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Abstract

We introduce a general class of simplicity standards that vary the foresight abilities
required of agents in extensive-form games. Rather than planning for the entire future
of a game, agents are presumed to be able to plan only for those histories they view
as simple from their current perspective. Agents may update their so-called strategic
plan as the game progresses, and, at any point, for the called-for action to be simply
dominant, it must lead to unambiguously better outcomes, no matter what occurs at
non-simple histories. We use our approach to simplicity to provide characterizations of
simple mechanisms in general social choice environments both with and without trans-
fers, including canonical mechanisms such as ascending auctions, posted prices, and
serial dictatorship-style mechanisms. As a final application, we explain the widespread
popularity of the well-known Random Priority mechanism by characterizing it as the
unique mechanism that is efficient, fair, and simple to play.
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1 Introduction

Consider a group of agents who must come together to make a choice from some set of
potential outcomes that will affect each of them. This can be modeled as having the agents
play a “game”, taking turns choosing from sets of actions (possibly simultaneously), with
the final outcome determined by the decisions made by all of the agents each time they
were called to play. To ensure that the ultimate decision taken satisfies desirable normative
properties (e.g., efficiency), the incentives given to the agents are crucial. The standard
route taken in mechanism design is to appeal to the revelation principle and use a Bayesian
or dominant-strategy incentive-compatible direct mechanism where agents are simply asked
to report their private information, and it is always in their interest to do so truthfully.
However, this is useful only to the extent the participants understand that being truthful
is in their interest, and indeed, there is evidence many real-world agents do not report the
truth, even in strategy-proof mechanisms.1 In other words, Bayesian or dominant-strategy
mechanisms, while theoretically appealing, may not actually be easy for participants to play
in practice.

What mechanisms, then, are actually “simple to play”? We address this question for a
broad range of social choice environments both with and without transfers. We do so by
introducing a general class of simplicity standards that vary the foresight abilities required
of agents in extensive-form imperfect-information games, and use them to provide char-
acterizations of simple mechanisms for a wide range of settings; in particular, we provide
microfoundations for popular simple mechanisms such as posted prices and Random Priority.

Our general approach relies on the idea that, rather than planning a strategy for any
possible future point that may be reached in a game, a player plans for only those nodes (or
information sets) that he or she perceives as simple from the current perspective; formally,
we refer to such objects as strategic plans.2 Then, for a strategic plan to be simply dominant,
the called for action needs to be unambiguously better than alternatives, irrespective of what
happens at information sets that are not simple for the agent. As the game progress, the
agent’s perception of which information sets are simple may change. Importantly, we allow
for the possibility that the agent can change his or her strategic plan along the path of
the game, which differentiates strategic plans from the standard game-theoretic concept of
strategy. The sets of information sets perceived as simple from the perspective of a given

1Kagel, Harstad, and Levin (1987), Li (2017b), Hassidim, Romm, and Shorrer (2016), Rees-Jones (2017),
Rees-Jones (2018), Shorrer and Sóvágó (2018), and Artemov, Che, and He (2017).

2Savage (1954) wrestles with whether decision-makers should be modeled as “look before you leap” (create
a full strategic plan for all possible future decisions one may face) or “you can cross that bridge when you
come to it” (make choices as they arise). While standard strategic concepts of game theory formalize the
former modeling option, our approach formalizes the latter.
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information set is taken as a primitive of our definition, and the smaller (in an inclusion sense)
are these sets of simple information sets, the stronger is the resulting simplicity standard.3

One important special case covered by our approach is Li’s (2017b) obvious dominance. A
strategy in an imperfect-information extensive-form game is obviously dominant if, whenever
an agent is called to play, even the worst possible final outcome from following the prescribed
strategy is at least as good as the best possible outcome from any other strategy, where the
best and worst cases are determined by considering all possible strategies that could be
played by her opponents in the future, keeping the agent’s own strategy fixed. Our general
approach to simplicity captures obviously dominant strategies when agents perceive all of
their own information sets as simple and all information sets of other agents as not simple—in
other words, at each information set, agents are able to plan the action that they will take at
any future information set at which they may be called to play. This highlights an important
feature of obvious dominance, which is that it presumes that agents can perform demanding
backward induction over at least their own future actions. As an example, consider chess:
assuming that White can always force a win, any winning strategy of White is obviously
dominant; yet, the strategic choices in chess are far from obvious.

To get a better understanding of what strategies are indeed simple, we also analyze
more demanding standards in our class. The first is one-step-foresight (OSF) dominance.
A strategic plan is one-step-foresight dominant if it is dominant for players who perceive as
simple their current information set and only the first information sets at which they may be
called to play in the continuation game; in other words, agents are able to plan at most one
move ahead at a time. For instance, in an ascending auction planning to stay in is dominant
for such players as long as the current price is below their value because they can foresee
the next round of bidding and they can always drop out at the next round (notice that
our framework allows for the bidder’s strategic plan to be adjusted when the next round is
actually reached). A strategic plan is strongly obviously dominant if it is dominant for players
who perceive as simple only their current information set. In other words, the strategic plan
is strongly obviously dominant if, whenever an agent is called to play, even the worst possible
final outcome from the prescribed action is at least as good as the best possible outcome
from any other action, where what is possible may depend on all future actions, including
actions by the agent’s future-self. Thus, strongly obviously dominant plans are those that
are weakly better than all alternative actions even if the agent is concerned that she might
tremble in the future or has time-inconsistent preferences.

3We show that a strategic plan is simply dominant if and only if in every game an agent can confuse
with the actual game the strategic plan is weakly dominant in the standard sense (Theorem 2). A related
behavioral microfoundation for his obvious dominance standard—on which we build—was provided by Li
(2017b).
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For each of these three subclasses of our general simplicity construction, we analyze which
games are simple. For obvious dominance, we focus on social choice environments without
transfers, hence complementing Li (2017b), who focused on the case with transfers.4 We call
the class of obviously dominant games in these environments millipede games. In a millipede
game, each time an agent is called to move, she is presented with some subset of payoff-
equivalent outcomes, or more simply payoffs, that she can ‘clinch’, after which she leaves
the game; she also may be given the opportunity to ‘pass’ and remain in the game, with the
potential of being offered better clinching options in the future. If this agent passes, another
agent is presented with an analogous choice, etc., until one of them eventually clinches.
While some millipede games, such as serial dictatorships, are frequently encountered and are
indeed simple to play, others are rarely observed in market-design practice, and their strategy-
proofness is not necessarily immediately clear. In particular, similar to chess, some millipede
games require agents to look far into the future and to perform potentially complicated
backward induction reasoning.

We next study one-step-foresight dominance in environments with and without transfers.
We show that in environments including single-unit auctions and binary public good choice,
any social choice rule that is implementable in obviously dominant strategies is also im-
plementable in one-step-foresight dominant strategies. In particular, any one-step-foresight
simple mechanism is equivalent to a personal clock auction as defined by Li (2017b).5 We
also note that personal clock auctions are monotonic in the following sense: each time an
agent is called to move, at any next move in the continuation game at which the agent is
called again (or terminal history), the agent is able to clinch a payoff that is either at least
as good as anything she could have clinched previously, or at least as good as anything that
was possible but not clinchable. For instance, in an ascending auction, the only clinchable
payoff is that associated with dropping out, except if the agent wins. We further show that
in no-transfer environments, all one-step-foresight simple millipedes are similarly monotonic,
thereby eliminating the complex—yet still OSP—millipede games identified previously.

We also study strong obvious dominance in environments with and without transfers.
We show that strongly obviously strategy-proof games do not require agents to look far
into the future and perform lengthy backwards induction: in all such games, each agent
has essentially at most one payoff-relevant move. Building on this insight, we show that

4Social choice problems without transfers are ubiquitous in the real-world. Examples include voting
(Arrow, 1963), school choice (Abdulkadiroğlu and Sönmez, 2003), organ exchange (Roth, Sönmez, and Ünver,
2004), course allocation (Sönmez and Ünver, 2010; Budish and Cantillon, 2012), and refugee resettlement
(Jones and Teytelboym, 2016; Delacrétaz et al., 2016).

5Our analysis in environments with transfers builds on Li’s characterization of obviously dominant im-
plementation in these environments.
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all strongly obvious strategy-proof games can be implemented as sequential price games in
which each agent moves at most once, and, at this move, is offered a choice from a menu of
options (which may or may not include transfers). If the menu has three or more options for
the agent in question, then the agent’s final payoff is what they choose from the menu. If
the menu has only two options, then the agent’s final payoff might depend on other agents’
choices, but truthfully indicating the preferred option is the dominant choice. In this way,
strong obvious dominance gives us a microfoundation for posted prices, a ubiquitous sales
mechanism.6

In the final section of the paper, as an application of our approach to simplicity, we
provide an axiomatic characterization of the well-known Random Priority (also known as
Random Serial Dictatorship) mechanism. In the context of no-transfer allocation problems,
Random Priority works as follows: first Nature selects an ordering of agents, and then each
agent moves in turn and chooses her favorite object among those that remain available
given previous agents’ choices. This mechanism has a long history (cf. Abdulkadiroğlu and
Sönmez, 1998) and it is used in a wide variety of practical allocation problems, including
school choice, worker assignment, course allocation, and the allocation of public housing.
Random Priority is well-known to have good efficiency, fairness, and simplicity properties: it
is Pareto efficient, it treats agents in a symmetric way, and it is (obviously) strategy-proof.7

However, it has until now remained unknown whether there are other such mechanisms, and
if so, what explains the relative popularity of Random Priority over these alternatives.8 We
show that there are none, thus resolving positively the quest to establish Random Priority
as the unique mechanism with good incentive, efficiency, and fairness properties and thereby
explaining its popularity in practical market design settings.

Our results build on the key contributions of Li (2017b), who formalized obvious strategy-
proofness and established its desirability as an incentive property (see the discussion above).
Our construction of the simplicity criteria—while being more general and allowing us to select
more precisely simple mechanisms—is inspired by his work. Li’s work generated a substantive
interest focused on his simplicity standard. Following up on Li’s work, but preceding ours,

6For an earlier microfoundation of posted prices, see Hagerty and Rogerson (1987) and Copic and Ponsati
(2016).

7For discussion of efficiency and fairness see, e.g., Abdulkadiroğlu and Sönmez (1998), Bogomolnaia and
Moulin (2001), Che and Kojima (2010), and Liu and Pycia (2011). Obvious strategy-proofness of Random
Priority was established by Li (2017b).

8In single-unit demand allocation with at most three agents and three objects, Bogomolnaia and Moulin
(2001) proved that Random Priority is the unique mechanism that is strategy-proof, efficient, and symmetric.
In markets in which each object is represented by many copies, Liu and Pycia (2011) and Pycia (2011) proved
that Random Priority is the asymptotically unique mechanism that is symmetric, asymptotically strategy-
proof, and asymptotically ordinally efficient. While these earlier results looked at either very small or very
large markets, ours is the first characterization that holds for any number of agents and objects.
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Ashlagi and Gonczarowski (2018) show that stable mechanisms such as Deferred Acceptance
are not obviously strategy-proof, except in very restrictive environments where Deferred
Acceptance simplifies to an obviously strategy-proof game with a ‘clinch or pass’ structure
similar to simple millipede games (though they do not describe it in these terms). Other
related papers include Troyan (2019), who studies obviously strategy-proof allocation via
the popular Top Trading Cycles (TTC) mechanism, and provides a characterization of the
priority structures under which TTC is OSP-implementable.9 Following our work, Arribillaga
et al. (2017) characterize the voting rules that are obviously strategy-proof on the domain of
single-peaked preferences and, in an additional result, in environments with two alternatives;
Bade and Gonczarowski (2017) study obviously strategy-proof and efficient social choice
rules in several environments. Mackenzie (2017) introduces the notion of a “round table
mechanism” for OSP implementation and draws parallels with the standard Myerson-Riley
revelation principle for direct mechanisms. There has been less work that goes beyond
Li’s obvious dominance. Li (2017a) extends his ideas to an ex post equilibrium context,
while Zhang and Levin (2017a; 2017b) provide decision-theoretic foundations for obvious
dominance and explore weaker incentive concepts.

More generally, our work also contributes to the understanding of limited foresight and
limits on backward induction. Other work in this area—with different approaches from
ours—includes Jehiel’s (1995; 2001) studies of limited foresight, Ke’s (2015) axiomatic ap-
proach to bounded horizon backward induction, as well as the rich literature on time-
inconsistent preferences (e.g., Laibson (1997) and Gul and Pesendorfer (2001; 2004)). The
paper also adds to our understanding of dominant incentives, efficiency, and fairness in set-
tings with and without transfers. In settings with transfers, these questions were studied
by e.g. Vickrey (1961), Clarke (1971), Groves (1973), Green and Laffont (1977), Holmstrom
(1979), Dasgupta et al. (1979), and Hagerty and Rogerson (1987). In settings without trans-
fers, in addition to Gibbard (1973, 1977) and Satterthwaite (1975) and the allocation papers
mentioned above, the literature on mechanisms satisfying these key objectives includes Pá-
pai (2000), Ehlers (2002) and Pycia and Unver (2016; 2017) who characterized efficient and
group strategy-proof mechanisms in settings with single-unit demand, and Pápai (2001) and
Hatfield (2009) who provided such characterizations for settings with multi-unit demand.10

Liu and Pycia (2011), Pycia (2011), Morrill (2014), Hakimov and Kesten (2014), Ehlers
9Li showed that the classic top trading cycles (TTC) mechanism of Shapley and Scarf (1974), in which

each agent starts by owning exactly one object, is not obviously strategy-proof. Also of note is Loertscher
and Marx (2015) who study environments with transfers and construct a prior-free obviously strategy-proof
mechanism that becomes asymptotically optimal as the number of buyers and sellers grows.

10Pycia and Ünver (2016) characterized individually strategy-proof and Arrovian efficient mechanisms.
For an analysis of these issues under additional feasibility constraints, see also Dur and Ünver (2015).
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and Morrill (2017), and Troyan et al. (2018) characterize mechanisms that satisfy certain
incentive, efficiency, and fairness objectives.

2 Model

2.1 Preferences

Let N = {i1, . . . , iN} be a set of agents, and X a finite set of outcomes.11 Each agent has a
preference ranking over outcomes, where, for any two x, y ∈ X , we write x %i y to denote
that x is weakly preferred to y. We allow for indifferences, and write x ∼i y if x %i y and
y %i x. For any %i, we let �i denote the corresponding strict preference relation, i.e., x �i y
if x %i y but not y %i x. We will generally work with the strict preference relation �i, which
we refer to as as an agent’s type. The domain of preferences of agent i ∈ N is denoted Pi.

We study both settings with and without transfers. The main assumption we make on the
preference domains is that they are rich. Our formalization of richness takes as a primitive
a dominance relation over outcomes, denoted D, where D is a reflexive and transitive binary
relation on X . If x D y but not y D x, then we write x B y. A preference ranking %i is
consistent with D if x D y implies that x %i y and x B y implies that x �i y. We say that
Pi is rich if it consists of all strict rankings that are consistent with D.12

We allow that different agents have different preference domains; that is different agents’
preference domains might be governed by different dominance relations, Di. If x Di y and
y Di x then x and y are Di −equivalent. Any such Di determines a partition of X , which
we refer to as an equivalence partition. We refer to each element of the equivalence
partition as a payoff of the agent in question. When the distinction between a payoff and
an outcome is important we write [x] i = {y ∈ X : x Di y and y Di x} to represent the payoff
(the element of the partition) that contains x. Elsewhere, to avoid unnecessary formalism,
we say payoff x to refer to the partition element to which outcome x belongs; thus phrases
such as “payoff x obtains” are understood as “some y ∈ [x] i obtains”. A payoff x is called
undominated in a subset of payoffs of agent i if there is no payoff y in this subset such
that y Bi x.

11Assuming X is finite simplifies the exposition and is satisfied in the examples listed in the introduction.
This assumption can be relaxed. For instance, our analysis goes through with no substantive changes if we
allow infinite X endowed with a topology such that agents’ preferences are continuous in this topology and
the relevant sets of outcomes are compact.

12 The literature contains many different definitions of rich preference domains, cf. e.g. Dasgupta, Ham-
mond, and Maskin (1979) and Pycia (2012). Our use of the term shares with these earlier uses the idea
that the domain of preferences contains sufficiently many profiles; if certain preference profiles belong to the
domain of preference profiles then some other profiles belong to the domain as well.
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Some examples may help in illuminating our modeling framework of dominance and
richness, and show how it is very flexible and encompasses many important special cases.
Examples without transfers include:

• Voting: Every agent has strict preferences over all alternatives in X . This is captured
by the trivial dominance relation Di in which x Di y implies x = y for all i. Each
agent’s preference domain Pi partitions X into |X | individual subsets, and richness
implies that every strict preference ranking over X belongs to Pi for each i.

• Allocating indivisible goods without transfers: Each x ∈ X describes the entire
allocation of goods to each of the agents. Each agent is indifferent over how goods she
does not receive are assigned to others. This is captured by a dominance relation Di
for agent i defined as follows: x Di y if and only if agent i receives the same set of
goods in outcomes x and y. Each element of agent i’s equivalence partition can be
identified with the set of objects she receives, and richness implies that every strict
ranking of these sets belongs to Pi for each i.

Formally, whenever the dominance relation Di is also symmetric for all i (in addition to
being reflexive and transitive), we say the environment is a no-transfer environment.13

Environments with transfers are also covered by our model, though, as transfers put extra
structure on the model, they will be governed by dominance relations that are not symmetric.
Examples include:

• Social choice with transfers: Let X = Y × WN , where Y is a set of substantive
outcomes, W ( R a (finite) set of possible transfers, and w ≡ (wi)i∈N denotes the
profile of transfers to the agents. Each agent i prefers to pay less rather than more
(for a fixed y ∈ Y) and is indifferent between any two outcomes that vary only in
other agents’ transfers. This preference domain is given by the dominance relation
(y, w) Di (y′, w′) if and only if y = y′ and wi ≥ w′i.

• Binary allocation with transfers. Y ⊆ {0, 1}N is a set of feasible allocations and
W ( R is a set of transfers, with X = Y×WN . For any y ≡ (yi)i∈N ∈ Y , yi = 1 denotes
that i is in the allocation, and w ≡ (wi)i∈N ∈ WN denotes the profile of transfers. The
dominance relation for agent i is defined as follows: (y, w) Di (y′, w′) if and only if
wi ≥ w′i and yi ≥ y′i. This is the main application studied by Li (2017b), and covers
such applications as unit-demand auctions, procurement auctions, and binary public
goods problems.

13A binary relation Di is symmetric if x Di y implies y Di x. It is easy to see that this holds in the
examples without transfers above, but not in those with transfers below.
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These are just a few examples of settings that fit into our general model. While richness
is a very flexible assumption, not all preference domains are rich. For instance, domains of
single-peaked preferences are typically not rich.14

When dealing with lotteries, we are agnostic as to how agents evaluate them, as long as the
following property holds: an agent prefers lottery µ over ν if for any outcomes x ∈ supp (µ)

and y ∈ supp (ν) this agent weakly prefers x over y; the preference between µ and ν is strict
if, additionally, at least one of the preferences between x ∈ supp (µ) and y ∈ supp (ν) is
strict. This mild assumption is satisfied for expected utility agents; it is also satisfied for
agents who prefer µ to ν as soon as µ first-order stochastically dominates ν.

2.2 Mechanisms

To determine the outcome that will be implemented, the planner designs a game Γ for the
agents to play. Formally, we consider imperfect-information, extensive-form games with
perfect recall, which are defined in the standard way: there is a finite collection of partially
ordered histories (sequences of moves),H. We use the notation h′ ⊆ h to denote that h′ ∈ H
is a subhistory of h ∈ H, and write h′ ⊂ h when h′ ⊆ h but h 6= h′. Terminal histories (those
with no successors) will be denoted with bars, i.e., h̄. Each h̄ ∈ H is associated with an
outcome in X , and agents receive payoffs at h̄ that are consistent with their preferences over
outcomes �i. At every non-terminal history h ∈ H, one agent, denoted ih, is called to play
and has a finite set of actions A(h) from which to choose. We write h′ = (h, a) to denote
the history h′ that is reached by starting at history h and following the action a ∈ A(h). To
avoid trivialities, we assume that no agent moves twice in a row and that |A(h)| > 1 for all
non-terminal h ∈ H. To capture random mechanisms, we also allow for histories h at which
a non-strategic agent, Nature, is called to move, and selects an action in A(h) according to
some probability distribution.

The set of histories at which agent i moves is denoted Hi = {h ∈ H : ih = i}. The
set Ii is a partition of Hi into information sets, where, for any information set I ∈ Ii
and h, h′ ∈ I and any subhistories h̃ ⊆ h and h̃′ ⊆ h′ at which i moves, at least one of the
following two symmetric conditions obtains: either (i) there is a history h̃∗ ⊆ h̃ such that
h̃∗ and h̃′ are in the same information set, A(h̃∗) = A(h̃′), and i makes the same move at
h̃∗ and h̃′, or (ii) there is a history h̃∗ ⊆ h̃′ such that h̃∗ and h̃ are in the same information

14We might slightly relax the richness assumption. For instance, in the presence of outside options we
would say that a game is individually rational if each agent can obtain at least his outside option. To obtain
the analogues of many of our results for individually rational games, it is sufficient to assume that the domain
of each agent’s preferences satisfies the richness condition restricted to sets X ⊆ X that do not contain the
outside option of this agent. However, Arribillaga, Massó, and Neme (2017) show that some of our results
do not extend to single-peaked preference domains.
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set, A(h̃∗) = A(h̃), and i makes the same move at h̃∗ and h̃. We denote by I(h) ∈ Ii
the information set containing history h.15 These imperfect information games allow us to
incorporate incomplete information in the standard way in which Nature moves first and
determines agents’ types. Due to the nature of the dominance properties we study, we do
not need to make any assumptions on agents’ beliefs about others’ types.

A strategy for a player i in game Γ is a function Si that maps i’s information sets
into actions chosen by the agent at each information set.16 When we want to refer to the
strategies of different types �i of agent i, we write Si(�i) for the strategy followed by agent
i of type �i; in particular, Si(�i)(Ii) denotes the action chosen by agent i with type �i at
information set Ii ∈ Ii. We use SN (�N ) = (Si(�i))i∈N to denote the strategy profile for
all of the agents when the type profile is �N= (�i)i∈N . An extensive-form mechanism,
or simply a mechanism, is an extensive-form game Γ together with a profile of strategies
SN . Two extensive-form mechanisms (Γ, SN ) and (Γ′, S ′N ) are equivalent if for every profile
of types �N= (�i)i∈N , the distribution over outcomes—(Γ, SN )(�N )—when agents follow
SN (�N ) in Γ is the same as when agents follow S ′N (�N ) in Γ′.17

3 Example: Obvious Dominance and Millipede Games

How to define the concept of games that are “simple to play”? As an example, we re-examine
obvious strategy-proofness, the seminal simplicity standard proposed by Li (2017b). Given
a game Γ, a strategy Si obviously dominates another strategy S ′i for player i if, starting
from any earliest information set Ii at which these two strategies diverge, the worst possible
payoff to the agent from playing Si is at least as good as the best possible payoff from
S ′i, where the best/worst case outcomes are determined over all possible strategies of other
agents S−i and all possible choices of Nature. A profile of strategies SN (·) =(Si (·))i∈N is
obviously dominant if for every player i and every type �i, the strategy Si (�i) obviously
dominates every other strategy S ′i. Γ is obviously strategy-proof (OSP) if there exists
a profile of strategies SN (·) that is obviously dominant.

