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Abstract
A paradigm shift is occurring in toxicology following the report of the National Research Council of the USA National Acad-
emies entitled “Toxicity testing in the 21st Century: a vision and strategy”. This new vision encourages the use of in vitro and 
in silico models for toxicity testing. In the goal to identify new reliable markers of toxicity, the responsiveness of different 
genes to various drugs (amiodarone: 0.312–2.5 μM ; cyclosporine A: 0.25–2 μM ; chlorpromazine: 0.625–10 μM ; diazepam: 
1–8 μM ; carbamazepine: 6.25–50 μM ) is studied in 3D aggregate brain cell cultures. Genes’ responsiveness is quantified and 
ranked according to the Lowest Observed Effect Concentration (LOEC), which is estimated by reverse regression under a 
log-logistic model assumption. In contrast to approaches where LOEC is identified by the first observed concentration level 
at which the response is significantly different from a control, the model-based approach allows a principled estimation of 
the LOEC and of its uncertainty. The Box–Cox transform both sides approach is adopted to deal with heteroscedastic and/
or non-normal residuals, while estimates from repeated experiments are summarized by a meta-analytic approach. Differ-
ent inferential procedures to estimate the Box–Cox coefficient, and to obtain confidence intervals for the log-logistic curve 
parameters and the LOEC, are explored. A simulation study is performed to compare coverage properties and estimation 
errors for each approach. Application to the toxicological data identifies the genes Cort, Bdnf, and Nov as good candidates 
for in vitro biomarkers of toxicity.
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Introduction

There is nowadays a large consensus that for toxicology 
animal testing needs to be replaced by a combination of 
in silico and in vitro approaches, as evidenced by ethical 
and economic arguments, besides scientific ones. Clearly 
(neuro)toxicity testing will soon be based on technologies 
leading to the better understanding of biological processes 
to identify the effects of chemicals on toxicity pathways. 
Such an approach is discussed in the report of the National 
Research Council of the USA National Academies enti-
tled “Toxicity testing in the 21st Century: a vision and 
strategy” (National Research Council 2007). This report 
proposes to focus testing at the molecular level of toxicity 
pathways using an in vitro approach rather than observing 
phenotypic responses at the level of whole organisms as 
it has been done so far. Additionally, the interpretation of 
chemically induced alterations in toxicity pathways will 
be based on sophisticated modeling that will extrapolate 
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from measured dose–response relationships in cell-based 
systems to human exposure (Bal-Price et al. 2010).

Aggregating brain cell cultures were extensively used 
for neurotoxicological investigations and proved to be suit-
able for the detection of organ-specific toxicity (Zurich 
et al. 2013). These 3D cultures of rat brain cells are com-
posed of neurons, astrocytes, oligodendrocytes and micro-
glial cells. The model allows multiple cell–cell interac-
tions, and the development of histotypic structures such as 
extracellular matrix, synapses and myelinated axons (Hon-
egger et al. 1979). Several structural and functional end-
points were shown to be useful specific markers of neuro-
toxicity, such as the activity of cell type-specific enzymes, 
the expression of selected genes, as well as astroglial and 
microglial reactivities (Monnet-Tschudi et al. 1995; Zurich 
et al. 2004, 2013). In the goal to improve the predictive 
capacity of in vitro toxicity testing to alert for neuro-
specific toxicity, we have looked for new early markers 
of adverse effects. Concentration–response experiments 
are performed in which 3D rat brain cell cultures are 
exposed to several concentrations of various drugs and 
the expression of numerous genes is measured. The aim 
is to rank the genes according to their responsiveness to 
the compounds. Rather than identifying the lowest tested 
concentration that is statistically significant from control, 
a model-based approach is chosen to estimate the Lowest 
Observed Effect Concentration (LOEC) to be independent 
of the actually tested concentration levels. Hence, the main 
focus of the data analysis is to use reverse regression to 
estimate the concentration at which a prespecified drop or 
increase in response can be inferred for every chemical and 
every gene, and to rank the genes according to the size of 
the estimated LOEC. This toxicological question provides 
the motivation for a statistical investigation of different 
approaches for LOEC estimation from replicate experi-
ments using nonlinear dose–response modeling. Here we 
focus on a log-logistic dose–response model, which is a 
common choice in this modeling framework (see, e.g., Ritz 
and Streibig 2008).

A difficulty which frequently arises in nonlinear 
dose–response modeling is that residuals may be character-
ized by heteroscedasticity and/or non-normality. Different 
solutions have been proposed in the literature to address this 
issue. Heteroscedasticity can be addressed by further mod-
eling of the variance, while the impact of non-normality and/
or heteroscedasticity may be improved by transformation or 
robust estimation (Ritz and Streibig 2008). The Box–Cox 
transform both sides approach, introduced by Carroll and 
Ruppert (1984), is a transformation approach which has 
the advantage of preserving parameter interpretability by 
transforming both the response and the mean function. The 
methodology has been applied by Ritz and Van der Vliet 
(2009) in the context of toxicological studies.

