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Abstract

Banks’ obligations to each other involve counterparty risks. In case of a failure, the

losses of counterparties of the failing bank are exacerbated by additional bankruptcy

costs. By also taking the contagion risk into account, banks’ potential losses incen-

tivize them to rescue each other whenever rescues are less costly than absorbing the

losses. Endogenously arising rescues reverse the standard intuitions from the financial

contagion literature: A system-wide contagion risk does not necessarily imply finan-

cial instability and, surprisingly, leads to greater stability in certain networks where

banks more than undo the contagious failures and take actions against any potential

failure. In a framework where capital transfers between banks are more efficient than

government bailouts, I characterize welfare-maximizing networks and show that they

are connected through i) intermediate levels of interbank liabilities per bank, and ii)

no clustering of interbank exposures among any subset of banks. Consequently, finan-

cial stability is determined by the potential bankruptcy losses internalized by banks

and the loss absorption capacity of the system (i.e., banks’ aggregate capital). The

results provide additional insights into the historical debate on bank rescues and help

us better understand the implications of current interbank regulations. The findings

also offer plausible explanations for the selective rescues in the 2007-2009 period.
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1 Introduction

Financial institutions are interconnected through various types of contracts and common

asset exposures (e.g., overnight or long-term loans, repo transactions, syndicate loans, swaps

and other derivative contracts, collateralized debt obligations (CDOs), and asset-backed

securities). In the first half of 2009, gross credit exposures of dealer banks in the over-the-

counter (OTC) market were more than 3.7 trillion dollars and the total volume of transactions

in the OTC market was about 600 trillion dollars (BIS [11]). As of the first quarter of 2019,

the value of total claims of financial institutions among each other has exceeded 9.1 trillion

dollars (BIS [12]). Interconnectedness across different financial institutions, which I call

banks henceforth, serves as an insurance mechanism via liquidity provision or risk sharing,

yet brings its own risks. The underlying causes and consequences of various types of risks

associated with interconnectedness have been extensively studied in the literature.1

Even though the systemic consequences of interconnectedness have attracted considerable

attention in the literature, the studies on how banks take actions against such systemic

consequences are limited.2 In this paper, I develop a framework for analyzing financial

stability in the presence of counterparty risks, while considering that banks can form rescue

mergers or rescue consortia in order to prevent costly bankruptcies and their systemic effects.3

The main insight behind banks’ contributions in the rescue of distressed banks is as fol-

lows. The failure of a bank, if not prevented, results in the default of that bank’s obligations

to other banks, where additional bankruptcy (or liquidation) costs exacerbate the losses of

its counterparties and might even lead to further losses in the rest of the system via domino

effects. Such risks incentivize banks to rescue each other if the rescue costs for each partici-

pant is less than the potential losses that would otherwise occur. Moreover, rescues are not

necessarily designed to prevent contagion. As long as it is profitable to do so, a rescue is

designed to save a bank that would not cause any domino effects but would pose sufficiently

high losses to the system otherwise. Consequently, in the presence of counterparty risks, bank

1Following the early contributions by Allen and Gale [8], Freixas, Parigi, and Rochet [36], Rochet and Ti-

role [60], and Kiyotaki and Moore [53]; there is a growing literature in financial networks including Acemoglu,

Ozdaglar, and Tahbaz-Salehi ([1] and [2]), Allen and Babus [5], Allen, Babus, and Carletti [7], Cabrales,

Gottardi and Vega-Redondo [17], Chang and Zhang [20], Elliott, Golub, and Jackson [31], Elliott, Hazell, and

Georg [30], Erol [32], Erol and Vohra [33], Ibragimov, Jaffee and Walden [47], Farboodi [35], Gai and Kapada

[37], Amini and Minca [9], Glasserman and Young [43], Galeotti, Ghiglino and Goyal [40], Battiston et al.

[14], Cabrales, Gale, and Gottardi [16], Gofman [44], Corbae and Gofman [19], Jackson and Pernoud [49],

Minca and Sulem [56], Nier et al. [57], Wang [65]. Demange [23], Diebold and Yilmaz [25], Gai, Haldane,

and Kapadia [38], Cohen-Cole, Patacchini and Zenou [18], Eisenberg and Noe [29], Upper and Worms [64],

Duffie and Wang [26], Duffie and Zhu [27]. Other types of difficulties can emerge in distressed times such as

freezes in interbank lending, repo market or OTC market. See Di Maggio and Tahbaz-Salehi [28], Acharya,

Gale and Yorulmazer [4], and Gorton and Metrick [45] for detailed discussions on such market freezes.
2Leitner [54], Rogers and Veraart [59], and Bernard, Capponi, and Stiglitz [15] are the related studies on

bank rescues and contagion.
3Hoggarth, Reidhill and Sinclair [46] and White and Yorulmazer [66] discuss bank resolution concepts in

detail.
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rescues are similar to private provision of public goods4 in the sense that all banks in the

system, including non-counterparties of a distressed bank, weakly benefit from any avoided

bankruptcy; however, rescuing a distressed bank requires transfers that are costly for the

contributing banks. As a result, each bank’s incentives depend on the potential system-wide

consequences of interbank exposures, whereas capabilities of banks depend on the available

capital in the system that can be used for such capital injections.

