might be somewhat counter-intuitive for the monopolist middleman case. Why does he not always
benefit from the addition of a very hungry customer to his regular customer base? The reason is that this hungry
customer is the first mover in the game and therefore has market power.
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Lemma 2 shows that market maker inventory gradually increases while the large seller executes
and decays to zero exponentially after the large seller is done executing. Interestingly, if the large
seller doubles his intensity then expected inventories are twice as high. These expected inventory
paths are then used to characterize prices that are linear in inventory resulting in the following
lemma.

Lemma 3 (Expected bid and ask price paths). The expected bid and ask price paths fort < d
o jump down at t = 0 (relative to the steady state in the baseline case),
® qre convex int,
e strictly decline initially,
e and potentially increase in t provided d is large enough.
For t > d the price paths
e are concave in t and
e strictly increase in t.

Lemma 3 characterizes expected price paths and shows that prices start off being pressured
downwards and become more pressured at least initially. They, however, might start to show less
pressure before the large seller leaves the market. Such easing of price pressure is in line with the
empirical evidence provided by Zarinelli et al. (2015, Fig. 8). If the large seller is about to stop
selling, then market makers reduce the subsidy they effectively hand out to end-user investors by
applying price pressure.

3.1.3 Large seller, stealth trading (&)

Proposition 3 (Stealth trading: Large seller). When there is a large seller who sells at constant
intensity f = f~ from t = 0 until t = d where d is unknown to market makers (i.e., stealth trading)
then the results developed in Proposition 1 change in the following ways. The equilibrium remains
unique with bid and ask price pressures for each market maker equal to

PG o0 = pU) = Luza f (G5, (Ask price) (30)
PG, £0) = pPG) = Ly f (G5 + Hy). (Bid price) (31)
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where p® (i) and p® (i) are the ask and bid quotes in the baseline case (Proposition 1) and Hf isa
positive constant (featured also in Proposition 2). The associated quantities are

40 = 60D+ Lz f 3 (G (Ask quantity) (32)
4G, f,0=q"() - 1usd}f% (G + Hy), (Bid quantity) (33)
and the bid-ask spread therefore is
s, f,1) = sG) + Lyearf Hy = 57, £ 1). (Bid-ask spread) (34)
The value function for a market maker is
v £ = VG + Lyeq (I (F) + fI50), (Value market makers) (35)

where I;(f) = 0 for f = 0 and convex in f, and J; < 0.

The stealth equilibrium characterized in Proposition 3 is very similar to the sunshine equilib-
rium of Proposition 2. The differences generate insight in what opacity does to the market. First,
note that all quantities become time invariant as in the baseline equilibrium. This is required as it
guarantees that market makers are unable to learn the duration of the large seller’s order. At time ¢
the future is either unchanged relative to an instant ago (¢ — dr) if the large seller is still trading, or
it switches to the baseline-case future if the large seller just stopped trading.

Second, the bid and ask prices both jump to the corresponding quantities in the baseline case
at the moment the large seller stops trading. In the sunshine equilibrium the transitions are smooth
as the G term decays to zero with time progressing towards d (cf. (24) and (25)). In the stealth
equilibrium, instead, the term G is a constant which causes both prices to jump.

Third, similar to sunshine, market makers bid conservatively during the liquidation period and
this causes an extra skew to the bid relative to the ask. As discussed in Section 3.1.2, we believe
this effect reflects market power exercised by market makers in the presence of guaranteed selling.
Interestingly, the size of the extra skew is equal across both equilibria (Hj‘ ). Coincidentally, this is
why in sunshine unlike the ask price, the bid price jumps at the time the seller disappears from the
market.

Fourth, the bid-ask spread in stealth equals the spread in sunshine. In both equilibria the spread
is elevated during the liquidation period. The increase is entirely driven by the additional skew in
bid prices. The differential in equilibrium prices across stealth and sunshine is therefore entirely
driven by the price pressure captured by G, not by the spread.

Fifth, comparing market maker value in the stealth case with the baseline case of no large seller
yields similar insights as in the sunshine versus baseline case. The only salient difference is that
the time that remains until the large seller leaves is no longer a state variable for the simple reason
that a market maker does not know it in stealth trading. For example, the coefficient J° in the
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value differential across stealth and baseline does not depend on (d — ¢). It however varies with
other parameters in the same way as J;" (d — 1) does. The same observation holds for /;> and the
equivalent of Lemma 1 for stealth only features the risk-capacity condition. More specifically, the
presence of a large seller benefits a market maker only when risk-bearing capacity is large enough
(see Lemma 8 in Appendix B).

The broader question is whether market makers prefer stealth over sunshine. To judge whether
they do, one would compare the value functions in the two trading regimes, given respectively
in (35) and (29). Unfortunately, the differential is intractable. We will revisit this question after
endogenizing the large-seller’s trading. It turns out that then the differential becomes tractable in
the case of full market making competition (i.e., N — o0).!’

Just as in sunshine, the expected inventory path can be characterized analytically. The result is
similar and stated as Lemma 9 in the appendix. The more interesting result is on expected price
paths which differ across sunshine and stealth. Before discussing the difference we state the result
for stealth in the following lemma.

Lemma 4 (Expected bid and ask price paths). The expected bid and ask price paths fort < d
e jump down att =0,
e are convex in t, and
e strictly decline in t.
For t > d the price paths
e are concave in t and
e strictly increase in t.

Lemma 4 characterizes expected price paths and shows that prices start off being pressured
downwards and become more pressured during the liquidation period. Note that contrary to sun-
shine trading, price pressure never subsides before the large seller leaves the market. With stealth
trading market makers are unable to forecast when the seller leaves the market and it is therefore
optimal for them not to relinquish pressure. Not having seen the large seller leave in the last instant
leaves the market makers’ assessment of future probabilities of the large seller disappearing un-
changed. This finding therefore sets stealth trading apart from sunshine trading. The evidence cited
in Section 3.1.2 of pressure subsiding before the large seller leaves the market therefore suggests
sunshine trading is the more likely equilibrium pertaining in real-world markets.

"The result is stated as Lemma 6.
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3.2 Stackelberg first stage: Strategic large seller

Having solved the second stage of the game, we now turn to the first stage. The large seller’s
objective is to maximize the proceeds of selling net of his reservation value as specified in (4). He
understands what market makers’ optimal response is to any level of sell intensity he considers.
This response drives the (endogenous) bid price process (b,). In the case of sunshine trading, he
sets the intensity such that net proceeds are maximized:

F4(d) = argmaxv**(f) := arg maxE [P4(f)|d revealed] . (36)
f f

In the case of stealth trading the large seller cannot condition his sell intensity on d (as other-
wise market makers learn). Hence, he takes the expectation with respect to d and picks the intensity
as follows:

= = argmax v’ =(f) := arg max foo E[Py(f)] ve ™ ds. (37)
f f 0

The optimal intensities are derived in closed-form. The exact expressions appear in the proof
of the following lemma that characterizes them.

Lemma 5 (Optimal liquidation intensity). Let f*(d) and f= denote the optimal liquidation inten-
sity of the large seller in the first stage of the Stackelberg game, then

o f*(d) is continuous and strictly decreasing in d and
e the stealth intensity is wedged between the lowest and highest sunshine intensity:

NoéAw
<

0 < lim ) < £ < £70) = — <. (38)

With the optimal intensities, we can now compare the net proceeds across sunshine and stealth
trading. This leads to this section’s signature result stated in the following proposition.

Proposition 4 (Stealth or sunshine). The expected proceeds for the large seller are strictly larger
for the sunshine equilibrium as compared to the stealth equilibrium. This is not due to the large
seller’s ability to condition his optimal sell intensity on d as the inequality continues to hold if he
is forced to trade at the optimal stealth intensity for all d. Formally, this result is described as

E P4 (f"(d))Id revealed| >E [Py (f*)|d revealed) > E [Py (f*)|d hidden], (39)

Net proceeds sunshine Net proceeds stealth

where P denotes the net proceeds for the large seller (i.e., net of his reservation value).

Proposition 4 finds that the large seller is strictly better off when the duration of his trading is
revealed. This is not solely due to his ability to condition the sell intensity on duration. The reason
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is that even if he picks the optimal stealth intensity, then his net proceeds are higher if duration is
revealed. The differentials however decline to zero when the number of market makers is taken to
infinity as stated in Lemma 6.

The surprising and powerful part of the proposition’s result is that the large seller benefits from
revelation of d. That such information benefits a market maker is intuitive as it enables him to fine-
tune his price policy. The non-trivial result is that the large seller benefits as well. This does not
rely on market makers passing on the benefits due to competition per se. This result persists even
in the monopolistic case (i.e., N = 1).!®

Lemma 6 (Sunshine vs. stealth on full competition). If the number of market makers is taken to
infinity, then

e in the baseline case the value function of a single market maker converges to

M Mo
1\1]1_{1010 v (i) = ﬁl , (40)
e in stealth it converges to
1 2
. . no, w
lim v/ (i, f~,0) = —=i* + [ 5 ) Lit<ays (41)
o B AP A + o

and the ask and bid price pressures for each market maker equal to

ass 77 by 77 w
Py = 200, phy = —2Ti- —L 1
B B 2+ g5

e and for sunshine we have

2

1 w 1 — ePld=D
lim v (i, f(d), 1) = 22 + — Lpcapy  (42)
N—ooo ( ) ﬁ é‘/l 41(1_6/5{1)_’_% B {t<d}

and the ask and bid price pressures for each market maker equal to

. n. by n. w
pii)=-2=i, p’(i)=-2=i—- Li<ay-
4520 sd
B B 2+ o (l—eﬁd_l)
18Coincidentally, this effect explains why a client willingly discloses how long his trade duration is when negotiating
a deal with a sell-side broker who would act as a market maker accommodating his flow. Such transaction is referred

to as a “principal bid transaction.”
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Note that in the baseline case, market maker value for a zero inventory position converges to zero
whereas it remains strictly positive for sunshine and stealth.

