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Abstract

A paradigm shift is occurring in toxicology following the report of the National Research Council of the USA National Acad-
emies entitled “Toxicity testing in the 21st Century: a vision and strategy”. This new vision encourages the use of in vitro and
in silico models for toxicity testing. In the goal to identify new reliable markers of toxicity, the responsiveness of different
genes to various drugs (amiodarone: 0.312-2.5 pM; cyclosporine A: 0.25-2 pM; chlorpromazine: 0.625-10 pM; diazepam:
1-8 pM; carbamazepine: 6.25-50 pM) is studied in 3D aggregate brain cell cultures. Genes’ responsiveness is quantified and
ranked according to the Lowest Observed Effect Concentration (LOEC), which is estimated by reverse regression under a
log-logistic model assumption. In contrast to approaches where LOEC is identified by the first observed concentration level
at which the response is significantly different from a control, the model-based approach allows a principled estimation of
the LOEC and of its uncertainty. The Box—Cox transform both sides approach is adopted to deal with heteroscedastic and/
or non-normal residuals, while estimates from repeated experiments are summarized by a meta-analytic approach. Differ-
ent inferential procedures to estimate the Box—Cox coefficient, and to obtain confidence intervals for the log-logistic curve
parameters and the LOEC, are explored. A simulation study is performed to compare coverage properties and estimation
errors for each approach. Application to the toxicological data identifies the genes Cort, Bdnf, and Nov as good candidates
for in vitro biomarkers of toxicity.
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from measured dose—response relationships in cell-based
systems to human exposure (Bal-Price et al. 2010).

Aggregating brain cell cultures were extensively used
for neurotoxicological investigations and proved to be suit-
able for the detection of organ-specific toxicity (Zurich
et al. 2013). These 3D cultures of rat brain cells are com-
posed of neurons, astrocytes, oligodendrocytes and micro-
glial cells. The model allows multiple cell-cell interac-
tions, and the development of histotypic structures such as
extracellular matrix, synapses and myelinated axons (Hon-
egger et al. 1979). Several structural and functional end-
points were shown to be useful specific markers of neuro-
toxicity, such as the activity of cell type-specific enzymes,
the expression of selected genes, as well as astroglial and
microglial reactivities (Monnet-Tschudi et al. 1995; Zurich
et al. 2004, 2013). In the goal to improve the predictive
capacity of in vitro toxicity testing to alert for neuro-
specific toxicity, we have looked for new early markers
of adverse effects. Concentration—response experiments
are performed in which 3D rat brain cell cultures are
exposed to several concentrations of various drugs and
the expression of numerous genes is measured. The aim
is to rank the genes according to their responsiveness to
the compounds. Rather than identifying the lowest tested
concentration that is statistically significant from control,
a model-based approach is chosen to estimate the Lowest
Observed Effect Concentration (LOEC) to be independent
of the actually tested concentration levels. Hence, the main
focus of the data analysis is to use reverse regression to
estimate the concentration at which a prespecified drop or
increase in response can be inferred for every chemical and
every gene, and to rank the genes according to the size of
the estimated LOEC. This toxicological question provides
the motivation for a statistical investigation of different
approaches for LOEC estimation from replicate experi-
ments using nonlinear dose-response modeling. Here we
focus on a log-logistic dose—response model, which is a
common choice in this modeling framework (see, e.g., Ritz
and Streibig 2008).

A difficulty which frequently arises in nonlinear
dose-response modeling is that residuals may be character-
ized by heteroscedasticity and/or non-normality. Different
solutions have been proposed in the literature to address this
issue. Heteroscedasticity can be addressed by further mod-
eling of the variance, while the impact of non-normality and/
or heteroscedasticity may be improved by transformation or
robust estimation (Ritz and Streibig 2008). The Box—Cox
transform both sides approach, introduced by Carroll and
Ruppert (1984), is a transformation approach which has
the advantage of preserving parameter interpretability by
transforming both the response and the mean function. The
methodology has been applied by Ritz and Van der Vliet
(2009) in the context of toxicological studies.
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The modeling approach to LOEC estimation is a means
to provide a confidence interval for the estimate. The Delta
method represents a standard approach to reach this purpose
and is based on Wald confidence intervals for the model
parameters, i.e. both the parameters and the LOEC estimates
are assumed to be approximately normally distributed. How-
ever, the non-linearity of both the mean function and of the
parameter coordinates may affect the precision of Wald con-
fidence intervals (Bates and Watts 1988; Ritz and Streibig
2008). This leads to the second difficulty to be addressed
in the modeling framework. Non-linearity in the parameter
coordinates may be tackled by resorting to likelihood-based
confidence intervals (Carroll and Ruppert 1988; Ritz and
Streibig 2008) or to bootstrap (Ritz and Streibig 2008).