While Li (2017b) shows that ascending auctions have obviously dominant strategies (and
second-price sealed bid auctions do not), we show that many obviously dominant strategies
are not necessarily simple: for instance, as discussed in the introduction, if White has a win-

15We will see shortly that it is essentially without loss of generality to assume all information sets are
singletons, and so will be able to drop the I(h) notation and identify each information set with the unique
sequence of actions (i.e., history) taken to reach it.

16We consider pure strategies, but the analysis can be easily extended to mixed strategies.
17The equivalence concept here is outcome-based, and hence different from the procedural equivalence

concept of Kohlberg and Mertens (1986).
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Figure 1: An example of a millipede game.

ning strategy in chess, then this strategy is obviously dominant. Despite this classification,
not only can we not calculate the White’s winning strategy, it is unknown whether such a
strategy even exists. This motivates two natural questions: (1) what classes of games admit
obviously dominant strategies? and (2) can we formally define a simplicity standard that
better delineates classes of games that are generally understood to be simple?

We first tackle the first of these questions and characterize the entire class of obviously
strategy-proof mechanisms in environments without transfers, which recall from Section
2, are defined by the assumption that Di is reflexive, transitive, and symmetric for all i. We
call the resulting class of games millipede games. Roughly speaking, a millipede game is a
take-or-pass game similar to a centipede game (Rosenthal, 1981), but with more players and
more actions (i.e., “legs”) at each node. Figure 1 shows the extensive form of a millipede
game for the special case of object allocation with single-unit demand, where the agents are
labeled i, j, k, . . . and the objects are labeled w, x, y, . . .. At the start of the game, the first
mover, agent i has three options: he can take x, take y, or pass to agent j. If he takes an
object, he leaves the game and it continues with a new agent. If he passes, then agent j can
take x, take z, or pass back to i. If he passes back to i, then i’s possible choices increase
from his previous move (he can now take z). The game continues in this manner until all
objects have been allocated.

While Figure 1 considers an object allocation environment, we define millipede games
more generally for all environments without transfers. Recall that each agent’s preference
domain Pi partitions the outcome space X into equivalence classes, with each element referred
to as a payoff for agent i, and richness in this setting says that every strict ranking of these
payoffs is a possible preference type for i. We say that a payoff x is possible for agent i at
history h if there is a strategy profile of all the agents (including choices made by Nature)
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such that, starting from h and following this strategy profile results in a terminal history h̄
at which agent i obtains payoff x. For any history h, Pi (h) denotes the set of payoffs that
are possible for i at h. We say agent i has clinched payoff x at history h if agent i receives
payoff x at all terminal histories h̄ ⊇ h. If after following action a ∈ A(h), an agent receives
the same payoff for every terminal h̄ ⊇ (h, a), we say that a is a clinching action. If an
action a ∈ A(h) is not a clinching action, then it is called a passing action.

We denote the set of payoffs that i can clinch at a history h at which she moves by Ci(h);
that is, x ∈ Ci(h) if there is some action a ∈ A(h) such that i receives payoff x for all terminal
h̄ ⊇ (h, a). At a terminal history h̄, no agent is called to move and there are no actions;
however, it will be useful to define Ci(h̄) = {x} for all i, where x is the outcome that obtains at
terminal history h̄. We further define C⊆i (h) = {x : x ∈ Ci(h′) for some h′ ⊆ h s.t. ih′ = i}
to be the set of payoffs that i can clinch at some subhistory of h, and C⊂i (h) = {x : x ∈
Ci(h

′) for some h′ ( h s.t. ih′ = i} to be the set of payoffs that i can clinch at some strict
subhistory of h. Note that the definition of Ci(h) implicitly presumes that ih = i, i.e., i
moves at h; however, Pi(h), C⊆i (h) and C⊂i (h) are well-defined for any h, whether i moves
at h or not.

Finally, consider a history h such that ih′ = i for some h′ ( h (i.e., i moves before h),
and either ih = i or h is a terminal history. We say that payoff x becomes impossible for
i at h if x ∈ Pi(h′) for all h′ ( h such that ih′ = i, but x /∈ Pi(h). We say that payoff x is
previously unclinchable at h if x /∈ C⊂i (h).

Given these definitions, we define a millipede game as a finite extensive-form game of
perfect information that satisfies the following properties:

1. Nature either moves once, at the empty history h∅, or Nature has no moves.

2. At any other history h 6= h∅, all but at most one action are clinching actions, and the
remaining action (if there is one) is a passing action. (Note that there may be several
clinching actions associated with the same payoff for the agent who moves at h.)

3. At all h, if there exists a previously unclinchable payoff x that becomes impossible for
agent ih at h, then C⊂ih(h) ⊆ Cih(h).

In a millipede game, if an agent’s top still-possible payoff, say x, is not clinchable at
some history h, it is easy to see that no clinching action can be obviously dominant; the last
condition ensures that passing will be obviously dominant, since if x becomes impossible,
then the agent will at least be able to return to any payoff she was previously offered to
clinch. Notice that millipede games have a recursive structure: the continuation game that
follows any action is also a millipede game. A simple example of a millipede game is a
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deterministic sequential dictatorship in which no agent has passing moves and all payoffs
that are not precluded by the earlier choices of other agents are clinchable. A more complex
example is sketched in Figure 1.18

Our first main result is to characterize the class of OSP games and mechanisms as the
class of millipede games with greedy strategies. To define greedy strategies, let Top(�i, Pi(h))

denote the best payoff in the set Pi(h) for an agent of type �i. A strategy Si(�i) is called
greedy if, for any h at which at Top(�i, Pi(h)) ∈ Ci(h), the action Si(�i)(h) clinches this
payoff for the agent; otherwise, the agent passes.

Theorem 1. In environments without transfers, every obviously strategy-proof mechanism
(Γ, SN ) is equivalent to a millipede game with greedy strategies. Every millipede game with
greedy strategies is obviously strategy-proof.

This theorem is applicable in many environments. This includes allocation problems in
which agents care only about the object(s) they receive, in which case, clinching actions
correspond to taking a specified object and leaving the remaining objects to be distributed
amongst the remaining agents. Theorem 1 also applies to standard social choice problems in
which no agent is indifferent between any two outcomes (e.g., voting), in which case clinching
corresponds to determining the final outcome for all agents. In such environments, Theorem
1 implies the following:

Corollary 1. If each agent has strict preferences among all outcomes, then every OSP game
is equivalent to a game in which either there are only two outcomes that are possible when
the first agent moves (and the first mover can either clinch any of them, or can clinch one
of them or pass to a second agent, who is presented with an analogous choice, etc.), or the
first agent to move can clinch any possible outcome and has no passing action.

The latter case of Corollary 1 is the standard dictatorship, with a possibly restricted set
of possible outcomes, while the former case is a generalization that allows for the possibility
that at her turn, an agent can enforce one of the two outcomes, but not the other (the
enforceable option may differ at each agent’s turn). In particular, this corollary gives an
analogue of the Gibbard-Satterthwaite dictatorship result, with no efficiency assumption.

The full proof of Theorem 1 is in the appendix; here, we provide a brief sketch of the
more interesting direction that for any OSP game Γ, there is an equivalent millipede game.
First, notice that breaking information sets only shrinks the set of possible outcomes, which

18The first more complex example of a millipede game we know of is due to Ashlagi and Gonczarowski
(2018). They construct an example of OSP-implementation of deferred acceptance on some restricted pref-
erence domains. On these restricted domains, DA reduces to a millipede game (though they do not classify
the actions as “passing” or “clinching” actions).
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preserves the min/max obvious dominance inequality, and so every OSP game Γ is equivalent
to a perfect information OSP game Γ′ in which Nature moves once, as the first mover.19

Second, if there are two passing actions a and a′ at some history h, then there are (by
definition) at least two payoffs that are possible for i following each. We show that obvious
dominance then implies that i must have some continuation strategy that can guarantee his
top possible payoff in the continuation game following at least one of a or a′, and we can
construct an equivalent game in which we replace this action with an equivalent clinching
action that allows i to clinch this payoff already at h by making all such “future choices”
today. This procedure can be repeated until there is at most one passing action remaining.
Finally, if there remains some h such that agent i cannot clinch her favorite possible payoff
at h, the game must promise i that she will never be strictly worse off by passing, which is
condition 3.

Remark 1. Our proofs establish a claim stronger than the equivalence of OSP mechanisms
and millipedes with greedy strategies: every obviously strategy-proof game can be trans-
formed into a millipede game by four transformations: (i) breaking all information sets to
create a perfect information game; (ii) having Nature make all of its choices at the beginning
of the game; (iii) replacing continuation strategies that guarantee a payoff for an agent into
a single clinching action; and (iv) Li’s pruning, in which the actions no type chooses are
removed from the game tree.20 These transformations are well defined even if we do not
impose richness nor any other assumption on preferences. We need the richness assumption
to conclude that the end-result of these transformations satisfies the third condition of the
millipede definition.

Theorem 1 characterizes the entire class of obviously strategy-proof games in no-transfer
environments. We have already mentioned some familiar dictatorship-like games that fit into
this class (e.g., Random Priority, also known as Random Serial Dictatorship). Another ex-
ample of a millipede game is sketched in Figure 2. Here, there are 100 agents {i, j, k1, . . . , k98}
and 100 objects {o1, o2, . . . , o100} to be assigned. The game begins with agent i being offered
the opportunity to clinch o2, or pass to j. Agent j can then either clinch o99, in which case
the next mover is k2, or pass back to i, and so on. Now, consider the type of agent i that
prefers the objects in the order of their index: o1 �i o2 �i · · · �i o100. At the very first move
of the game, i is offered her second-favorite object, o2, even though her top choice, o1, is still
available. The obviously dominant strategy here requires i to pass. However, if she passes,

19That every OSP game is equivalent to an OSP game with perfect information was first pointed out in a
footnote by Ashlagi and Gonczarowski (2018), which also notes that de-randomizing an OSP game leads to
an OSP game. For completeness, the appendix contains the (straightforward) proofs of these statements.

20The transformations (i) and (ii) are elucidated in Lemma A1, transformation (iii) in Lemma A3, and
transformation (iv) in Appendix A.2.
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Figure 2: An example of a millipede game.

she may not be offered the opportunity to clinch her top object(s) for hundreds of moves.
Further, when considering all of the possible moves of the other agents, if i passes, the game
has the potential to go off into thousands of different directions, and in many of them, she
will never be able to clinch better than o2. Thus, while passing is formally obviously dom-
inant, fully comprehending this still requires the ability to reason far into the future of the
game and perform lengthy backwards induction.

4 Simple Dominance

The upshot of the previous section is that some OSP mechanisms, such as single-unit as-
cending auctions and Random Priority, are indeed quite simple to play; however, the full
class of millipede games is much larger, and contains OSP mechanisms that may be quite
complex to play. As our analysis illustrates, the reason is that OSP relaxes the assumption
that agents fully comprehend how the choices of other agents will translate into outcomes,
but it still presumes that they understand how their own future actions affect outcomes.
Formally, when checking obvious dominance, the min and the max are taken only over op-
ponents’ strategies, S−i, fixing the agent’s own strategy, Si. Thus, while OSP guarantees
that when taking an action, agents do not have to reason carefully about what their oppo-
nents will do, it still may require that they search deep into the game with regard to their
future self, and assumes they know all of their own actions they will take in the future, and
understand exactly how these actions will affect the set of possible outcomes. (To return to
the illuminating example of chess, it presumes that at the start of the game, White knows
exactly what she needs to do at any possible future configuration of the board in order to
ensure a victory.)

We propose a class of simplicity standards that relax the assumption that players can
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analyze and plan their own actions arbitrarily far into the future of the play. The proposed
conceptualization offers a way to relax the foresight assumptions embedded not only in ob-
vious dominance but also in other game theoretic concepts. Otherwise, we maintain the
approach pioneered by Li (2017b), in particular the assumptions that players cannot fully
analyze the actions of other players but understand the set of possible outcomes following
their own actions. In order to analyze agents who can plan for only part of the game, we
need to allow the agent’s perception of the strategic situation, and hence, the planned ac-
tions—referred to as a strategic plan below, to distinguish from the standard game-theoretic
notion of a strategy—to vary as the game progresses. We first formalize this idea for games
of perfect information; the generalization to imperfect information will easily follow.

For each player i and node h∗ ∈ Hi at which i moves, there is a set of nodes Hi,h∗ ⊆
{h ∈ Hi|h ⊇ h∗} that are perceived as simple from the perspective of node h∗.21 A strategic
plan for agent i at node h∗ is a mapping Si,h∗ from Hi,h∗ to actions at these nodes.22 Note
that a strategic plan does not give an instruction for all continuation nodes at which i may
be called to move, but rather only for those nodes in the set Hi,h∗ . Strategic plan Si,h∗ is
simply dominant at node h∗ if the worst possible payoff for i in the continuation game in
which i follows Si,h∗ (h) at all h ∈ Hi,h∗ is weakly preferred by i to the best possible payoff
for i in the continuation game in which i plays some other a′ 6= Si,h∗ (h∗) at h∗. A set of
strategic plans, (Si,h∗)h∗∈Hi , one for each node h∗ ∈ Hi at which i moves, is called a strategic
collection. A strategic collection (Si,h∗)h∗∈Hi is simply dominant if all its strategic plans
are simply dominant.

Given a profile of strategic collections, SN ,H = ((Si,h∗)h∗∈Hi)i∈N , we define a mechanism
analogously as above, as a pair (Γ, SN ,H). For any strategic collection (Si,h∗)h∗∈Hi , we define
the induced (global) strategy by S∗i (h) = Si,h(h), i.e., agent i’s induced strategy at h
is the action called for by the strategic plan upon reaching history h. Given a type profile
�N= (�i)i∈N and a profile of strategic collections SN ,H, we use S∗N (�N ) to denote the profile
of induced strategies. Note that for any SN ,H, we can find the the terminal history/outcome
that is reached when the game is played according to the profile of strategic collections SN ,H
by equivalently following the profile of induced strategies S∗N (�N ). This allows us to define
equivalence of mechanisms just as before, using the induced strategies: two mechanisms
(Γ, SN ,H) and (Γ̂, ŜN ,H) are equivalent if, for every profile of types �N , the distribution
over outcomes from the induced strategies S∗N (�N ) in Γ is the same as from the induced
strategies Ŝ∗N (�N ) in Γ̂.

21The assumption that Hi,h∗ ⊆ Hi is made for simplicity; in its absence we need to endow players with
beliefs of what other players will do.

22We focus on pure strategies; the extension to mixed strategies is straightforward.
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This approach to simplicity takes the collection (Hi,h∗)h∗∈Hi of simple-node sets to be
a parameter of the definition. The smaller (in an inclusion sense) the set of simple nodes,
the stronger is the resulting simplicity requirement. A natural requirement on the collection
of simple node sets is that if an agent classifies a node h ⊃ h1 as simple from the perspective
of node h1 then the agent continues to classify the node h as simple from the perspective of
all nodes h2 ) h1 such that h ⊃ h2; we do not impose this requirement but it is satisfied in
our main examples to which we turn now.

The generality of our framework allows us to embed important special cases by just
varying the simple-node sets (Hi,h∗)h∗∈Hi . When, for any h∗ ∈ Hi, the set Hi,h∗ is the set of
all continuation nodes of h∗ at which i moves (that is, i can plan all of his future moves),
we refer to any resulting simply dominant strategic collection as an obviously dominant
strategic collection. When Hi,h∗ = {h∗} (that is, i cannot plan any future moves), any
resulting simply dominant strategic collection is called a strongly obviously dominant
strategic collection. It is easy to see that obviously dominant strategic collections induce
strategies that are obviously dominant in the sense of Li (2017b), while strongly obviously
dominant strategic collections induce strategies that are strongly obviously dominant in the
sense we defined in the 2016 draft of our paper.23 Furthermore, any obviously dominant
strategy naturally induces an obviously dominant strategic collection, and the same for
strongly obviously dominant strategies. These are only two special cases of the concept.
(Proposition 2 below shows that these special cases are in fact the extrema of the general
class.) Another natural instance is when Hi,h∗ = {h ∈ Hi (h

∗) |h∗ ( h′ ( h⇒ h′ 6∈ Hi}–that
is, when i can plan one move ahead but not more. We refer to simply dominant strategic
collections for this set of simple nodes as one-step foresight (OSF) dominant strategic
collections.

A strategic collection is consistent if Si,h∗(h) = Si,h(h) for all h ∈ Hi,h∗ and all h∗ ∈
Hi. Obviously dominant strategic collections and strongly obviously dominant strategic
collections are consistent, while one-step foresight strategic collections need not be consistent.

The extension to imperfect information games is straightforward: we replace nodes h∗

and h by information sets I∗ and I, and replace the relationship h ⊇ h∗ by the relationship
that I is a continuation information set of I∗ (that is, I a possible information set following

23In Section 5.2, we recall the definition of strong obvious dominance from the 2016-2018 drafts of our
paper. The connection of our new approach to strong obvious dominance and to Li’s obvious dominance
obtains because in the definitions of these earlier dominance concepts we can replace the comparison to a
strategy S′i at the earliest point of departure with a comparison to actions other than Si (h). For instance,
obviously dominant strategies can be equivalently defined as follows: a strategy Si is obviously dominant if
at any information set Ii the worst possible payoff to the agent from playing Si (Ii) is at least as good as the
best possible payoff from any other action at Ii, where the best/worst case outcomes are determined over all
possible strategies of other agents S−i and all possible choices of Nature.
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I∗). The key parameter of the simplicity definition is then the collection (Ii,I∗)I∗∈Ii of
simple information sets, and the simply dominant strategic collections (Si,I∗)I∗∈Ii are defined
analogously to the discussion above. In the sequel, we focus on perfect information game
because of the following.

Proposition 1. Let Γ be a game of imperfect information, and consider a set of simple infor-
mation sets (Ii,I∗)I∗∈Ii and a corresponding simply dominant strategic collection (Si,I∗)I∗∈Ii.
In the perfect information game in which all information sets contain exactly one history from
game Γ, the induced strategic collection (Si,h∗)h∗∈Hi is simply dominant, where each Si,h∗ is
defined as Si,h∗ (h) = Si,I∗ (I), where I is a continuation information set of I∗, h∗ ∈ I∗ and
h ∈ I.

This result obtains from the analogous observation about obvious dominance—first men-
tioned by Ashlagi and Gonczarowski (2018) and formalized in our Lemma A1—and the first
part of the following theorem.

Proposition 2. Fix a set of simple information sets (Ii,I∗)I∗∈Ii. If a strategic collection
(Si,I∗)I∗∈Ii is simply dominant for (Ii,I∗)I∗∈Ii, then the induced strategy S∗i (I∗) = Si,I∗ (I∗)

is obviously dominant. Furthermore, if the induced strategy S∗i (I∗) = Si,I∗ (I∗) is strongly
obviously dominant, then the strategic collection is simply dominant for (Ii,I∗)I∗∈Ii.

This result establishes obvious dominance and strong obvious dominance as the extreme
points of the class of simple dominance standards we study. It holds true because the larger
(in an inclusion sense) are the sets of simple information sets the more demanding is the
simple dominance requirement.

4.1 Behavioral Microfoundations

Wemay think of simple strategic collections as providing the right guidance to the player even
if the player is confused about the action sets at non-simple nodes. We formalize this idea
as follows. For expositional simplicity, we restrict attention to perfect information games.
For any game Γ and collection of permutations η̃ = {ηh}h∈H of actions at nodes h ∈ H, we
construct the relabeled game η̃ (Γ) by permuting actions at each node h by permutation ηh;
otherwise game η̃ (Γ) has the same game tree as Γ and the same payoffs at terminal nodes.
For instance, if (h∗, a1, a2, ..., ak) is a terminal history in game Γ then it is a terminal history
in game η̃ (Γ) and all players payoffs are the same in both games. For a set of simple nodes
Hi,h∗ , we say that two games Γ and Γ′ are indistinguishable from the perspective of
agent i at node h∗ if there is a collection of permutations η̃ = {ηh}h∈H such that (i) ηh is
an identity for all h ∈ Hi,h∗ and (ii) Γ′ = η̃ (Γ).
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This preparation allows us to relate simply dominant strategic collections to the standard
notion of weak dominance. We say that a strategy Si of player i weakly dominantes strategy
S ′i in the continuation game beginning at h∗ if following strategy Si leads to weakly better
outcomes for i than following strategy S ′i, irrespective of the strategies followed by other
players. Note that here, Si and S ′i denote full strategies in the standard game-theoretic sense
of a complete contingent plan of action.

Theorem 2. For each game Γ, agent i, preference ranking �i, and collection of simple nodes
(Hi,h∗)h∗∈Hi, the strategic plan Si,h∗ is simply dominant from the perspective of h∗ ∈ Hi in Γ

if and only if, in every game Γ′ that is indistinguishable from Γ from the perspective of i at
node h∗, in the continuation game starting at h∗, every strategy Si such that Si (h) = Si,h∗ (h)

for all h ∈ Hi,h∗ weakly dominates any strategy S ′i such that S ′i (h∗) 6= Si,h∗ (h∗).

The straightforward proof is in the appendix, and—similarly to the proofs of the previous
two theorems—it does not rely on our domain richness assumptions.

This theorem tells us the strategic collection (Si,h∗)h∗∈Hi is simply dominant in Γ if and
only if for every h∗ ∈ Hi in every game Γ′ that is indistinguishable from the perspective of
node h∗ every strategy Si such that Si (h) = Si,h∗ (h) for all h ∈ Hi,h∗ is weakly dominant
in the continuation game starting at h∗. When the strategic collection is consistent, we can
express this result equivalently in terms of simplicity of the induced global strategies Si (h) =

Si,h (h). When expressed in this way, this result corresponds to Li’s (2017b) microfoundation
for obvious strategy-proofness.24

Remark 2. Theorem 2 explains the desirability of simple dominance in terms of agents
misunderstanding the game they are playing. Let us note that we could also interpret it
in terms of the mechanism designer being uncertain what the agents think the game they
are playing is. By designing a mechanism with simply dominant strategic collections, the
designer ensures it is played as expected.

5 Characterizing Simple Mechanisms

We now use our new simplicity standards to characterize what mechanisms are simple in
environments both with and without transfers. For the weakest simplicity standard in the

24While the two results capture the same phenomenon, there is a difference between them even when
restricted to OSP: Li’s (2017b) microfoundation considers a larger set of games a player might be confused
between, thus—for OSP—one of his implications is formally stronger, while the other formally weaker than
ours. A full analogue of Li’s result would call for a more complex formulation but it is also true in our setting,
with the proof following the same steps as that of Theorem 2. Theorem 2 subsumes the microfoundation for
strong obvious strategy-proofness from the 2016-2018 drafts of our paper.
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class, obvious dominance, Li (2017b) provides a characterization in environments with trans-
fers, while we did so for no-transfer environments in Section 3 above. Thus, in this section,
we focus on OSF dominance and strong obvious dominance.