The modeling approach to LOEC estimation is a means 
to provide a confidence interval for the estimate. The Delta 
method represents a standard approach to reach this purpose 
and is based on Wald confidence intervals for the model 
parameters, i.e. both the parameters and the LOEC estimates 
are assumed to be approximately normally distributed. How-
ever, the non-linearity of both the mean function and of the 
parameter coordinates may affect the precision of Wald con-
fidence intervals (Bates and Watts 1988; Ritz and Streibig 
2008). This leads to the second difficulty to be addressed 
in the modeling framework. Non-linearity in the parameter 
coordinates may be tackled by resorting to likelihood-based 
confidence intervals (Carroll and Ruppert 1988; Ritz and 
Streibig 2008) or to bootstrap (Ritz and Streibig 2008).

A third challenge is posed by the availability of replicate 
experiments. Replicate experiments allow to disentangle 
intra- and inter-experimental variability, and can strengthen 
estimation of the single-experiment parameters through 
borrowing of information. Mixed effects models and meta-
analytic approaches can be adopted to perform estimation of 
the single-experiment parameters and of their global mean 
and variance (see Jiang and Kopp-Schneider 2014, 2015, 
and references therein).

We approach estimation of the dose–response model 
parameters and LOEC adopting the Box–Cox transform 
both sides approach to improve the distributional proper-
ties of the residuals. The Box–Cox transform both sides is 
a flexible approach which is not restricted to a specific dis-
tributional assumption for the residuals, and includes the 
log-normal assumption as a sub-case. We perform a simula-
tion study comparing relative strengths and weaknesses of 
different approaches on estimation of the Box–Cox param-
eter, the log-logistic function parameters, and the LOEC. 
We additionally compare Wald and bootstrap confidence 
intervals, and the corresponding summary estimates for mul-
tiple experiments provided by the meta-analytic approach. 
The work of Latif and Gilmour (2015) is closely related to 
our approach. Our simulation study mainly extends it by 
including semi-parametric and non-parametric bootstrap 
confidence intervals, and by focusing on a four-parameter 
log-logistic function (although only three parameters are 
effectively estimated) as compared to a two-parameters 
Michaelis–Menten one; moreover, we focus on the meta-
analytic approach to combine estimates from different bio-
logical replicates, as compared to a random effects model. 
We focus on generally smaller sample sizes and number of 
replicates than Latif and Gilmour (2015), and the meta-ana-
lytic approach is indeed an attempt to cope with estimation 
when only three biological replicates are available, a situa-
tion which is not uncommon in toxicological studies.

In the next section, we introduce the model, the inferential 
approaches, and the available data. The simulation study is 
presented in the third section. Finally, the application of the 
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model to the available data and the relevant toxicological 
results are illustrated in the fourth section. In the last section, 
the results of simulation study and real data application are 
discussed and a recommendation is given.

Methods

Model

Given a set of doses x = {x1,… , xn} corresponding to a sam-
ple of response measurements y = {y1,… , yn} , the relation-
ship between x and y is commonly described by a nonlinear 
model of the form:

where g(⋅) is an appropriate nonlinear function describing 
the mean of y, and � is a vector of parameters. In this work, 
we focus on the log-logistic mean function:

where �T = [b, c, d, e] is the parameter vector. The param-
eter c represents the lower function asymptote, d its upper 
asymptote, b relates to its steepness, and exp(e) is commonly 
known as EC50 , i.e., the dose level required to achieve a half-
maximal effect in the response. In the present toxicological 
setting, interest is placed upon the LOEC, determined from 
inverse regression by:

where � is the targeted response level. To visually illustrate 
the concept, Fig. 1 displays the available dataset of a sam-
ple drug–gene combination, to which the log-logistic curve 
fit and estimated LOEC are superimposed. In the current 
setting, data are normalized to mean control and either the 
upper (for decreasing) or the lower asymptote (for increas-
ing relationships) is fixed to one. Since a deregulation of 
gene expression of a factor of 1.7 is to be detected, � is 
chosen equal to 1∕1.7 = 0.59 for a decreasing relationship, 
and 1.7 for an increasing one in accordance with previous 
evaluations of this type of experimental data (e.g., Zurich 
et al. 2013).

The model in (1) induces a normal likelihood, which can 
be maximized to obtain estimates and confidence intervals 
for the parameters � and �.

Under the assumption of approximate normality for 
the parameter estimates, Wald confidence intervals can be 
derived. Such intervals are characterized by a symmetric 
shape, and may suffer by lack of accuracy in such nonlin-
ear model (Bates and Watts 1988; Ritz and Streibig 2008). 
The Delta-method which is based on the assumption of 

(1)yi = g(xi, �) + �i, �i ∼ N(0, �),

g(xi, �) = c +
d − c

1 + exp{b(log(x) − e)}
,

LOEC = exp(e)
(

d − �

� − c

)1∕b

,

approximate normality of a transformation of normal vari-
ables may be applied to derive confidence intervals for the 
LOEC.