Lemma 6 finds that sunshine strictly dominates stealth for market makers even under full com-
petition (i.e., N — o0). This result is based on a comparison of their value function on a zero
inventory position, where for sunshine the large-seller order duration is integrated out. The lemma
further shows that, under full competition, market maker value (again assuming to start with zero
inventory) is zero in the baseline case of no large seller. If there is such large seller, then irre-
spective of sunshine or stealth trading, market maker value remains strictly positive under full
competition. This result is surprising and illustrates the importance of having endogeneized both
sides of liquidity as stated in the following corollary:

Corollary 2 (Endogenous liquidity demand has bite). Liquidity-demand endogeneity is the root
cause for market makers earning positive rents under full competition in the presence of a large
seller (see Lemma 6). That is, this result vanishes when the execution intensity of the large seller
is fixed at an exogenous level, say f¢(d) (now independent of N). We then fall back to the baseline
result of no rents for a single market maker under full competition (see also (40)):

Tim v (i, f(d), 1) = —giz. (43)

The intuition for the corollary’s result is that the large seller raises his execution intensity to
infinity when the number of market makers tends to infinity. This happens in such a way that
the per-capita intensity (i.e., execution intensity divided by the sum of market-maker intensities)
remains finite (see Lemma 12 and 13 in Appendix C). This in effect creates space for market
makers to retain positive rents."”

Finally, we establish the intuitive result that the large-seller’s participation rate decreases in d
for the sunshine case. This is to be expected as his optimal sell intensity decreases in d. It never-
theless requires work to be shown because investor volume is endogenous and depends on market
makers’ optimal response to the liquidation intensity under sunshine trading. Despite the expected
participation rate cannot be solved in closed-form, we can solve explicitly for the expected recip-
rocal of the large-seller’s participation rate. We state the result in the following lemma.

Lemma 7 (Reciprocal of large-seller participation rate). The expected reciprocal of the large-seller
participation rate in the interval he trades in strictly increases with d and is given by:

( Volume 44)

mld) =Ko+ Ly

L
f@y

19To understand why the large seller rations his intensity this way, consider the case where the per-capita rate would
tend to infinity. Then the inventory of each market maker would explode and bid pressures would diverge to infinity.
But if this were the case, the large seller would not sell because bids would be below his relative reservation value

(—w).
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where “Volume” is total volume from t = O until t = d (including both large-seller and investor
trades with market makers).

Lemma 7 finds that the expected reciprocal of the large-seller’s participation rate strictly in-
creases in d. This suggests that the expected large-seller’s participation rate decreases in d. This is
in line with the empirical evidence on large-order executions (Zarinelli et al. 2015, Fig. 2). More
importantly, it makes the sunshine equilibrium easier to implement in real-world markets. The
large-seller does not need to reveal his duration as market makers infer it from the strength of di-
rectionality in order flow. This lends further credibility to the equilibrium as explaining empirical
patterns (because large sellers do not literally announce d to all market makers).

3.3 Robustness

The larger seller still prefers sunshine over stealth, even if he were to start with a given quantity and
optimally decide on the sell intensity. We formally show the result in Lemma 14, where we make
the assumption that the exogenous quantity to be liquidated is also exponentially distributed. The
intuition behind the result comes from the observation that size equals intensity times duration.
Hence, for a fixed intensity, an exponentially distributed size implies that duration is also exponen-
tially distributed (albeit with a different parameter). The conclusion that revealing information on
size is preferable than hiding it for the large seller follows from previous analysis: for a fixed sell
intensity, integrating over the size probability density is equivalent (up to a change of variables) to
integrating over the duration probability density. But, we have already shown that sunshine dom-
inates stealth trading when duration is private information because it allows the market maker to
adjust prices based on duration, and hence lower the liquidation impact.

4 Welfare

In this section we study the welfare effects of the large seller’s presence and his decisions. The
effect of the seller on market makers was already analyzed in Proposition 2 and the corresponding
discussion. Next, it remains to analyze how it affects other investors. Section 4.1 presents such
analysis for both sunshine and stealth trading. To assess the (social) inefficiency of sunshine trad-
ing, Section 4.2 compares its outcome to the corresponding outcome when a social planner sets
prices.

4.1 Large-seller’s effect on end-user investors

The next proposition describes under what conditions the presence of a large seller benefits end-
user investors. Such assessment requires defining what the value of trading is to investors. A
natural definition is to set it equal to the expected realized surplus of all future investors, discounted
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appropriately, assuming market makers start off on a zero inventory. Mathematically, this definition
is:

« 1 1
v =E [f e (56 (w - p?)* dN? + Eé(a) + pf)2 de) lijo = O] : (45)
0

Proposition S (Large-seller’s effect on end-user investors). The presence of a large seller has a
non-trivial effect on end-user investors. For both sunshine and stealth trading realized end-user
investor surplus is convex in f. In particular, there is a threshold f such that

e end-user investors are strictly worse for f < f,
e equally well off when f = f, and
o strictly better off when f > f.

Proposition 5 summarizes how the presence of a large seller affects end-user investors. It turns
out that the effect depends on how aggressively the large seller executes. For low sell intensities
investors are worse off whereas for high intensities they are better off. This is due to the interplay of
two effects. Proposition 2 and 3 show that for both sunshine and stealth, respectively, the presence
of a large seller raises the spread and increases price pressure. The former results hurts investors
whereas the latter benefits them. Market makers skewing quotes essentially means that they hand
out a subsidy to arriving end-user investors to mean-revert their inventory.

The intuition for investors only benefiting from the large seller’s presence in case the seller
trades at high enough intensity is based on a trade-off. The seller’s presence causes the bid-ask
spread to be larger but pressures prices downwards relative to fundamental value. The spread
effect hurts investors, the pressure effect benefits them as they are net buyers in this period.

How does the size of the two effects depend on the large seller’s trade intensity? The increase
in the bid-ask spread scales linearly with the seller’s trade intensity by the same amount in sunshine
and stealth (i.e., by Hf f, see Proposition 2 and 3). The conditional price pressure is unaffected by
the large seller’s presence and amounts to ByN in all three cases: baseline, sunshine, and stealth (see
Proposition 1 through 3). Yet, more intense selling implies that market makers hold more inventory
which causes prices to become pressured more. This effect is super-linear given that increasing the
sell intensity by a unit per dr adds price pressure contemporaneously, but also in the future given
that inventory needs to mean-revert. The spread cost being linear in the seller’s intensity and the
pressure-benefit being super-linear explains that there is a threshold seller intensity beyond which
investors benefit from the large seller’s presence.

4.2 Social inefficiency

To judge social inefficiency we study a constrained first-best where a social planner sets bid and ask
prices. This case, we believe, is most interesting as a regulator has some control over prices>’, but

20For example, some markets feature circuit breakers to dampen sudden strong price changes.
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cannot control trade decisions of investors. More specifically, this constrained first-best features
a planner who sums the discounted net proceeds of the large seller (see (4)), the discounted gross
earnings minus inventory cost of the market makers (see (10)), and the discounted realized surplus
of investors (see (45)). The planner maximizes this welfare over the set of price policies that he
could implement in the second stage of the Stackelberg game. Note that, although the planner only
controls prices in the second stage, for each price policy he considers he needs to solve the large
seller’s optimal response in the first-stage to compute the implied welfare.”!

Note that we rule out a trivial solution where the planner effectively also sets the large seller’s
liquidation intensity.

The planner problem can be solved analytically and the following proposition summarizes the
results when compared to the sunshine and stealth equilibrium described in Proposition 2 and 3,
respectively.

Proposition 6 (Social-planner solution). If instead of the market makers, a social planner sets
prices then the Stackelberg equilibrium changes in the following ways both compared to sunshine
and to stealth:

e The bid-ask spread is strictly lower.

o The spread is no longer elevated in the liquidation period. It becomes a liquidation-invariant
constant.

o [n the sunshine case, the large-seller trades at higher intensity for short durations. In fact,
rather than being finite the limit intensity is infinite when the seller’s duration d is taken to
zero:

: Planner _
1% Vi (d) = . (46)

Proposition 6 yields several insights. First, the planner’s solution exhibits a lower bid-ask
spread. This demonstrates that market makers exercise market power when setting bid and ask
prices. Second, the elevated spread in the liquidation period due to an additional skew on the bid
price is gone in the planner’s equilibrium. As discussed earlier, this shows that the skew is again
due to market maker power at a time when the large seller is present in the market. Third, the
large seller optimally sheds more of his position in the sunshine case, at least for short durations.
The externality that arguably drives this result is that market makers apply too little price pressure
and therefore stay on high inventory levels for too long. The planner internalizes the benefit that
such price pressure generates for end-user investors as they pocket the subsidy. The planner will

21 An alternative social-planner setup would have the planner control both prices and the large seller liquidation
intensity. The planner could even implement such solution with only control over prices in the second stage. That is,
he could threaten to set the bid at large seller’s reservation value (i.e., —w) if the seller deviates from the intensity that
the planner deems optimal. Such threat however would be time-inconsistent as the planner would change his mind
when the seller picks an intensity different from what the planner prescribes (and commits to it).
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therefore happily accommodate more of the large-seller flow at least in the short term. It is simply
less costly for the planner to mean-revert out of it.

5 Calibration

5.1 Calibration procedure

The calibration procedure picks the seven model parameters to match equally many real-world
variables for the baseline case where time is measured in days:

o B =-10g(0.9998): In their discrete-time model, Hendershott and Menkveld (2014) set the
daily discount rate equal to 0.9998. The continuous-time analogue is the negative of the log.

e v = 5: The mean duration of large orders according to Zarinelli et al. (2015) is approximately
0.2 days. The mean of the exponential distribution is 1/v and we therefore set v equal to five.

e N = 10: We believe a natural real-world equivalent of the model’s market makers are high-
frequency traders. Therefore the number of market makers was set to ten based on Scandi-
navian equity trading on Nasdag-OMX.>

e The remaining four parameters are based on Menkveld (2013) who analyzed trading by one
large high-frequency market maker for a 2007-2008 sample of Dutch blue chip equities.
Its particular appeal is that it contains estimates of the conditional price pressure.”” The
calibration focuses on afternoon trading in large-cap stocks.

— A = 791: The arrival rate of end-user investors needs to match the observed 1582 trades
per day (Menkveld 2013, Table 1). The model-implied expected arrivals per day is 24
(i.e., buyers and sellers added up).