A third challenge is posed by the availability of replicate
experiments. Replicate experiments allow to disentangle
intra- and inter-experimental variability, and can strengthen
estimation of the single-experiment parameters through
borrowing of information. Mixed effects models and meta-
analytic approaches can be adopted to perform estimation of
the single-experiment parameters and of their global mean
and variance (see Jiang and Kopp-Schneider 2014, 2015,
and references therein).

We approach estimation of the dose-response model
parameters and LOEC adopting the Box—Cox transform
both sides approach to improve the distributional proper-
ties of the residuals. The Box—Cox transform both sides is
a flexible approach which is not restricted to a specific dis-
tributional assumption for the residuals, and includes the
log-normal assumption as a sub-case. We perform a simula-
tion study comparing relative strengths and weaknesses of
different approaches on estimation of the Box—Cox param-
eter, the log-logistic function parameters, and the LOEC.
We additionally compare Wald and bootstrap confidence
intervals, and the corresponding summary estimates for mul-
tiple experiments provided by the meta-analytic approach.
The work of Latif and Gilmour (2015) is closely related to
our approach. Our simulation study mainly extends it by
including semi-parametric and non-parametric bootstrap
confidence intervals, and by focusing on a four-parameter
log-logistic function (although only three parameters are
effectively estimated) as compared to a two-parameters
Michaelis—Menten one; moreover, we focus on the meta-
analytic approach to combine estimates from different bio-
logical replicates, as compared to a random effects model.
We focus on generally smaller sample sizes and number of
replicates than Latif and Gilmour (2015), and the meta-ana-
Iytic approach is indeed an attempt to cope with estimation
when only three biological replicates are available, a situa-
tion which is not uncommon in toxicological studies.

In the next section, we introduce the model, the inferential
approaches, and the available data. The simulation study is
presented in the third section. Finally, the application of the
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model to the available data and the relevant toxicological
results are illustrated in the fourth section. In the last section,
the results of simulation study and real data application are
discussed and a recommendation is given.

Methods
Model

Given a set of doses x = {x,, ..., x, } corresponding to a sam-
ple of response measurements y = {y,, ...,y,}, the relation-
ship between x and y is commonly described by a nonlinear
model of the form:

v, =8(x;,0)+¢;, € ~N(Q,o0), 1)
where g(-) is an appropriate nonlinear function describing

the mean of y, and 6 is a vector of parameters. In this work,
we focus on the log-logistic mean function:

d—c

8, 0) =c+ exp{b(log(x) — €)}’

where 6T = [b, ¢, d, e] is the parameter vector. The param-
eter ¢ represents the lower function asymptote, d its upper
asymptote, b relates to its steepness, and exp(e) is commonly
known as ECy, i.e., the dose level required to achieve a half-
maximal effect in the response. In the present toxicological
setting, interest is placed upon the LOEC, determined from
inverse regression by:
LOEC = exp(e)<u>l/b,

A—c
where 4 is the targeted response level. To visually illustrate
the concept, Fig. 1 displays the available dataset of a sam-
ple drug—gene combination, to which the log-logistic curve
fit and estimated LOEC are superimposed. In the current
setting, data are normalized to mean control and either the
upper (for decreasing) or the lower asymptote (for increas-
ing relationships) is fixed to one. Since a deregulation of
gene expression of a factor of 1.7 is to be detected, A is
chosen equal to 1/1.7 = 0.59 for a decreasing relationship,
and 1.7 for an increasing one in accordance with previous
evaluations of this type of experimental data (e.g., Zurich
et al. 2013).

The model in (1) induces a normal likelihood, which can
be maximized to obtain estimates and confidence intervals
for the parameters 6 and o.

Under the assumption of approximate normality for
the parameter estimates, Wald confidence intervals can be
derived. Such intervals are characterized by a symmetric
shape, and may suffer by lack of accuracy in such nonlin-
ear model (Bates and Watts 1988; Ritz and Streibig 2008).
The Delta-method which is based on the assumption of
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Fig. 1 Sample available toxicological dataset. The log-logistic curve
fit and LOEC estimate (for A = 0.59) are superimposed for illustration

approximate normality of a transformation of normal vari-
ables may be applied to derive confidence intervals for the
LOEC.