Bootstrap confidence intervals represent a more accurate 
and correct alternative to Wald and Delta-method confidence 
intervals in this scenario (Ritz and Streibig 2008). Such 
intervals are obtained through resampling of the available 
data (non-parametric bootstrap), resampling of the model 
residuals (semi-parametric bootstrap), or by drawing new 
observations from the model fitted on the available data 
(parametric bootstrap) (see Carroll and Ruppert 1988, and 
Section 1.1 of Online Resource 1 for further details on the 
latter two approaches). Each bootstrap dataset provides an 
estimate of the parameters and of the LOEC, i.e. samples 
from their bootstrap distribution. From the latter, confidence 
intervals may be derived according to different methods (see 
e.g. Efron and Tibshirani 1994). Bootstrap confidence inter-
vals do not rely on the assumption of approximate normality 
of the parameter estimates. Nevertheless, their performance 
is influenced by how well the available data allow estimating 
the true data-generating process.

Box–Cox transform both sides approach

One difficulty which may arise with model (1) is that 
response levels are constrained to be positive, which may 
contribute to induce non-normality in the residuals. Het-
eroscedasticity may also be present. Transformations can 
be adopted to improve the distributional properties of the 
residuals (Ritz and Streibig 2008). A flexible family of 
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Fig. 1  Sample available toxicological dataset. The log-logistic curve 
fit and LOEC estimate (for � = 0.59 ) are superimposed for illustration
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transformations is provided by the Box–Cox family (Box 
and Cox 1964):

indexed by a parameter � ∈ ℝ , and, if required, � such 
that y + 𝜅 > 0 . We assume from now on � to be fixed. The 
Box–Cox transformation can be applied to both the response 
and the mean function, (Carroll and Ruppert 1984, 1988; 
Ritz and Van der Vliet 2009), i.e.,

Note that, if the Box–Cox transformation h (or in general 
any monotonic transformation of both the response and the 
predictor) leads to approximate symmetry of the response 
h(Y), then the approach is effectively equivalent to perform-
ing median regression, and estimation is more efficient than 
minimizing the least absolute deviations (Fitzmaurice et al. 
2007), i.e., minimizing the absolute value of the residuals. 
Therefore, parameter interpretation (including interpretation 
of the LOEC) remains the same for any suitable choice of � , 
even if � differs across different datasets. Moreover, if the 
main interest lies in prediction, in the mean, or in alternative 
quantiles of y, the corresponding prediction or confidence 
intervals can also be easily derived under fulfillment of 
approximate normality of h(Y) (Carroll and Ruppert 1988).

Other approaches involving transformations of x and/
or y according to a chosen performance criterion (additive 
regression, alternating conditional expectation, and addi-
tivity and variance stabilization, see e.g. Harrell 2015), as 
well as quantile regression, semi-parametric approaches or 
model averaging, can also handle the violation of model 
assumptions and allow LOEC estimation. A problem with 
the above-mentioned transformation approaches is that they 
may result in over-fitting and, therefore, be poorly general-
izable, particularly for small sample sizes (approximately 
below 100 samples, Harrell 2015), and only relatively small 
sample sizes are often available in toxicological studies. 
Quantile regression would fit a parametric dose–response 
model for, e.g., the �∕2 and 1 − �∕2 quantile, and then 
inverse regression can be applied to obtain the dose interval 
inducing the response level of interest at each quantile (see 
Jensen et al. 2019). A large sample size is, however, gener-
ally required also by this approach (Wheeler et al. 2015; 
Jensen et al. 2019). Semi-parametric approaches (see, e.g., 
Nottingham and Birch 2000) and model averaging (see, e.g., 
Ritz et al. 2013) can also provide sensible robust alternatives 
to the Box–Cox transform both sides approach. The semi-
parametric approach proposed by Nottingham and Birch 
(2000) consists in fitting a weighted combination of a para-
metric (logistic) model and a non-parametric one (local lin-
ear regression). The approach of Ritz et al. (2013) requires 

h(y) =

{

(y+�)�−1

�
for � ≠ 0

log(y + �) for � = 0

h(yi) = h(g(xi, �),�) + �i, �i ∼ N(0, �).

the selection and fitting of a set of candidate models, and the 
estimates of the quantity of interest is then averaged accord-
ing to weights related to the AIC or BIC information crite-
rion. Robustness comes, however, at the cost of an increased 
complexity: as noted by the respective authors, the semi-
parametric approach requires the appropriate selection of the 
model mixing and tuning parameters, while model averaging 
requires the specification of a pool of candidate models. Due 
to the limited sample size in our real data application, and 
the fact that we do not encounter strong evidence of devia-
tion from the assumed log-logistic model, nor of residual 
non-normality after the Box–Cox transformation, we do not 
pursue alternative approaches.