— 1= 0.14 bps/€1000, 6 = €11,289/bps, and w = 13.6 bps where “bps” is basis points:
These parameters are set at values to match the following three variables: Bid-ask
spread (3.2 bps), conditional price pressure (0.026 bps/€1000), and the standard de-
viation of inventory (€80,300) (Menkveld 2013, Table 1 and 7). The three parameter
solve a system of three equations with three unknowns which has a unique solution.

22«Europe’s Top 10 High-Frequency Kingmakers (in Scandinavia, at Least),” Financial News, 2014.

B1n this period, we believe it is reasonable to assume that there were ten market makers in the model (see earlier
point). Unfortunately, Menkveld (2013) presents detailed trade results for only one of them who happened to be
(temporarily) large in the sample. We interpret this HFT as being under strong competitive threat. We caution that the
calibration only serves to find “reasonable” parameters. Estimation of the model is beyond reach as it requires detailed
HFT data that is not available to us. We leave that for future research.
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5.2 Calibration results

This subsection uses the calibrated model to illustrate various properties of the equilibria analyzed
thus far. The calibration further allows us to get a sense of the economic magnitude of various
effects for a sample of plain-vanilla actively traded stocks. The various subsections focus on the
sunshine equilibrium that we believe best matches real-world trading of large sellers. As first dis-
cussed in the introduction, it matches two empirical properties that the stealth equilibrium cannot
match: a negative correlation of the seller’s trade intensity and his duration and the price pressure
subsiding before a large seller finished trading (suggesting that market makers have some ability to
predict the seller’s trading is about to end). The subsections compare sunshine to stealth (5.2.1), to
baseline (without large seller, 5.2.2), and to constrained first-best (5.2.3). In a final subsection plot
what the calibration-implied version is of the volatility surface which is widely used in industry.

5.2.1 Sunshine versus stealth

Figure 2 illustrates the large seller’s optimal sell intensity in the Stackelberg game for both sunshine
and stealth trading. The top graph plots the sell intensity as a function of trade duration. This
duration is exponentially distributed with a mean equal to one fifth of a trading day (i.e., v = 5).
The top plots leads to a couple of observations. First, in the case of stealth trading the large seller
cannot condition on his duration draw (to sustain opaqueness) and optimally trades at a duration-
invariant intensity of €105 million per day.

Second, in sunshine the seller tends to trade at a much higher intensity in particular for rela-
tively short orders. For example, orders that last less than 5% of a trading day which is approx-
imately 5% X 8 hours = 24 minutes trade at least at 50% higher intensity. This is a non-trivial
set of orders as duration draws less than 5% carry a probability of (1 - e‘5X°'05) = 0.22. The sell
intensity grows to its upper bound of Nodw/2 = 10 X €11,289 /bps X 791 /day x 13.6 bps =
€1.21 billion/day for vanishingly small duration draws (see Lemma 5).

Third, for orders longer than 5% the sell intensities in sunshine and stealth are of equal mag-
nitude. The sunshine intensity is slightly higher for durations shorter than 60%, and slightly lower
for longer durations.

The bottom plot of Figure 2 illustrates the additional net proceeds the large seller gets in sun-
shine relative to stealth. The differential is hump shaped and peaks at a approximately 2.5% dura-
tion (where P (d < 2.5%) = 0.12). At that point the discounted expected net proceeds are €1,100
higher in sunshine. For larger durations this differential drops and seems to asymptote to €800.

The expected benefit of sunshine over stealth is 5.5%. This expectation involves integrating
out d in the expression for discounted net proceeds. 4.2% of this 5.5% benefit is due to switching
to sunshine trading per se (i.e., keeping the liquidation intensity fixed). The remaining 1.3% is due
to the ability to condition selling intensity on duration.

Further calculation reveals that the sunshine not only benefits the large seller, it also benefits
market makers and end-user investors. The value increase for them are smaller in absolute terms
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Figure 2. Calibrated model visualization. This figure illustrates the large seller’s optimal trading
strategy in the calibrated model where the market makers start off on a zero inventory. The top
graphs shows, both for the sunshine and stealth case, what the optimal sell intensity is as a function
of the seller’s trade duration. The bottom graph plots the differential in expected discounted net
liquidation proceeds across the two cases (i.e., sunshine minus stealth).
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than what it is for the large seller, but larger in relative terms. Market maker value’s increase
relative to the baseline is 7.6% higher for sunshine and investor value’s increase relative to the
baseline increases is 11.5% higher for sunshine.

Figure 3 characterizes trading when the large seller draws d = 0.2 (i.e., the mean duration).
It mirrors Figure 1 but rather than a single realization, it plots the expected quantities given the
calibrated parameters. In the top graph, for example, discrete end-user arrivals become smooth
end-investor trade intensities based on their expected arrival rate. In all graphs, the solid lines
illustrate the sunshine equilibrium whereas the dashed lines illustrate the corresponding stealth
trade equilibrium.

The figure merits a few comments. First, the top graph illustrates that, for this average duration,
the large seller trades more intensively in sunshine. This underlines one of the paper’s key mes-
sages that transparency benefits the large seller which enables him to sell more (see Proposition 4).
Note however that the illustration is for a mean draw of duration and therefore pertains to “average
trading.” For extremely large duration, the large seller trades less intensively which a stealth seller
cannot do without revealing his duration (see discussion following Proposition 3).

Second, perhaps the most salient feature of the figure is the wedge between the inventory
market makers collectively take on in the sunshine and the stealth equilibrium. In the case of stealth
trading, inventories grow explosively right from the start and seem to asymptotically approximate
€60,000. For sunshine, instead, inventories grow slowly towards approximately €200,000.

Clearly, market makers in stealth banked on a left-tail draw when quickly taking on inventory.
This is expected given that the exponential distribution is left skewed. However, by the time
10% of the trading day has passed, market makers learned that it was not a short-duration order
and effectively stop taking on directional flow. Under sunshine, instead, they continue to take on
inventory, notably at progressively faster rate, until the order ends at 20% of the trading day. The
difference is significant as, by the time the large seller stops trading, market makers have taken
on an approximately three times larger position and thus effectively supplied more liquidity to the
large seller. This result illustrates that duration-opacity can cost the large seller dearly.

Third, echoing the previous point, the price patterns in the bottom graph illustrate that, for a
mean duration draw, initially “stealth market makers” skew quotes less than sunshine market mak-
ers but eventually skew quotes more. The top graph shows that, as a result, the expected volume
traded by buyers is lower initially but higher eventually when comparing stealth to sunshine. End-
user seller’s expected traded volume shows the opposite pattern, i.e., higher initially and lower
eventually. The net end-user expected buy volume therefore is lower initially for stealth but higher
eventually. This explains the market maker inventory patterns discussed in the previous point.

Fourth, the figure illustrates that for these calibrated parameters, the equilibrium prices render
an aggressive preying strategy unprofitable. A natural candidate would be to sell a unit initially
along with the large seller and turn around eventually to buy a unit at depressed prices. The
midquote does slide initially, suggesting that such a strategy might be a worthwhile deviation
strategy for a single market maker. Two features, however, make the strategy unprofitable. First,
prices jump down at the moment the large seller starts executing. It is therefore impossible to sell
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Figure 3. Calibrated model visualization. This figure illustrates the model by plotting the mean
of various model variables based on the calibration. The top graph plots the (continuous) net flow
of the seller as well as the mean arrival rate of buyers and sellers. The middle graph plots market
makers’ inventory which result from the net flows in the top graph (assuming they start off at zero
inventory). The bottom graph plots the bid and ask prices relative to fundamental value.
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Figure 4. The optimal sunshine liquidation intensities in sunshine (solid) and constrained first-best
(dashed). The intensities are based on the calibrated model where market makers start off on a zero
inventory.

at the baseline-case bid that prevailed just before the large seller starts executing. Second, the size
of the bid-ask spread dominates the slide in midquote. That is, the revenue generated from selling
at the bid initially is smaller than the cost of buying at the ask eventually. In other words, the lowest
ask is higher than the highest bid throughout the large-seller’s trading period.

5.2.2 Sunshine versus baseline

How the presence of a large seller benefits the various types of agents can be learned from com-
paring the sunshine case to the baseline case that does not feature a large seller. Such comparison
leads to several observations. First, the seller’s presence benefits both market makers and end-user
investors but the effect is negligible. A market maker’s value increase is 0.40 basis point whereas
the investors’ value increases by 0.05 basis points.

Comparative statics analysis shows that this result is robust. For investors, either doubling the
number of market makers or reducing them to a single one, or changing inventory-holding cost by
a factor 10,000 does not change the result (i.e., investors remain better off in the presence of a large
seller).

5.2.3 Sunshine versus constrained first-best

Finally, comparing the sunshine equilibrium to the constrained first-best where the planner decides
prices yields the following insights. First, the social inefficiency is economically small: 1.4%.
Comparative statics show that this hinges critically on the assumption of there being ten market
makers. In the case of a monopolistic market maker the inefficiency is 24.4%. For a duopoly the
inefficiency is 11.1%.
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Figure 5. This figure plots the liquidity surface, which is defined by an order’s price impact as a
function of its size and duration. The left graph illustrates how it is used in the industry (MSCI
2019, p. 2). The right graph is based on our calibrated model.

Second, Figure 4 illustrates the large seller’s optimal trade intensity for sunshine and (con-
strained) first-best. The graphs show that the intensity is substantially higher in the first-best out-
come for all likely levels of duration. The difference is at least a third throughout. First-best
therefore yields substantially more re-allocation of securities away from the large seller. If one
integrates out duration, then we find the first-best intensity to be 372% higher.

Third, the bid-ask spread becomes negligible in first-best as compared to sunshine. In the latter
case it is 4.5 basis points during liquidation and drops to 3.2 basis points once the seller leaves. In
first-best, the spread is only 0.03 basis points.

5.2.4 Model-implied liquidity surface

Regulators over the world have started encouraging investors to manage and report their liquidity
risk (see footnote 2). A critical ingredient for such liquidity management is a reliable methodol-
ogy to predict the price impact investors incur when they need to suddenly liquidate part of their
portfolios. Such need might arise when, for example, investors seek to redeem their shares in an
open-end fund (see, for instance, (Capponi, Glasserman, and Weber 2019)).