Bootstrap confidence intervals represent a more accurate
and correct alternative to Wald and Delta-method confidence
intervals in this scenario (Ritz and Streibig 2008). Such
intervals are obtained through resampling of the available
data (non-parametric bootstrap), resampling of the model
residuals (semi-parametric bootstrap), or by drawing new
observations from the model fitted on the available data
(parametric bootstrap) (see Carroll and Ruppert 1988, and
Section 1.1 of Online Resource 1 for further details on the
latter two approaches). Each bootstrap dataset provides an
estimate of the parameters and of the LOEC, i.e. samples
from their bootstrap distribution. From the latter, confidence
intervals may be derived according to different methods (see
e.g. Efron and Tibshirani 1994). Bootstrap confidence inter-
vals do not rely on the assumption of approximate normality
of the parameter estimates. Nevertheless, their performance
is influenced by how well the available data allow estimating
the true data-generating process.

Box-Cox transform both sides approach

One difficulty which may arise with model (1) is that
response levels are constrained to be positive, which may
contribute to induce non-normality in the residuals. Het-
eroscedasticity may also be present. Transformations can
be adopted to improve the distributional properties of the
residuals (Ritz and Streibig 2008). A flexible family of
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transformations is provided by the Box—Cox family (Box
and Cox 1964):

(y+x)?-1
ho)=< ¢

log(y + )
indexed by a parameter ¢ € R, and, if required, « such
that y + ¥ > 0. We assume from now on « to be fixed. The
Box—Cox transformation can be applied to both the response

and the mean function, (Carroll and Ruppert 1984, 1988;
Ritz and Van der Vliet 2009), i.e.,

h(y;) = h(g(x;,0), ) +€;, € ~N(,o0).

Note that, if the Box—Cox transformation 4 (or in general
any monotonic transformation of both the response and the
predictor) leads to approximate symmetry of the response
h(Y), then the approach is effectively equivalent to perform-
ing median regression, and estimation is more efficient than
minimizing the least absolute deviations (Fitzmaurice et al.
2007), i.e., minimizing the absolute value of the residuals.
Therefore, parameter interpretation (including interpretation
of the LOEC) remains the same for any suitable choice of ¢,
even if ¢ differs across different datasets. Moreover, if the
main interest lies in prediction, in the mean, or in alternative
quantiles of y, the corresponding prediction or confidence
intervals can also be easily derived under fulfillment of
approximate normality of 4(Y) (Carroll and Ruppert 1988).

Other approaches involving transformations of x and/
or y according to a chosen performance criterion (additive
regression, alternating conditional expectation, and addi-
tivity and variance stabilization, see e.g. Harrell 2015), as
well as quantile regression, semi-parametric approaches or
model averaging, can also handle the violation of model
assumptions and allow LOEC estimation. A problem with
the above-mentioned transformation approaches is that they
may result in over-fitting and, therefore, be poorly general-
izable, particularly for small sample sizes (approximately
below 100 samples, Harrell 2015), and only relatively small
sample sizes are often available in toxicological studies.
Quantile regression would fit a parametric dose—response
model for, e.g., the «/2 and 1 — «/2 quantile, and then
inverse regression can be applied to obtain the dose interval
inducing the response level of interest at each quantile (see
Jensen et al. 2019). A large sample size is, however, gener-
ally required also by this approach (Wheeler et al. 2015;
Jensen et al. 2019). Semi-parametric approaches (see, e.g.,
Nottingham and Birch 2000) and model averaging (see, e.g.,
Ritz et al. 2013) can also provide sensible robust alternatives
to the Box—Cox transform both sides approach. The semi-
parametric approach proposed by Nottingham and Birch
(2000) consists in fitting a weighted combination of a para-
metric (logistic) model and a non-parametric one (local lin-
ear regression). The approach of Ritz et al. (2013) requires

forgp #0
forgp =0

@ Springer

the selection and fitting of a set of candidate models, and the
estimates of the quantity of interest is then averaged accord-
ing to weights related to the AIC or BIC information crite-
rion. Robustness comes, however, at the cost of an increased
complexity: as noted by the respective authors, the semi-
parametric approach requires the appropriate selection of the
model mixing and tuning parameters, while model averaging
requires the specification of a pool of candidate models. Due
to the limited sample size in our real data application, and
the fact that we do not encounter strong evidence of devia-
tion from the assumed log-logistic model, nor of residual
non-normality after the Box—Cox transformation, we do not
pursue alternative approaches.