5.1 One-Step Foresight Dominance

OSF dominance presumes that agents cannot plan arbitrarily far into the future of the
game, but can only plan one move ahead at a time. This will eliminate the complex,
yet still OSP, millipede games we saw in Section 3 in environments without transfers,
while still allowing for such intuitively simple games as ascending auctions in environ-
ments with transfers. Recall that OSF dominant strategic collections obtain from sim-
ply dominant strategic collections when the simple-node sets (Hi,h∗)h∈Hi are such that
Hi,h∗ = {h ∈ Hi (h

∗) |h∗ ( h′ ( h⇒ h′ 6∈ Hi}; for shorthand, we refer to any h ∈ Hi,h∗ \{h∗}
as a next-history (or, next-node) at h∗. A strategic plan Si,h∗ is then OSF-dominant if it
is simply dominant when any next-history is viewed as simple from h∗ for agent i, but no
other histories are simple from the perspective of h∗.

Binary allocation with transfers

One of the main applications of obvious dominance analyzed by Li (2017b) is to binary
allocation with transfers. The simplest example of this is an auction of a single good, and
Li (2017b) shows that in this setting, the canonical ascending (clock) auction is obviously
strategy-proof, while the normal-form equivalent second-price sealed-bid auction is not. In
fact, ascending auctions are not only OSP, they also satisfy the stronger property of one-
step foresight simplicity. This can be seen easily by noting that the following collection of
strategic plans is OSF-dominant: for any information set I∗i such that the current price p is
weakly lower than the bidder i’s value vi: i stays In, with a plan to drop Out at any next-
information set Ii ⊃ I∗i . For any information set I∗i such that the current price is p > vi: i
drops Out immediately.25

Li (2017b) goes beyond just ascending clock auctions, and shows that in binary allocation
settings with transfers, the class of OSP games is characterized by the class of personal clock
auctions. As we show next, personal clock auctions are also OSF-simple, and so, surprisingly,
any OSP-implementable social choice rule is also implementable in OSF-dominant strategic
collections.

25Another OSF-dominant strategic collection is: For any I∗i such that the current price p is strictly lower
than vi: Stay In, with plan to drop Out at any next information set. For any I∗i such that p ≥ vi: Drop out
immediately.
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Formally, we follow Li (2017b) and define binary allocation problems with transfers as
follows: Y ⊆ 2N is a set of possible allocations and w ≡ (wi)i∈N ∈ WN is a profile of
transfers. The set of outcomes is thus X = Y ×WN . To be consistent with Li (2017b), in
this section, we denote agents types by θi ∈ [θi, θi], where 0 ≤ θi < θi, and assume that agents
have quasilinear preferences, where ui(θi, y, w) = 1i∈yθi + wi denotes agent i’s utility from
outcome (y, w) when she has type θi.26 For a (perfect-information) game Γ, define outcome
functions g such that gy(h̄) ∈ Y is the allocation at terminal history h̄, and gw,i(h̄) ∈ W is
the transfer to agent i at h̄. The following definition of a personal clock auction is adapted
from Li (2017b). Note that the game is deterministic, i.e., there are no moves by Nature.27

Γ is a personal clock auction if, for every i ∈ N , at every earliest history at which i
moves h∗i , either:

In Transfer Falls: there exists a fixed transfer w̄i ∈ W , a going transfer w̃i : {hi : h∗i ⊆
hi} → W and a set of “quitting actions” Aq such that

• For all terminal h̄ ⊃ h∗i , either (i) i /∈ gy(h̄) and gw,i(h̄) = w̄i or (ii) i ∈ gy(h̄) and
gw,i(h̄) = min{w̃i(hi) : h∗i ⊆ hi ( h̄}.

• If h̄ ) (h, a) for some h ∈ Hi and a ∈ Aq, then i /∈ gy(h̄).

• Aq ∩ A(h∗i ) 6= ∅

• For all h′i, h′′i ∈ {hi : h∗i ⊆ hi}:

– If h′i ( h′′i , then w̃i(h′i) ≥ w̃i(h
′′
i )

– If h′i ( h′′i , w̃i(h′i) > w̃i(h
′′
i ) and there is no h′′′i such that h′i ( h′′′i ( h′′i , then

Aq ∩ A(h′′i ) 6= ∅

– If h′i ( h′′i and w̃i(h′i) > w̃i(h
′′
i ), then |A(h′i) \ Aq| = 1

– If |A(h′i) \ Aq| > 1, then there exists a ∈ A(h′i) such that, for all h̄ ⊇ (h′i, a),
i ∈ gy(h̄).

or, Out Transfer Falls:

• As above, but replace every instance of “i ∈ gy(h̄)” with “i /∈ gy(h̄)” and vice-versa.
26Note that Li (2017b) allows for a continuum of transfers and types. Our simplicity standards extend

straightforwardly to this environment.
27In light of our notion of equivalent mechanisms and Proposition 1, the presentation below is a simplifi-

cation of Definition 15 of Li (2017b): for any personal clock auction that satisfies Definition 15 of Li (2017b),
there is an equivalent mechanism that satisfies the definition below. (This statement is valid for original Li’s
(2017b) definition and for the one presented in the corrigendum available from his website).
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Intuitively, a personal clock auction is a generalization of classic ascending/descending auc-
tions. In a standard ascending auction for a single good, there is a single price for all agents;
at each history, agents choose from one of two actions, either “quit” or “continue”; when an
agent quits, she does not win the object (i.e., is out of the allocation), and receives a transfer
of zero. As Li (2017b) discusses, personal clock auctions generalize this procedure in sev-
eral ways: agents may face different prices (“clocks”); at any history, there may be multiple
quitting or multiple continuing actions; when an agent quits, her transfer need not be zero;
some agents may face In-Transfer Falls while others face Out-Transfer Falls (a two-sided
clock auction). The key restrictions are that the clock for each agent can only go in one
direction (i.e., either In-Transfer Falls or Out-Transfer Falls), and, whenever the transfer an
agent faces strictly changes, she must be offered an opportunity quit. But, these restrictions
also ensure that there is an OSF-dominant strategic plan at any hi. In particular, we have
the following result.

Theorem 3. In binary allocation settings with transfers, every OSF-simple mechanism is
equivalent to a personal clock auction. Furthermore, every personal clock auction is OSF-
simple.

Because our Proposition 2 implies that any OSF-simple mechanism is also OSP, the first
part of the theorem readily follows from Li’s (2017b) result that the class of OSP mechanisms
is characterized by personal clock auctions. That personal clock auctions are OSF-simple is
straightforward to check, establishing the second part of the theorem.

Environments without transfers

In Section 3, we saw that in no-transfer environments, some millipede games, while obviously
strategy-proof, could still be quite complex (e.g., Figure 2). Imposing the stronger standard
of OSF-simplicity eliminates such complex millipede games, and leaves only games that are
monotonic in the following sense: a game Γ ismonotonic if, for any agent i and any histories
h ( h′ such that ih =i, ih′ = i or h′ is terminal, and ih′′ 6= i for any h′′ such that h ( h′′ ( h′,
either (i) Ci(h) ⊆ Ci(h

′) or (ii) Pi(h) \ Ci(h) ⊆ Ci(h
′). In words, this says that at any

next-history for i, she is offered to clinch either (i) everything she could have clinched at her
previous move or (ii) everything that was possible, but not clinchable at her previous move.

Theorem 4. In environments without transfers, every OSF-simple game is equivalent to a
monotonic millipede game. Furthermore, every monotonic millipede game is OSF-simple.

From the perspective of an agent playing in a game, monotonic games seem particularly
simple: each time an agent is called to move, she knows that if she chooses to pass (i.e., not
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clinch), at her next move, she will either be able to clinch everything she is offered to clinch
currently, or she will be able to clinch her top remaining choice. On the other hand, in a
non-monotonic game such as that in Figure 2, an agent’s possible clinching options at future
moves may be strictly worse for her for many moves in the future, before eventually being
re-offered what she was able to clinch in the past. If agents are unable to plan far ahead
in the game tree, it may be difficult to recognize that passing is obviously dominant; in a
monotonic game, however, agents only need to be able to plan at most one step at a time
to recognize that passing is a dominant choice.

Remark 3. The idea of monotonicity extends to our general environment but we need to
replace inclusions by dominance relations between sets. We say that, for an agent i, set A
of payoffs is dominated by set B of payoffs, and write A ≤i B, if for every payoff a ∈ A
there is a payoff b ∈ B such that b D a. We then say that a game Γ is monotonic if, for
any agent i and any histories h ( h′ such that ih =i, ih′ = i or h′ is terminal, and ih′′ 6= i

for any h′′ such that h ( h′′ ( h′, either (i) Ci(h) ≤i Ci(h′) or (ii) Pi(h) \ Ci(h) ≤i Ci(h′).
Personal clock auctions from the previous subsection are monotonic in this sense, while in
settings in which no payoff is dominated by another—that is, in settings which we referred
to as settings without transfers—these dominance relations reduce to inclusions of the sets
of payoffs and we recover the monotonicity definition used in Theorem 4.

5.2 Strong Obvious Dominance and Price Mechanisms

In light of Theorem 2, the strongest simplicity standard in our class is strong obvious domi-
nance. To remind, a strategy Si is strongly obviously dominant if, for any other strategy
S ′i, starting at any earliest point of departure h between Si and S ′i, the worst possible outcome
from following Si is weakly better than the best possible outcome following S ′i, where the
best and worst cases are taken over all future actions of other agents (including Nature) and
all future actions of agent i. In the framework of strategic plans/collections, strong obvious
dominance obtains from simply dominant strategic collections when the set of simple nodes
from the perspective of h∗ is Hi,h∗ = {h∗}. If a game Γ admits a profile of strongly obvi-
ously dominant strategies, we say that it is strongly obviously strategy-proof (SOSP).
Random Priority is SOSP, but the millipede game depicted in Figure 2 is not. Thus, SOSP
mechanisms further delineate the class of games that are simple to play, by eliminating the
more complex millipede games that may require significant forward-looking behavior and
backward induction.

Strong obvious strategy-proofness has several appealing features that capture the idea
of a game being simple to play. Since SOSP strengthens OSP by looking at the worst/best

23



case outcomes for i over all possible future actions that could be taken by i’s opponents and
agent i herself, a strongly obviously dominant strategy is one that is weakly better than all
alternative strategies even if the agent is concerned that she might tremble in the future or
has time-inconsistent preferences. Further, SOSP games can be implemented so that each
agent is called to move at most once. We can actually show a stronger result that highlights
the simplicity of SOSP games: in any SOSP game, each agent can have at most one history
at which her choice of action is payoff-relevant. Formally, we say a history h at which agent i
moves is payoff-irrelevant for this agent if i receives the same payoff at all terminal histories
h̄ ⊃ h; if i moves at h and this history is not payoff-irrelevant, then it is payoff-relevant
for i. The definition of SOSP and richness of the preference domain give us the following.

Lemma 1. Along each path of an SOSP game that is on the path of the greedy strategies for
some type profile, there is at most one payoff-relevant history for each agent.

This result allows us to further conclude that, for a given game path, the unique payoff-
relevant history (if it exists) is the first history at which an agent is called to move.28 While an
agent might be called to act later in the game, and her choice might influence the continuation
game and the payoffs for other agents, it cannot affect her own payoff.

Building on Lemma 1, we show that SOSP effectively implies that agents—in a se-
quence—are faced with choices from personalized menus (e.g., in allocation with transfers
this may be menus of object-price pairs). At the typical payoff-relevant history an agent is
offered a menu of payoffs that she can clinch, she selects one of the alternatives from the
menu, and she is never called to move again. More formally, we say that Γ is a sequential
price game if it is a perfect-information game in which Nature moves first (if at all). The
agents then move sequentially, with each agent called to play at most once. The ordering
of the agents and the sets of possible outcomes at each history are determined by Nature’s
action and the actions taken by earlier agents. As long as there are either at least three
distinct undominated payoffs possible for the agent who is called to move or there is exactly
one such payoff, the agent can clinch any of the possible payoffs, while at the same time also
selecting a message from a pre-determined set of messages. When exactly two undominated
payoffs are possible for the agent who moves, the agent can be faced with either (i) a choice
between them (clinching and selecting an accompanying message), or, (ii) a choice between
clinching one of these payoffs (and selecting an accompanying message) and passing (with
no message); note that (ii) does not allow the agent to clinch the other payoff. Also note
that, similarly to OSP games, in a sequential price game, an agent may have several actions

28The on-path restriction is not needed if we consider the class of “pruned” games in the sense of Li (2017b);
cf. Appendix A.2 for how pruning works with OSP, SOSP, and other simplicity concepts.
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that clinch the same payoff for herself; the purpose of including messages (in addition to
selecting a payoff) is to capture this feature. In environments without transfers, sequential
price games resemble sequential dictatorships.

Theorem 5. Every strongly obviously strategy-proof mechanism (Γ, SN ) is equivalent to a
sequential price mechanism with the greedy strategy. Every sequential price mechanism with
the greedy strategy is strongly obviously strategy-proof.

Theorem 5 applies to a wide array of environments. For instance, in an object allocation
model without transfers, every SOSP mechanism resembles a sequential dictatorship in which
agents are called sequentially and offered some subsets of objects that they can clinch; they
pick their most preferred object and leave the game (the difference between a sequential price
game and a sequential dictatorship is that at an agent’s turn, she need not be offered all
still-available objects). In a binary allocation setting setting with a single good and transfers,
each agent is approached one at a time, and given a take-it-or-leave-it (TIOLI) offer of a
price at which she can purchase the good; if an agent refuses, the next agent is approached,
and given a (possibly different) TIOLI offer, etc. If there are multiple objects for sale, each
agent is offered a menu consisting of several bundles of objects with associated transfers, and
selects her most preferred option from the menu. These are only a few examples covered by
Theorem 5; the result holds for any environment that satisfies the richness assumption from
Section 2.

6 Random Priority

As an application of our study of simplicity, we show that OSP can be combined with natural
fairness and efficiency axioms to provide a characterization of the popular Random Priority
(RP) mechanism. In Random Priority, first Nature selects an ordering of agents, and then
each agent moves in turn and chooses her favorite object among those that remain available
given previous agents’ choices. Random Priority succeeds on three important design dimen-
sions: it is simple to play, efficient, and fair.29 However, this is only a partial explanation of
its success, as to now, it has remained unknown whether there exist other such mechanisms,
and, if so, what explains the relative popularity of RP over these alternatives.30 Theorem

29Pareto efficiency and fairness of RP have been recognized at least since Abdulkadiroğlu and Sönmez
(1998) (see Bogomolnaia and Moulin (2001) for analysis of more demanding efficiency concepts), while Li
(2017b) established OSP of RP. It is easy to see that the standard extensive-form implementation of RP also
satisfies all of our more demanding simplicity requirements.

30Bogomolnaia and Moulin (2001) provide a characterization of RP in the special case of |N | = 3, but their
result does not extend to larger markets; Liu and Pycia (2011) provide a characterization using asymptotic
versions of standard axioms in replica economies as the market size grows to infinity.
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6 provides an answer to this question: not only does Random Priority have good efficiency,
fairness, and incentive properties, it is the only mechanism that does so, thus explaining the
widespread popularity of Random Priority in practice.

We consider a canonical object allocation model with single-unit demand, a special case
of our general framework. There is a set N of agents, a set of objects, also of cardinality
|N |, and global outcomes are bijections between agents and objects. Each agent has a
strict preference ranking �i over the objects. Our efficiency concept is Pareto efficiency: an
outcome is Pareto efficient when no other outcome is weakly preferred by all participants
and strictly preferred by at least one; a mechanism (Γ, SN ) is Pareto efficient if it generates
Pareto efficient outcomes for all Nature’s choices and agents’ types.31 Our fairness concept is
symmetry: a mechanism (Γ, SN ) is symmetric if, for any two agents i, j ∈ N , the outcome
distribution of the mechanism does not change when we transpose the preference rankings
of i and j and at the same time transpose the objects the two agents obtain. Informally,
the outcome of the mechanism would not change if i played the role of j and vice versa.32

The symmetry condition fails in a serial dictatorship in which player 1 chooses first among
all outcomes and then player 2 chooses among all remaining outcomes: if they have the
same most preferred object then 1 obtains this object in the original serial dictatorship but
not in the transposed one. Random Priority orders the agents randomly, and in effect the
probability agent 1 obtains the preferred object is the same before and after the transposition.

Theorem 6. An obviously strategy-proof mechanism is symmetric and Pareto efficient if
and only if it is equivalent to Random Priority.

That RP is obviously strategy-proof was recognized by Li (2017b), and its Pareto ef-
ficiency and symmetry is known at least since Abdulkadiroğlu and Sönmez (1998). The
converse is new. A key step in the proof is our construction of a bijection between permuta-
tions of any deterministic Pareto-efficient millipede and permutations of serial dictatorships
such that the outcomes of the permuted millipede and permuted serial dictatorship are ex-
actly the same. Applying a permutation of agents σ : N → N to a serial dictatorship means
that we use σ to change the order in which agents make their choices; similarly, applying
the permutations σ to a millipede means that agent i is given the moves of agent σ (i) (see
appendix for more formal treatment). The bijection idea was first employed by Abdulka-
diroğlu and Sönmez (1998), and has since been used by several others (e.g., Pathak and

31Because our simplicity axiom will be obvious dominance, SN here denotes a profile of strategies in the
standard game-theoretic sense (rather than strategic plans).

32We formalize the concept of the role in the appendix. Because any permutation can be decomposed into a
composition of transpositions, we can equivalently state the symmetry property as σ−1◦(Γ, SN )◦σ = (Γ, SN )
for all permutations σ : N → N .
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Sethuraman (2011) and Carroll (2014)). Our construction of the bijection is highly involved
and very different from the bijections of the earlier literature. In the construction, we rely on
the properties of the millipedes established by us, and on the properties of Pareto efficient
OSP mechanisms subsequently obtained by Bade and Gonczarowski (2017). The bijection
argument only proves the special case of the theorem restricted to mechanisms that take
the form of a uniform randomization over permutations of a deterministic Pareto-efficient
millipede, and another key step of the proof is showing that every relevant symmetric mech-
anism is equivalent to a lottery over such uniform randomizations. We provide details in the
appendix.

7 Conclusion

We study the question of what makes a game “simple to play”, and introduce a general
class of simplicity standards that vary the foresight abilities required of agents in extensive-
form imperfect-information games. We consider agents that form a strategic plan only for
a limited horizon in the continuation game, though they may update these plans as the
game progresses and the future becomes the present. The least restrictive simplicity stan-
dard include in our class is Li’s (2017b) obvious strategy-proofness, which presumes agents
have unlimited foresight of their own actions, while the strongest, strong obvious strategy-
proofness, presumes no foresight. For each of these standards, as well as an intermediate
standard of one-step-foresight simplicity, we provide characterizations of simple mechanisms
in various environments with and without transfers, and show that our simplicity standards
delineate classes of mechanisms that are commonly observed in practice. Among these re-
sults, we show that Li’s characterization of OSP mechanisms as personal clock auctions can
be strengthened to OSF, and that SOSP mechanisms are equivalent to price mechanisms,
which are ubiquitous in practice.33 Finally, in the context of object allocation without trans-
fers, we provide an explanation for the popularity of Random Priority by showing that it is
the essentially unique mechanism that is OSP, efficient, and symmetric.

Our results contribute to the understanding of the fundamental trade-off between simplic-
ity of mechanisms and the ability to implement other social objectives, such as efficiency. In
environments with transfers, Vickrey (1961), Riley and Samuelson (1981), Myerson (1981),
Manelli and Vincent (2010), and Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013)
show that the efficiency achieved with Bayesian implementation can be replicated in dom-
inant strategies; thus the accompanying increase in simplicity may come without efficiency

33Even on eBay, which began as an auction website, Einav et al. (2018) document a dramatic shift in the
2000s from auctions to posted prices as the predominant selling mechanism on the platform.
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costs. Li (2017b) and our paper advance this insight yet further and establish that obvi-
ously strategy-proof and one-step-foresight simple mechanisms can also implement efficient
outcomes. At the same time, strong obvious dominance is more restrictive, and will more
severely limit the class of implementable objectives. In environments with transfers, SOSP
will generally preclude efficiency,34 though it is important to note that in environments with-
out transfers, even SOSP mechanisms—serial dictatorships—can achieve efficient outcomes.
Combining our results with the mechanism equivalence analysis of Pycia (2017) allows us
to conclude that, in single-unit demand allocation problems without transfers, the restric-
tion to strongly obvious strategy-proof mechanisms allows the designer to achieve virtually
the same efficiency and many other objectives as those achievable in merely strategy-proof
mechanisms. Thus in many environments, simplicity entails no efficiency loss. In other
environments, the trade-off between simplicity and efficiency is more subtle.

Our work is complementary to experimental literature on how mechanism participants
behave and what elements of design enable them to play equilibrium strategies, cf. e.g. Kagel
et al. (1987) and Li (2017b). While this literature identifies implementation features that
facilitate play and confirms that obviously strategy-proof mechanisms are indeed simpler to
play than merely strategy-proof mechanisms, while strongly obviously strategy-proof mech-
anisms are easier still and nearly all participants play them as expected,35 our general theory
of simplicity opens new avenues for experimental investigations. For instance, one may define
a simplicity level of a game in terms of a smallest (in inclusion sense) set of histories that an
agent must see as simple in the sense of Section 4 in order to play the equilibrium strategy
correctly. One may similarly measure the sophistication of experimental subjects.

In sum, the sophistication of agents may vary across applications, and so it is important to
have a range of simplicity standards.36 For sophisticated agents, a weaker simplicity standard
ensures they play the intended strategies, allowing in principle the designer more flexibility
on other objectives; however, for less sophisticated agents, a stronger standard of simplicity
may need to be imposed, with the potential limitations on flexibility. Understanding the
simplicity of games and the simplicity-flexibility tradeoff requires an adaptable approach to

34For instance, when we want to allocate an object to the highest value agent in an environment with
transfers in which there are at least two agents and agents’ values are drawn iid from among at least three
values, an impossibility result obtains: no SOSP and efficient mechanism exists. This is implied by our
sequential price mechanism characterization (Theorem 5). On the other hand, Armstrong (1996) shows that
posted prices achieve good revenues when bundling allows the seller to equalize the valuations of buyers, and
Chawla, Hartline, Malec, and Sivan (2010) and Feldman, Gravin, and Lucier (2014) show that sequential
price mechanisms achieve decent revenues even without the bundling/equalization assumption.

35See Bo and Hakimov (2019). For tests of the first claim see also Li (2017b) and Breitmoser and
Schweighofer-Kodritsch (2019).

36Our theory provides a partial ordering on many simplicity standards but not all; for an example of a
simplicity standard not encompassed by our theory, see Börgers and Li (2019).
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thinking about simplicity. This paper puts forth one such proposal, though there is much
work still to be done in fully exploring this trade-off and testing various simplicity standards
empirically.