MSCI is one of the lead consultants on the topic of liquidity risk. They developed Liquidity
Metrics which centers on what they refer to as liqguidity surface (MSCI 2019). This surface refers
to a plot of an order’s price impact as a function of its size and duration. Panel (a) in Figure 5 is
taken from their report and shows how MSCI interprets it. The following clarification is word for
word taken from their report (MSCI 2019, p. 2):
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1. Market impact: The dependence of price impact on order size; larger orders usually demand
larger transaction costs.

2. Market elasticity: The speed, and to what extent, a market regenerates the liquidity removed
by a trade and reverts back to its previous state. This determines how much transaction costs
decrease with longer time horizons.

3. Market depth: The maximum (buy and sell) size thresholds above which trades are expected
to meet either no sufficient supply/demand or otherwise distressed, unpredictable prices.

4. Bid-ask spread: Half bid-ask spread is the expected transaction cost for small orders traded
on whatever time horizon.

We believe that our model could be a micro-founded, internally consistent engine to power
such liquidity plots. Such a model may not be needed if one has data on price impact, size, and
duration. However, the benefit of generating the surfaces off of a calibrated model is that one can
assess how price impacts change with evolving market conditions (e..g., exit of market makers,
fewer investor arrivals, etc.) This will inform a fund’s assessment of which securities qualify as
“highly liquid” in what conditions. SEC (2016) says that less than 15% of a fund’s assets can be
illiquid. A model-implied surface might further be useful when a fund is considering to add a new
set of assets for which it does not have historical order-execution data.’*

Panel (b) in Figure 5 plots the liquidity surface based on the calibrated model.”> It plots the
price impact of orders up to 10% ADV and lasting for a day. Let us discuss the surface plot in
terms of the four aspects of liquidity emphasized by MSCI. First, price impacts are steep (up to
10 basis points) when orders of a size equal to 5% ADV are executed within 0.1 day which is
approximately thirty minutes. Second, the market seems “elastic” or resilient (a term we prefer)
when the execution exceeds 0.2 day or approximately one hour. Third, the model provides a
threshold execution size beyond which revenue would start to fall. This size naturally mirrors
market depth. It is shown in the plot by the fact that the surface does not exist for size-duration
pairs where the execution rate exceeds the optimal one of (36). Fourth, the bid-ask spread is equal
to a vanishingly small order that lasts a vanishingly short duration which is the (0,0) point in the
graph: 1.6 basis points.

24See also “Get Used to It: New Regulations on Liquidity Risk,” Haaretz, December 1, 2018.
2 Given an order of size S and duration D, we first compute the implied sell intensity f = S/D. We then estimate
the implied price impact as

1 D
E[—f P (s, £, 8) dslig = 0].
D Jy

To make the graph comparable to the MSCI one, we assume that the environment of large buy orders is symmetric to
the one of large sell orders.
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6 Conclusion

We propose a setting that enables us to integrate two types of literatures, one focused on endog-
enizing liquidity supply and the other doing so for liquidity demand. We propose a Stackelberg
structure where the demander of liquidity is a single large seller who decides in the first stage
at what intensity to sell, unconstrained by the total quantity but constrained by the time he has
to execute the order. The seller takes into account how a set of market makers who are Cournot
competitors responds to his order.

A particularly appealing feature of our setting is that it is possible to solve for a unique sym-
metric equilibrium in closed-form. This allows to thoroughly analyze various important properties
of market making, price pressures, and optimal execution. In this paper we focus on analyzing
whether the larger seller is better off in a transparent environment where duration is revealed or in
an opaque environment where it is a source of information asymmetry between the seller and the
marker makers. We further analyze how the presence of such seller affects other market partici-
pants, including market makers and end-user investors. We quantify the economic significance of
the analytical predictions by calibrating the model.
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Appendices

A Notation

The following schema summarizes the notation used throughout the paper.

B Intertemporal discount rate used by all agents in the market.

A The arrival rate of end-user buy or sell investors (added up their arrival rate is 21).

% The duration of the large-seller’s presence is exponentially distributed with param-
eter v (i.e., mean duration is 1/v).

0 Vector that includes all deep parameters: 8 = (8, v, N, 4,1, 9, w).

n The flow cost of carrying inventory for a market maker is 7i> where i denotes his
inventory.

o The standard deviation of the security’s fundamental value m,.

) Size of end-user investor demand, see (2).

p! Ask price at time 7.

2 Bid price at time 7.

d The duration of the large-seller’s presence in the market (i.e., his time constraint).

i A single market maker’s inventory.

N The number of market makers.

w The reservation value of buyers or sellers (i.e., maximum private value) expressed
relative to common value m;.

m,*° The security’s common value at time ¢ (i.e., fundamental value).

q’ Quantity offered at ask price at time ?.

q Quantity offered at bid price at time ¢.

B Stealth trading results

Lemma 8 (Market maker value under stealth trading). Market makers benefit from the presence of
a large seller for any given large-seller liquidation intensity (f) if

e cither the risk-bearing capacity of the market is sufficiently high (i.e, condition (A2) in Ap-
pendix C holds which is the case when inventory-holding cost (n) is low enough, or when
there are sufficiently many market makers (N), or when the investor arrival rate (1) is high
enough),

e or the duration of the large-seller’s presence is sufficiently short or, more precisely, v is
sufficiently high.

26“m” for martingale.
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Lemma 8 echoes Lemma 1 for sunshine trading. The threshold risk-bearing capacity is the
same as in sunshine trading. The duration threshold in the second bullet point could differ.

Lemma 9 (Expected path of market makers’s inventory ). The expected inventory of a market
maker

e strictly increases and is concave in time while the large seller is executing,
e is homogeneous of degree one in the large seller’s trade intensity,
e exhibits exponential decay towards zero after the seller disappears.

The results in Lemma 9 echo the ones in Lemma 2. The mathematical expressions however
differ and are available in the proofs of both lemmas.

C Proofs

Risk-capacity condition. The “risk-capacity condition” is formally defined as follows. Let A* €
(0, %) be the unique positive solution to:

_ 80AA%(1 + 0A)
(N +1+25A)2

n-pA (AD)

The risk-capacity condition holds if:

(A2)

*\2
N2+5A*(2N—1)—%(1 +6A*)(N+25A*)2(1 _ 647 )zo.

e
We refer to it as the risk-(bearing)-capacity condition because it holds when inventory-holding cost

(n) is low enough (results in a small A* > 0), the number of market makers () is high enough, or
investor arrivals (1) are frequent (results in a small A* > 0).

Proof of Proposition 1. In the absence of the institutional investor, the quantities traded by each
market maker are time homogenous and only depend on the size of that market maker’s inventory:

4= 4G, 4 =q"(p),

where ¢“(i) and g”(i) are deterministic functions of the inventory. We can then rewrite the equation
that governs the dynamics of i, given in (8), as a time-homogenous autonomous equation:

dij = —q“(i;)dN? + ¢"(i;)dN?, Yt > 0.
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Similarly, the trading revenue of each market maker follows the dynamics
I v IS
AW, = (w -2 q”(z'no] g"(i;)dNf - (5 > 4G - w] g")dNS, V> 0.
n=1 n=1

By virtue of the dynamic programming principle, the value function vﬁl (i) of the control problem
solved by the j-th market maker is the solution to the Bellman equation:

. . 1 5 al a . a .
ni® +,Bv§4(l):/lsup (a)—ngn)qj+v§4(L—qj)—vfw(1)

454" n=1
| &
- [5 - w) ¢+ VG + ) - vy@] N
n=1 a a.;k’

b, )
=4 q3=qj * for all n#j

where (¢, qi’.’*) is the optimizer of the Hamiltonian above, in which we set g5 = ¢7™, g = qu’.’* for
all n # j because we are considering a symmetric Markov perfect equilibrium. We make the ansatz
that the value function vj” (i) is quadratic and concave in i. Moreover, since all market makers are

identical, value function and strategies are the same for all market makers, i.e.,
v = v/(i) = A + Bi + C, (A4)

for some constant A > 0. It then follows that the optimal control strategy for each market maker is
given by

_w+2Ai—B b_a)—2Ai+B
Ml 424 7 7= Nl 4 24

a

q = (AS)

Using the expressions above, we can then rewrite (A3) as

BA?O(L+64) 5 BOA(L+0A) . 20(1 +06A)B + o)

1
—[(n — BA)* + BBi + BC] =
/1[('7 BA)I* + BBi + 5C] (N+1+25A)2’ +(N+1+25A)2 Lt (N + 1+ 26A)2
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By matching the coefficients of i?, i and the constant term on both sides, we obtain that (A, B, C)
must satisfy the following equations

1  86A%(1 +6A)
AP = T 2eay (A6)
B 86A(L+5A) A7

A7 T (N+1+26A2
B . 26(1 + SA)B? + w?)
1

C= = Nti+2a7 (A8)

Hence, A* must be the unique positive solution to (A6), and B* = 0 otherwise (A7) would not
hold. Define . .
A 26(1 + 6A*)w? BAx
cr =420 W2 (A9)
B(N +1+26A*)? 4A*
Then we obtain that a solution to (A6)-(A8) is given by (A*,0,C*). Hence, the value function is

given by

v(i) = —A*i* + C*.