The likelihood function is obtained after multiplication
with the Jacobian of the transformation, and ¢ can be treated
as an additional parameter to be estimated. In practice, ¢ is
often estimated a priori, and kept constant while perform-
ing inference on the remaining parameters. When only the
response is transformed, ignoring uncertainty about ¢ can
have a strong impact on the confidence intervals of the
remaining parameters (Bickel and Doksum 1981). However,
in the transform both sides approach, this would impact sig-
nificantly only on the confidence interval of o (Carroll and
Ruppert 1984, 1988), which is generally not of interest. Two
main choices are available to estimate ¢:

e minimization of the residual sum of squares in an
ANOVA analysis (Box and Cox 1964; Carroll and Rup-
pert 1988; Ritz and Van der Vliet 2009; Latif and Gil-
mour 2015);

e maximum likelihood estimation (Box and Cox 1964,
Carroll and Ruppert 1988; Ritz and Streibig 2008; Latif
and Gilmour 2015).

Each approach is applied to a grid of ¢ values, and the
(approximately) optimal estimate is identified. The ANOVA
approach requires replicates at each dose level. Observations
should be rescaled by dividing each transformed observation
by the overall geometric mean, to ensure that each value of
¢ induces approximately the same scale on the transformed
data (Hinkley and Runger 1984). The maximum likelihood
approach is more precise but slower, and relies on nonlinear
optimization.

Inference for replicate experiments

If data from experimental replicates are available, a final
summary of the results which properly accounts for intra-
and inter-experimental variability is sought. Moreover,
combining data from replicate experiments in the estima-
tion process can improve inference through borrowing of
information.
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Random-effect models are commonly used for this pur-
pose, under the assumption that each experiment-specific
parameter (we will refer from now on to these parameters
as ‘level one’ parameters) is drawn from a common dis-
tribution, whose parameters are in turn estimated (we will
refer from now on to these parameters as ‘level two’ param-
eters). In the nonlinear framework, this has proven to be
challenging and an alternative is provided by a meta-analytic
approach, which does not allow to share information across
groups, but provides a robust alternative to properly esti-
mate level two parameters (Jiang and Kopp-Schneider 2014,
2015). We focus on the LOEC as our parameter of interest,
and, to improve compliance with the usual normal distribu-
tional assumption, the logarithmic scale is adopted.

Letk, k=1,...,K, be the experiment index. The meta-
analytic approach assumes

log(LOEC), =0 + ¢,

6 ~N (”log(LOEC)’ O-log(LOEC))
€k NN(O’ O-gk)5

and generally aims at obtaining an estimate and a confi-
dence interval for the mean effect 44,4 ogc), given unpooled
estimates of the parameter means and standard deviations.
Such estimates can be obtained in a first model fitting of the
unpooled data.

Toxicological data

3D rat brain cell cultures are grown in flasks containing
between 200 and 500 spheres, as previously described Zurich
et al. (2013). Cells are exposed to four concentrations of
amiodarone (0.312-2.5 uM), cyclosporine A (0.25-2 uM),
diazepam (1 — 8 pM), carbamazepine (6.25-50 pM), and five
concentrations of chlorpromazine (0.625-10 pM) for 24 h
or 14 days. Control cultures receive the equivalent amount
of the solvent used to dissolve the drug (DMSO, final con-
centration 0.05%). qRT-PCR analyses are performed, as
described in (Zurich et al. 2013), to quantify gene expression
of glial fibrillary acidic protein (Gfap), heat shock protein 32
(Hsp32), myelin basic protein (Mbp), and neurofilament high
molecular weight (Nfh), whereas Tagman gene expression
assays (Life Technologies) are used for: brain-derived neu-
rotrophic factor (Bdnf, Rn02531967_s1), cortistatin (Cort,
Rn00563272_m1), and nephroblastoma over-expressed gene
(Nov, Rn00578390_m1). Three independent experiments
are performed with each time three replicate cultures per
concentration or control. Data are then normalized so that
the mean response value at concentration zero is equal to
one. Henceforth, we focus on the long-term experiment. Fig-
ures 1-3 in Online Resource 2 provide plots of the raw data.