A Proofs

A.1 Preliminary Definitions

Before proceeding with the main proofs, we first define the concepts of possible, guarantee-
able, and clinchable outcomes/actions more formally. Fix a game Γ. Let S = (Si)i∈N denote
a strategy profile for the agents. Let ω := (ω(h)){h∈H:Nature moves at h} denote one particular
realization of Nature’s moves through the game, where ω(h) ∈ A(h) is the action taken by
Nature at a history h at which Nature is called to move. Define z(h, S, ω) ∈ X as the unique
final outcome that obtains at the terminal history h̄ that is reached when play starts at some
h and proceeds according to (S, ω).

We first discuss the distinction between types of payoffs (possible vs. guaranteeable)
and then the distinction between types of actions (clinching actions vs. passing actions).
Recall that agents may be indifferent between several outcomes. For any outcome x ∈ X ,
let [x]i = {y ∈ X : y ∼i x} denote the x-indifference class of agent i, and define

Xi(h, Si) = {[x]i : z(h, (Si, S−i), ω) ∈ [x]i for some (S−i, ω)}

to be the possible indifference classes that may obtain for agent i starting at history h if she
follows strategy Si. If there exists some Si such that [x]i ∈ Xi(h, Si), then we then we say
that [x]i is possible for i at h. If, further, there exists some Si such that Xi(h, Si) = {[x]i},
then we say [x]i is guaranteeable for i at h. Let

Pi(h) = {[x]i : ∃Si s.t. [x]i ∈ Xi(h, Si)}

Gi(h) = {[x]i : ∃Si s.t. Xi(h, Si) = {[x]i}}

be the sets of indifference classes that are possible and guaranteeable at h, respectively.37

Note that Gi(h) ⊆ Pi(h), and the set Pi(h) \Gi(h) is the set of indifference classes that are
possible at h, but are not guaranteeable at h.

Last, we define a distinction between two kinds of actions: clinching actions and passing
actions. Let ih = i be the agent who is to act at a history h. Using our notational convention
that (h, a) denotes the history obtained by starting at h and following action a, the set

37Note that Pi(h) and Gi(h) are well-defined even if ih 6= i, i.e., even if i is not the agent who moves at h.

29



Pi((h, a)) is the set of payoffs that are possible for i if she takes action a at h. If Pi((h, a)) =

{[x]i}, then we say that action a ∈ A(h) clinches payoff x for i. If an action a clinches x
for i, we call a a clinching action. Note that there can be multiple actions in A(h) that
clinch the same payoff x for i. Any action of an agent that is not a clinching action is called
a passing action. Let Ci(h) denote the set of payoffs that are clinchable for i at h; that is,

Ci(h) = {[x]i : ∃a ∈ A(h) s.t. Pi((h, a)) = {[x]i}}.

Note that this definition of Ci(h) presumes that agent i is called to play at history h. If h̄ is
a terminal history, then no agent is called to play and there are no actions. However, it will
be useful in what follows to define Ci(h̄) = {[x]i} for all i, where x is the unique outcome
associated with the terminal history h̄.

We also remind the reader of two additional pieces of notation that were introduced in
Section 3:

C⊆i (h) = {[x]i : [x]i ∈ Ci(h′) for some h′ ⊆ h s.t. ih′ = i}

C⊂i (h) = {[x]i : [x]i ∈ Ci(h′) for some h′ ( h s.t. ih′ = i}.

In words, C⊆i (h) is the set of payoffs that i can clinch at some subhistory of h, and C⊂i (h) is
the set of payoffs that i can clinch at some strict subhistory of h. Note that the definition of
Ci(h) implicitly presumes that ih = i, i.e., i moves at h; however, Pi(h), C⊆i (h) and C⊂i (h)

are defined for any h, whether i is the agent who moves at h or not.

A.2 Pruning Principle

Li (2017b) introduced the following pruning principle for obvious dominance. Given a game
Γ and strategy profile (Si(�i))i∈N , the pruning of Γ with respect to (Si(�i))i∈N is a game
Γ′ that is defined by starting with Γ and deleting all histories of Γ that are never reached
for any type profile. Then, the pruning principle says that if (Si(�i))i∈N is obviously
dominant for Γ, the restriction of (Si(�i))i∈N to Γ′ is obviously dominant for Γ′, and both
games result in the same outcome. Thus, for any OSP mechanism, we can find an equivalent
OSP pruned mechanism. For strong obvious dominance the pruning principle remains valid.

For all simple dominance concepts we study, a modified pruning principle is valid: we
only delete histories that are never simple on the path of the game for any type profile.
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A.3 Proof of Theorem 1

We break Theorem 1 into two propositions. We start by proving that millipede games are
OSP (Proposition A1), and then prove that every OSP game is equivalent to a millipede
game (Proposition A2).

Proposition A1. Millipede games with greedy strategies are obviously strategy-proof.

Proof. Let Γ be a millipede game. Recall that the greedy strategy for any agent i is defined
as follows: for any history h at which i movies, if i can clinch her top payoff in Pi(h), then
Si(�i)(h) instructs i to follow an action that clinches this payoff; otherwise, i passes at h.38

We now show that it is obviously dominant for all agents to follow a greedy strategy.
Consider some profile of greedy strategies (Si(·))i∈N . For any subset of outcomes X ′ ⊂ X ,
define Top(�i, X ′) as the best possible payoff in the set X ′ according to preferences �i,
i.e., x ∈ Top(�i, X ′) if and only if x %i y for all y ∈ X ′ (note that we use our standard
convention whereby a payoff x represents the entire indifference class to which x belongs,
and so Top(�i, X ′) is a singleton). Then, Top(�i, Pi(h)) denotes i’s top payoff among all
payoffs that are possible at history h, and Top(�i, Ci(h)) denotes i’s top payoff among all
of his clinchable payoffs at h. It is clear that if Top(�i, Ci(h)) = Top(�i, Pi(h)), then the
greedy action of clinching the top payoff is obviously dominant at h. What remains to be
shown is if Top(�i, Ci(h)) 6= Top(�i, Pi(h)), then passing is obviously dominant at h.

Assume that there exists a history h that is on the path of play for type �i when
she follows the greedy strategy and Top(�i, Ci(h)) 6= Top(�i, Pi(h)), yet passing is not
obviously dominant at h; further, let h be any earliest such history for which this is true.
To shorten notation, let xP (h) = Top(�i, Pi(h)), xC(h) = Top(�i, Ci(h)), and let xW (h) be
the worst possible payoff from passing (and following Si(�i) in the future). Since passing is
not obviously dominant, it must be that xW (h) 6%i xC(h).

First, note that xW (h) %i xW (h′) for all h′ ( h such that ih′ = i. Since passing is
obviously dominant at all such h′, we have xW (h′) %i xC(h′), and together, these imply
that xW (h) %i xC(h′) for all such h′. At h, since passing is not obviously dominant, we have
xC(h) �i xW (h), and further, there must be some x′ ∈ Pi(h)\Gi(h) such that x′ �i xC(h) �i
xW (h).39 The above implies that x′ �i xC(h) �i xC(h′) for all h′ ( h such that ih′ = i. Let
X0 = {x′ : x′ ∈ Pi(h) and x′ �i xC(h)}. In words, X0 is a set of payoffs that are possible
at all h′ ⊆ h, and are strictly better than anything that was clinchable at any h′ ⊆ h (and

38There may be multiple ways for i to clinch the same payoff x at h, and further, x may in principle still
be possible/guaranteeable if i passes at h. Our goal is simply to prove the existence of at least one obviously
dominant strategy for i.

39At least one such x′ exists by the assumption that Top(�i, Ci(h)) 6= Top(�i, Pi(h)), though there in
general may be multiple such x′.
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therefore have never been clinchable themselves). Order the elements in X0 according to �i,
and wlog, let x1 �i x2 �i · · · �i xM .

Consider a path of play starting from h and ending in a terminal history h̄ at which
type �i of agent i receives his worst case payoff xW (h). For every xm ∈ X0, let hm denote
the history on this path at which xm becomes impossible for i.40 Note that because i is
ultimately receiving payoff xW (h), such a history hm exists for all xm ∈ X0.41 Let ĥ =

max{h1, h2, . . . , hM} (ordered by ⊂); in words, ĥ is the earliest history at which everything
in X0 is no longer possible. Further, let ĥ−m = max{h1, . . . , hm−1}, i.e., ĥ−m is the earliest
history at which all payoffs strictly preferred to xm are no longer possible.

Claim A1. For all xm ∈ X0 and all h′ ⊆ h̄, we have xm /∈ Ci(h′).

Proof. First, note that xm /∈ Ci(h
′) for any h′ ⊆ h by construction. We will show that

xm /∈ Ci(h′) at any h̄ ⊇ h′ ⊃ h as well. Start by considering m = 1, and assume x1 ∈ Ci(h′)
for some h̄ ⊇ h′ ⊃ h. By definition, x1 = Top(�i, Pi(h)); since h′ ⊃ h implies that Pi(h′) ⊆
Pi(h), we have that x1 = Top(�i, Pi(h′)) as well. Since x1 ∈ Ci(h′) by supposition, greedy
strategies direct i to clinch x1, which contradicts that she receives xW (h).42

Now, consider an arbitrary m, and assume that for all m′ = 1, . . . ,m − 1, payoff xm′ is
not clinchable at any h′ ⊆ h̄, but xm is clinchable at some h′ ⊆ h̄. Let xm′ be (a) payoff that
becomes impossible at ĥ−m and is such that xm′ �i xm. There are two cases:

Case (i): h′ ⊂ ĥ−m. This is the case where xm is clinchable while there is some strictly
preferred payoff xm′ �i xm that is still possible. Since xm′ becomes impossible at ĥ−m and is
previously unclinchable, by definition of a millipede game, so xm ∈ Ci(ĥ−m). Then, since all
preferred payoffs are no longer possible at ĥ−m, xm is the best possible payoff remaining, and
is clinchable. Therefore, greedy strategies instruct agent i to clinch xm, which contradicts
that she receives xW (h).

Case (ii): h′ ⊇ ĥ−m. In this case, xm becomes clinchable after all strictly preferred
payoffs are no longer possible. Thus, again, greedy strategies instruct i to clinch xm, which
contradicts that she is receiving xW (h).

To finish the proof, again let ĥ = max{h1, h2, . . . , hM} and let x̂ be a payoff that becomes
impossible at ĥ. The claim shows that x̂ is not clinchable at any h′ ⊆ ĥ. Therefore, by part
3 in the definition of a millipede game, xC(h) ∈ Ci(ĥ). Since xC(h) is the best possible

40Recall from the main text that we say a payoff x becomes impossible for i at h if it was possible for all
prior histories at which i moves, and is no longer possible at h.

41It is possible that hm is a terminal history.
42Recall that for terminal histories h, we define Ci(h) = {x}, where x is the unique payoff associated with

the terminal history. Thus, if h′ is a terminal history, then i receives payoff x1, which also contradicts that
she receives payoff xW (h).
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remaining payoff at ĥ, greedy strategies direct i to clinch xC(h), which contradicts that she
receives xW (h).43

Proposition A2. Every obviously strategy-proof mechanism (Γ, SN ) is equivalent to a mil-
lipede game with greedy strategies.

Proof. Given Li’s pruning principle (see Subsection A.2), Proposition A2 follows directly
from Lemmas A1, A3, and A4 that we state and prove below.44

Lemma A1. Every OSP game is equivalent to an OSP game with perfect information in
which Nature moves at most once, as the first mover.

Proof. Ashlagi and Gonczarowski (2018) briefly mention this result in a footnote; here, we
provide the straightforward proof for completeness. We first show that every OSP game is
equivalent to an OSP game with perfect information. Denote by A (I) the set of actions
available at information set I to the agent who moves at I. Take an obviously strategy-proof
game Γ and consider its perfect-information counterpart Γ′, that is the perfect information
game at which at every history h in Γ the moving agent’s information set is {h} in Γ′, the
available actions are A (I), and the outcomes in Γ′ following any terminal history are the
same as in Γ. Notice that the support of possible outcomes at any history h in Γ′ is a
subset of the support of possible outcomes at I (h) in Γ. Thus, the worst-case outcome from
any action (weakly) increases in Γ′, while the best-case outcome (weakly) decreases. Thus, if
there is an obviously dominant strategy in Γ, following the analogous strategy in Γ′ continues
to be obviously dominant. Hence, Γ′ is obviously strategy-proof and equivalent to Γ.

We now show that every OSP game is equivalent to a perfect-information OSP game in
which Nature moves once, as the first mover. Consider a game Γ, which, by the previous
paragraph, we can assume has perfect information. Let Hnature be the set of histories h at
which Nature moves in Γ. Consider a modified game Γ′ in which at the empty history Nature
chooses actions from ×h∈HnatureA (h). After each of Nature’s initial moves, we replicate the
original game, except at each history h at which Nature is called to play, we delete Nature’s
move and continue with the subgame corresponding to the action Nature chose from A(h)

at ∅. Again, note that for any agent i and history h at which i is called to act, the support
of possible outcomes at h in Γ′ is a subset of the support of possible outcomes at the
corresponding history in Γ (where the corresponding histories are defined by mapping the

43If ĥ is a terminal history, then we make an argument analogous to footnote 42 to reach the same
contradiction.

44We actually prove a slightly stronger statement, which is that every OSP game is equivalent to a millipede
game that satisfies the following additional property: for all i, all h at which i moves, and all x ∈ Gi(h),
there exists an action ax ∈ A(h) that clinches x (see Lemma A3 below).

33



A (h) component of the action taken at ∅ by Nature in Γ′ as an action made by Nature at
h in game Γ). Using reasoning similar to the previous paragraph, we conclude that Γ′ is
obviously strategy-proof, and Γ and Γ′ are equivalent.

Lemma A2. Let Γ be an obviously strategy-proof game of perfect information that is pruned
with respect to the obviously dominant strategy profile (Si(�i))i∈N . Consider a history h

where agent ih = i is called to move. There is at most one action a∗ ∈ A(h) such that
Pi((h, a

∗)) 6⊆ Gi(h).

Proof. For any history h, let PnGi(h) = Pi(h) \ Gi(h) (where “PnG” is shorthand for
”possible but not guaranteeable”). Now, consider any h at which i moves, and assume that
at h, there are (at least) two such actions a∗1, a∗2 ∈ A(h) as in the statement. We first claim
that PnGi(h) ∩ Pi(h∗1) ∩ Pi(h∗2) = ∅, where h∗1 = (h, a∗1) and h∗2 = (h, a∗2). Indeed, if not,
then let x be a payoff in this set. By pruning, some type �i is following some strategy such
that Si(�i)(h) = a∗1 that results in a payoff of x at some terminal history h̄ ⊃ (h, a∗1). Note
that Top(�i, Pi(h)) 6= x, because otherwise a∗1 would not be obviously dominant for this
type (since x /∈ Gi(h) and x ∈ Pi(h∗2)). Thus, let Top(�i, Pi(h)) = y. Note that y /∈ Gi(h)

(or else it would not be obviously dominant for type �i to play a strategy such that x is a
possible payoff), and it is without loss of generality to assume that Top(�i, Pi(h)\{y}) = x.45

Further, note that y ∈ Pi(h∗1) and y /∈ Pi(h∗2). To see the former, note that if y /∈ Pi(h∗1),
then a∗1 is not obviously dominant for type �i, which contradicts that Si(�i)(h) = a∗1; given
the former, if y ∈ Pi(h

∗
2), then once again a∗1 would not be obviously dominant for type

�i. Now, again by pruning, there must be some type �′i such that Si(�′i)(h) = a∗2 that
results in payoff x at some terminal history h̄ ⊃ (h, a∗2). By similar reasoning as previously,
Top(�′i, Pi(h)) 6= x, and so Top(�′i, Pi(h)) = z for some z ∈ Pi(h∗2). Since y /∈ Pi(h∗2), we
have z 6= y, and we can as above conclude that z /∈ Gi(h). Similarly to footnote 45, it is
without loss of generality to consider the type �′i that ranks y immediately after z. Note
that, for this type, no action a 6= a∗2 can obviously dominate a∗2 (since z /∈ Gi(h)). Further,
a∗2 itself is not obviously dominant for this type, since the worst case from a∗2 is strictly worse
than y, while y ∈ Pi(h∗1). Therefore, this type has no obviously dominant action at h, which
is a contradiction.

Thus, PnGi(h) ∩ Pi(h∗1) ∩ Pi(h∗2) = ∅, which means there must be distinct x, y such that
(i) x, y ∈ PnGi(h) (ii) x ∈ Pi(h

∗
1) but x /∈ Pi(h

∗
2) and (iii) y ∈ Pi(h

∗
2) but y /∈ Pi(h

∗
1). If

there is a type that reaches h such that Top(�i, Pi(h)) = x, then there is also type such
that reaches h such that y is ranked immediately after x; however, this type would have no

45Since h is on path for some type such that y �i x, it is also on path for the type �′i that is the same as
�i, except that �′i promotes payoff x to be immediately after y.
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obviously dominant action at h. The same applies for any type such that Top(�i, Pi(h)) = y.
Thus, for all types that reach h, it must be that Top(�i, Pi(h)) 6= x, y; further, by pruning,
some such type is playing a strategy such that Si(�i)(h) = a∗1 and x is a possible payoff. Let
Top(�i, Pi(h)) = z for this type. The fact that Si(�i)(h) = a∗1 implies that z ∈ Pi(h∗1) and
z /∈ Gi(h) (if either were false, then it would not obviously dominant for this type to play a
strategy such that Si(�i)(h) = a∗1 and x is a possible payoff); in other words, z ∈ PnGi(h),
and z ∈ Pi(h∗1). Since we just showed that PnGi(h)∩Pi(h∗1)∩Pi(h∗2) = ∅, we have z /∈ Pi(h∗2).
Finally, consider a type �i such that Top(�i, Pi(h)) = z and Top(�i, Pi(h) \ {z}) = y, and
note that this type has no obviously dominant action at h.46 �

Clinching actions are those for which i’s payoff is completely determined after following
the action. Lemma A2 shows that if a game is OSP, then at every history, for all actions a
with the exception of possibly one special action a∗, all payoffs that are possible following a
are also guaranteeable at h; note, however, it does not say that all actions but at most one
are clinching actions. Indeed, it leaves open the possibility that there are several actions that
can ultimately lead to multiple final payoffs for i, which can happen when different payoffs
are guaranteeable for i by following different strategies in the future of the game. The next
lemma shows that if this is the case, we can always construct an equivalent OSP game such
that all actions except for possibly one are clinching actions.

Lemma A3. Let Γ be an OSP game of perfect information that is pruned with respect to
the obviously dominant strategy profile (Si(�i))i∈N . There exists an equivalent OSP game Γ′

with perfect information such that the following hold at each h (where i is the agent called
to move at h):

(i) At least |A(h)| − 1 actions at h are clinching actions
(ii) For every payoff x ∈ Gi(h), there exists an action ax ∈ A(h) that clinches x for i

and ih′ 6= i for all h′ ⊃ (h, ax).
(iii) If Pi(h) = Gi(h), then all actions in A(h) are clinching actions and ih′ 6= i for any

h′ ) h.

Proof. Consider some history h of game Γ at which the mover is i(h) = i. By Lemma A2, all
but at most one action (denoted a∗) in A(h) satisfy Pi((h, a)) ⊆ Gi(h); this means that any
obviously dominant strategy for type �i that does not choose a∗ guarantees the best possible
outcome in Pi(h) for type �i. Define the set Si(h) = {Si : Si(h) 6= a∗ and |X(h, Si)| = 1},

46Again, such a type reaches h following footnote 45. Since z /∈ Gi(h) and z ∈ Pi(h∗1), no action a 6= a∗1
can obviously dominate a∗1. However, the worst case from a∗1 is strictly worse than y (since z /∈ Gi(h) and
y /∈ Pi(h∗1)), while y ∈ Pi(h∗2), and so a∗1 itself is also not obviously dominant.
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and notice that each Si ∈ Si(h) guarantees a unique payoff for i if she plays strategy Si

starting from history h, no matter what the other agents do.
We create a new game Γ′ that is the same as Γ, except we replace the subgame starting

from history h with a new subgame defined as follows. If there is an action a∗ such that
Pi((h, a

∗)) 6⊆ Gi(h) in the original game (of which there can be at most one), then there is
an analogous action a∗ in the new game, and the subgame following a∗ is exactly the same
as in the original game Γ. Additionally, there are M = |Si(h)| other actions at h, denoted
a1, . . . , aM . Each am corresponds to one strategy Smi ∈ Si(h), and following each am, we
replicate the original game, except that at any future history h′ ⊇ h at which i is called on
to act, all actions (and their subgames) are deleted and replaced with the subgame starting
from the history (h′, a′), where a′ = Smi (h′) is the action that i would have played at h′ in
the original game had she followed strategy Smi (·). In other words, if i’s strategy was to
choose some action a 6= a∗ at h in the original game, then, in the new game Γ′, we ask agent
i to choose not only her current action, but all future actions that she would have chosen
according to Smi (·) as well. By doing so, we have created a new game in which every action
(except for a∗, if it exists) at h clinches some payoff x, and further, agent i is never called
upon to move again.47

We construct strategies in Γ′ that are the counterparts of strategies from Γ, so that for
all agents j 6= i, they continue to follow the same action at every history as they did in
the original game, and for i, at history h in the new game, she takes the action am that is
associated with the strategy Smi in the original game. By definition if all the agents follow
strategies in the new game analogous to the their strategies from the original game, the
same terminal history will be reached, and so Γ and Γ′ are equivalent under their respective
strategy profiles.

We must also show that if a strategy profile is obviously dominant for Γ, this modified
strategy profile is obviously dominant for Γ′. To see why the modified strategy profile is
obviously dominant for i, note that if her obviously dominant action in the original game was
part of a strategy that guarantees some payoff x, she now is able to clinch x immediately,
which is clearly obviously dominant; if her obviously dominant strategy was to follow a
strategy that did not guarantee some payoff x at h, this strategy must have directed i to
follow a∗ at h. However, in Γ′, the subgame following a∗ is unchanged relative to Γ, and
so i is able to perfectly replicate this strategy, which obviously dominates following any
of the clinching actions at h in Γ′. In addition, the game is also obviously strategy-proof

47More precisely, all of i’s future moves are trivial moves in which she has only one possible action; hence
these histories may further be removed to create an equivalent game in which i is never called on to move
again. Note that this only applies to the actions a 6= a∗; it is still possible for i to follow a∗ at h and be
called upon to make a non-trivial move again later in the game.
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for all j 6= i because, prior to h, the set of possible payoffs for j is unchanged, while for
any history succeeding h where j is to move, having i make all of her choices earlier in
the game only shrinks the set of possible outcomes for j, in the set inclusion sense. When
the set of possible outcomes shrinks, the best possible payoff from any given strategy only
decreases (according to j’s preferences) and the worst possible payoff only increases, and so,
if a strategy was obviously dominant in the original game, it will continue to be so in the new
game. Repeating this process for every history h, we are left with a new game where, at each
history, there are only clinching actions plus (possibly) one passing action, and further, every
payoff that is guaranteeable at h is also clinchable at h, and i never moves again following a
clinching action. This shows parts (i) and (ii). Part (iii) follows immediately from part (ii),
due to greedy strategies and pruning.