The ask and bid price policy functions follow from the defining expression (7), and the expressions
for the traded quantities given by (A5) in which A and C are replaced, respectively, by the coeffi-
cients A* and C* of the optimal value function v¥(i). Overall, for parameter 6 = (3,v, N, 4,1, 5, w),
the results in Proposition 1 holds with positive constants:

A = w(1l + 20A%) B = 2A* C. = ow
CTN+1+20A T N+1+20A T N+1+20A%
_ oA E,=C* Fy=A*
"TN+1+26A 0T T o

O

Proof of Corollary 1. We notice that the right hand side of equation (A6) is strictly decreasing
in N and strictly increasing in A, whereas the left hand side is strictly decreasing in A. Hence, the
unique positive solution to (A6), A*, is strictly increasing in N, and

n

lim A* = <. (A10)
N—-oo ﬁ
It follows that
. T T T T _ . _n
A Ao = Jin B = i, Co = i Do = Jim o =0, Jin Fo =g
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Moreover, we also have

N—oo

lim NCy = 6w, lim NDy = 25,
N—-ooo ﬂ
This completes the proof. O

Proof of Proposition 2. Given a constant liquidation intensity f > 0 and duration d > 0, the
market is completely the same as in case of no large seller if # > d. Hence, the results are those
given in Proposition 1. For ¢t < d, by the dynamic programming principle the value function

vM¥(i, £, 1) of each market makers’ control problem is the solution to the Bellman equation:
M GVMﬁ f N
_ 2 M3s ' a M3t a Mt
0=-ni-—pBv +T P N+sup Z; q; + 7T =g, 1) — AT )
J’ J -
1 &
- [_ + 5 Z qﬁ) (ﬂqj ) + /lvf(l + qj’ f) /lvM,iX—(ia t)} ) (All)

9 24?’*,qﬁ=q}]’.’* for all n#j

where (¢, qu’.’*) is the optimizer of Hamiltonian above in which we set ¢ = ¢%*. ¢, = q?’* for
all n # j because we are focusing symmetric Markov perfect equilibria. We make the following
quadratic ansatz for the value function

VIHG, £, 1) = =AW + B()i + C(1), VYt >0, (A12)

where for notational simplicity we have suppressed f in the arguments of the right hand side
above, and noted that the value function is the same for all market makers given that they have the
same inventory costs and equally split the incoming trading flow. It then follows from the HIB
equation (A11) that the optimal control (qj.’*, q?’*) is the same for each market marker, and given
by

w + 2A()i — B(¢) H‘(i) W~ MN —2A()i + B(¢)
N+1 + 2A(t) ? q - N+l + 2A(t)

g (i) = ,

as long as A(f) > 0. By using (A12), and matching the coefficient of i* in(A11), we obtain an
ordinary differential equation

85(A(1))*(1 + 6A(1))

(N + 1+ 26A(0))2 Ald) = A7. (AL3)

—(77 BA()) + A (1=

It follows from the definition of A* given in(A1) that A’(d) = 0. By the uniqueness of the solution
to an ODE, we obtain that A(¢) = A*. Similarly, by matching the coefficient of i in(A11), we obtain
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an ODE for B(?):

1 (57 — BA*) (N + 20A*
B(t)+B’(t)_fZ(n25§* ) ( +N )’

_n
A*

0=

subject to the terminal condition B(d) = 0. The solution of the above ODE is

i =B (N +26A*) 1 — e
262 N n/A*

B(t)y=-f , VYrel0,d]. (Al14)

The function C(f) can be determined similarly: for 7 € [0, d],

2(1 + 6A*)(N +26A*) ("
C(t) = Eg + 1y<q [f N(N + 1 +26A*)?

N% + 6A*(2N = 1) 1 — @ 26A(1 + 6A* d-t ,
L +0A™( ) 1-e L 2040 +047) f te P9 B2 (9)ds ||
SAN2(N + 1 +26A*)? (N +1+254%)? J,

e P9 (£B(s) + w) ds

where Ejy is given in the proof of Proposition 1.

Finally, using the expressions for the ask and bid price policy functions in the absence of
liquidation, the expression for the optimal trading quantities, and the expressions for the value
function given in the proof of Proposition 1, we obtain that the ask and bid price policy functions
in the presence of liquidation are given by

PG o0 = pUi) = Luza f (G5 (d = 1),
PGS0 = PP = Lz f (G (d - 1) + HY).

where G; (t) = =NB(t)/(N + 1 + 26A*) and H;' = 1/(6A(N + 1 + 26A*)). The optimal control is
given by

4,0 = 4D + Leaf 1 (G- 1),
P10 =D~ el o (G- 0+ H),
Finally, the value function takes the form
WG fu0) = V) + Ty (I d =1, + [ (d = D)),
where Ij‘(d —t, f) = C(t) — Ey, which is strictly increasing in variable “d — ¢’ for t < d and strictly

convex in f, and J;‘(d — t) = B(#), which is negative and increasing in ¢. This completes the
proof. O
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Proof of Lemma 1. We first show that If d, f) > 0 for d > 0 sufficiently small. It suffices to
show that I,(d, f) := eﬁdﬁ‘ (d, f) > 0 under the condition (A2). Because 1,(0, f) = I*‘(O f)=0,it
is enough to show that 2 I 1(d, ) > 0, or equivalently, e Z1,(d, f) > 0 for d close to 0. To that
end, by Taylor expanswn (up to the Oth order), we obtain that

2(1 + SA*)(N + 26A*)
N(N + 1 + 26A*)?

N2 + 6A*(2N - 1)
SAN2(N + 1 + 26A*)2’

G,
e P =N, f) ~f +f? (A15)
od
if d ~ 0. Since the expression in the last line of (A15) is positive for any f > 0, the claim for small
d is proven.
Next, we prove the other claim. It is easily seen from the first two lines of(A15) that the

coefficient of f? is strictly decreasing in d, so the coeflicient is bounded below by

—1(1 + 6A*)(N + 26A*)? ( “”‘ i ) + N2+ SA*(2N - 1)
SANA(N + 1 + 2(5A*)2

Hence, if (A2) holds, for any f > 0 we have %Il(d, f) > 0 for all d > 0. Hence, [g*(d, f) =
eP,(d, f) > 0. This completes the proof. |

Proof of Lemma 2. We first derive an explicit expression for the expected inventory. We use (8),
(27) and (28) to obtain the dynamics of a market maker’s inventory:

]J\; G;(d- r)) 6dN?

dlﬂ =1 t<d}]‘]:7dt - (Cg + Dgl]t +1 (t<d)
a1 L (G =+ s
+(Co = doi = Lyayy; (G5 (d - 1)+ Hy) | 6dNE.

Using the compensation formula, we deduce from the above that the function E[i;] satisfies the
ODE:

d
S Elis] = ~26AD4Elij] + 1{&1}% (1= 6AH; - 262G} (d - 1)),

subject to the initial condition ij, = 0. Solving the ODE we obtain that E[i;] = f X g(¢), where

N +25A* M lﬁA* 1 — e M N (1 ﬁA*) e’ —e—Mfl ey

g(t) = N 46AA*| n M n =+M | -

gld)e M9, t>d,
where M = fofg;A*. A straightforward calculation yields g’(¢) > 0 for t < d. This completes the
proof. O
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Proof of Lemma 3. By combining (25) with the explicit expression for E[i;] in the proof of
Lemma 2, we obtain that the expected bid price pressure under sunshine trading is given as follows:
fort <d,

w(l +26A%) f y
N+ 1+20A*  20A(N + 1 + 206A%)

n n
1— i B e axd=n _ BA* oM _ =B M

n n Ui
+ n a M+

E[p" (i £.0)] =

2+ (N + 26A*)(

e-A’id—M’)} . (A16)

fort>d,

w(1 + 264%) J(N +26A%)

N +1+25A*  26A(N + 1 +20A*)
BA ) _ o] OPAD M i) i
n n M + Al* ’

Ep" (i £,1)] =

where M = Nfﬁ—”;(;v. Straightforward calculation yields that E[ p”™ (i i, )] 1s strictly convex in ¢ for

t < d (See the gray solid line in the bottom panel of Figure 3). Moreover, because”’

0 bRt n-pBA* n _ng BA* n—-pBA* M _yg
o 17 WJMM&“ME:Z;eA__n'+ ENTEEA

Clearly, the right hand side of the above expression is monotone in d, and is negative if d > 0 is
sufficiently large. As d — 0, this expression converges to

-2+ L5 -M 1 N-1
B A]7 _ n(_ﬁ_ —)<O
M+; M+; N+ 1+ 206A*

Thus, we know that for all d > O it holds that (%E[p“‘(i,,, NHlli=0 < 0, and the expected bid price
pressure is decreasing in ¢ for small ¢, as claimed. Moreover,

O 1 b, n—pA* n (BA* n—-BA* M ..\
&E[p (ljt,f,t)]‘t:doc—MA*_i_n;— . + . M+I%€A Me ™.

Thus, if d > 0 is sufficiently large, we have %E[pw(i it Dlli=a > 0, so the expected bid price
pressure is increasing in 7 if # and d are both sufficiently large. The properties for bid price pressure
after d hold obviously. For ask price, we obtain the results via relationship

E[p™ i £,0)] = B[p" G £,0)] + 240 + f Hy Vizay.

2"The symbol o« means proportional to, i.e., the left hand side is a positive constant multiple of the right hand side.
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This completes the proof. O

Proof of Proposition 3. Prior to the end of liquidation the market maker faces, at any point
in time, the same average amount of time left. This is due to the memoryless property of the
exponential distribution of d. Specifically, the market maker treats the duration of the liquidation
as an independent exponential random variable with mean 1/v. Hence, before d, the value function
and the strategy of each market maker, as well as the price policies, can be obtained by taking
the expectation of the corresponding quantities in Proposition 2 and assuming the distribution
d —t ~ Exp(v) in the event {t < d}. In particular, one can show that

G - n—BA* N+26A*  A*  4A*(1 +6A*) N +20A*  A* ALT)
7 260A* N+1+26A*vA*+11  (N+1+26A*)2 N+ 1 +25A* vA* + 1’
Iy (f) = f ve ™I (u, f)du, (A18)
0
— BA* N +26A* A* 4A*(1 + 6A*) N +26A* A*
Jo=_1FP = ( ) (A19)

261A* N vA*+n  (N+1+20A*)2 N vA*+7

Here, the last equalities in (A17) and (A19) are due to (A6). After time d, there is no liquidation.
Hence, the value function and the strategy of any market maker, as well as the corresponding price
policies, are those given in Proposition 1. m|

Proposition of Lemma 4. By combining (31) with Lemma 9, we obtain that, for r < d,

B[ 0] (1 +26A4%)  f[2+ (N +204%) (BE5 + S Bt (1 - )| (A20)
Lits | = - H
P N+ 1+ 20A* 26A(N + 1 + 26A%)

fort > d,

—w(1 +26A%) f(N +264%) (z%ﬁf,:jf*(l _ e—Md))