Simulation study

We perform a simulation study to investigate and compare
the performance of the different estimation algorithms.
Simulated data reproduce the available information, i.e.,
we assume that three experimental replicates are available,
each comprising three replicate observations at five con-
centration levels. Parameters are chosen to approximately
reproduce observed dynamics, and in particular we assume
two scenarios, a decreasing and an increasing dose-response
relationship. We simulate 100 datasets comprising three
experimental replicates for each scenario. For the decreas-
ing dose—response relationship, we draw values for b from a
truncated normal distribution TN(1.2, 1), with lower trunca-
tion at 0. The constraint of b to positive real values ensures
parameter identifiability. The lower asymptote ¢ is drawn
from a TN(0.2, 0.3) with lower truncation at 0, and upper
truncation at A = 0.59. While the lower constraint is moti-
vated by the biological interpretation of the parameter (gene
expression cannot be negative), the upper constraint ensures
existence of the LOEC. For the increasing dose-response
relationship, we draw b from a TN(—2, 1), with upper trunca-
tion at 0, and d is drawn from a TN(2, 0.3) with lower trun-
cation at A = 1.7. For both scenarios, the Box—Cox param-
eter ¢ is assumed equal to O in all datasets, so that normal
observations can be drawn in the transformed scale; k is
assumed equal to 0.05, log(ay) is drawn from a N(0.2, 0.1),
and log(LOEC) is drawn from a N(—14, 1). The normally
distributed responses are then transformed by applying the
function A~

Prior to model fitting, datasets are filtered according to
their mean response among all concentration levels and only
samples in which the minimum mean response is below (for
a decreasing relationship) or the maximum mean response
is above (for an increasing relationship) 4, are retained. This
filtering step is performed to mimic the estimation process
later applied to the real data, which aims at preselecting data
sets for which LOEC is likely to exist and fall within the
observed range of concentrations. For the simulated datasets,
the filtering process drops 47 and 51 individual experiments
datasets (out of 300) for scenario 1 and 2, respectively.

The model is then fitted on the unpooled data via the
drm function in the drc R package (Ritz et al. 2016), in
an unconstrained form. Full details are provided in the
Section 1.1 of Online Resource 1.

We compare coverage properties and length of the con-
fidence intervals obtained under the following scenarios
and their combinations:

e the parameter ¢ is estimated either via (1) ANOVA,

(2) maximum likelihood estimation (ML), or (3) no
transformation is applied;

@ Springer
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e confidence intervals are derived as (1) standard Wald
for the model parameters and via the Delta method for
log(LOEC), or (2) nonparametric bootstrap, (3) semi-
parametric bootstrap, (4) parametric bootstrap;

e starting points for optimization are (1) unique, provided
by a self-starter function or (2) multiple, provided by
random perturbation of the self-starter function values.

Results for the LOEC are shown in Table 1. Focusing
first on the single-experiment results, it is somewhat surpris-
ing that the Wald-Delta method confidence intervals always
behave equally or better than bootstrap confidence intervals
in terms of accuracy, with coverage probabilities in the range
of 87-95% as compared to 72—-88% for the bootstrap inter-
vals, although at the cost of an increased length (median
length in the range 1.1-1.7 as compared to 0.8—1.5). The
result may be due to a poor estimation of the cumulative

Table 1 Coverage probability

distribution function given the small sample size, especially
in the tails and/or possible convergence failures of the esti-
mation algorithm. The Wald-Delta method confidence inter-
vals seem to counterbalance such problems thanks to their
increased width. Adopting perturbed starting points seems
overall not to provide a consistent advantage in terms of
coverage; median squared error values (see Table 3 in Online
Resource 2) seem to be slightly decreased when adopting
perturbed initial conditions. Finally, applying the mean
and data transformation seems to generally either reduce
the length of the intervals at the cost of a lower coverage
(scenario 1), or otherwise improve coverage at the cost of
longer intervals (scenario 2). The result is again probably
influenced by occasional non-convergences of the algorithm.
No additional patterns are observed across the two simula-
tion scenarios, except a possible superiority of the semi-
parametric bootstrap in terms of coverage, if compared with
its non-parametric and parametric counterparts.

. Approach Scenario 1 (b > 0) Scenario 2 (b < 0)

(CP), median confidence

interval length (MIL) and log(LOEC) Hiog(LOEC) log(LOEC) Hiog(LOEC)

number of single-experiment

level converged estimates of CP MIL n CP MIL n; CP MIL n CP MIL ny

log(LOEC) (1) and of H1o4105c) Self-starter starting points

(ny), for model fitting of

dose-response data from ANOVA Wald-Delta 090 1.25 230 0.88 257 48 090 1.65 218 071 2.12 38

two simulation scenarios: a ANOVA bootstrap semi-par. 0.83 1.08 239 0.72 1.56 54 0.78 1.52 228 0.61 1.54 44

decreasing (scenario 1) and ANOVA bootstrap par. 075 094 239 072 188 54 072 124 228 0.66 171 44