Lemma A4. Let Γ be an obviously strategy-proof game that is pruned with respect to the
obviously dominant strategy profile (Si(�i))i∈N and that satisfies Lemmas A1 and A3. At
any h, if there exists a previously unclinchable payoff z that becomes impossible for agent ih
at h, then C⊂ih(h) ⊆ Ci(h)

Proof. Let hi be a history where agent i moves such that there is a previously unclinchable
payoff z that becomes impossible for i at hi (the case for terminal histories will be dealt with
next). Therefore, i moves at some strict subhistory h ( hi, and the following are true:

(a’) z /∈ Pi(hi)
(b’) z ∈ Pi(h) for all h ( hi such that ih = i

(c’) z /∈ C⊂i (hi) and

Points (b’) and (c’) imply that z is possible at every h ( hi where i is to move, but it is
not clinchable at any of them. This implies that for any type of agent i that ranks z first,
any obviously dominant strategy must have the agent passing at all h ( hi where she she is
called to move.48

Towards a contradiction, assume that C⊂i (hi) * Ci(h
i), i.e., there exists some h′ ( hi

such that ih′ = i and some x ∈ Ci(h′) such that x /∈ Ci(hi). Consider a type z �i x �i · · · .
By the previous paragraph, at any such ĥi ( hi, any obviously dominant strategy must have
this type passing. Since z /∈ Pi(hi) and x /∈ Ci(hi), by Lemma A3, the worst case outcome
from following this strategy is some y that is strictly worse than x according to �i. However,
we also have x ∈ Ci(ĥi) for some ĥi ( hi, and so, the best case outcome from clinching x
at ĥi is x. This implies that passing is not obviously dominant, and thus Γ is not OSP, a
contradiction.

48Since Γ is a millipede and z is not clinchable, but is possible, at any such h, it must be possible following
the (unique) passing action.
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Last, consider a terminal history h̄. As above, let z be a payoff such that (a’), (b’), and
(c’) hold (replacing hi with h̄). Recall that for terminal histories, we define Ci(h̄) = {y} for
all i, where y is the unique outcome that obtains at h̄. Towards a contradiction, assume that
C⊂i (h̄) * Ci(h̄), i.e., there exists some h′ ( h̄ such that ih′ = i and some payoff x ∈ Ci(h′)
such that x /∈ Ci(h̄). Note that (i) z 6= y (because z /∈ Pi(h̄), by (a’)); (ii) z 6= x (by (c’));
and (iii) x 6= y (because x /∈ Ci(h̄)). In other words, x, y, z must all be distinct payoffs
for i. Consider the type z �i x �i y �i · · · . By (b’) and (c’), z is possible at every
h ( h̄ where i is to move, but is not clinchable at any such history. Thus, any obviously
dominant strategy of type �i must have agent i passing at any such history. However, at
h′, i could have clinched x, and so this strategy is not obviously dominant (because y is
possible from passing). Therefore, this type has no obviously dominant strategy, which is a
contradiction.

A.4 Proof of Theorem 2

The proof follows similar steps as the proof of the analogous result for OSP in Li (2017b).
Suppose the strategic plan Si,h∗ is simply dominant from the perspective of h∗ ∈ Hi

in Γ. Then any outcome that is possible after playing Si,h∗ at all histories h ∈ Hi,h∗ is
weakly better than any outcome that is possible after playing S ′i (h∗) 6= Si,h∗ (h∗) in Γ,
and hence in any game Γ′ that is i-indistinguishable from Γ. Hence, every strategy Si

such that Si (h) = Si,h∗ (h) for all h ∈ Hi,h∗ weakly dominates any strategy S ′i such that
S ′i (h∗) 6= Si,h∗ (h∗).

Now fix h∗ at which i moves and suppose that any strategy Si such that Si (h) = Si,h∗ (h)

for all h ∈ Hi,h∗ weakly dominates any strategy S ′i such that S ′i (h∗) 6= Si,h∗ (h∗) in every
game Γ′ that is i-indistinguishable from Γ. Consider such a Γ′ in which all moves of agent
i following history h∗ but not in Hi,h∗h are made by Nature instead. Since, Si weakly
dominates S ′i in Γ′, we conclude that any outcome that is possible after playing Si is weakly
better than any outcome that is possible after playing S ′i in game Γ′, and hence in the i-
indistinguishable game Γ. Hence, in game Γ the strategic plan Si,h∗ is simply dominant from
the perspective of h∗ ∈ Hi. �

A.5 Proof of Theorem 4

We first prove the second statement. Let Γ be a monotonic millipede game. Fix an agent i,
and, for any history h∗ at which imoves, let x̄h∗ = Top(�i, Pi(h∗)) and ȳh∗ = Top(�i, Ci(h∗)).
Let Hi,h∗ = {h ∈ Hi(h

∗)|h∗ ( h′ ( h =⇒ h′ /∈ Hi} be the set of one-step-foresight simple
nodes. Consider the following strategic plan for any h∗:
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• If x̄h∗ ∈ Ci(h∗), then Si,h∗(h∗) = ax̄h∗ , where ax̄h∗ ∈ A(h∗) is a clinching action for x̄h∗ .

• If x̄h∗ /∈ Ci(h∗), then Si,h∗(h∗) = a∗ (i passes at h∗), and, for any other h ∈ Hi,h∗ :

– If Pi(h∗) \ Ci(h∗) ⊆ Ci(h), then Si,h∗(h∗) = ax̄h∗ .

– If Ci(h∗) ⊆ Ci(h), then Si,h∗(h∗) = aȳh∗ .

Note that by monotonicity, at any h ∈ Hi,h∗ , one of the conditions in the last two bullet
points must hold. It is straightforward to verify that this strategic plan is OSF-simple at
any h∗, and thus the corresponding strategic collection (Si,h∗)h∗∈Hi is also OSF-simple.

Now, we prove the first statement. Let Γ be a millipede game that is not monotonic,
which means there exists an agent i, a history h∗ at which i moves, another history h ∈
Hi,h∗ , and payoffs x and y such that x ∈ (Pi(h

∗) \ Ci(h∗)) \ Ci(h) and y ∈ Ci(h∗) \ Ci(h).
Notice that x 6= y. Without loss of generality we assume that h is the earliest history at
which monotonicity is violated in this way.49 Since both x, y /∈ Ci(h) by definition, there
is some third payoff z 6= x, y such that z ∈ Ci(h). Let �i be a type of agent i such that
Top(�i, Pi(h∗)) = x and Top(�i, Pi(h∗) \ {x}) = y, and let �′i be a type of agent such that
Top(�′i, Pi(h∗)) = x and Top(�′i, Pi(h∗) \ {x}) = z. Note that for both �i and �′i, for any
OSF-dominant plan Si,h∗(h∗) = a∗ (because x is possible, but not clinchable at h∗).

There are two cases, depending on what is possible at h.
Case (1): y /∈ Pi(h). From above, Si,h∗(h∗) = a∗. However, for any such strategic plan,

the worst case outcome from the perspective of h∗ is some w 6= x, y.50 Since she can clinch
y at h∗, and y �i w, Si,h∗(·) is not OSF-dominant.

Case (2): y ∈ Pi(h). Here, there are two subcases.
Subcase (2).(i): z ∈ Pi((h, a∗)). In this case, type �i has no OSF-dominant strategic

plan at h∗. Again, in any such plan, we have Si,h∗(h) = a∗. But, since z ∈ Pi((h, a∗)), for any
a ∈ A(h), the worst case from the perspective of node h∗ is at best z (since both x, y /∈ Ci(h),
by definition), which is worse than clinching y at h∗, and so Si,h∗(·) is not OSF-dominant.

Subcase (2).(ii): z /∈ Pi((h, a
∗)). If x ∈ Pi(h), then type �′i has no OSF-dominant

strategic plan at h.51 To see this, note that at h, for any strategic plan, the worst case
from passing at h is strictly worse than z (since x is possible, but not clinchable at h, and

49This assumption guarantees that, in a pruned game, history h∗ is on path of the play for the two agent
types we construct.

50If x /∈ Pi(h), then this is obvious (since in this case, y /∈ Pi(h) either). If x ∈ Pi(h), by definition
x /∈ Ci(h), and so x is only possible following a pass at h, x ∈ Pi((h, a∗)). By definition of a passing action,
there is some other w 6= x such that w ∈ Pi((h, a∗)). Since y /∈ Pi(h), w 6= y.

51Note that here, we consider h, not h∗; in fact, the argument actually shows something stronger, which
is that that there is no obviously dominant action at h, and so the game in this case is not OSP, let alone
OSF-dominant.
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z /∈ Pi((h, a∗)), while z ∈ Ci(h), and so Si,h(h) 6= a∗. However, Si,h(h) must equal a∗ because
the best case from passing is x; a contradiction.

If x /∈ Pi(h), then type �i has no OSF-dominant strategic plan at h∗.52 Once again,
any such plan must have Si,h∗(h∗) = a∗. Since y ∈ Pi(h) but y /∈ Ci(h), it must be that
y ∈ Pi((h, a

∗)), and so there is some other w 6= x, y such that w ∈ Pi((h, a
∗)) (because

x /∈ Pi(h)). Therefore, from the perspective of node h∗, for any fixed plan Si,h∗(h), the worst
case is at best w, which is strictly worse than clinching y at h∗, and thus Si,h∗(·) is not
OSF-dominant.

A.6 Proof of Lemma 1

Because of the restriction to paths of the game that are on the path of the greedy strategies
for some type profile, it is sufficient to prove this lemma for pruned games. We first note
the following lemma, which says that the first time an agent is called to play in a pruned
SOSP game, all of her actions are associated with a unique undominated payoff, except for
possibly one action, which may have two undominated payoffs. To state the lemma, define
P̂i(h) = {x ∈ Pi(h) : @y ∈ Pi(h) s.t. y . x} to be the set of possible payoffs for i at h that
are undominated.

Lemma A5. Let Γ be a pruned SOSP game. Let hi0 be any earliest history at which agent
i is called to play. Then, |P̂i((hi0, a))| ≤ 2 for all a ∈ A(hi0), with equality for at most one
a ∈ A(hi0).

Proof of lemma. Since hi0 is the first time i is called to move, it is on-path for all types
of agent i. We first show that |P̂i((hi0, a))| ≤ 2 for all a ∈ A(hi0). Assume not, which means
that there exists some a ∈ A(hi0) such that |P̂i((hi0, a))| ≥ 3. Let x, y, z ∈ P̂i((hi0, a)) be three
distinct undominated payoffs that are possible following a. By pruning, there must be some
type, �i, such that action a is strongly obviously dominant at hi0. Without loss of generality,
let Top(�i, Pi(hi0)) = x.53 Now, note that the worst case from action a is strictly worse than
x (since y, z are possible). Again, without loss of generality, assume that x �i y �i z (such a
type exists by richness and the assumption that x, y, z are all undominated at hi0). For a to
be strongly obviously dominant, for all other a′ 6= a, the best case outcome for type �i must
be no better than z; in particular, this implies that for all a′ 6= a and all w ∈ Pi((hi0, a′)),
w 4 y (note that since D is reflexive, this includes y itself). Choose some w ∈ Pi((hi0, a′))

52As with the previous case, the statement can actually be made stronger: there is actually no obviously
dominant action at h∗.

53By definition, Top(�i, Pi(hi0)) must be some undominated payoff that is possible at hi0, and it is without
loss of generality to assume it is x.
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for some a′ 6= a, and consider a type such that Top(�′i, Pi(hi0)) = y and y �′i w �′i x.54 For
this type, the worst case from a is at best x, while the best case from a′ is w, so a is not
strongly obviously dominant; for any a′ 6= a, the worst case is strictly worse than y (since
nothing that dominates y is possible following any a′ 6= a), while the best case from a is y,
and so no a′ 6= a is strongly obviously dominant either. Therefore, type �′i has no strongly
obviously dominant action, which is a contradiction.

Finally, we show that |P̂i((hi0, a))| = 2 for at most one a ∈ A(hi0). Let a and a′ be
two actions such that there are two possible undominated payoffs for i following each, and,
for notational purposes, let P̂i((hi0, a)) = {x, y}. Again, by pruning, there is some type �i
that selects action a as a strongly obviously dominant action, and, as above, without loss of
generality, let Top(�i, Pi(hi0)) = x. Since y is possible following a, in order for a to be strongly
obviously dominant, the best case from any a′ 6= a must be no better than y; in other words,
for all w ∈ Pi((hi0, a′)), w 4 x (including w = x itself). Therefore, let P̂i((hi0, a′)) = {w, z},
where, as just argued, w, z 4 x. It is also without loss of generality to assume that y and z do
not dominate each other (since by supposition there are two undominated payoffs following
a′, and at most one of them can be related to y via dominance). If w D y, then consider
a specific type such that Top(�i, Pi(hi0)) = x and x �i z �i w (which one again exists by
richness). Since nothing that dominates x is possible following any a′ 6= a (including x itself),
no such a′ can be strongly obviously dominant for this type. Further, the worst case from
a is at best y, while the best case from a′ is z �i y, and so a is also not strongly obviously
dominant. Therefore, this type has no strongly obviously dominant action. If w 4 y, then
consider a type such that x �i z �i y %i w, and once again note that this type has no
strongly obviously dominant action at h. �

Continuing with the main proof, if a history h is payoff-relevant, then by definition
|Pi(h)| ≥ 2. Assume that there was a path of the game with two payoff-relevant histories
h1 ( h2 for some agent i, and note that it is without loss of generality to assume that h1 and
h2 are the first and second times i is called to play on the path, and that |Pi((h1, a))| > 1

for some a ∈ A(h1). In light of the previous lemma that |P̂i((h1, a))| ≤ 2 for all a ∈ A(h1),
with equality for at most one a, there are two cases.

Case (1): There exists payoff relevant histories h1 ⊂ h2 such that |P̂i((h1, a))| =
2, where a is the unique action such that (h1, a) ⊂ h2.

In this case, action a has two undominated possible payoffs. By the previous lemma,
there can only be one such action, which we will denote a∗1. For notational purposes, define

54If x D w for all w ∈ Pi((h
i
0, a
′)) for all a′ 6= a, then we consider a type such that y �′i w �′i z, and

make the same argument. Note that these types exist by richness and the fact that x, y, z are all mutually
undominated.
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P̂i(h1, a
∗
1) = {x, y}, where x and y are both undominated payoffs. By pruning, there must

be some type whose obviously dominant strategy selects a∗1; without loss of generality, let
Top(�i, Pi(h1, a

∗
1)) = x.

Next, we claim that for all a′ 6= a∗1 and all w ∈ Pi((h1, a
′)), we have w D y. To see this,

assume that there was some such a′ and w such that w 4 y. By the previous lemma, w 4 x

for all w ∈ Pi(h1).55 If y D w, then y.w (since w 4 y). By pruning, some type �′i is selecting
action a′, and it is strongly obviously dominant; however, the worst case from a′ is at best w,
while y is possible from a. Since y .w, we have y �′i w, and so a′ does not strongly obviously
dominate a, which is a contradiction. If y 4 w, then neither y nor w dominate each other,
and type x �i w �i y has no strongly obviously dominant action at h1. Therefore, w D y

for all w ∈ Pi((h1, a
′)) and all a′ 6= a1. In fact, it is further the case that w = y; to see this,

note that if there exists some w . y, then type x �i w �i y again has no strongly obviously
dominant action.56 Thus, we have shown that for all a′ 6= a∗1, Pi((h1, a

′)) = {y}.
Since h2 is payoff relevant, there must exist some x′, y′ ∈ P̂i(h2) that are undominated.57

Further, we claim that y′ = y and x′ = x. To see the former, first note that y ∈ P̂i((h1, a
∗
1))

(i.e., y is undominated at (h1, a
∗
1)), and so we cannot have y′.y. If y.y′, then type x �i y �i y′

has no strongly obviously dominant action at h1. Finally, to see that x′ = x, again note that
we cannot have x′ . x; if x . x′, then type x �i y �i x′ has no strongly obviously dominant
action at h1. Thus, P̂i(h2) = {x, y}.

Finally, note that any type that prefers x �i y must select action a∗1 at h1, and thus, h2 is
on-path; further, any type that prefers y �i x must select some a′ 6= a∗1 at h1; in other words,
for all types that reach h2, Top(�i, Pi(h2)) = x. Recall that |A(h2)| ≥ 2, and there must
be at least one action such that y is a possible outcome. Label this latter action a2 (i.e.,
y ∈ Pi((h2, a2))), and let a′2 be some other action. By pruning, there must exist some types
�i and �′i whose strongly obviously dominant strategies select a2 and a′2, respectively. But,
Top(�i, Pi(h2)) = Top(�′i, Pi(h2)) = x (indeed, as just argued above, x is the top choice
for all types of i that reach h2), which implies that x ∈ Pi((h2, a2)) and x ∈ Pi((h2, a

′
2)).

However, y ∈ Pi((h2, a2)), and so a2 is not strongly obviously dominant for type �i, which
is a contradiction.

Case (2): For all payoff-relevant histories h1 ⊂ h2, |P̂i((h1, a))| = 1, where a is

55If w D x for some w ∈ Pi((h1, a′)), then, by the lemma, P̂i((h, a′)) = {ŵ}, and ŵ D w D x, and therefore,
ŵ %i w %i x for all types of agent i. But, this contradicts that a∗1 was strongly obviously dominant for type
�i.

56The worst case from a∗1 is at best y, while w is possible from some a′, and so a∗1 is not strongly obviously
dominant; similarly, the worst case from any a′ 6= a∗1 is strictly worse than x, while the best case from a∗1 is
x (or otherwise, it would not be obviously dominant for the type that ranks x first to choose a∗1).

57If not, then all payoffs in Pi(h2) can be ordered by the dominance relation D, and, if a strongly obviously
dominant action exists, all types will take the same action, and the remaining actions can be pruned.
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the unique action such that (h1, a) ⊂ h2.
Note that |P̂i((h1, a))| = 1 implies that |P̂i(h2)| = 1. Let P̂i(h2) = {x}, and note that

by definition, x D x′ for all x′ ∈ Pi(h2), which implies that for all types of agent i, x %i x′

for all x′ ∈ Pi(h2). Since there are no trivial moves, |A(h2)| ≥ 2. Since h2 is payoff-relevant,
|Pi(h2)| ≥ 2, i.e., there must exist some a′2 ∈ A(h2) and x′ ∈ Pi((h2, a

′
2)) such that x′ 6= x.

Further, by pruning, there is some type that has a strongly obviously dominant strategy
that selects a′2. This implies that, for any a2 6= a′2, x /∈ Pi((h2, a2)), and so x ∈ Pi((h2, a

′
2)).

Again by pruning, there must be some type �i that has a a strongly obviously dominant
strategy that selects a2. But, as just argued, x /∈ Pi((h2, a2)) and x ∈ Pi((h2, a

′
2)). Since all

types are such that Top(�i, Pi(h2)) = x, a2 is not strongly obviously dominant, which is a
contradiction.

A.7 Proof of Theorem 5

That sequential price mechanisms are SOSP is immediate from the definition, and so we focus
on proving that every SOSP game is equivalent to a sequential price mechanism. Note first
that the pruning principle continues to apply to strong obvious dominance. Also, following
the same reasoning as in the proof of Proposition 1, given any SOSP game, we can construct
an equivalent SOSP game of perfect information in which Nature moves at most once, as the
first mover, and so we can focus on the deterministic subgame after any potential move by
Nature. Thus, what remains to show is that every perfect-information, pruned SOSP game
in which there are no moves by Nature is equivalent to a sequential price mechanism.

Let Γ be such a game. By Lemma 1, each agent i can have at most one payoff-relevant
history along any path of game Γ, and this history (if it exists) is the first time i is called
to play. Consider any such history hi0. If there is some other history h′ ⊃ hi0 at which i is
called to play, then history h′ must be payoff-irrelevant for i; in other words, there is some
payoff x such that Pi((h′, a′)) = {x} for all a′ ∈ A(h′). Using the same technique as in
the proof of Theorem 1, we can construct an equivalent game Γ′ in which at history hi0, i
is asked to also choose her actions for all successor histories h′ ⊃ hi0 at which she might
be called to play, and then is not called to play again after hi0 (see the proof of Theorem
1 for a more formal description of this procedure). Since all of these future histories were
payoff-irrelevant for i, the new game continues to be strongly obvious dominant for i. Strong
obvious dominance is also preserved for all j 6= i, since having i make all of her choices
earlier only shrinks the set of possible outcomes any time j is called to move, and thus, if
some action was strongly obviously dominant in the old game, the analogous action(s) will
be strongly obviously dominant in the new game. Repeating this for every agent and every
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history, we have constructed a SOSP game Γ′ that is equivalent to Γ and in which each agent
is called to move at most once along any path of play.

We claim that Γ′ is a sequential price mechanism. Assume not, and let h be an earliest
history where the definition of a sequential price mechanism is violated. Since Γ′ is not a
sequential price mechanism, there must be some payoff x ∈ Pi(h) that i cannot clinch at h.
Note that it is without loss of generality to assume that there exists such an unclinchable x
that is not dominated, i.e., x ∈ P̂i(h).58 Since x is not clinchable, for any action a ∈ A(h)

such that x ∈ Pi((h, a)), there is some other y ∈ Pi((h, a)).
Case (1): |Pi(h)| ≥ 3 and there exists a y ∈ Pi((h, a)) such that x and y do not

dominate each other.
By Lemma A5 (in the proof of Lemma 1), a is the unique action such that |P̂i((h, a))| =

{x, y}, and, for any other a′ 6= a, let P̂i((h, a′)) = {w′}. We first claim that for any a′ 6= a,
P̂i((h, a

′)) = {y}.
Assume not, i.e., there exists some a′ 6= a and w′ 6= y such that P̂i((h, a′)) = {w′}.

First, since x is not clinchable, any type such that Top(�i, Pi(h)) = x must select a, and
x /∈ Pi((h, a

′)) for any a′ 6= a.59 Now, if x . w′, then type x �i w′ �i y has no strongly
obviously dominant action at h; therefore, x 7 w′. If y . w′, then y /∈ Pi((h, a′)) (since by
assumption w′ is undominated at (h, a′)); however, if this is the case, then it is not strongly
obviously dominant for any type to select a′ (since y ∈ Pi((h, a))), and it can be pruned.
Therefore, y 7 w′. If w′ . y, then, once again, type x �i w′ �i y has no strongly obviously
dominant action at h. Therefore, w′ 7 y. Thus, the only remaining possibility is that
x, y, w′ ∈ P̂i(h), i.e., x, y, w′ are all mutually undominated payoffs at h. But then, type
x �i w′ �i y has no strongly obviously dominant action at h. Therefore, P̂i((h, a′)) = {y}
for all a′ 6= a.

We also claim further that Pi((h, a′)) = {y} for all a′ 6= a; indeed, if this were not the
case, then there is some a′ and some w′ ∈ Pi((h, a

′)) such that y . w′. By pruning, some
type �′i must be selecting action a′. However, the worst case from a′ (for all types) is at best
w′, while y is possible following a, and so a′ is not strongly obviously dominant for type �′i.
Therefore, Pi((h, a′)) = {y} for all a′ 6= a.