The likelihood function is obtained after multiplication 
with the Jacobian of the transformation, and � can be treated 
as an additional parameter to be estimated. In practice, � is 
often estimated a priori, and kept constant while perform-
ing inference on the remaining parameters. When only the 
response is transformed, ignoring uncertainty about � can 
have a strong impact on the confidence intervals of the 
remaining parameters (Bickel and Doksum 1981). However, 
in the transform both sides approach, this would impact sig-
nificantly only on the confidence interval of � (Carroll and 
Ruppert 1984, 1988), which is generally not of interest. Two 
main choices are available to estimate �:

• minimization of the residual sum of squares in an 
ANOVA analysis (Box and Cox 1964; Carroll and Rup-
pert 1988; Ritz and Van der Vliet 2009; Latif and Gil-
mour 2015);

• maximum likelihood estimation (Box and Cox 1964; 
Carroll and Ruppert 1988; Ritz and Streibig 2008; Latif 
and Gilmour 2015).

Each approach is applied to a grid of � values, and the 
(approximately) optimal estimate is identified. The ANOVA 
approach requires replicates at each dose level. Observations 
should be rescaled by dividing each transformed observation 
by the overall geometric mean, to ensure that each value of 
� induces approximately the same scale on the transformed 
data (Hinkley and Runger 1984). The maximum likelihood 
approach is more precise but slower, and relies on nonlinear 
optimization.

Inference for replicate experiments

If data from experimental replicates are available, a final 
summary of the results which properly accounts for intra- 
and inter-experimental variability is sought. Moreover, 
combining data from replicate experiments in the estima-
tion process can improve inference through borrowing of 
information.
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Random-effect models are commonly used for this pur-
pose, under the assumption that each experiment-specific 
parameter (we will refer from now on to these parameters 
as ‘level one’ parameters) is drawn from a common dis-
tribution, whose parameters are in turn estimated (we will 
refer from now on to these parameters as ‘level two’ param-
eters). In the nonlinear framework, this has proven to be 
challenging and an alternative is provided by a meta-analytic 
approach, which does not allow to share information across 
groups, but provides a robust alternative to properly esti-
mate level two parameters (Jiang and Kopp-Schneider 2014, 
2015). We focus on the LOEC as our parameter of interest, 
and, to improve compliance with the usual normal distribu-
tional assumption, the logarithmic scale is adopted.

Let k, k = 1,… ,K , be the experiment index. The meta-
analytic approach assumes

and generally aims at obtaining an estimate and a confi-
dence interval for the mean effect �log(LOEC) , given unpooled 
estimates of the parameter means and standard deviations. 
Such estimates can be obtained in a first model fitting of the 
unpooled data.

Toxicological data

3D rat brain cell cultures are grown in flasks containing 
between 200 and 500 spheres, as previously described Zurich 
et al. (2013). Cells are exposed to four concentrations of 
amiodarone (0.312–2.5 μM ), cyclosporine A (0.25–2 μM ), 
diazepam ( 1 − 8 μM ), carbamazepine (6.25–50 μM ), and five 
concentrations of chlorpromazine (0.625–10 μM ) for 24 h 
or 14 days. Control cultures receive the equivalent amount 
of the solvent used to dissolve the drug (DMSO, final con-
centration 0.05%). qRT-PCR analyses are performed, as 
described in (Zurich et al. 2013), to quantify gene expression 
of glial fibrillary acidic protein (Gfap), heat shock protein 32 
(Hsp32), myelin basic protein (Mbp), and neurofilament high 
molecular weight (Nfh), whereas Taqman gene expression 
assays (Life Technologies) are used for: brain-derived neu-
rotrophic factor (Bdnf, Rn02531967_s1), cortistatin (Cort, 
Rn00563272_m1), and nephroblastoma over-expressed gene 
(Nov, Rn00578390_m1). Three independent experiments 
are performed with each time three replicate cultures per 
concentration or control. Data are then normalized so that 
the mean response value at concentration zero is equal to 
one. Henceforth, we focus on the long-term experiment. Fig-
ures 1–3 in Online Resource 2 provide plots of the raw data.

log(LOEC)k =� + �k

� ∼N(�log(LOEC), �log(LOEC))