E|p*(@.,, f,0)] = ~M(t-d)
[P G £0)] N+ 1+ 26A* 26A(N + 1 + 26A%) ¢«
where M = foj}g‘g . For the ask price, we have
E [p™ (i f.0)] = E[p" G f.0)] + 240 + f Hy Lj<ay.
The properties follow immediately. O
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Proof of Lemma 5. Under sunshine trading, using (4) and (A16), we can express the objective
of the institutional investor in (36) as

sup (P(d) f = 0(d) f?), (A21)

fz0

where P(d) and Q(d) are positive functions given by

w
PO =y e (A22)
hs(d)/(262) B BA* hyp(d)
d) =———————— (N + 2+ 26A*) + (N + 26A* -

o) N + 1+ 26A* N2+ )TV + )M+% n  hgd)

B hid  -pA*y M M+B+ L Mgz (d) (A23)
(M + ) hs(d) n M+ M+ hs(d) ’

with M = % and h,(u) = = fy  for any positive parameter y > 0. It follows that the optimal

sunshine liquidation intensity is given by

P(d)
d) = —=—.
F(d) 200

To prove the monotonicity of f™(d) in d, we notice that

1 20
f4d) ~ P@)
. . = = — B BA* ,BA* hyp(d)
6/1N {(N+2+26A)+(N+26A) M - A " @

B hed -pA*y M M+B+ L% e (d)l
(M +pB) hg(d) n M + ; M+pB hs(d)

Next, let us state (without proof) the following simple result:
Lemma 10. For 8, > 3>, the function hg (d)/hg,(d) is strictly decreasing in d.

Then we know that f% is strictly increasing. Hence, the optimal liquidation intensity f*(d),

which is known to be positive, is strictly decreasing in d. To prove the bounds in (38), we first
calculate the limits

lim ) =

SANw N + 26A* 0 -
N + 20A* +2 N + 20A* +2 ’
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Jim /() =

SANw N + 26A* -
- k(o) p
N + 20A* +2 N + 20A* +2

(+4B)*
O+ 5 (M+v+B)

strictly increasing in v (a fact that can be easily checked by taking first-order derivatives).
Under stealth trading, using (4) and (A20) we can express the objective of the institutional
investor in (37) as

where k(v) = Hence, the upper and lower bounds follow from the fact that k(v) is

sup(Pf - Qf7). (A24)

fz0

where P, Q are positive constants given by

1 Nw

P= : A25
v+ BN+ 1+20A* ( )
~ 1 1 v+p 1
= N + 26A* +2)—— — (N + 26A* . A26
Q N+1+26A*2(5/l(( i i )v+,8 W+ )v+f%M+v+,B) (A26)
Hence, the optimal stealth liquidation intensity is given by
P SANw N +26A* -
ff=—= ~ { - —k(v)p .
20 N+26A*+12 N + 20A* +2
The inequality in the middle of (38) again follows from the monotonicity of k(v). O
Proof of Proposition 4. To prove (39), we will make use of the following result:
Lemma 11. It holds that
f ve " P(s)ds =P, (A27)
0
f yve " Q(s)ds <0, (A28)
0

where P and Q are positive constants defined in (A25) and (A26), P(s) and Q(s) are positive
functions of s defined in (A22) and (A23).

Proof. Tt is easily seen that the equality in (A27) holds. To prove (A28), it is straightforward to
verify that fooo ve " Q(s)ds — Q is a positive constant multiple of —(n — SA*) < 0. O

We notice that the first inequality of (39) holds obviously. To prove the second inequality, we
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have

Eq[Pa(f~)|d revealed] = f e (P(s) £ = Q) (£*)) ds
0
>Pf~ — Q(f)? = By [Py () |d hidden]

where we have used Lemma 11 to deduce the inequality above. O

Proof of Lemma 6 First of all, (40) has already been proven in Corollary 1. To prove (41), we
make use of the following result:

Lemma 12.

" 2
BoB T ol
Proof. As N — oo, it follows that A* 7 ;_‘7; (see (A10)). Moreover, from the equation that defines

A*, we have that
n _ 80AA™(1 + 0A™)

A* (N +1+4264%)%
soas N — oo, 2L — Band (N + 1 + 26A*)(:& — B) — 0. Hence,

e
v+,§ v+ ):5/1(34_ 4n )
v+ Vv+B+M o1 B +p)

lim (N +20A* +2 — (N +26A*)

N—ooo

It follows that

fm e 6Aw B w
N=2o N limyoe(N +20A* +2 = (N + 264%) 2 22y - 4ds 4 20

]
vEox v+p+M

Using Proposition 3, (A18), (A19) and Lemma 12, one can easily show that

M ’) —

1%51010 N NJy =0,
lim I2(f>) o Y
1m = .
W A0 +B) \ 4555 + 53

This completes the proof for (41). To prove (42), we make use of the following result:
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Lemma 13. For any fixed d > 0,

I A w
im =

—00 4 d '
N N (5%1 + ‘3_2](1 - e,Bﬁd_l)

Proof. To prove the result, let us define

B A hupd) B ha ) q-pan) M M+ B+ g Mg (d)

gn(d) =

M+L 7 ) (M+p) hyd) N M+L M+f  hd)
here M = 284 and h(u) = = f it 0. Th ite L)
where M = 14955 and h,(u) = =S— for any positive parameter y > 0. Then we can write 3=
as
) SAw

N  N+26A* +2+ (N +26A*)gn(d)’
For any fixed d > 0, by the fact that M — 0 and -5 — S as N — oo, and that h,(d) is continuous
in the parameter g > 0, we deduce that limy_,., gn(d) = —1. Thus, we can write the denominator
2
of L@ Afd) as
1 — gn(d) + (N + 26A* + 1)(1 + gn(d)). (A29)

The first two terms of (A29) clearly converge to 2 as N — oco. The last term involves a “co -0 type
limit, and hence requires more care. To that end, we use the equation that defines A* to express N

as a “function” of A*:
85A(1 + 6A*
N+ 14264% = ax |00 +o4)
6 — BA*
V- 460A* [252(6 — BA*)
TN+ 1+26A* 1 +6A*

Using the above result, the limit of (N + 26A* + 1)(1 + gn(d)) as N — oo may be written as the
limit of a function of A*, as A* — g. With help of the Mathematica software, we can evaluate this
limit as

Then we can write

‘ . (2 M Bd
Jim [1 = gn(d) + (N + 264% + D(1 + gy())] —‘”[a v (1 -1 1)]

It follows that

i fAd) SAw B w
Nooo N lmyoe[l — gn(d) + (N + 26A* + 1)(1 + gn(d)] 2 %(1 _ _pdy

ePd—1
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Finally, the expressions for the bid and ask price pressures can be obtained similarly. O

Using Proposition 2, Lemma 13 and the explicit expressions for Jj*(d) and I;*(d, f) that ap-
peared in the proof of Proposition 2, one can easily show that, for t < d,

Jim fﬁ( ) "NJj(d—1) =
2
1 — ¢ B0
lim [d ~ 1, f*(d) = [ @ ) .
L(1-L5+ 2 B
This completes the proof for (42). O

Proof of Corollary 2 From Lemma 12 and Lemma 13 we know that the optimal liquidation in-
tensity will diverge to oo roughly linearly in N, the number of market makers. When the liquidation
intensity is exogenously fixed as f“(d), then using the limiting result

“(d
lim fd) =0,
Noco N
we can easily obtain (43) via similar arguments to those used in Lemma 6. i

Proof of Lemma 7. Let Volume, be the total trading volume of one market maker from time O to
time ¢, then for liquidation intensity f = f‘ié (d), we have Volumey = 0 and for t < d,

d Volume, :£dt + (i, £, DANE + " (iy, f, )AN?

_[{ N+20A* f+ 2w
"TI\N+1+26A*I N N+1+26A*

dr + d“martingale”.

It follows that
E[Volume,] = d X

N+26A* \f 208
N+1+26A*)] N N+1+25A*|

The result immediately follows. m|

Proof of Proposition 5. Let us denote the expected surplus without liquidation by

°° 1 1
Vi) =E [ f ¢ PO (55(0) — P dNE + 5(s(w + pl;)2 dN’S ) liy = i] .
t
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When there is no liquidation, the market makers use stationary strategies, so v/(z, i) will be inde-
pendent of time ¢. In this case, v/(0, i) solves the equation

BV'(i,0)
- /l(g(w C (- %(w 9, 0) = Vi, 0) + g(w F P G+ %(pf + w).0) = VI(i. 0)),

where p¢ = p“(i) and pﬁ’ = p”(i) are given in (11) and (12), respectively. In this case, following a
similar argument to that in the proof of Proposition 1, we obtain that

V(i) = E} + F)i%,
where

;_ OAN? +20A,) I
7 BN +1+26A%)2

Fl=A,,

with I
46N-(A
A, = @4 > 0,
B+ 20N + 1 +26A*)2 —2A(N + 1)?

On the other hand, a direct calculation of the expectations appeared the welfare function yields the
same result. Hence, we have derived the end-investor’s welfare when the large seller is not present.
Notice that this also gives the welfare of the end-investor for r > d if the liquidation duration is
d>0.

Similarly, when a sunshine liquidation with liquidation intensity f > 0 and duration d > 0 is in
place, we denote by v'* the surplus of end-user investors, then v/*(i, ) solves

(A30)

b N ) 0 .
0= —va + o + 7% + /l(i(a) — pf)2 + vm(l — I\_](w - pi),t) — vm(l,t)

5 5
Fo@+ P VG o)) =G, z)),

for t € [0, d], where pf = p“’#’*(i, t) and pf = pw(i, t) are given in (24) and (25), respectively.
Following the argument used in the proof of Proposition 2, we can show that

VL) = V) + Leza) (157 = 1. ) + T = 0)f i),

where

; 2
T (u) = f e_(ﬂ+M)(“_s)-N(Aw+
0

[N?A* — (N + DA,](1 — 26/1NB(s)))
ds,

A3l
(N + 1+ 26A%)2 (A3D)
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where B(s) is defined in (A14). Because B(s) < O for all s > 0, and

B(N + 1+ 20A*) + 461A*

N?*A* — (N + 1A, =N?A*(N + 1 + 206A* 0,
N+ D ( BT 2ON + 1+ 204 —2AN 12

we know that 5 .
T W) > =A, f e B9 g > ),
N "o

Moreover,

P f) = f W(N? +26A,) 1-e? E f (1 0%+ 20AB(s) I (s5)
C NN +1+204%7 0 N+ 1+26A*
e f "y V2 + 264,)(1 = 20ANB(s) + 28 PNB(s))
0 26AN*(N + 1 + 26A*)? ’

(A32)

Because for any s > 0 we know that Jf‘(s) > 0,and 0 > 204B(s) > —%(1 + %) > —(1+ 2‘;/?* ),
we deduce that the coefficient of f? in (A32) is positive, while that of f in (A32) is negative.
Hence, there exists f > 0 such that If*(d, f)>0ifand only if f > f, and If‘(d, f) < 0if and only
if 0 < f < f. This completes the proof for the case of sunshine trading.