Let z 6= x, y be some third payoff that is possible at h. In light of the previous paragraph,
z ∈ Pi((h, a)), and z /∈ Pi((h, a′)) for all other a′ 6= a. Finally, note that type x �i y �i z
has no strongly obviously dominant action at h. (Note that since P̂i(h) = {x, y}, z must be
dominated by one of x or y, and so by our richness assumption, such a type exists.)

58If all x′ ∈ P̂i(h) are clinchable at h, then all types will be able to take an action that clinches their top
possible payoff, and any other action can be pruned.

59Recall that x is not dominated at h, so such a type does indeed exist.
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Case (2): |Pi(h)| ≥ 3 and for all other y ∈ Pi((h, a)), x . y.
Since i cannot clinch x at h, we have that, for all other a′ and w ∈ Pi((h, a′)), x.y D w.60

By pruning, some type �′i must be choosing action a′; however, the previous sentence implies
that a′ is not strongly obviously dominant for this type, which is a contradiction.

Case (3): |Pi(h)| = 2.61

Let Pi(h) = {x, y}. Given the definition of a sequential price mechanism, the only case
we need to rule out is that neither x nor y is clinchable, i.e., there are at least two actions
in A(h), and, for all a ∈ A(h), Pi((h, a)) = {x, y}. At least one of x �i y or y �i x must
hold for some type at h; however, it is simple to see that no matter which is true, this will
not have a strongly obviously dominant action. �

A.8 Proof of Theorem 6

A.8.1 Roles and “Symmetry to Symmetrization” Reduction Lemma

For clarity of the exposition, it is convenient to sometimes distinguish between an agent i
moving at some set of histories and a “role” moving at these same histories.62 Formally, we
create a copy R of the set of agents N . Given a perfect-information mechanism (Γ, S) we
create a copy of the game Γ as a game between these roles—treated as agents—and we create
a copy of the strategy profile S as strategies of these roles.63 With some abuse of notation
we refer to the copy of (Γ, S) by the same symbols. For a game Γ, the function ρ : H → R
maps each history h to the role ρ(h) that moves at this history.

We use the role copy of (Γ, S) to create mechanisms (Γσ, Sσ) that differ only in the
mapping of agents (and their preferences) to the roles. The preferences of the roles are
determined by the preferences of the original agents and a bijection σ : R → N . We call this
bijection a role assignment function, and we denote by Σ the space of all role assignment
functions. We define Γσ as the extensive-form game with the same game tree as Γ and such
that at each non-terminal history h, the agent called to move is σ(ρ(h)); at each terminal
history in Γσ the payoff of agent σ (i) is the same as the payoff of i at the corresponding
history in Γ. The strategy of agent σ (i) is the same as the strategy of agent i in the original
game Γ. There are |Σ| = N ! possible mechanisms (Γσ, Sσ); we call them the permuted

60Note that in particular, this implies that x D w for all w ∈ Pi(h). Indeed, if there were some w ∈ Pi(h)
such that w and x did not dominate each other, then type x �i w �i y has no strongly obviously dominant
action at h. (Recall also that x is undominated at h, and so there is no w . x, either.)

61If |Pi(h)| = 1, the argument is trivial.
62Our construction of roles in general extensive-form games extends the role concept from Carroll (2014),

who studied them in the (static) context of Pápai (2000)’s hierarchical exchange mechanisms.
63While in the main text we denote a profile of strategies in a mechanism as SN , here we just write S to

avoid notational clutter.
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mechanisms.
We further define the symmetrized mechanism (Γ∗, S∗) to be the following random

mechanism: first, Nature chooses a role assignment function σ uniformly at random from
the set of all possible role assignment functions, and then, the agents play Γσ with strategies
Sσ.64 To formally ensure that the symmetrizations of a millipede is a millipede, we assume
that Nature draws the role assignment σ and the path in the subgame Γσ in the same move.

The following lemma shows that it is sufficient to prove Theorem 6 for symmetrized
mechanisms.

Lemma A6. Suppose that every symmetrization of a deterministic OSP and Pareto-efficient
perfect-information mechanism is equivalent to Random Priority. Then, every symmetric,
OSP and Pareto-efficient mechanism is equivalent to Random Priority.

Proof. Take a symmetric, OSP, and Pareto-efficient mechanism (Γ, S). By Lemma
A1, we can assume that (Γ, S) has perfect information and that Nature moves only at the
beginning of the game. Because (Γ, S) is symmetric the symmetrized mechanism (Γ∗, S∗)

is equivalent to (Γ, S). Furthermore, (Γ∗, S∗) is a lottery over symmetrizations of each
deterministic perfect-information continuation game Γ′ after Nature’s move in (Γ, S). The
mechanism given by game Γ′, together with the strategy profile induced from Γ, is OSP
and Pareto efficient, and hence by the assumption of the lemma it is equivalent to Random
Priority. Because every lottery over Random Priority lotteries is still equivalent to Random
Priority, the lemma obtains. �

In light of the above lemma, in the sequel we focus on symmetrized mechanisms.

A.8.2 Plan of the Reminder of the Proof

The reminder of the proof builds on the bijective argument used by Abdulkadiroğlu and
Sönmez (1998) to show the equivalence of Random Priority and the Core from Random
Endowments (see also Pathak and Sethuraman, 2011 and Carroll, 2014). Throughout, we
fix the profile of preferences �N . Given any Γ that is OSP and Pareto efficient, we construct
a bijection f : Σ → Ord that associates to each role assignment function σ ∈ Σ a total
linear order of the agents fσ ∈ Ord with the property that game Γσ results in the same final
allocation (matching) µ as a serial dictatorship where the first agent called to play is fσ(1),

64While this construction implies that different agents play the same strategies in the same role, our
arguments only rely on the weaker assumption that an agent’s strategy Sσ,i(�i) depends only on her own
preferences and her role assignment, and not on the roles assigned to other agents. In other words, in any two
subgames ΓA and ΓB following Nature’s selection of role assignments σA and σB , if σ−1A (i) = σ−1B (i) = rn,
then S∗i (�i)(hA) = S∗i (�i)(hB) for any equivalent histories hA and hB in these two games.
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the second agent called to play is fσ(2), etc. We then show that the mapping we constructed
is a bijection, which proves Theorem 6.

A.8.3 Efficient Millipedes

With slight abuse of notation, in the remainder of the proof, we use X to denote the set of
objects to be allocated (rather than global outcomes), and use x, y, z, etc. to refer to objects
from X .

Given any OSP game Γ, we can use Lemma A3 to construct an equivalent millipede game
which has the following properties:

1. At each history h, there is at most one passing action in A(h); this action, if it exists,
is denoted a∗ ∈ A(h).

2. For every x ∈ Gi(h), there exists a clinching action ax ∈ A(h) that clinches x for i.

3. As soon as an agent’s top still-possible object is guaranteeable at a history h, she
clinches this object at h (that is, agents follow greedy strategies).

4. If ih = i and Pi(h) = Gi(h), then i clinches her payoff immediately at h, and is not
called to move at any h′ ) h.

Agent i is active at h if she has been previously called to play at some h′ ⊆ h, and further
has not yet clinched an object at h. Let A(h) denote the set of active agents at h.

In constructing the bijection f , we make use of the concept of a lurker introduced by
Bade and Gonczarowski (2017, hereafter BG).65 Informally, a lurker is an agent who has
been offered to clinch all objects that are possible for him except for exactly one, which he
is said to “lurk”. If an agent lurks some object x, then the mechanism can infer that x is his
favorite (still available) object, and so it is possible to exclude x from other agents without
violating Pareto efficiency. The role of lurkers is to allow more than two agents to be active
at any given point of the game; while there can be an arbitrary number of lurkers, at any
point, at most two active agents are non-lurkers.

To formally define lurker, recall that C⊆i (h) = {x : x ∈ Ci(h
′) for some h′ ⊆ h} is the

objects agent i has been offered to clinch at some subhistory of h and C⊂i (h) = {x : x ∈
Ci(h

′) for some h′ ( h} is the objects agent i has been offered to clinch at some strict
subhistory of h. We consider a history h and an active agent i who has moved at a strict
subhistory of h. Let h′ ( h be the maximal strict subhistory such that ih′ = i. Agent i is

65They focus on understanding which OSP mechanisms are Pareto efficient. While in this proof we build on
their insights, in turn their analysis follows our 2016 characterization of OSP mechanisms through millipede
games as well as our analysis of SOSP and efficient mechanisms.
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said to be a lurker for object x at h if (i) x ∈ Pi(h′), (ii) C⊆i (h′) = Pi(h
′) \ {x} and (iii)

x /∈ C⊆j (h′) for any other active j 6= i that was not already a lurker prior to h′.66

At any h, we partition the set of active agents as A(h) = L(h) ∪ L̄(h), where L(h) =

{`h1 , . . . , `hm} is the set of lurkers and L̄(h) is the set of active non-lurkers. With some abuse of
notation, we let X (h) denote the set of still-available (unclinched) objects at h (rather than
outcomes), and partition this set as X (h) = X L(h) ∪ X̄ L(h), where X L(h) = {xh1 , . . . , xhλ(h)}
is the set of lurked objects and X̄ L(h) = X (h) \ X L(h) is the set of unlurked objects at h.
Each `hm has a unique object that she lurks, xhm, and the sets are ordered such that if m′ < m,
then lurker `hm′ is “older” than lurker `hm, in the sense that `hm′ first became a lurker for xhm′
at a strict subhistory of the history at which `hm became a lurker for xhm.67

In a millipede game, at any history, there is a set of clinching actions and (possibly) one
passing action. Along any game path, agents engage in a sequence of passes, and the set of
lurkers/lurked objects continues to grow, until eventually, we reach a history h where some
agent i clinches some object x. BG show that at most two active agents are non-lurkers at
any point (see Lemma A13 below). When i clinches at h, this initiates a chain of clinching
among the active agents that proceeds as follows:

• If x ∈ X̄ L(h), each lurker `hm ∈ L(h) is immediately assigned to her lurked object, xhm.

• If x = xhm1
for some lurked xhm1

∈ X L(h), then all “older” lurkers `hm′ form′ < m1 receive
their lurked objects xhm′ ; since lurker `hm1

’s lurked object was taken by i, she is offered
to clinch anything from the remaining set of unclinched objects, X (h) \ {xh1 , . . . , xhm1

}.

• If `hm1
takes an unlurked object, then all remaining lurkers get their lurked objects; if

`hm1
chooses a lurked object xhm2

for some m2 > m1, then all “older” unmatched lurkers
(`hm′ for m1 < m′ < m2) get their lurked objects. Lurker `hm2

gets to choose from
X (h) \ {xh1 , . . . , xhm2

}, etc.

• This process is repeated until some lurker `hm̄ chooses an unlurked object, y, at which
point all remaining unassigned lurkers are assigned to their lurked objects.

• Finally, if y ∈ C⊆j (h) for the other active non-lurker j ∈ L̄(h) \ {i},68 then j is offered
to clinch anything from what remains, X̄ L(h) \ {y}.

66This definition of a lurker modifies Definition E.9 of BG, who do not impose (iii) and impose instead
the requirement that Pi(h) 6= Gi(h); when restricted to millipede games that satisfy properties 1-4, the
definitions are equivalent.

67That this entire construction is well-defined follows from a series of lemmas in the appendix of Bade and
Gonczarowski (2017). These lemmas will also be useful in our proof, and so for ease of reference, we present
in them Section A.8.6 below.

68Such an agent may or may not exist, but if they do, they are unique.
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Notice that at the end of the above chain of lurker assignments that was initiated at h, all
but at most one active agent in A(h) has clinched and are thus no longer active. If all active
agents have been assigned, then the continuation game is just a smaller Pareto efficient
millipede game on the remaining unmatched agents and objects, which proceeds in the same
way. If there is one active agent left, say j, then this continuation game begins with agent
j carrying over anything that she has been previously offered to clinch, C⊆j (h).

A.8.4 Constructing the bijection

We now construct the bijection from role assignment functions into serial dictatorship or-
derings. We start by providing an ordering algorithm that, for a give game Γ and fixed
preference profile/strategy, follows the path of the game from the root node h∅ to the termi-
nal node h̄ and outputs outputs a partial ordering of the agents, denoted ..69 This ordering
is only partial because agents may “tie”. Each role assignment function σ ∈ Σ induces a
game Γσ and an associated partial ordering, .σ, via our ordering algorithm. Running the
algorithm on all N ! role assignment functions gives N ! partial orderings. We will then ar-
gue that it is possible to “break ties” consistently in such a way that we recover a bijection
f : Σ→ Ord such that for each σ, a serial dictatorship run under ordering fσ results in the
same allocation as game Γσ.

The intuitive idea behind constructing the partial order . is as follows. We start by
finding the first agent to clinch some object x (after a series of passes) at some history h.
This induces a chain of assignments of the active agents A(h) as described above. We create
. by ordering agents who receive lurked objects in order of the “age” of the lurked object
they receive, i.e., the agent who receives the “oldest” lurked object is ordered first, etc. After
this is done, there are at most 2 active agents who have yet to be ordered, one of whom has
clinched an unlurked object, say y; if y was previously offered to the remaining active agent,
then we add both remaining agents to the order without distinguishing between them, i.e.,
these two agents tie; if y was not previously offered to the other remaining active agent,
then we just add the agent who clinched y, and the other active agent (if they exist) carries
over their “endowment” (the set C⊆j (h)) to the next stage. After clearing this first segment
of agents, we continue along the game path and find the first unordered agent to clinch an
object, and repeat.

Ordering Algorithm. Consider any game path from the root node h∅ to a terminal
node h̄, which is associated with a unique allocation of objects to agents. Each step k of
the algorithm below produces a partial ordering .̃k on the set of agents who are processed

69Despite the use of the same symbol (.), the partial ordering here is unrelated to the dominance relation
used to define partitions introduced in Section 2.
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in step k. At the end of the final step K, we concatenate the K components to produce .,
the final partial ordering on the set of all agents N .

Step 1 Find the first object to be clinched along the game path, say x1 at history h1 by agent
i1.70 Let L(h1) = {`1, . . . , `λ(h1)} be the set of lurkers, and X L(h1) = {x1, . . . , xλ(h1)}
be the set of lurked objects (note that these sets may be empty, in which case skip
immediately to step 1.2 below).

1. Let ix1 be the agent who ultimately receives x1, ix2 be the agent who ultimately receives
x2, up to ixλ(h1) (note that ixk is not necessarily the agent who lurks xk at h1, but the
agent who ultimately receives xk at the allocation associated with h̄).

2. Let j ∈ L(h1) ∪ {i1} be the unique agent that is not one of the ixk from step 1.1. By
construction, j clinches some unlurked object y ∈ X̄ L(h1). In addition, there may be
one other active agent j′ ∈ A(h1) \ (L(h1) ∪ {i1}).

(a) If such a j′ exists and y ∈ C⊆j′ (h1), then define .̃1 as:

ix1 .̃
1ix2 .̃

1 · · · .̃1ixλ(h1) .̃
1{j, j′}

(b) Otherwise, define .̃1 as
ix1 .̃

1ix2 .̃
1 · · · .̃1ixλ(h1) .̃

1j

In particular, we do not yet order agent j′.

Step k Find the first object to be clinched along the game path by an agent that has not
yet been ordered, say xk at history hk by agent ik. Let L(hk) = {`1, . . . , `λ(hk)} be the
set of lurkers, and X L(hk) = {x1, . . . , xλ(hk)} be the set of lurked objects, and carry
out a procedure analogous to that from step 1 to produce the step k order .̃k.71

This produces a collection of partial orderings (.̃1, . . . , .̃K), where each .̃k is a partial order
on the agents processed in step k. We then create the final . in the natural way: for any
two agents i, j who were processed in the same step k, i . j if and only if i.̃kj. For any two
agents i, j processed in different steps k < k′, respectively, we order i . j.

70That is, ih1 = i1, and i1 selects a clinching action ax1 ∈ A(h1) that clinches x1. Also, by Lemma A15,
i1 /∈ L(h1).

71At the end of step k − 1, there is at most one active agent j′ ∈ A(hk−1) that was not ordered in step
k−1. This agent j′, if she exists, is the active non-lurker other than the non-lurker ik−1 that clinched at hk−1
to initiate the step k − 1 assignments. Thus, after the step k − 1 assignments are all made, we are left with
a subgame where agent j carries over her previous endowment, C⊂j (hk−1). This subgame is again a Pareto
efficient millipede game, and so the same structure as the original game, but among only the unmatched
agents and unclinched objects after step k − 1. At the “root node” of this subgame, hk0 , agent j is offered to
clinch Cj(hk0) ⊇ C⊆j (hk−1). All of the structure and arguments from the previous steps are then repeated.
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Remark. The output of the ordering algorithm is a partial order, ., on N , the set of agents.
If there are two agents j and j′ such that j 7 j′ and j′ 7 j, then we say j and j′ tie under
.. Note that by construction, all ties are of size at most 2, and agents can only tie if they
are processed in the same step of the algorithm.

A.8.5 Completing the proof

We complete the proof Theorem 6 using three key lemmas relating to properties of the partial
orders produced by the ordering algorithm applied to games with different role assignments.
The proofs of these lemmas are somewhat involved, and so to streamline the presentation of
the main argument, we relegate them to the following subsections.

Take a role assignment function σ, corresponding game Γσ, and the partial ordering .σ
that results from applying the ordering algorithm to Γσ. Let f be a total ordering of the
agents, where f(1) = i is the first agent, f(2) = j is the second agent, etc. We say that f
is consistent with .σ if, for all j, j′: j .σ j′ implies f−1(j) < f−1(j′). In other words, given
some partial ordering .σ, total order f is consistent if there is some possible way to break
the ties in .σ that delivers f .

Lemma A7. For any total order f consistent with .σ, a serial dictatorship under agent
ordering f results in the same final allocation as Γσ.

For the next lemma, let hkA be the history that initiates step k of the ordering algorithm
when it is applied to game ΓA. For instance, h1

A = (h∅, a
∗, . . . , a∗) is a history following a

sequence of passes such that agent ih1A moves at h1
A and is the first agent to clinch in the

game. This induces a chain of assignments of the agents in L(h1
A)∪ {ih1A}, plus possibly one

other active non-lurker at h1
A, as described above. History h2

A ) h1
A is then the next time

along the game path that an agent who was not ordered in step 1 of the ordering algorithm
clinches an object, etc.

Lemma A8. Let σA,σB be two role assignment functions, ΓA and ΓB their associated games,
and (.̃1

A, . . . , .̃
KA
A ) and (.̃1

B, . . . , .̃
KB
B ) the respective partial orderings produced by each step of

the ordering algorithm. For all k, if .̃kA = .̃kB, then hkA = hkB, and further, σ−1
A (i) = σ−1

B (i)

for all agents i that are ordered in step k of algorithm.

In particular, Lemma A8 implies the following corollary.

Corollary A1. If .A = .B, then σA = σB.
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Lemma A9. There are no three role assignment functions σA, σB and σC such that the
resulting partial orders .A, .B and .C take the form:72

i1 .A · · · .A in .A {i, j} · · ·

i1 .B · · · .B in .B i .B j · · ·

i1 .C · · · .C in .C j .C i · · · .

By Corollary A1 of Lemma A8, the mapping from role assignments σ to partial orders .σ
generated by the ordering algorithm is an injection. Lemma A9 shows that we can break all
the ties—recursively, coding step by coding step—creating from each .σ a consistent total
order fσ in a way that preserves the injectivity. In this way we obtain an injection from role
assignments σ to serial dictatorships with orders fσ. Because in this injection the domain
of role assignments σ and the range of serial dictatorship orderings fσ are finite and have
equal size, this injection is actually a bijection. It remains to check that the millipede Γσ

generates the same allocation as the serial dictatorship with ordering fσ. This is implied by
Lemma A7 because, by definition, each complete order fσ generated by the tie-breaking in
partial order .σ is consistent with .σ. �

A.8.6 Preliminary Results for the Proofs of the Key Lemmas

Before proving the core Lemmas A7, A8, and A9, we state several preliminary lemmas
we will use. Lemmas A10-A14 are due to BG. Note that the versions presented here are
simplifications of the corresponding lemmas in BG to apply to millipede games that satisfy
the properties of Lemma A3. Lemmas A15 and A16 are new.

Throughout, we fix a Pareto efficient millipede game Γ that satisfies properties (i)-(iii)
of Lemma A3.

Lemma A10. (BG Lemma E.11) If an agent has not yet clinched an object at a history h,
then X̄ L(h) ⊆ Pi(h) ∪ C⊂i (h). If i ∈ L(h), then X̄ L(h) ⊆ C⊂i (h).

Lemma A11. (BG Lemma E.14) If i ∈ L̄(h) and x` ∈ C⊆i (h) for some x` ∈ X L(h), then
ih = i, Pi(h) = Gi(h) = Ci(h), and there is no passing action a∗ in A(h).

Lemma A12. (BG Lemma E.16) Let L(h) = {`h1 , . . . , `hλ(h)} be the set of lurkers at h and
X L(h) = {xh1 , . . . , xhλ(h)}, with `h1 lurking xh1 , `h2 lurking xh2 , etc., where m < m′ if and only if
`hm became a lurker at a strict subhistory of the history at which `hm′ became a lurker. Then,

72What is meant here is that σA, σB , and σC restricted to the agents {i1, . . . , in, i, j} are all distinct role
assignment functions that produce partial orderings .A, .B , and .C that begin by ordering agents i1, . . . , in
in the exact same way (possibly with ties), and continue by ordering agents i, j in the manner specified.
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1. xh1 , . . . , xhλ(h) are all distinct objects.

2. For all m = 1, . . . λ(h), P`hm(h) = X (h) \ {xh1 , . . . , xhm−1}.

Lemma A13. (BG Lemma E.19) For all h, |L̄(h)| ≤ 2.

Lemma A14. (BG Lemma E.18, E.20) Let h be a history with lurked objects and let ih′ = t

be the agent who moves at the maximal superhistory of the form h′ = (h, a∗, . . . , a∗). Then:
(i) Agent t is not a lurker at h.
(ii) If ih 6= t, then Cih(h) ∩ C⊆t (h) = ∅.
(iii) If x` ∈ Pj(h) for some non-lurker j and lurked object x` ∈ X L(h), then j = t and

C⊆j (h′) = X (h).

The agent t who moves at h′ is called the terminator.

We also prove the following additional lemmas.

Lemma A15. Let h be a history such that L(h) 6= ∅. For any superhistory h′ of the form
h′ = (h, a∗, a∗, . . . , a∗), we have ih′ /∈ L(h).

Lemma A15 has the following key implication: let h be a history with lurkers L(h), and
h′ = (h, a∗, . . . , a∗, ax) be a superhistory such that x is the next object to be clinched (with
possibly agents passing in the mean time). Then, the agent that clinches x is not a lurker.