�k ∼N(0, ��k ),

Simulation study

We perform a simulation study to investigate and compare 
the performance of the different estimation algorithms. 
Simulated data reproduce the available information, i.e., 
we assume that three experimental replicates are available, 
each comprising three replicate observations at five con-
centration levels. Parameters are chosen to approximately 
reproduce observed dynamics, and in particular we assume 
two scenarios, a decreasing and an increasing dose–response 
relationship. We simulate 100 datasets comprising three 
experimental replicates for each scenario. For the decreas-
ing dose–response relationship, we draw values for b from a 
truncated normal distribution TN(1.2, 1), with lower trunca-
tion at 0. The constraint of b to positive real values ensures 
parameter identifiability. The lower asymptote c is drawn 
from a TN(0.2, 0.3) with lower truncation at 0, and upper 
truncation at � = 0.59 . While the lower constraint is moti-
vated by the biological interpretation of the parameter (gene 
expression cannot be negative), the upper constraint ensures 
existence of the LOEC. For the increasing dose–response 
relationship, we draw b from a TN(−2, 1) , with upper trunca-
tion at 0, and d is drawn from a TN(2, 0.3) with lower trun-
cation at � = 1.7 . For both scenarios, the Box–Cox param-
eter � is assumed equal to 0 in all datasets, so that normal 
observations can be drawn in the transformed scale; � is 
assumed equal to 0.05, log(�y) is drawn from a N(0.2, 0.1), 
and log(LOEC) is drawn from a N(−14, 1) . The normally 
distributed responses are then transformed by applying the 
function h−1.

Prior to model fitting, datasets are filtered according to 
their mean response among all concentration levels and only 
samples in which the minimum mean response is below (for 
a decreasing relationship) or the maximum mean response 
is above (for an increasing relationship) � , are retained. This 
filtering step is performed to mimic the estimation process 
later applied to the real data, which aims at preselecting data 
sets for which LOEC is likely to exist and fall within the 
observed range of concentrations. For the simulated datasets, 
the filtering process drops 47 and 51 individual experiments 
datasets (out of 300) for scenario 1 and 2, respectively.

The model is then fitted on the unpooled data via the 
drm function in the drc R package (Ritz et al. 2016), in 
an unconstrained form. Full details are provided in the 
Section 1.1 of Online Resource 1.

We compare coverage properties and length of the con-
fidence intervals obtained under the following scenarios 
and their combinations:

• the parameter � is estimated either via (1) ANOVA, 
(2) maximum likelihood estimation (ML), or (3) no 
transformation is applied;
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• confidence intervals are derived as (1) standard Wald 
for the model parameters and via the Delta method for 
log(LOEC) , or (2) nonparametric bootstrap, (3) semi-
parametric bootstrap, (4) parametric bootstrap;

• starting points for optimization are (1) unique, provided 
by a self-starter function or (2) multiple, provided by 
random perturbation of the self-starter function values.

Results for the LOEC are shown in Table 1. Focusing 
first on the single-experiment results, it is somewhat surpris-
ing that the Wald-Delta method confidence intervals always 
behave equally or better than bootstrap confidence intervals 
in terms of accuracy, with coverage probabilities in the range 
of 87–95% as compared to 72–88% for the bootstrap inter-
vals, although at the cost of an increased length (median 
length in the range 1.1–1.7 as compared to 0.8–1.5). The 
result may be due to a poor estimation of the cumulative 

distribution function given the small sample size, especially 
in the tails and/or possible convergence failures of the esti-
mation algorithm. The Wald-Delta method confidence inter-
vals seem to counterbalance such problems thanks to their 
increased width. Adopting perturbed starting points seems 
overall not to provide a consistent advantage in terms of 
coverage; median squared error values (see Table 3 in Online 
Resource 2) seem to be slightly decreased when adopting 
perturbed initial conditions. Finally, applying the mean 
and data transformation seems to generally either reduce 
the length of the intervals at the cost of a lower coverage 
(scenario 1), or otherwise improve coverage at the cost of 
longer intervals (scenario 2). The result is again probably 
influenced by occasional non-convergences of the algorithm. 
No additional patterns are observed across the two simula-
tion scenarios, except a possible superiority of the semi-
parametric bootstrap in terms of coverage, if compared with 
its non-parametric and parametric counterparts.

Table 1  Coverage probability 
(CP), median confidence 
interval length (MIL) and 
number of single-experiment 
level converged estimates of 
log(LOEC) (n) and of �log(LOEC) 
( n

H
 ), for model fitting of 

dose–response data from 
two simulation scenarios: a 
decreasing (scenario 1) and 
an increasing (scenario 2) 
relationship

Results obtained for 300 individual experiments (100 datasets), and different combinations of confidence 
intervals estimation approaches, data transformations and initial conditions for the likelihood optimization. 
Unconstrained optimization

Approach Scenario 1 ( b > 0) Scenario 2 ( b < 0)

log(LOEC) �log(LOEC) log(LOEC) �log(LOEC)