f;;gif:‘;‘gg (scenario 2) ANOVA bootstrap non-par. ~ 0.74 0.94 239 0.78 248 54 074 131 226 060 1.76 42
ML Wald-Delta 0.88 1.15 231 094 282 48 091 1l.61 219 072 211 39
ML bootstrap semi-par. 0.77 099 241 0.75 253 55 0.79 145 226 062 155 42
ML bootstrap par. 072 0.78 241 0.76 249 55 0.73 125 226 062 194 42
ML bootstrap non-par. 0.74 094 240 0.82 252 55 074 132 225 061 144 41
Untr. Wald-Delta 095 1.58 228 085 255 46 0.87 140 220 0.78 1.84 37
Untr. bootstrap semi-par. 0.88 1.42 235 068 1.19 50 0.76 1.38 238 0.62 1.56 438
Untr. bootstrap par. 0.84 132 235 062 1.13 50 0.76 124 238 0.56 136 48
Untr. bootstrap non-par. 075 092 237 0.85 256 52 0.74 123 236 052 091 46
Perturbed starting points
ANOVA Wald-Delta 090 126 230 0.88 2.67 48 091 1.67 214 0.75 211 36
ANOVA bootstrap semi-par.  0.81 1.06 238 0.70 1.50 54 0.77 147 226 0.67 148 43
ANOVA bootstrap par. 0.75 090 238 0.69 143 54 0.72 127 226 0.70 147 43
ANOVA bootstrap non-par.  0.74 094 237 0.76 2.02 54 0.73 123 226 058 132 43
ML Wald-Delta 0.89 1.13 229 091 286 47 091 1.65 217 0.73 228 37
ML bootstrap semi-par. 0.78 1.04 238 0.80 1.83 54 0.78 145 228 0.67 174 43
ML bootstrap par. 0.74 0.87 238 0.76 1.85 54 0.74 126 228 0.70 147 43
ML bootstrap non-par. 0.76 098 237 0.78 234 54 0.74 125 227 061 141 44
Untr. Wald-Delta 094 1.58 227 0.84 2.65 45 088 140 216 0.81 232 37
Untr. bootstrap semi-par. 0.88 140 234 0.67 1.06 51 0.77 142 237 054 133 46
Untr. bootstrap par. 0.84 128 235 056 081 52 075 120 237 059 136 46
Untr. bootstrap non-par. 0.72 093 236 0.81 2.10 53 0.74 1.16 237 054 093 46

@ Springer

Results obtained for 300 individual experiments (100 datasets), and different combinations of confidence
intervals estimation approaches, data transformations and initial conditions for the likelihood optimization.

Unconstrained optimization
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The meta-analytic approach provides i, orc) €stimates
and confidence intervals. Coverage is overall reduced (being
now between 52 and 94%) and median confidence interval
lengths are observed in the range between 0.8 and 2.6. Pat-
terns similar to those encountered in the unpooled analysis
are observed for accuracy and interval length.

Coverage probabilities and median confidence interval
lengths for the unpooled estimates of the remaining log-
logistic function parameters are provided in Tables 1 and 2,
respectively, in Online Resource 2. The behavior of the dif-
ferent approaches is similar to that of the LOEC estimates,
except for the fact that the median length of the bootstrap
confidence intervals is larger than that of the Wald inter-
vals in several cases. The explanation may be found in the
skewed bootstrap distributions with extremely long tails
which are sometimes observed among the bootstrap sam-
ples, possibly caused in turn by a convergence failure of
the estimation algorithm. In such cases, extreme values may
shift and extend the intervals in the direction of the longest
tail, thus failing to include the true value. Perturbed start-
ing points seem also to provide slightly increased median

Table 2 Ranking of the genes according to pi1,,1 0rc)> by drug

Gene Estimate [95% CI]
Amiodarone

Cort -17.51 [-19.60, — 15.42 ]
Bdnf - 14.97 [—-20.04, —9.89]
Nov — 14.40 [—15.24,-1355]
Nfh -14.19 [—14.59,—13.80 ]
Hsp32 - 13.75 [—14.69, — 12.80 ]
Cyclosporine A

Nov —15.90 [—17.88,—13.91]
Nfh —14.10 [— 1445, -13.75]
Bdnf — 14.06 [—14.83,—13.30]
Chlorpromazine

Cort —13.84 [-14.92, - 12.76]
Nfh - 13.71 [-15.62,—11.81]
Bdnf —13.64 [-14.28, — 13.01 ]
Gfap —13.35 [ 14.68, — 12.02 ]
Nov —13.05 [- 14.02, — 12.08 ]
Hsp32 - 1291 [-13.23, - 12.58 ]
Diazepam