Proof. Let L(h) = {`h1 , . . . , `hλ(h)} be the set of lurkers at h and X L(h) = {xh1 , . . . , xhλ(h)}
the set of lurked objects. Assume that the statement was false, and let h′ be the smallest
superhistory of h such that ih′ = `hm for a lurker `hm (that is, ih′′ /∈ L(h) for all h ⊆ h′′ ( h′).
Note first that, for any h′′ such that h ⊆ h′′ ( h′, ih′′ = j ∈ L̄(h), and if there exists
some lurked xhm ∈ C

⊆
j (h′′), by BG Lemma A11, there is no passing action at h′′, which is a

contradiction. Therefore, any clinching action ay ∈ A(h′′) clinches some y ∈ X (h) \ X L(h),
and for all terminal histories h̄ ⊃ (h′′, ay), each lurker `hm ∈ L(h) receives his lurked object
xhm. Finally, consider history h′. By BG Lemma A12, for each `hm ∈ L(h), P`hm(h′) =

P`hm(h) = X (h) \ {xh1 , . . . , xhm−1} (note that h′ is reached from h via a series of passes, and so
X (h) = X (h′)), and Top(�`hm , P`hm(h′)) = xhm for all types �`hm such that h′ is on the path of
play. Therefore, by pruning and greedy strategies, at h′, there is no clinching action ax for
any x ∈ P`hm(h′) \ {xhm}. Thus, the only possibility is that every action a ∈ A(h′) clinches
xhm.73 This then implies that `hm gets xhm at all terminal h̄ ⊃ h′. Combining this with the
previous statement that `hm gets xhm for all terminal h̄ ⊃ (h′′, ay) for any h ⊆ h′′ ( h′ and

73Note that there cannot be a passing action either: if there were, then, since every history is non-trivial,
there must be another action. But, as just argued, there can be no clinching actions for any other x 6= xhm,
and thus there must be a clinching action for xhm, and the passing action would be pruned.
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clinching action ay ∈ A(h′′), we conclude that `hm gets xhm for all terminal h̄ ⊃ h, i.e., `hm has
already clinched his object xhm at h. Thus, by definition of a millipede game, ih′ 6= `hm, which
is a contradiction. �

Lemma A16. Let h be a history such that L(h) 6= ∅ and A(h) = L(h)∪ {i, j}, where i and
j are active non-lurkers at h, and let y ∈ X̄ L(h) be an unlurked object at h. Further, assume
that (i) ih = i (ii) y ∈ Ci(h) ∩ C(

j (h), and define x̄ = Top(�j, X̄ L(h)). Then, x̄ �j y.

Proof. Let h′ ( h be the largest subhistory such that y ∈ Cj(h
′), and note that

for this history, Pj(h′) = Pj(h).74 By construction, j passed at h′ when she was offered
to clinch y. If Pj(h) ∩ X L(h) = ∅, then, by BG Lemma A14, j is the terminator (i.e.,
j = t), and so by that same lemma, Ci(h) ∩ C⊆j (h) = ∅, which is a contradiction (since
y ∈ Ci(h) ∩ C⊆j (h)). Therefore, Pj(h) = X̄ L(h),75 and so Pj(h′) = X̄ L(h) as well. Since j
passes at h′ and y ∈ Cj(h′), Top(�j, Pj(h′)) �j y. Since Pj(h′) = X̄ L(h), Top(�j, Pj(h′)) =

Top(�j, X̄ L(h)) = x̄ �j y, as required. �

A.8.7 Proofs of the Key Lemmas A7, A8, and A9

In the proofs that follow, we will often make statements referring to generic “roles” in a game
form Γ, to state properties of Γ that are independent of the specific agent that is assigned to
that role. For instance, we previously defined Ci(h) as the set of outcomes that are clinchable
for an agent i at h. Below, we will sometimes write Cr(h) to refer to the set of outcomes
that are clinchable for the role r ∈ R at h, or Pr(h) for the set of outcomes that are possible
for role r. (If the role assignment function is such that σ(r) = i, then Ci(h) = Cr(h),
Pi(h) = Pr(h), etc.) Analogously to the sets A(h) and L(h) for active agents and lurkers at
a history h, we write AR(h) for the set of active roles at a history h, and LR(h) for the set
of roles that are lurkers at h. When we want to refer to the game form with agents assigned
to roles via a specific role assignment function σA, we will write ΓA. In the proofs, we will
often move fluidly between agents and roles; to avoid confusion, we use the notation i, j, k
to refer to specific agents, and the notation r, s, t to refer to generic roles. Finally, note that
while the set of lurkers at any h may differ depending on the role assignment function, the
set of lurked objects (and the order in which they become lurked) depends only on h, and is
independent of the specific agent assigned to the role that moves at h.

74If Pj(h) ( Pj(h
′) (because some new object became lurked between h′ and h, and so disappeared as a

possibility for j), then there must be a more recent subhistory h′′ ) h′ where j was re-offered the opportunity
to clinch y, by definition of a millipede game (or, more primitively, by OSP).

75For any active nonlurker i at any history h, either Pi(h) = X (h) or Pi(h) = X̄L(h), with the former
holding for at most one of the (possibly) two active non-lurkers; see Remark 7.1 of Bade and Gonczarowski
(2017).
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Unless otherwise specified, when we write the phrase “i clinches x at h” (or similar
variants), what is meant is that i moves at h, takes some clinching action ax ∈ A(h), and
receives object x at all terminal histories h̄ ⊇ (h, ax).

Finally, the following remark is simply a restatement of part (iii) of the definition of a
lurker, but deserves special emphasis, as it will arise frequently in the arguments below.

Remark 4. If an object x has been offered to an active non-lurker at a history h (i.e.,
x ∈ C⊆i (h) for some i ∈ L̄(h)), then x /∈ X L((h, a)) for any a ∈ A(h).

Proof of Lemma A7

Let agent i∗ be the first agent to clinch in game Γσ, which induces the ordering of the first
segment of agents in step 1 of the ordering algorithm. Let X L(h∗) = {x1, . . . , xn} be the set
of lurked objects at h∗ (which may be empty).

Case (1): A(h) = L(h) ∪ {i∗}.
If i∗ clinches an unlurked object y ∈ X̄ L(h∗), then, in Γσ, all lurkers get their lurked

objects (the oldest lurker `1 gets x1, the second oldest lurker `2 gets x2, etc.), and in the
resulting serial dictatorship fσ, the agents are ordered fσ : `1, `2, . . . , `n, i

∗. By BG Lemma
A12, for each lurker `m, we have xm = Top(�`m ,X \ {x1, . . . , xm−1}). When it is agent `m’s
turn in the serial dictatorship, she is offered to choose from X \ {x1, . . . , xm−1}, and thus
selects xm. Finally, consider agent i∗. In game Γσ, when she clinches y at h∗, it is unlurked.
By BG Lemma A10, X̄ L(h∗) ⊆ Pi(h

∗)∪C⊂i (h∗), which implies that so y = Top(�i∗ , X̄ L(h∗)).
At her turn in the serial dictatorship, the set of objects remaining is precisely X̄ L(h∗), and
so i∗ will select y.

If, on the other hand, i∗ clinches some lurked object xm, then all older lurkers `1, . . . , `m−1

get their lurked objects in Γσ, and the resulting serial dictatorship begins as fσ : `1, . . . , `m−1, i
∗.

By an argument equivalent to the previous paragraph, each of these agents once again gets
the same object under the serial dictatorship.76 Then, in Γσ, agent `m is offered to clinch
anything from X \ {x1, . . . , xm}. If `m takes another lurked object xm′ for some m′ > m,
then each lurker `m+1, . . . , `m′−1 is assigned to their lurked object, and we add to the se-
rial dictatorship order as fσ : `1, . . . , `m−1, i

∗, `m+1, . . . , `m′−1, `m. By the same argument as
above, at their turn in the resulting SD, each agent `m+1, . . . , `m′−1, `m gets the same object
in the SD.77 This process continues until someone eventually takes an unlurked object, all

76For agent i∗, since she took a lurked object at h∗ in Γσ, we have xm = Top(�i,X ), and thus, at her
turn in the serial dictatorship, she will once again select xm, since it is still available.

77When it is agent `m’s turn in the SD, the set of available objects is a subset of the set of objects that
were offered to her when she clinched in Γσ : X \{x1, . . . , xm′−1} ⊆ X \ {x1, . . . , xm}. However, xm′ belongs
to both sets, and so since `m took xm′ in Γσ, she will also to take it at her turn in the SD, when her offer
set is smaller.

55



remaining lurkers are ordered, and step 1 is completed.
Case (2): A(h) = L(h) ∪ {i∗, j} for some j ∈ A(h) \ (L(h) ∪ {i}).
First consider the case that i∗ clinches an unlurked object y ∈ X̄ L(h∗). If y /∈ C⊆j (h∗),

then the argument is exactly the same as in Case (1) (note that j is not ordered in step 1
in this case). If y ∈ C⊆j (h∗), then the step 1 partial order is `1.̃

1 · · · .̃1`λ.̃
1{i∗, j}. We must

show that any serial dictatorship run under fσ : `1, . . . , `n, i
∗, j, . . . and f ′σ : `1, . . . , `n, j, i

∗, . . .

result in the same outcome as Γσ for these agents. For the lurkers, the argument is as above
in either case. For i∗ and j, in game Γσ, by construction, y ∈ Cj(h′) for some h′ ( h∗. Let
z = Top(�j, X̄ L(h∗)), and note that by Lemma A16, z �j y. Since i clinched y at h∗, we
have y �i z. In the serial dictatorship, after all lurkers have picked, the set of remaining
objects is precisely X̄ L(h∗). Thus, it does not matter whether i∗ or j is ordered next in the
serial dictatorship, as there is no conflict between them: in both cases, i∗ will take y, and j
will take z, and both fσ and f ′σ give the same allocation as Γσ. For the case where i∗ begins
by clinching some lurked object xm ∈ X L(h∗), we consider agent j and the lurker who, in
the chain of assignments, eventually takes an unlurked object y; otherwise, the argument is
analogous.

This shows that we get the same allocation for all agents ordered in step 1 of the ordering
algorithm. If all active agents at A(h∗) are processed in step 1 of the ordering algorithm,
then we effectively have a smaller subgame on the remaining agents, and we just repeat the
same argument. If not, then there is at most one active agent j ∈ A(h∗) who is not processed
in step 1. Agent j has been previously offered some objects in the set C⊆j (h∗) (note that
C⊆j (h∗) ⊆ X̄ L(h)). The subgame that begins after all of the agents in step 1 have clinched
can equivalently be written as a Pareto efficient millipede subgame that begins with agent j
being offered C⊆j (h∗) at the “root node”. We then find the first agent to clinch (after a series
of passes) in this subgame, and repeat the same argument as for step 1 above. �

Proof of Lemma A8

We will first show the result for k = 1, and the proof for remaining steps will follow recur-
sively. We first show that h1

A = h1
B. Towards a contradiction, assume h1

A 6= h1
B, and, wlog,

h1
A ( h1

B. Let r = ρ(h1
A) be the role associated with history h1

A, and define iA = σA(r)

and iB = σB(r), where iA 6= iB. Since there can be at most one passing action at h1
A and

h1
A ( h1

B, agent iA must clinch some xA at h1
A in ΓA, while agent iB must pass at h1

A in ΓB.
Let AR(h1

A) be the set of active roles at h1
A. Note that by definition, LR(h1

A) ⊆ LR(h1
B) and

X L(h1
A) ⊆ X L(h1

B). Also, for the constructed partial order .A, let gA(i) = |j : j .A i| + 1.78

78This is almost the same as i’s picking order in the resulting serial dictatorship, except that this allows
for the fact that two agents may tie under .A, i.e., gA(i) = gA(i′) if i 7A i′ and i′ 7A i
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Define gB similarly. Since we assume .̃1
A = .̃1

B, we have gA(i) = gB(i) for all i ordered in
step 1 of the ordering algorithm applied to ΓA and ΓB, respectively.

Since there is a passing action at h1
A, we have xA /∈ X L(h1

A) (by BG Lemma A11). Since
iA clinches an unlurked object xA ∈ X̄ L(h1

A) at h1
A, we have xA = Top(�iA , X̄ L(h1

A)),79 and
also gA(iA) = λ(h1

A) + 1, where λ(h1
A) = |LR(h1

A)| is the number of lurkers that are present
at h1

A. Therefore, gB(iA) = λ(h1
A) + 1 as well, which implies X L(h1

A) = X L(h1
B).80 This also

means that LR(h1
A) = LR(h1

B). Let xB be the object clinched at h1
B.

Case (1): xB /∈ X L(h1
B).

Subcase (1).(i): ρ(h1
B) 6= r. There can be at most one other active non-lurker role at

h1
B, denoted s ∈ L̄R(h1

B). We have σ−1
B (r) 6= iA (or else iA would again clinch xA at h1

A),
and σ−1

B (iA) 6= rn for any lurker role rn′ ∈ LR(h1
B) (because then gB(iA) = n′ < λ(h1

A) + 1, a
contradiction).81 Thus, it must be that σB(s) = iA, ih1B = iA, and iA clinches xA at h1

B (i.e.,
xB = xA). By construction of .̃1

B, xA ∈ C
⊆
j (h1

B), where j = σB(r), and so gB(iA) = gB(j) =

λ(h1
B) + 1 = λ(h1

A) + 1. So, gA(j) = λ(h1
A) + 1; in other words, in ΓA, when iA clinches xA

at h1
A, j must be an active non-lurker at h1

A, and xA ∈ C⊆s (h1
A), where s = σ−1

A (j) is j’s role
in ΓA. Since σB(s) = iA, in game ΓB, there is some h′ ( h1

A such that xA ∈ CiA(h′) and i
passes at h′. Let x̄ = Top(�iA , X̄ L(h1

A)), and note that by Lemma A16, x̄ �iA xA. However,
we saw above that xA = Top(�iA , X̄ L(h1

A)), which is a contradiction.
Subcase (1).(ii): ρ(h1

B) = r. In game ΓB, ih1B = iB, and, at h1
B, iB clinches some xB 6=

xA. Since xB is unlurked at h1
B, we have xB = Top(�iB , X̄ L(h1

B)). Since gB(iA) = λ(h1
A) + 1

(as required by .̃1
A = .̃1

B), we have iA ∈ A(h1
B) and xB ∈ C⊆iA(h1

B) in ΓB. This again implies
gA(iA) = gA(iB) = gB(iA) = gB(iB) = λ(h1

A) + 1, i.e., iA and iB tie in both .̃1
A and .̃1

B. Let
s = σ−1

B (iA). Since gA(iB) = λ(h1
A) + 1, iB must have been an active nonlurker at h1

A in ΓA,
which means that σA(iB) = s. Therefore, in game ΓA, iB passes at some history h′ ( h1

A

such that xB ∈ Cs(h
′). An argument equivalent to the previous paragraph applied to iB

again reaches a contradiction.
Case (2): xB ∈ X L(h1

B). Note that in this case, since a lurked object is clinchable at h1
B,

there is no passing action at h1
B, by BG Lemma A11. Further, the role/agent who moves at

h1
B satisfies the conditions of the terminator t defined in BG Lemma A14; denote ρ(h1

B) = t,
and note that C⊆t (h1

B) = X (h1
B) = X . Also, recall from the discussion before Case (1) that

gA(iA) = λ(h1
A) + 1, where λ(h1

A) = |LR(h1
A)|, and therefore, gB(iA) = λ(h1

A) + 1 as well.
79This follows because X̄L(h1A) ⊆ PiA(h1) ∪ C⊂iA(h1A), by Lemma A10.
80To see this, note that if XL(h1B) ) XL(h1A), then xλ(h1

A)+1 = xA, i.e., the (λ(h1A) + 1)th lurked object
must be xA (because the ordering algorithm puts the agent who receives xλ(h1

A)+1 as the (λ(h1A) + 1)th agent
in the ordering, and we know gB(iA) = λ(h1A) + 1). Thus, let h′ ) h1A be the history where xA first becomes
lurked. Note that xA ∈ C⊆r (h′). However, role r is still a non-lurker at h′, and so xA cannot become lurked
(see the definition of lurker /Remark 4).

81Note that in this case, xB is unlurked, and so all lurkers are immediately assigned to their lurked objects.
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Subcase (2).(i): t = r. In this case, in ΓA, when iA clinches xA at h1
A, we have

xA = Top(�i,X ) (because σ−1
A (iA) = t and iA chose to clinch first). Now, since σ−1

B (iA) 6= t,
the only way for gB(iA) = λ(h1

A) + 1 is for iA to be the active non-lurker at h1
B that does not

clinch, and y ∈ C⊂iA(h1
B), where y is the unlurked object chosen by some lurker i` ∈ L(h1

B) in
the assignment chain initiated when iB selected xB at h1

B. Let s = σ−1
B (iA). Since i` ∈ L(h1

B),
and chose y at her turn, we have y = Top(�i` , X̄ L(h1

B)). Note that gB(i`) = λ(h1
A) + 1, and

so, since .̃1
A = .̃1

B, we have gA(i`) = λ(h1
A) + 1 as well. This is only possible if σ−1

A (i`) = s,
and xA ∈ C⊂s (h1

A). But then, in game ΓB, agent iA(= σB(s)) was offered to clinch xA at some
history h′ ( h1

B. Since xA = Top(�i,X ), iA clinches at h′ in ΓB, which is a contradiction.
Subcase (2).(ii): t 6= r. In this case, in ΓA, when iA clinches xA at h1

A, since σA(t) 6= iA,
we have xA /∈ C⊆t (h1

A), by BG Lemma A14. Therefore, gA(iA) = λ(h1
A) + 1, and gA(i′) 6=

λ(h1
A) + 1 for all other i′ 6= iA ordered in step 1 (in other words, iA does not tie with

another agent in .̃1
A), and so the same is true for gB.82 Since the first agent to clinch in

ΓB is σB(t) = j 6= iA who clinches some lurked object xB ∈ X L(h1
B) and σB(r) = iB 6= iA,

σ−1
B (iA) = rn for some lurker role rn′ that lurks object xn′ ∈ X L(h1

B). Now, when iA

eventually clinches xA (after someone else has selected xn′ in the chain of lurker assignments),
xA ∈ C⊆iB(h1

B), where iB = σB(r) (since h1
B ) h1

A and xA ∈ Cr(h
1
A)), which implies that

gB(iB) = λ(h1
A) + 1, i.e., iB ties with iA—a contradiction.

Thus far, we have shown that .̃1
A = .̃1

B implies h1
A = h1

B, or, in other words, if step 1
of the ordering algorithm produces the same ordering, then step 1 must be initiated at the
same history in ΓA and ΓB. Next, we show that σA(r′) = σB(r′) for all r′ that are ordered
in step 1 of ΓA and ΓB.

Define h1 := h1
A = h1

B. Let LR(h1) = {r1, . . . , rλ(h1)} be the set of lurker-roles at h1, and
X L(h1) = {x1, . . . , xλ(h1)} the set of lurked objects. Notice that, since h1

A = h1
B, the lurked

objects and active lurker-roles are equivalent in both ΓA and ΓB. Towards a contradiction,
assume that σA(r′) 6= σB(r′) for some r′ that is ordered in step 1. Letting r0 = ρ(h1), write

σA(r0)→ xa1 → σA(ra1)→ xa2 → · · · → σA(raM )→ yA (1)

to represent the chain of clinching that is initiated in ΓA by agent σA(r0) at h1: agent σA(r0)

clinches some (possibly lurked) object xa1 , the agent σA(ra1) who was lurking xa1 clinches
lurked object xa2 , etc., until eventually agent σA(raM ) ends the chain by clinching some

82Note that since LR(h1A) = LR(h1B), there cannot be any additional role r′ /∈ LR(h1A)∪{r, t} that is active
at h1A.
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unlurked object yA.83 Similarly, for ΓB, write

σB(r0)→ xb1 → σB(rb1)→ xb2 → · · · → σB(rbM )→ yB. (2)

We will show that chains (1) and (2) above are in fact equivalent: σA(r0) = σB(r0) and
σA(ram) = σB(rbm) for all m. Since any lurked object xn ∈ X L(h1) that does not appear in
the above chain must be assigned to its lurker σA(rn), this will deliver the result.

First, note that if xa1 = xb1 and xa1 /∈ X L(h1), then both (1) and (2) begin with the same
agent taking the same (unlurked) object. Therefore, all lurkers are immediately assigned
to their lurked objects. If there is another active non-lurker role s ∈ L̄R(h1), then the
agent in role s clinches his object favorite remaining object. In either case, it is clear that
σA(r′) = σB(r′) for all roles r′ ordered in step 1 of the ordering algorithm. Thus, assume
that xa1 6= xb1 , and therefore, σA(r0) 6= σB(r0).

Claim A2. At least one of xa1 or xb1 is lurked at h1; i.e., X L(h1) ∩ {xa1 , xb1} 6= ∅.

Proof of claim. Assume that xa1 , xb1 /∈ X L(h1). For shorthand, define σA(r0) = iA, and
σB(r0) = iB. Then, since .̃1

A = .̃1
B, we have gA(iA) = gA(iB) = gB(iA) = gB(iB) = λ(h1) + 1,

i.e., iA and iB tie under both .̃1
A and .̃1

B. This means that there is another active non-lurker
role s ∈ AR(h1) \ (LR(h1) ∪ {r0}), and σA(r0) = σB(s) = iA, σA(s) = σB(r0) = iB. Further,
xa1 , xb1 ∈ C⊂s (h1).

If L(h1) = ∅, then X = Pr0(h
1) ∪ C⊆r0(h

1), which implies that xa1 = Top(�iA ,X ) and
xb1 = Top(�iB ,X ). But, this means that in ΓA, iB will clinch xb1 at some h′ ( h1 (in
particular, the earliest h′ such that xb1 ∈ Cs(h

′)), a contradiction. Therefore, L(h1) 6= ∅.
Now, by BG Lemma A10, xa1 = Top(�iA , X̄ L(h1)) and xb1 = Top(�iB , X̄ L(h1)). Since
xb1 ∈ C⊂s (h1), there is some history h′ ( h1 such that in game ΓA, xb1 ∈ CiB(h′), and iB

passes at h′. By Lemma A16, Top(�iB , X̄ L(h1)) �iB xb1 , which is a contradiction. �

By the previous claim, at least one (possibly both) of xa1 and xb1 are lurked objects;
wlog, assume that xa1 ∈ X L(h1). Since Cr0(h1) contains a lurked object, BG Lemma A14
implies r0 = t is the terminator role. Consider agent σA(raM ) = i′, and note that xaM �i′
yA = Top(�i′ ,X \ {x1, . . . , xaM}) where xaM is the object i′ lurks at h1 in ΓA.