CP MIL n CP MIL n
H

CP MIL n CP MIL n
H

Self-starter starting points
ANOVA Wald-Delta 0.90 1.25 230 0.88 2.57 48 0.90 1.65 218 0.71 2.12 38
ANOVA bootstrap semi-par. 0.83 1.08 239 0.72 1.56 54 0.78 1.52 228 0.61 1.54 44
ANOVA bootstrap par. 0.75 0.94 239 0.72 1.88 54 0.72 1.24 228 0.66 1.71 44
ANOVA bootstrap non-par. 0.74 0.94 239 0.78 2.48 54 0.74 1.31 226 0.60 1.76 42
ML Wald-Delta 0.88 1.15 231 0.94 2.82 48 0.91 1.61 219 0.72 2.11 39
ML bootstrap semi-par. 0.77 0.99 241 0.75 2.53 55 0.79 1.45 226 0.62 1.55 42
ML bootstrap par. 0.72 0.78 241 0.76 2.49 55 0.73 1.25 226 0.62 1.94 42
ML bootstrap non-par. 0.74 0.94 240 0.82 2.52 55 0.74 1.32 225 0.61 1.44 41
Untr. Wald-Delta 0.95 1.58 228 0.85 2.55 46 0.87 1.40 220 0.78 1.84 37
Untr. bootstrap semi-par. 0.88 1.42 235 0.68 1.19 50 0.76 1.38 238 0.62 1.56 48
Untr. bootstrap par. 0.84 1.32 235 0.62 1.13 50 0.76 1.24 238 0.56 1.36 48
Untr. bootstrap non-par. 0.75 0.92 237 0.85 2.56 52 0.74 1.23 236 0.52 0.91 46
Perturbed starting points
ANOVA Wald-Delta 0.90 1.26 230 0.88 2.67 48 0.91 1.67 214 0.75 2.11 36
ANOVA bootstrap semi-par. 0.81 1.06 238 0.70 1.50 54 0.77 1.47 226 0.67 1.48 43
ANOVA bootstrap par. 0.75 0.90 238 0.69 1.43 54 0.72 1.27 226 0.70 1.47 43
ANOVA bootstrap non-par. 0.74 0.94 237 0.76 2.02 54 0.73 1.23 226 0.58 1.32 43
ML Wald-Delta 0.89 1.13 229 0.91 2.86 47 0.91 1.65 217 0.73 2.28 37
ML bootstrap semi-par. 0.78 1.04 238 0.80 1.83 54 0.78 1.45 228 0.67 1.74 43
ML bootstrap par. 0.74 0.87 238 0.76 1.85 54 0.74 1.26 228 0.70 1.47 43
ML bootstrap non-par. 0.76 0.98 237 0.78 2.34 54 0.74 1.25 227 0.61 1.41 44
Untr. Wald-Delta 0.94 1.58 227 0.84 2.65 45 0.88 1.40 216 0.81 2.32 37
Untr. bootstrap semi-par. 0.88 1.40 234 0.67 1.06 51 0.77 1.42 237 0.54 1.33 46
Untr. bootstrap par. 0.84 1.28 235 0.56 0.81 52 0.75 1.20 237 0.59 1.36 46
Untr. bootstrap non-par. 0.72 0.93 236 0.81 2.10 53 0.74 1.16 237 0.54 0.93 46
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The meta-analytic approach provides �log(LOEC) estimates 
and confidence intervals. Coverage is overall reduced (being 
now between 52 and 94%) and median confidence interval 
lengths are observed in the range between 0.8 and 2.6. Pat-
terns similar to those encountered in the unpooled analysis 
are observed for accuracy and interval length.

Coverage probabilities and median confidence interval 
lengths for the unpooled estimates of the remaining log-
logistic function parameters are provided in Tables 1 and 2, 
respectively, in Online Resource 2. The behavior of the dif-
ferent approaches is similar to that of the LOEC estimates, 
except for the fact that the median length of the bootstrap 
confidence intervals is larger than that of the Wald inter-
vals in several cases. The explanation may be found in the 
skewed bootstrap distributions with extremely long tails 
which are sometimes observed among the bootstrap sam-
ples, possibly caused in turn by a convergence failure of 
the estimation algorithm. In such cases, extreme values may 
shift and extend the intervals in the direction of the longest 
tail, thus failing to include the true value. Perturbed start-
ing points seem also to provide slightly increased median 

squared error values which suggests the presence of a mul-
timodality in the target log-likelihood.

We further explore the effect of constraining the asymp-
totes to positive values, and the slope to either positive or 
negative values. As shown in Table 4 in Online Resource 2, 
coverage probabilities and length of the intervals are barely 
affected. The most remarkable difference is a decrease in 
the number of fitted datasets, which we attribute to the addi-
tional challenges posed by the boundaries in optimization.