Nov —13.53 [—15.49, - 11.58]
Bdnf —13.03 [-15.88,—10.19]
Cort - 1297 [-14.12,—-11.82]
Carbamazepine

Bdnf - 11.29 [- 1291, —9.67]
Cort —10.83 [- 11.30, — 10.35 ]

Maximum likelihood estimate and Knapp and Hartung adjusted 95%
confidence intervals (CI) are displayed (the confidence intervals for
the unpooled datasets are computed via the Wald-Delta method, with
perturbed initial values and an ANOVA estimate of ¢)

squared error values which suggests the presence of a mul-
timodality in the target log-likelihood.

We further explore the effect of constraining the asymp-
totes to positive values, and the slope to either positive or
negative values. As shown in Table 4 in Online Resource 2,
coverage probabilities and length of the intervals are barely
affected. The most remarkable difference is a decrease in
the number of fitted datasets, which we attribute to the addi-
tional challenges posed by the boundaries in optimization.

Finally, we run an analogous simulation study for an
additional design, performed on a 96-well plate, which
represents a common choice in cytotoxicity studies (Anon
2006). The design consists of 8 concentrations with 6 rep-
licates each, plus the control with 12 replicates. Concen-
trations are selected so that the hypothesized ECy, (the
concentration closest to it in a preceding range finder test)
represents their mid-point, and are spaced, e.g., accord-
ing to a serial dilution factor of 1.47. We assume an
ECy, = exp{—14} = 8.31e — 07. The remaining simulation
parameters are left unchanged. Three biological replicates
are also again assumed. Results for this 96-well design are
reported in Tables 5-9, in Online Resource 2. Table 5 shows
the simulation results for the LOEC estimates: although
Wald-Delta method confidence intervals coverage seem to
retain some superiority as compared to bootstrap intervals,
the difference is less pronounced. The length of the intervals
is significantly shorter in this design due to the increased
sample size, however, bootstrap confidence intervals may
be somewhat wider in some scenarios, possibly again due
to occasional non-convergences. Perturbation of the start-
ing points appears not to provide any advantage overall, and
occasionally worsen results also in terms of median squared
errors (see Table 8). This phenomenon points in the direc-
tion of a multi-modal target, whose exploration may become
more challenging when the sample size increases. Analo-
gous conclusions can be drawn for the log-logistic model
parameters (Tables 6-8). With respect to the effect of adopt-
ing a constrained optimization algorithm, Table 9 shows
that this approach could lead to relevant advantages for the
bootstrap intervals coverage. The reduction in the number
of converged estimates is also weaker if compared to the
previous design, and affects more significantly scenario 2.

Application to toxicological data

The methodology is finally applied to the available toxico-
logical data. Since data have been normalized so that the
mean response value at concentration zero is equal to 1, the
upper (for decreasing relationships) or lower (for increasing
relationships) asymptote is fixed to this value.

Wald-Delta method confidence intervals are computed for
a given ANOVA-based estimate of ¢ and perturbed initial
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values. The choice is based on the observed coverages, MSE
and interval lengths, as well as the number of converged
samples and normality of the residuals.

Table 2 provides ranking of the genes according to the
meta-analytic estimate of 404 opc), and Knapp and Har-
tung adjusted 95% confidence intervals are included. When
confidence intervals are not available for one or more of the
individual-experiment estimates, the result is not summa-
rized in a meta-analytic estimate. All available individual-
experiment log(LOEC) estimates are reported in Table 10 in
Online Resource 2. Cort appears overall as the most respon-
sive gene, resulting the first in ranking for Amiodarone and
Chlorpromazine (Table 2). The strong responsiveness of
Cort is confirmed by the individual-experiment log(LOEC)
estimates reported in Table 10 in Online Resource 2, where
we notice that Cort appears as the most responsive gene also
to Cyclosporine A. Cort is followed by Nov, ranking first
for Diazepam and showing high responsiveness to Cyclo-
sporine A, and possibly Bdnf. Note that all the fitted genes,
with exception of Hsp32 and Gfap, fall into the decreasing
dose-response relationship scenario. This is in agreement
with the role of Hsp32 and Gfap which are known to be
upregulated during cellular stress.

Normality of the residuals is assessed via the Shap-
iro—Wilk test. Table 11 in Online Resource 2 provides the
resulting p-value for each fitted dataset. Values are generally
above or equal to 5%, and all above 4%, indicating a fulfill-
ment of the normality assumption.