The case of stealth trading can be treated similarly. After standard calculations, one obtains

that the end-user investor’s surplus, denoted by v/*(i, 1), is given by

VG, 1) = V) + L (I () + T £ ).

where

(N?A* — (N + DA — 26/1NB(S)))
ds.

I v * —-vs 2(
- v Z(a A
Jo v+,8+MfO ¢ e T (N + 1 + 26A%)? (A33)

The latter quantity can be shown (as above for the case of sunshine trading) to be a positive con-
stant, and

1o = - f w(N* +26A,) v s foo L (L+ 22 £ 262B(s) I (s)
=- e
‘ N(N+1+20A*2v+B ~ v+B J N + 1 +20A*
« N? +26A,)(1 = 26ANB(s) + 26°A>N*B?
L f - X () I A3
v+ Jo 20AN*(N + 1 + 26A*)?

which is again a convex, quadratic function of f with a negative linear coefficient. Hence, we
obtain qualitatively the same result as in the sunshine trading. O
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Proof of Proposition 6. Consider a social planner that maximizes the aggregate utility of the
institutional investor, end-investors and the market makers. The social planner controls the price
policy functions, but the liquidation intensity is still decided by the large seller. Then #-th of the
total utility W, follows

~ 6 - 6 - - 6 - (5 -
dw: = (atﬁ(w —a,) + ﬁ(w - at)z)dNtB + (_btﬁ(bt + w) + ﬁ(bt + w)2)dN,S + 1{,§d}w£dt
6 N o ~
:ﬁ (a)2 - (at)z) dNtB + i\] (wz — (b,)Q) de + 1{;<d}0)£dl, Yt > 0,

where &, and b, are ask and bid price pressures set by the social planner at time 7. And %—th of the
inventory is
!
N
Let us first suppose there is no liquidation, i.e., f = 0. In this case, the 1/N-th welfare is indepen-
dent of time ¢, let us denote it by
i) = i] .

By the dynamic programming principle, we know that v solves the HIB equation

, 5 N .
di; = +dt = (0 = a;)dN? + bigy (i + w)dN?.

v (i) = supE [foo e (th - Tl(it)z)
0

a,b

0 0
—ni* =B’ + Asup | o (0 = @) +v* (i = S(w =) =V’ ()
ni- —pv ;;P[ZN(Q) a ) V- pw=a)-v(

+ % (a)2 - (13)2) +5 (i + %(13 +w) = (@)|=0.

Following the argument used in the proof of Proposition 1, we obtain that
Vi) = Ey - F31°,
where

ES :ilé—wz
BN +25Ag’

with Ag being the unique position solution to the equation

451A%

=" A35
N + 26A ( )

n-pBA
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More specifically,

201 — NB + J16N5An + 4622 + 4Nonp + N2> N
46(8 + 22)

As = Ag(N) = 0. (A36)

The price pressures are given by &, = a(i,), b, = b(i,), with price policy functions given by

a(i) =A5 — By Ni, (A37)
b(i) = - A3 — B5Ni, (A38)
where
s _ 20As © s _ 2As
T N+26As 7 Y N+26As
Next we prove that Ay < A*. Let us consider positive, increasing functions fi(A) = %,

f(A) = 1@2@2 for A > 0, then recall that A* and Ag are uniquely determined by

> 0, if0<A <A™,
<0, ifA>A*,

> 0, if0 <A <Ag,

"_ﬁA_f‘(A){ <0, ifA> Ay

n—PBA - fo(A) {

Notice that for any A > 0

< fitA) 21 +6A) N + 20A

0 = 1,
HA)  (N+1+20AN+1+20A

SO
n—PA* - fL(AY) <n-PA* - fi(A") =0,
which implies that A* > Ag.

To prove the claim about the bid-ask spreads, notice that Ni(52A6 — is strictly increasing for positive
A, so the bid-ask spread set by the social planner (245 = Ni‘;@is w) is strictly smaller than Nﬁ‘;@;* w.

On the other hand, recall that the bid-ask spread in the Stackelberg game of competition is at least

f,gffg?; w, therefore the difference between the bid-ask spread in the Stackelberg game and that

set by the social planner is at least

2(1 + 26A%) 45A* 2N

_ _ 0.
N+1+20A*" N+20a*" " (N+1+20A9N + 200"~

Hence, the social planner always sets a lower bid-ask spread.
The welfare and the price policy expressions given above are still valid for + > d. Under
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sunshine trading, let

V(i f.1) = supE [ f e (AW, =)
t

a,b

i,:i].

Then v$*(i, f,t) = V5@ if t > d. Fort € [0,d], following the argument used in the proof of
Proposition 2 we obtain that

VG £ = v @) + Lyea (P = 1, )+ IFd = Df ),

where
2A2 )
SEE N s -u
J (u)——N—n(l—eAS), (A39)
1 — e P “ 1 SAT5%(s)
= =¥ Zf B psroy [ = 4 220 Y ) gy A40
wh=fy=— ) Oy T N 2say) & (A40)

Moreover, the optimal price pressures are given by &, = @ (i,, f,1),b, = b"(i,, f, 1), with price
policy functions given by

(i, f.1) =a(i) = lyza f (G 7(d = 1),
B (i, f,1) =b(D) = 1y<arf (G5 (d = 1),
where )
2A 7
—S (l — e_ﬁ ) .
(N + 20As)n
Thus, the bid-ask spread is not elevated during the liquidation period. Moreover, given the price
policy and a zero initial inventory of market makers, the large seller’s objective can be shown to be

G3" () =

d
—ﬁt T /e
fo e f (B|bGn £, 0] + w) dt

N 2A 1 Ag 1 MsA 1 o
:f—whﬁ(d) S - —hy(d) - BAs 1 4 2848 e Asd
N+2CAS N+2CAS Mg n Mg n MS+A—T]S
b ()= — iy (d 4
Xnn - . A4l
AS( ) MS + % Ms( ) ( )
where My = ;f;?js and h, = % for a positive parameter y > 0. It follows from (A41) that the
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optimal sunshine liquidation intensity is given by

-1
,ﬁd
fﬁfPlanner(d) — & L _ ﬁﬁi + MSAS 1 - e—%d th+ﬁ(d) _ e . th (d)

4As | My n M n Mg+ As hﬁ(d) Mg + As hﬂ(d)
Following the calculation in the proof of Lemma 5, it can be shown that f*Pamer(q) is strictly
decreasing, and

: Planner _
1% frPlamer gy = o,

The case of stealth trading can be treated similarly, and we obtain that the total expected welfare is
given by
VL) =V 6 + L (5500 + T3 F ).

where
24 A
e == (A42)
N vAs +1
w 1 1 1 SAJS
IBo(f) =f— + 2 JS®(—+—9). A43
o (D) va+ﬁ fv+,89 N (N + 25As) (A43)

The optimal price pressures are given by &, = a~(iy, f, 1), b, = b™(i,, f, 1), with price policy functions
given by

a~(, f,t) =a(i) — ly<a,f (chb)’
b=(i, f, 1) =b(i) — Vy<af (chb)’

where
S _ 2As Ag
7 N +26As vAs + 1
Thus, the bid-ask spread is also not elevated during liquidation. O

Proof of Lemma 8. We need to prove the positivity of I,>(f) given in (A18). We notice from
(A18) that for any given f > 0, as v becomes large, I°(f) is essentially an average of Ié‘(u, f)
for small # > 0. By Lemma 1, we know that IZf(u, f) > 0 for all u > O sufficiently small, hence
I;(f) > O forany f > 0if v > 0 is sufficiently large.

Moreover, it (A2) holds, then by Lemma 1 we deduce that [j‘(u, f) > 0 for any u > 0 and
f>0,s0I;(f) > 0forany f > 0. i
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Proof of Lemma 9. Following the same argument as in the proof of Lemma 2, one can obtain
that E[i;] = f X g(¢), where

N+264% 1
* YEB et i<l

2(r) = N 401A* v + %
g(d)e™ M=, t>d,
where M = 4°_ This completes the proof. O

Corollary Al. Suppose N = 1, f = 0, and end-user investors submit buy orders continuously at
rate do(w — py) and sell orders at rate Ao(w + pﬁ’) for some Ay > 0. Then the value function of a
monopoly market maker is given by

N )
V(l) = _Amonopolyl + Cmonopoly’

where

A _ —ﬂ + \/ﬁz + 8/107] C /10(1)2

monopoly — 41 P monopoly — 2 .
0 e

The optimal bid and ask prices, as a function the market maker inventory i, are given by

. . W

Pa(l) = Amonopolyl + 5’ (A44)
. . W

Pa(l) == Amonopolyl - 5 (A45)

Proof of Corollary Al. Continuous arrivals can be considered as the limit of Poisson arrivals, let-
ting the arrival rate go to infinity and the jump size go to 0. Specifically, for 6 > 0, consider
end-user investors arriving according to a Poisson process with rate 4 = 4y/6 and demand/supply
functions as specified in(2) and (3). Then, as 6 | 0, end-user investors will trade continuously as
described in the condition of the corollary. In particular, if N = 1, as 6 | 0 and 4 = 4/, (A6)
converges to

1 —BA = 21,A%

Solving the above equation for A yields the expression for A,,yopery. The expression of Ciuonopoty
can be obtained in a similar fashion.