We first claim that σ−1
B (i′) = raM and yA = yB. To see this, first note that σ−1

B (i′) 6= rn′′

for any n′′ > aM . Indeed, if this were the case, this would imply that xn′′ = Top(�i′
,X \ {x1, . . . , xn′′−1}), where xn′′ is the object lurked by role rn′′ . However, this contradicts
yA = Top(�i′ ,X \ {x1, . . . , xaM}). Next, we show that σ−1

B (i′) 6= rn′′ for any n′′ < aM either.
In game ΓB, when i′ becomes a lurker for xn′′ at some h′, he eventually must get no worse

83Recall that any lurked object that does not appear in the chain is assigned to its lurker. For example,
if a1 < a2, then xa′ is assigned to σA(ra′) for all a′ such that a1 < a′ < a2.
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than his second-best choice from the set Pi′(h′) = X \ {x1, . . . , xn′′−1}. Since xaM ∈ Pi′(h′),
we have xn′′ �i′ xaM �i′ yA, and i′ can do no worse than xaM , which means he cannot end
up with yA—a contradiction. The final case to consider is σ−1

B (i′) = r′ for some r′ ∈ L̄R(h1).
We cannot have r′ = r0 (since r0 is the terminator role, i′ would then be able to clinch
her top choice at h1 in ΓB, and Top(�i′ ,X ) 6= yA). Thus, r′ must be the (unique) other
non-lurker role that is active at h1: r′ = AR(h1) \ (LR(h1) ∪ {r0}). Recall that, for this
role, Pr′(h1) = X̄ L(h1). Further, yA /∈ C⊆r′ (h

1) (or else i′ would have clinched yA at some
strict subhistory of h1), and yB ∈ C⊆r′ (h1) (or else i′ would not be ordered in step 1 of the
ordering algorithm under ΓB). However, the former implies that |j : gA(j) = λ(h1) + 1| = 1,
while the latter implies |j : gB(j) = λ(h1) + 1| = 2, which contradicts .̃1

A = .̃1
B. Therefore,

σ−1
A (i′) = σ−1

B (i′) = raM . Finally, note that σA(raM ) = σB(raM ) further implies yA = yB and
raM = rbM . Indeed, if not, then the final person to clinch in chain 2 is some σB(rbM ) = j 6= i′.
However, agent i′ is a lurker in ΓB for xaM that was not previously taken by any other agent
in chain 2, and thus, i′ is assigned to xaM , which is a contradiction.

Next, consider agent σA(raM−1) = i′ in chain 1, i.e., i′ lurks xaM−1 in ΓA and even-
tually ends up with (lurked) object xaM . By construction of the chain, xaM = Top(�i′
,X\{x1, . . . , xaM−1}). Similar to the previous paragraph, σ−1

B (i′) 6= rn′′ for any n′′ > aM − 1.
Indeed, if this were true, then xn′′ = Top(�i′ ,X\{x1, . . . , xn′′−1}). If n′′ < aM , xn′′ �i′ xaM ,
which contradicts xaM = Top(�i′ ,X\{x1, . . . , xaM−1}). If n′′ > aM , then xaM is not possible
for i′ (BG Lemma A12), which is also a contradiction. Finally, n′′ 6= aM , since we already
have shown that σB(raM ) = σA(raM ). Similarly, σ−1

B (i′) 6= rn′′ for any n′′ < aM − 1, either,
since this would imply that xn′′ �i′ xaM−1 �i′ xaM , and xaM−1 ∈ Pi′(h

′) at the history
h′ where i′ became a lurker for xn′′ . Since i′ cannot do any worse than his second-best
choice from Pi′(h

′), we have a contradiction. The last case to consider is σ−1
B (i′) = r′ for

r′ = AR(h1) \ (LR(h1) ∪ {r0}).84 But, for this role, Pr′(h1) = X̄ L(h1), and thus, no lurked
objects are possible for i′, which is a contradiction. Therefore, σA(raM−1) = σB(raM−1). As
in the previous paragraph, this also implies that raM−1 = rbM−1 and xaM = xbM .

The same argument can be repeated to show that xam = xbm and σA(ram) = σB(rbm)

for all m = 1, . . . ,M . The final case to consider is role r0. Let σA(r0) = i′. Since i′

starts the chain of assignments at h1 by taking some lurked object xa1 ∈ XL(h1), we have
xa1 = Top(�i′ ,X ). Once again, we cannot have σ−1

B (i′) = rn′′ for any n′′ < a1, as this would
imply that xn′′ �i′ xa1 , which is a contradiction. We also cannot have σ−1

B (i′) = ra1 , since
we have already shown that σB(ra1) = σA(ra1). Further, we cannot have σ−1

B (i′) = rn′′ for
any n′′ > a1, since xa1 would not be possible for i′. Last, we cannot have σ−1

B (i′) = r′ for
r′ = AR(h1) \ (LR(h1) ∪ {r0}), since no lurked objects are possible for the agent in role r′.

84The case where σ−1B (i′) = r0 can be dispensed with similarly as in the previous paragraph.
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Therefore, σ−1
B (i′) = r0, and chains 1 and 2 are equivalent.

To summarize: We have shown that if we have two role assignment functions σA, σB such
that .̃1

A = .̃1
B, then (i) σ−1

A (i) = σ−1
B (i) for all agents i that are ordered in step 1 of the

ordering algorithm and (ii) at the conclusion of the chain of clinching initiated by the first
agent to start the chain at h1

A/h
1
B, we will end up at the same history in ΓA as in ΓB.85 At this

point, we have a smaller subgame consisting of the agents and objects that were unmatched
in the first round. This subgame is another Pareto efficient millipede game (that may begin
with the unique unmatched agent from step 1 carrying over his endowment C⊆j (h1), if such
an agent exists), and so we simply repeat the above arguments for each round k = 1, . . . , K.
�

Proof of Lemma A9

Assume there are three permutations σA, σB, and σC that deliver (initial) partial orderings
.A, .B, .C as in the statement. We’ll show that these 3 conditions lead to a contradiction.

As with Lemma A8, we show this first for the case that under .A, all agents {i1, . . . , in, i, j}
are processed in step 1 of the ordering algorithm, and the argument for later steps will be
equivalent. Let ΓA, ΓB, and ΓC denote the specific games under role assignments σA, σB,
and σC respectively. Further, let h∗A, h∗B, and h∗C be the first history at which an object is
clinched in the respective games, following a sequence of passes.86 In particular, this means
that in .A, agents {i1, . . . , in} are getting lurked objects X L(h∗A) = {x1, . . . , xn}, while agents
i and j are getting some unlurked objects, y, z /∈ X L(h∗A), respectively. By construction, one
of i or j must be an active non-lurker at h∗A who is not called to move at h∗A; without loss of
generality, assume that this is j. For notational purposes, denote by ih∗A ∈ {i1, . . . , in, i} the
agent who moves (and clinches) at h∗A, thereby starting the chain of lurker assignments that
ends with i clinching y followed by j clinching z (note that ih∗A /∈ L(h∗A), by Lemma A15,
and it is possible that ih∗A = i). The structure of .A implies that y ∈ C⊂j (h∗A).

Case 1: L(h∗A) = ∅
In this case, by definition of .A, the set of active agents at h∗A is A(h∗A) = {i, j}, where

ih∗A = i. For notational purposes, let s = σ−1
A (i) and s′ = σ−1

A (j) be the roles assigned to
agents i and j in game ΓA, and note that y ∈ C⊆s′ (h∗A). Further, both i and j are getting
their first choice objects, i.e., Top(�i,X ) = y and Top(�j,X ) = z.

85This follows because the chain of clinching starts at the same history in both games, and all agents who
are ordered in step 1 are in the same roles, so will take the same actions. While there may be some other
role r′ that is not ordered in step 1 and σA(r′) 6= σB(r′), this agent must have passed every time she was
called to move at a history h′ ( h1, and is not called to move in the chain of lurker assignments, and so at
the end of the chain, we will still end up at the same history to begin the next round/subgame.

86That is, h∗α = (h∅, a
∗, . . . , a∗) for α = A,B,C, though the number of passes (a∗’s) may vary.
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Now, consider σB, where the ordering algorithm produces i .B j. By Remark 4, y cannot
be the first lurked object in the game, and thus, for i to be ordered first without ties according
to .B, we must have X L(h∗B) = ∅ and ih∗B = i. These facts imply that σ−1

B (i) = s′.
Now, consider σC , which begins j .C i · · · . There are two subcases, depending on whether

j is a lurker at h∗C or not.
Subcase 1.(i): j ∈ L(h∗C). In this case, by construction, j is the first lurker of the game

and and z is the first lurked object. Further, h∗C ⊇ h∗A. Now, in order for i to be the (unique)
next agent added to .C , either (i) y ∈ XL(h∗C) and, in particular, y is the second object to
become lurked in the game or (ii) X L(h∗C) = {z} and i clinches y at h∗C . But, by Remark
4, y cannot be the second lurked object of the game, because y was previously offered to
both roles s and s′, and, even after z becomes lurked by j at some history h′, we will still
have y ∈ C⊆r′ (h′) for the role r′ ∈ {s, s′} such that σ−1

C (j) 6= r′. Therefore, i must clinch y
at h∗C ) h∗A. Now, we have σ−1

C (i) 6= s, s′ (because Top(�i,X ) = y, and so i would have
clinched y earlier along the path to h∗C , since it has been previously offered to both roles).
Therefore, agent k = σC(r′) is an active non-lurker at h∗C such that y ∈ C⊆k (h∗C), and so, by
construction of .C , we have j .C {i, k} .C · · · , which is a contradiction.

Subcase (ii): j /∈ L(h∗C). In this case, L(h∗C) = ∅ and ih∗C = j (since j is ordered
first without ties). Further, σ−1

C (j) ∈ {s, s′}. If σ−1
C (j) = s′, then σC(s) = k 6= i (or else

we are back to σA) and h∗C ⊃ h∗A. Thus, y ∈ C⊆k (h∗A), which implies that i cannot be the
next agent added to .C uniquely—a contradiction.87 The last case is σ−1

C (j) = s. Note that
z /∈ C⊂s (h∗B),88 and so h∗C ⊃ h∗B. This further implies that y ∈ C⊆s′ (h∗C) and so σC(s′) = k 6= i

(since otherwise, i would have clinched y prior to h∗C , because Top(�i,X ) = y). By an
argument similar to footnote 87, i cannot be the next agent added to the order uniquely,
which is again a contradiction.

This completes the argument for Case 1.

Case 2: L(h∗A) 6= ∅.
Now, we consider the case where there are lurkers at h∗A (and hence also lurked objects,

X L(h∗A) 6= ∅). By definition of .A, we have AR(h∗A) = {r1, . . . , rn, s, s
′}, where r1, . . . , rn ∈

LR(h∗A) are lurker roles, and s, s′ ∈ L̄R(h∗A) are non-lurker roles. Let ρ(h∗A) = s be the
non-lurker role that moves at h∗A (and thus clinches in ΓA).

87For agent i to be ordered next in .C without ties, she must be the first agent ordered in step 2 of the
ordering algorithm. By Remark 4 again, y cannot be the next lurked object in the game, which means that
i must clinch y at some h′ ) h∗C such that L(h′) = ∅. But, y ∈ C⊆k (h′) and so, by construction of .C , she
will tie with agent k.

88If z ∈ C⊂s (h∗B), then, σ−1B (s) = k 6= j (if σ−1B (s) = j, then j would clinch z prior to h∗B , since z = Top(�j
,X )). But, by the same argument in footnote 87, j could not be the next agent added to .B uniquely, a
contradiction.
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Claim A3. At h∗A, y has been previously offered to both active non-lurker roles: y ∈ C⊆s (h∗A)

and y ∈ C⊆s′ (h∗A).

Proof of claim. If σA(s) = i, then it is obvious that y ∈ C⊆s (h∗A) by definition. If
σA(s) = in′ , then at h∗A, agent in′ clinches a lurked object xn′ ∈ Cs(h

∗
A), which initiates

the chain of lurker assignments.89 This implies that there is no passing action at h∗A (by
Lemma A11) and that s is the terminator role t defined in BG Lemma A14. Therefore, by
BG Lemma A14, y ∈ C⊆s (h∗A). That y ∈ C⊆s′ (h

∗
A) for the other non-lurker role s′ follows

immediately from the construction of .A. �

Claim A4. At h∗B, X L(h∗A) ⊆ XL(h∗B). Similarly, at h∗C , X L(h∗A) ⊆ XL(h∗C).

Proof of claim. Assume not, and let X L(h∗B) = {x1, . . . , xn′} ( X L(h∗A) = X L(h∗B) ∪
{xn′+1, . . . , xn}. (Recall that following a sequence of passes to start the game, there is a
unique order in which objects will become lurked that is independent of the role assignment
function. Since h∗A and h∗B are by definition the first histories at which an object is clinched
in their respective games, at least one of X L(h∗A) ⊆ X L(h∗B) or X L(h∗B) ⊆ X L(h∗A) must
hold). Agent ih∗B (the agent who clinches at h∗B) cannot clinch xñ for any ñ ≤ n′. To see
why, note that this would imply that agent ih∗B is offered a previously lurked object at h∗B.
By BG Lemma A11, there is no passing action at h∗B, which contradicts xn′+1 ∈ X L(h∗A).
Thus, the only other possibility consistent with .B is that ih∗B = in′+1, who clinches xn′+1

(which is unlurked) at h∗B, i.e., xn′+1 ∈ Cin′+1
(h∗B). But, xn′+1 is the (unique) next object to

become lurked in game form Γ following a sequence of passes from h∗B, which implies that
xn′+1 /∈ Cin′+1

(h∗B), by Remark 4. An analogous argument applies for h∗C . �

Claim A5. X L(h∗A) = X L(h∗B) = X L(h∗C).

Proof of claim. Given Claim A4, it is sufficient to show X L(h∗B),X L(h∗C) ⊆ X L(h∗A).
Let X L(h∗A) = {x1, . . . , xn}, and note again that the order in which objects become lurked
following a series of passes to start the game is unique and independent of the role assignment
function. Thus, it is sufficient to consider the next object that can become lurked, xn+1, and
show that xn+1 /∈ X L(h∗B) (resp. xn+1 /∈ X L(h∗C)). Thus, assume that xn+1 ∈ X L(h∗B), and
note that this implies h∗B ) h∗A. By construction of .B, we must have xn+1 = y (the object
received by i); indeed, if xn+1 6= y, then, the agent, say k, who receives xn+1 will be such
that k .B i, which is a contradiction. However, since h∗B ) h∗A, y has previously been offered
to both active non-lurkers at h∗B (from the construction of .A). Thus, by Remark 4, y cannot
become the next object lurked, i.e., xn+1 6= y—a contradiction.

Next consider ΓC , and assume that xn+1 ∈ X L(h∗C). Let rn+1 be the role that lurks
xn+1, and hn+1 be the history at which role r becomes a lurker for xn+1 (i.e., role rn+1

89By definition, σA(s) 6= j, and so this exhausts all possibilities.
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passes at hn+1, and becomes a lurker at h′ = (hn+1, a
∗)). Note that h′ ⊃ h∗A. Further,

from what we know about the structure of the game tree Γ from σA, there is another active
non-lurker role at hn+1, denoted r̃, and we have y ∈ C⊆rn+1

(hn+1) and y ∈ C⊆r̃ (hn+1). Now,
since i1 .C · · · .C in .C j .C i · · · , it must be that xn+1 = z (the object received by j). Since i
is uniquely ordered immediately after j, we have in+1 = j, and ih∗C = i who clinches y at h∗C .
(The only other possibility is that there is another lurked object at h∗C , xn+2 = y, but, by
Remark 4, this is impossible, since y has been previously offered to both active nonlurkers
at hn+1). Since i is ordered uniquely, σC(r̃) = i, by an argument equivalent to footnote
87. Now, this implies that i was previously offered y at some h′′ ( h∗C , and chose to pass,
which implies Top(�i, Pi(h′′)) = x̄ �i y. Letting h′′ be the most recent subhistory such
that y ∈ Ci(h′′) and i passes, and noting that i chose to clinch y at h∗C , we conclude that
x̄ /∈ Pi(h∗C) and x̄ = z.90 But, z /∈ X L(h∗A), which contradicts that she clinches y in ΓA.91 �

Claim A5 thus implies that LR(h∗A) = LR(h∗B) = LR(h∗C). Further, we know from BG
Lemma A13 that there can be at most two active non-lurker roles at any history, which we
will denote s and s′. By construction, we know that both of these roles are in fact active at
h∗A, i.e., AR(h∗A) = LR(h∗A) ∪ {s, s′}. For h∗B, it is possible that only one of s or s′ are active
(but this can only occur if h∗B ( h∗A). A similar remark applies to h∗C .

Claim A6. h∗B, h∗C ( h∗A.

Proof of claim. First, assume h∗A ⊆ h∗B. Then, when agent i clinches y in ΓB (either at
h∗B, or in the chain of lurker assignments that follows), it has already been offered to both of
the agents in roles s and s′, including the (unique) active non-lurker that does not move at
ih∗B , say agent k, and so k is ordered in step 1 (and in particular, k will “tie” with i), which
is a contradiction to the definition of .B.

Next, assume that h∗A ⊆ h∗C . The agents processed in step 1 of the ordering algorithm
applied to ΓC are {i1, . . . , in, j} (a set that does not include i), and the chain ends when j
clinches z. Since h∗C ⊇ h∗A, both s, s′ ∈ AR(h∗C), and y ∈ C⊆s (h∗C) and y ∈ C⊆s′ (h∗C). Since i
is the next agent ordered in .C without ties (in step 2 of the ordering algorithm), we have
σC(s′) = i and σC(s) = j (by an argument equivalent to footnote 87). Since i clinches
y ∈ X̄ L(h∗A) in ΓA, we have y = Top(�i, X̄ L(h∗A)). Since σC(s′) = i, there is some h′ ( h∗A
such that y ∈ Ci(h′) and i passes at h′ in ΓC . By Lemma A16, Top(�i, X̄ (h∗A)) = x̄ �i y,

90Each time a new object becomes impossible for i (due to becoming lurked by another agent), i must once
again be offered the opportunity to clinch y, by definition of a millipede game. Agent i must have passed at
all such opportunities (including h′′) up to h∗C , which implies that x̄ = z.

91There are actually two subcases here: if ih∗A 6= i, then i must be a lurker for some xn′ . At some point in
the lurker assignment chain, someone (either ih∗A , or an earlier lurker) takes xn′ ; since z is still unlurked at
that point, it is possible for i. Similarly, if ih∗A = i, then z is still unlurked at h∗A, which again contradicts
that i clinches y.
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which is a contradiction. �

Claim A7. At h∗B, we have X L(h∗B)∩Cr′(h∗B) = ∅, where ρ(h∗B) = r′. The same holds at h∗C .

Proof of claim. By Claim A6, h∗B ( h∗A. This implies that there must be a passing
action at h∗B, which means that xn′ /∈ Cr′(h∗B) for any xn′ ∈ X L(h∗B) by BG Lemma A11. An
equivalent argument holds for h∗C . �

In words, Claim A7 says that the object that is clinched at h∗B/h∗C is not lurked. Note that
the claim also implies that in both ΓB and ΓC , σB(rn′) = σC(rn′) = in′ for all n′ = 1, . . . , n,
and so ih∗B = i who clinches y first in ΓB, and ih∗C = j, who clinches z first in ΓC .

We can now finish the proof of Lemma A9. Recall that s = ρ(h∗A) is the role of the first
agent to clinch in ΓA, and s′ is the role of the other active non-lurker at h∗A (for ΓA, we know
that σA(s′) = j). There are two cases.

Case (1): σA(s) = i. This is the case where the two non-lurkers at h∗A are {i, j}, so
that s = σ−1

A (i) and s′ = σ−1
A (j). Note that at h∗A, both s, s′ ∈ L̄R(h∗A), and y ∈ C⊆s′ (h∗A).

Now, consider σB/.B. By the discussion following Claim A7, ih∗B = i. This implies that
σ−1
B (i) = s′.92

Now consider σC/.C . Again, by the discussion following Claim A7, ih∗C = j; further,
σ−1
C (j) = s.93 If z ∈ C⊂s (h∗B), then, by an argument equivalent to footnote 87, it must be

that σB(s) = j. Further, h∗B ( h∗C (otherwise, j would clinch at h∗C ( h∗B in ΓB, since she has
the same role in both games). Therefore, y ∈ C⊂s′ (h∗C) (in particular, y ∈ Cs′(h∗B)). Again
by the same argument as footnote 87, σC(s′) = i. But, σC(s′) = i implies that i clinches
at h∗B ( h∗C in ΓC (since i has the same role as in ΓB), which is a contradiction. Finally,
if z /∈ C⊂s (h∗B), we once again have h∗B ( h∗C and so y ∈ C⊂s′ (h

∗
C), and we reach the same

contradiction as in the previous case.
Case (2): σA(s) 6= i. In this case, in ΓA, i must be a lurker for some xn′ , and the first

agent to clinch is some ih∗A = in1 who clinches some lurked object xn1 . This causes a chain
of assignments of lurked objects, that ends with some other agent in′ taking xn′ , after which
i clinches y and all lurked objects xn′+1, . . . , xn are immediately assigned to their lurkers.
Note that y ∈ Cs′(h

∗
A) here, by construction of ΓA. So, we have σ−1

A (s) = ih∗A 6= i, and
σ−1
A (s′) = j. Since there is a lurked object xn′ ∈ Cs(h∗A), there is no passing action at h∗A,

by BG Lemma A11. Further, this implies that role s is the terminator role defined in BG
Lemma A14.

In game ΓB, the discussion following Claim A7 again gives ih∗B = i. If σ−1
B (i) = s, then,

92In particular, we cannot have σ−1B (i) = s again, because this would imply h∗B = h∗A, contradicting Claim
A6.

93If σ−1C (j) = s′, then, j must pass at all h′ ( h∗A at which she is called to play (since σA(s′) = j, and j
passed at all such h′ in ΓA). Since ih∗C = j, this implies h∗C ) h∗A, which contradicts Claim A6.
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since i is the first agent to clinch and is the terminator, we have Top(�i,X ) = y. But, in
game ΓA, i was a lurker for some xn′ 6= y (since y is not a lurked object at h∗B), which implies
Top(�i,X ) 6= y, a contradiction. Therefore, σ−1

B (i) = s′.
In game ΓC , the discussion following Claim A7 gives ih∗C = j. Just as in Case (1) above,

we can show that σ−1
C (j) = s. Since s is the terminator role of BG Lemma A14, and j

clinches z at h∗C , we conclude that Top(�j,X ) = z. If z ∈ C⊂s (h∗B), then let h′ ( h∗B be a
history such that z ∈ Cs(h′). By an argument equivalent to footnote 87, we have σB(s) = j.
However, this implies that j must clinch z at h′ in ΓB, which contradicts that ih∗B = i. Thus,
z /∈ C⊂s (h∗B), which implies that h∗C ) h∗B, and so y ∈ C⊂s′ (h∗C) (in particular, y ∈ Cs′(h∗B)).
By an argument equivalent to footnote 87, σC(s′) = i. However, if σC(s′) = i, then i clinches
at h∗B ( h∗C in ΓC (since σC(s′) = i = σB(s′)), which contradicts that the first agent to clinch
in ΓC is ih∗C = j at h∗C .

We have thus shown that there cannot be three (initial) partial orderings .A, .B, .C of
the form given in the statement of Lemma A9 for the first step of the ordering algorithm.
For the remaining steps, notice that the subgame after clearing all of the agents in step 1
is is simply another millipede game with lurkers (possibly being with one agent from the
first stage carrying over her “endowment” to the second). We then simply repeat the same
arguments as above, step-by-step, until we reach the end of the game. This completes the
proof of Lemma A9.
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