Discussion

In this work, we have addressed model-based estimation of
the LOEC by applying the Box—Cox transform both sides
approach. We have additionally sought a summary of the
results from three replicate experiments, as available in the
experimental dataset. A model-based estimation provides
significant advantages with respect to approaches where
LOEC is identified by the first observed concentration
level at which the response is significantly different from a
control. The advantages arise from the fact that the whole
dose-response relationship curve is inferred from the availa-
ble data: as the LOEC estimate is obtained by inverse regres-
sion, it can correspond to any concentration level. Moreover,
its uncertainty can be summarised in an appropriate confi-
dence interval.

The simulation study has shown that the estimation pro-
cess in this modeling setup has an overall tendency towards
under-coverage, which becomes stronger when bootstrap
rather than Wald-Delta method confidence intervals are
considered. The observed behavior is probably to be linked
with the challenges of nonlinear estimation combined with
small sample sizes and a small number of groups for each

@ Springer

drug—gene combination, and indeed less marked differences
between bootstrap and Wald-Delta method confidence inter-
vals coverage are observed for the 96-well plate design. In
the real-data design, we have observed that enforcing param-
eter constraints does not significantly impact coverage prop-
erties, but may lead to a smaller number of converged runs.
For the 96-well plate design, some advantages in estimation
can be achieved by constrained optimisation, with small
losses in terms of converged runs. The simulation study
has also highlighted a potential multimodality in the target
log-likelihood. As a practical advice, in scenarios compa-
rable to those considered in the simulation study, Wald-
Delta confidence intervals may represent a robust choice
to interval estimation, which also comes at a lower compu-
tational cost; if bootstrap confidence intervals are sought,
preference should be given to the semi-parametric approach.
Adopting dispersed starting points is recommended, as it
can reduce estimation error, and more generally can allow
to better explore the log-likelihood target surface. Finally,
the Box—Cox transformation may improve results when
departures from normality/homoscedasticity are strong, but
otherwise the increased length of the intervals may coun-
terbalance difficulties in estimation, as for the Wald-Delta
confidence interval approach. For the real-data design, esti-
mation of the Box—Cox transformation parameter is more
reliable through an ANOVA than a maximum likelihood
estimation approach in decreasing dose—response relation-
ships, but not for increasing ones. However, in the 96-well
plate design, the ANOVA approach always results superior.
A comparison of model residuals in the transformed scale
based on both an ANOVA and a maximum-likelihood esti-
mate of the Box—Cox parameter may provide further insight
into which of the two methods estimates the transforma-
tion parameter more reliably and thus guide in the choice
between the two approaches.

The data application, which provides the motivation for
our research, shows that Cort is the overall most respon-
sive gene, achieving the lowest LOEC estimates among all
genes for three of the drugs considered; the analysis addi-
tionally demonstrates a good responsiveness of Nov and,
to a weaker extent, Bdnf. BDNF is a neurotrophic factor
which plays a crucial role in development and maintenance
of neurons in the central nervous system, where it poten-
tiates synaptic transmission. Modifications in brain, blood
and cerebrospinal fluid levels of BDNF are associated with
neurodegenerative and psychiatric diseases (Spulber et al.
2010; Mohammadi et al. 2018). A downregulation of BDNF
mRNA in the rat brain is also observed after exposure to
methylmercury (Andersson et al. 1997) and chronic admin-
istration of cyclosporine A (Chen et al. 2010). Furthermore,
decreased circulating levels of BDNF are associated with
alcohol-induced cognitive deficits (Silva-Peiia et al. 2018).
CORT is a neuropeptide expressed in distinct populations of
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inhibitory neurons in the cerebral cortex and hippocampus
(de Lecea et al. 1997) where it has anti-convulsant effects
and controls sleep slow-wave activity (Hill et al. 2019). NOV
is a member of the CCN family of proteins which are key
players during organogenesis. However, although the central
nervous system is a major site of NOV expression during
brain development, its functions remain elusive (Le Dréau
et al. 2009). It has recently been suggested that NOV plays
a role in astrocyte activation and myelin regeneration (Le
Dréau et al. 2009; Dombrowski et al. 2017). In this study,
CORT, NOV and BDNF expression was even more sensitive
to drug exposure than the four genes (GFAP, NFH, MBP
and HSP32) we previously reported to be highly reliable
markers of acute neurotoxicity (Zurich et al. 2013). This
fact, together with the important described roles of BDNF,
CORT and NOV in brain development and function suggest
these three genes as good candidates for in vitro biomarkers
of toxicity.
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