Finally, we run an analogous simulation study for an 
additional design, performed on a 96-well plate, which 
represents a common choice in cytotoxicity studies (Anon 
2006). The design consists of 8 concentrations with 6 rep-
licates each, plus the control with 12 replicates. Concen-
trations are selected so that the hypothesized EC50 (the 
concentration closest to it in a preceding range finder test) 
represents their mid-point, and are spaced, e.g., accord-
ing to a serial dilution factor of 1.47. We assume an 
EC50 = exp{−14} = 8.31e − 07 . The remaining simulation 
parameters are left unchanged. Three biological replicates 
are also again assumed. Results for this 96-well design are 
reported in Tables 5–9, in Online Resource 2. Table 5 shows 
the simulation results for the LOEC estimates: although 
Wald-Delta method confidence intervals coverage seem to 
retain some superiority as compared to bootstrap intervals, 
the difference is less pronounced. The length of the intervals 
is significantly shorter in this design due to the increased 
sample size, however, bootstrap confidence intervals may 
be somewhat wider in some scenarios, possibly again due 
to occasional non-convergences. Perturbation of the start-
ing points appears not to provide any advantage overall, and 
occasionally worsen results also in terms of median squared 
errors (see Table 8). This phenomenon points in the direc-
tion of a multi-modal target, whose exploration may become 
more challenging when the sample size increases. Analo-
gous conclusions can be drawn for the log-logistic model 
parameters (Tables 6–8). With respect to the effect of adopt-
ing a constrained optimization algorithm, Table 9 shows 
that this approach could lead to relevant advantages for the 
bootstrap intervals coverage. The reduction in the number 
of converged estimates is also weaker if compared to the 
previous design, and affects more significantly scenario 2.

Application to toxicological data

The methodology is finally applied to the available toxico-
logical data. Since data have been normalized so that the 
mean response value at concentration zero is equal to 1, the 
upper (for decreasing relationships) or lower (for increasing 
relationships) asymptote is fixed to this value.

Wald-Delta method confidence intervals are computed for 
a given ANOVA-based estimate of � and perturbed initial 

Table 2  Ranking of the genes according to �log(LOEC) , by drug

Maximum likelihood estimate and Knapp and Hartung adjusted 95% 
confidence intervals (CI) are displayed (the confidence intervals for 
the unpooled datasets are computed via the Wald-Delta method, with 
perturbed initial values and an ANOVA estimate of �)

Gene Estimate [95% CI]

Amiodarone
Cort − 17.51 [ − 19.60, − 15.42 ]
Bdnf − 14.97 [ − 20.04,   − 9.89 ]
Nov − 14.40 [ − 15.24, − 13.55 ]
Nfh − 14.19 [− 14.59, − 13.80 ]
Hsp32 − 13.75 [− 14.69, − 12.80 ]
Cyclosporine A
Nov − 15.90 [− 17.88, − 13.91 ]
Nfh − 14.10 [− 14.45, − 13.75 ]
Bdnf − 14.06 [− 14.83, − 13.30 ]
Chlorpromazine
Cort − 13.84 [− 14.92, − 12.76 ]
Nfh − 13.71 [− 15.62, − 11.81 ]
Bdnf − 13.64 [− 14.28, − 13.01 ]
Gfap − 13.35 [− 14.68, − 12.02 ]
Nov − 13.05 [− 14.02, − 12.08 ]
Hsp32 − 12.91 [− 13.23, − 12.58 ]
Diazepam
Nov − 13.53 [− 15.49, − 11.58 ]
Bdnf − 13.03 [− 15.88, − 10.19 ]
Cort − 12.97 [− 14.12, − 11.82 ]
Carbamazepine
Bdnf − 11.29 [− 12.91,   − 9.67 ]
Cort − 10.83 [− 11.30, − 10.35 ]
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values. The choice is based on the observed coverages, MSE 
and interval lengths, as well as the number of converged 
samples and normality of the residuals.

Table 2 provides ranking of the genes according to the 
meta-analytic estimate of �log(LOEC) , and Knapp and Har-
tung adjusted 95% confidence intervals are included. When 
confidence intervals are not available for one or more of the 
individual-experiment estimates, the result is not summa-
rized in a meta-analytic estimate. All available individual-
experiment log(LOEC) estimates are reported in Table 10 in 
Online Resource 2. Cort appears overall as the most respon-
sive gene, resulting the first in ranking for Amiodarone and 
Chlorpromazine (Table 2). The strong responsiveness of 
Cort is confirmed by the individual-experiment log(LOEC) 
estimates reported in Table 10 in Online Resource 2, where 
we notice that Cort appears as the most responsive gene also 
to Cyclosporine A. Cort is followed by Nov, ranking first 
for Diazepam and showing high responsiveness to Cyclo-
sporine A, and possibly Bdnf. Note that all the fitted genes, 
with exception of Hsp32 and Gfap, fall into the decreasing 
dose–response relationship scenario. This is in agreement 
with the role of Hsp32 and Gfap which are known to be 
upregulated during cellular stress.