We remark that the expressions for the value function of the market maker, as well as the bid
and ask prices coincide with those of Hendershott and Menkveld (2014), if we set o = 0 therein
and let the discrete time step A go to zero (i.e., Byy — 1 and log(1 — Bum)/A — B). |

Lemma 14. Suppose that the order size X of the large seller is drawn from an exponential random
variable with mean vx. Then, the large seller is better off disclosing the value of X to market
makers than keeping it hidden.
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Proof. For any constant sell intensity f > 0, a sell order of size x > 0 will be executed in x/ f
units of time. We know from the objective function in (A21) that the value of the large seller if he

discloses X is
fo ) (P(%) f- Q(%) f2) vye " dx. (A46)

Moreover, following the same argument used to derive the objective function in (A24), we obtain
the seller value when he does not disclose X and uses the same liquidation rate f:

P(f) f-QN [, (A47)
where
= f Nw
PO = Y BN+ 1+ 2047
~ 1 1 . f o Vx +Bf f
Q(f)_N+1+26A*26/1((N+26A vy gy (N H20A )vx+%fo+vX+/3f)'

By Lemma 11, we have

fo i p(%) - vxe"dx =P(f),

fo i Q(%) vy dx <Q(f).

Thus, for any given liquidation rate f > 0, disclosing X yields a strictly higher value for the large
seller. Because the result holds for any f, it is also true for the optimal sell intensity. This completes
the proof. O

References

Admati, Anat and Paul Pfleiderer. 1988. “A Theory of Intraday Trading Patterns.” Review of
Financial Studies 1:3-40.

Almgren, Robert and Neil Chriss. 2001. “Optimal Execution of Portfolio Transactions.” Journal
of Risk 3:5-39.

Amihud, Yakov and Haim Mendelson. 1980. “Dealership Market: Market-making with Inventory.”
Journal of Financial Economics 8:31-53.

58



Amihud, Yakov, Haim Mendelson, and Lasse H. Pedersen. 2005. “Liquidity and Asset Prices.”
Foundations and Trends in Finance 1:269—364.

Bank, Peter, Ibrahim Ekren, and Johannes Muhle-Karbe. 2018. “Liquidity in Competitive Dealer
Markets.” Working Paper, Carnegie Mellon University .

Bertsimas, Dimitris and Andrew W. Lo. 1998. “Optimal Control of Execution Costs.” Journal of
Financial Markets 1:1-50.

Boulatov, Alex, Dan Bernhardt, and Ivan Larionov. 2016. “Predatory and Defensive Trading in
a Dynamic Model of Optimal Execution by Multiple Traders.” Manuscript, Higher School of
Economics (Moscow).

Brogaard, Jonathan, Terrence Hendershott, and Ryan Riordan. 2014. “High-Frequency Trading
and Price Discovery.” Review of Financial Studies 27:2267-2306.

Brough, Tyler Jon. 2010. “An Empirical Analysis of Institutional Liquidity Trading.” Phd thesis,
University of Arizona.

Brunnermeier, Markus and Lasse H. Pedersen. 2005. “Predatory Trading.” Journal of Finance
60:1825-1863.

Budish, Eric, Peter Cramton, and John Shim. 2015. “The High-Frequency Trading Arms Race:
Frequent Batch Auctions as a Market Design Response.” Quarterly Journal of Economics
130:1547-1621.

Capponi, Agostino, Paul Glasserman, and Marko Weber. 2019. “Swing Pricing for Mutual Funds:
Breaking the Feedback Loop between Fire Sales and Fund Redemptions.” Management Science
(forthcoming).

Choi, Jin Hyuk, Kasper Larsen, and Duane J. Seppi. 2018a. “Information and Trading Targets in a
Dynamic Market Equilibrium.” Journal of Financial Economics, Forthcoming .

. 2018b. “Smart TWAP Trading in Continuous-Time Equilibria.” Manuscript, Carnegie-
Mellon University.

Clark, Peter K. 1973. “A Subordinated Stochastic Process Model with Finite Variance for Specu-
lative Prices.” Econometrica 41:135-155.

Easley, David, Marcos M. Loépez de Prado, and Maureen O’Hara. 2012. “The Volume Clock:
Insights into the High-Frequency Paradigm.” Journal of Portfolio Management 39:19-29.

ESMA. 2019. “Guidelines on liquidity stress testing in UCITS and AIFs.” Manuscript, European
Securities and Markets Authority.

59



Fardeau, Vincent. 2019. “Strategic Trading around Anticipated Supply/Demand Shocks.”
Manuscript, National Research University Higher School of Economics.

French, Kenneth R. 2008. “Presidential Address: The Cost of Active Investing.” Journal of
Finance 63:1537-1573.

Gabaix, Xavier, Parameswaran Gopikrishnan, Vasiliki Plerou, and H. Eugene Stanley. 2006. “In-
stitutional Investor and Stock Market Volatility.” Quarterly Journal of Economics 121:461-504.

Gatheral, Jim and Alexander Scheid. 2011. “Optimal Trade Execution under Geometric Brown-
ian Motion in the Almgren and Chriss Framework.” International Journal of Theoretical and
Applied Finance 14:353-368.

Goettler, Ronald L., Christine Parlour, and Uday Rajan. 2005. “Equilibrium in a Dynamic Limit
Order Market.” Journal of Finance 60:2149-2192.

Grinold, Richard C. and Ronald N. Kahn. 1999. Active Portfolio Management: A Quantitative
Approach for Producing Superior Returns and Controlling. McGraw-Hill Education.

Grossman, Sanford and Merton Miller. 1988. “Liquidity and Market Structure.” Journal of Finance
43:617-633.

Hendershott, Terrence and Albert J. Menkveld. 2014. “Price Pressures.” Journal of Financial
Economics 114:405-423.

Ho, Thomas and Stoll, Hans R. 1981. “Optimal Dealer Pricing under Transactions and Return
Uncertainty.” Journal of Financial Economics 9:47-73.

Huberman, Gur and Werner Stanzl. 2005. “Optimal Liquidity Trading.” Review of Finance 9:165—
200.

Investment Technology Group (ITG). 2007. “ITG ACE - Agency Cost Estimator: A Model De-
scription.” Manuscript, ITG.

Jones, Charles. 2013. “What Do We Know About High-Frequency Trading?” Columbia Business
School Research Paper 13-11.

Jovanovic, Boyan and Albert J. Menkveld. 2015. “Middlemen in Limit-Order Markets.”
Manuscript, Vrije Universiteit Amsterdam.

Kyle, Albert S. 1985. “Continuous Auctions and Insider Trading.” Econometrica 53:1315-1335.
Kyle, Albert S. and Anna A. Obizhaeva. 2016. “Market Microstructure Invariance: Empirical
Hypotheses.” Econometrica 84:1345—-1404.

60



Liu, H. and Y. Wang. 2016. “Market Making with Asymmetric Information and Inventory Risk.”
Journal of Economic Theory 163:73—-1009.

Madhavan, Ananth N. 2000. “Market Microstructure: A Survey.” Journal of Financial Markets
3:205—258.

van Kervel, Vincent, Amy Kwan, and Joakim Westerholm. 2018. “Order Splitting and Searching
for a Counterparty.” Manuscript, Pontificia Universidad Catolica de Chile.

Menkveld, Albert. 2013. “High Frequency Trading and the New-Market Makers.” Journal of
Financial Markets 16:712-740.

. 2016. “The Economics of High-Frequency Trading: Taking Stock.” Annual Review of
Financial Economics 8:1—24.

MSCI. 2019. “LiquidityMetrics.” Report, MSCI.

Obizhaeva, Anna A. and Jiang Wang. 2013. “Optimal Trading Strategy and Supply/Demand Dy-
namics.” Journal of Financial Markets 16:1-32.

O’Hara, Maureen. 2015. “High Frequency Market Microstructure.” Journal of Financial Eco-
nomics 116:257-270.

Pritsker, Matthew. 2009. “Large Investors: Implications for Equilibrium Asset Returns, Shock
Absorption, and Liquidity.” Manuscript, Federal Reserve Board.

Rostek, M. and W. Weretka. 2015. “Dynamic Thin Markets.” Review of Financial Studies 28:2946—
2992.

Schoeneborn, T. and A. Schied. 2009. “Liquidation in the Face of Adversity: Stealth vs. Sunshine
Trading.” EFA 2008 Athens Meetings Paper .

SEC. 2016. “Investment Company Liquidity Risk Management Programs.” Release No. 33-10233;
IC-32315. File No. S7-16-15.

Vayanos, Dimitri. 2001. “Strategic Trading in a Dynamic Noisy Market.” Journal of Finance
56:131-171.

Vayanos, Dimitri and Jiang Wang. 2013. “Market Liquidity: Theory and Empirical Evidence.” In
Handbook of the Economics of Finance, edited by George Constantinides, Milton Harris, and
René Stulz. Amsterdam: Elsevier Press.

Weill, Pierre-Oliver. 2007. “Leaning Against the Wind.” Review of Economic Studies 74:1329—
1354.

61



Zarinelli, Elia, Michele Treccani, J. Doyne Farmer, and Fabrizio Lillo. 2015. “Beyond the Square
Root: Evidence for Logarithmic Dependence of Market Impact on Size and Participation Rate.”
Market Microstructure and Liquidity 1:1-32.

62



	Page de garde Menkveld
	Slide Number 1

	Menkveld
	1 Introduction
	2 Model primitives
	3 Equilibrium
	3.1 Stackelberg second stage: Market-making equilibrium
	3.1.1 Baseline case (no large seller)
	3.1.2 Large seller, sunshine trading (16)
	3.1.3 Large seller, stealth trading (27)

	3.2 Stackelberg first stage: Strategic large seller
	3.3 Robustness

	4 Welfare
	4.1 Large-seller's effect on end-user investors
	4.2 Social inefficiency

	5 Calibration
	5.1 Calibration procedure
	5.2 Calibration results
	5.2.1 Sunshine versus stealth
	5.2.2 Sunshine versus baseline
	5.2.3 Sunshine versus constrained first-best
	5.2.4 Model-implied liquidity surface


	6 Conclusion
	A Notation
	B Stealth trading results
	C Proofs