Normality of the residuals is assessed via the Shap-
iro–Wilk test. Table 11 in Online Resource 2 provides the 
resulting p-value for each fitted dataset. Values are generally 
above or equal to 5% , and all above 4% , indicating a fulfill-
ment of the normality assumption.

Discussion

In this work, we have addressed model-based estimation of 
the LOEC by applying the Box–Cox transform both sides 
approach. We have additionally sought a summary of the 
results from three replicate experiments, as available in the 
experimental dataset. A model-based estimation provides 
significant advantages with respect to approaches where 
LOEC is identified by the first observed concentration 
level at which the response is significantly different from a 
control. The advantages arise from the fact that the whole 
dose–response relationship curve is inferred from the availa-
ble data: as the LOEC estimate is obtained by inverse regres-
sion, it can correspond to any concentration level. Moreover, 
its uncertainty can be summarised in an appropriate confi-
dence interval.

The simulation study has shown that the estimation pro-
cess in this modeling setup has an overall tendency towards 
under-coverage, which becomes stronger when bootstrap 
rather than Wald-Delta method confidence intervals are 
considered. The observed behavior is probably to be linked 
with the challenges of nonlinear estimation combined with 
small sample sizes and a small number of groups for each 

drug–gene combination, and indeed less marked differences 
between bootstrap and Wald-Delta method confidence inter-
vals coverage are observed for the 96-well plate design. In 
the real-data design, we have observed that enforcing param-
eter constraints does not significantly impact coverage prop-
erties, but may lead to a smaller number of converged runs. 
For the 96-well plate design, some advantages in estimation 
can be achieved by constrained optimisation, with small 
losses in terms of converged runs. The simulation study 
has also highlighted a potential multimodality in the target 
log-likelihood. As a practical advice, in scenarios compa-
rable to those considered in the simulation study, Wald-
Delta confidence intervals may represent a robust choice 
to interval estimation, which also comes at a lower compu-
tational cost; if bootstrap confidence intervals are sought, 
preference should be given to the semi-parametric approach. 
Adopting dispersed starting points is recommended, as it 
can reduce estimation error, and more generally can allow 
to better explore the log-likelihood target surface. Finally, 
the Box–Cox transformation may improve results when 
departures from normality/homoscedasticity are strong, but 
otherwise the increased length of the intervals may coun-
terbalance difficulties in estimation, as for the Wald-Delta 
confidence interval approach. For the real-data design, esti-
mation of the Box–Cox transformation parameter is more 
reliable through an ANOVA than a maximum likelihood 
estimation approach in decreasing dose–response relation-
ships, but not for increasing ones. However, in the 96-well 
plate design, the ANOVA approach always results superior. 
A comparison of model residuals in the transformed scale 
based on both an ANOVA and a maximum-likelihood esti-
mate of the Box–Cox parameter may provide further insight 
into which of the two methods estimates the transforma-
tion parameter more reliably and thus guide in the choice 
between the two approaches.

The data application, which provides the motivation for 
our research, shows that Cort is the overall most respon-
sive gene, achieving the lowest LOEC estimates among all 
genes for three of the drugs considered; the analysis addi-
tionally demonstrates a good responsiveness of Nov and, 
to a weaker extent, Bdnf. BDNF is a neurotrophic factor 
which plays a crucial role in development and maintenance 
of neurons in the central nervous system, where it poten-
tiates synaptic transmission. Modifications in brain, blood 
and cerebrospinal fluid levels of BDNF are associated with 
neurodegenerative and psychiatric diseases (Spulber et al. 
2010; Mohammadi et al. 2018). A downregulation of BDNF 
mRNA in the rat brain is also observed after exposure to 
methylmercury (Andersson et al. 1997) and chronic admin-
istration of cyclosporine A (Chen et al. 2010). Furthermore, 
decreased circulating levels of BDNF are associated with 
alcohol-induced cognitive deficits (Silva-Peña et al. 2018). 
CORT is a neuropeptide expressed in distinct populations of 
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inhibitory neurons in the cerebral cortex and hippocampus 
(de Lecea et al. 1997) where it has anti-convulsant effects 
and controls sleep slow-wave activity (Hill et al. 2019). NOV 
is a member of the CCN family of proteins which are key 
players during organogenesis. However, although the central 
nervous system is a major site of NOV expression during 
brain development, its functions remain elusive (Le Dréau 
et al. 2009). It has recently been suggested that NOV plays 
a role in astrocyte activation and myelin regeneration (Le 
Dréau et al. 2009; Dombrowski et al. 2017). In this study, 
CORT, NOV and BDNF expression was even more sensitive 
to drug exposure than the four genes (GFAP, NFH, MBP 
and HSP32) we previously reported to be highly reliable 
markers of acute neurotoxicity (Zurich et al. 2013). This 
fact, together with the important described roles of BDNF, 
CORT and NOV in brain development and function suggest 
these three genes as good candidates for in vitro biomarkers 
of toxicity.
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