Rescue of distressed banks by other banks have repeatedly occurred throughout the

history of the financial system with or without government assistance. Bank of England’s

coordination of Barings’ rescue in 1890 is an example of a successful case. Similarly, the

resolution of the Alsatian crisis in 1828 and the Hamburg crisis of 1857 illustrate the role

of the private sector in handling distress and restoring confidence in the economy.5 In

the second half of the 19th century and early 20th century, New York Clearing House and

other clearinghouse associations, which are private institutional frameworks, were resolving

distress and restoring confidence in the US financial system, before the foundation of the

Federal Reserve System in 1913.6

Recently, the resolution of Long-Term Capital Management (LTCM) in 1998 is an ex-

ample of a multi-bank rescue consortium. The 14-member consortium injected around 3.6

billion dollars to save LTCM, with no government-assistance.7

On the other hand, the story in the 2007-2009 financial crisis was quite different than

the LTCM case. In particular, rescue mergers were very effective in maintaining financial

stability in the 2007-2009 period, but in the meantime some large banks were not rescued.

Geithner [42] explains the rescue attempts in the Lehman Brothers case as follows:

4For surveys on games on networks, see Jackson [48] and Jackson and Zenou [50]. In a recent paper, Ga-

leotti, Golub, and Goyal [41] study the design of optimal interventions in network games, where individuals’

incentives to act are affected by their network neighbors’ actions.
5See Kindleberger and Aliber [52] for further discussion on these two cases as well as the history of

financial crises.
6In a recent work, Anderson, Erol, and Ordoñez [6] study the implications of the founding of the Federal

Reserve System. Besides, James [51] explain the effectiveness of rescue mergers in the early 19th as follows:

“In some communities financial reconstruction was attempted by arrangements for a strong

bank to merge with a weakened bank or, if several weakened banks were involved, by estab-

lishing a new institution with additional capital to take over the liabilities of the failing banks,

the stockholders of which took a loss.” (James, 1938)

7In the Report of the Presidents’ Working Group on Financial Markets [61], it is explained as follows:

“The firms in the consortium saw that their losses could be serious, with potential losses to

some firms amounting to $300 million to $500 million each...The self-interest of these firms was

to find an alternative resolution that cost less than they could expect to lose in the event of

default.” (Rubin et al., 1999)
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“We told the bankers from the night before to divide themselves into three groups:

one to analyze Lehman’s toxic assets to help facilitate a potential merger, one to

investigate an LTCM-style consortium that could take over the firm and gradually

wind down its positions, and one to explore ways to prepare for a bankruptcy

and limit the attendant damage.” (Geithner, 2015)

Consequently, the rescue was not realized and Lehman Brothers filed for bankruptcy. On the

other hand, most of the largest financial institutions at the core of the financial system had

been involved in government-assisted or non-assisted rescue mergers8 to maintain financial

stability. As a result, rescue mergers increased the resilience of the financial system against

unintended consequences of interconnectedness and counterparty risks9 in the 2007-2009

period.

In light of the earlier practices, I model bank rescues in a coalition formation framework

in the presence of counterparty risks, which is built on the financial contagion model in-

troduced by Elliott, Golub, and Jackson [31]. In a nutshell, the model is as follows. The

financial network is defined over exogenously given proprietary assets, external liabilities,

and interbank obligations of each bank. A negative shock hits the proprietary asset of a

single10 bank in the network, which represents a case where banks are affected from the fi-

nancial shock at different degrees and, hence, are able to contribute to each others’ rescue. A

bankruptcy occurs when a bank is insolvent, i.e., when its total assets are lower than its total

liabilities.11 Bankruptcies, if not prevented, pose additional costs to the system. Rescues

occur in the form of consortia of two or more banks (i.e., mergers or capital injections by

consortia). Consortia are formed after the shock hits and before the payments are realized

so that they can prevent bankruptcies. The coalition formation game is a simultaneous move

game and the solution concept is strong Nash equilibrium. Lastly, the government assistance

is designed to assist banks’ contributions in rescues.

8The mega-mergers in that period are as follows (the acquiring institution(s) - the acquired institution

(the date)): RBS, Fortis, and Banco Santander - ABN Amro (October 2007); JP Morgan Chase - Bear

Stearns (March 2008); Banco Santander - Alliance&Leicester (July 2008); Bank of America - Merrill Lynch

(September 2008); Lloyds - HBOS (September 2008 to January 2009), Wells Fargo - Wachovia (October

2008), BNP Paribas - Fortis (May 2009).
9Segoviano and Singh [62] quantify counterparty risks in a sample of financial institutions including

JP Morgan Chase, Citibank, Bank of America, Goldman Sachs, Merrill Lynch, Lehman, Morgan Stanley,

Credit Suisse, Bear Stearns, Wachovia, and Wells Fargo. Counterparty liabilities of broker-dealers in OTC

derivatives market as of March 2008 were as follows (in billion dollars): JP Morgan Chase Bank: 68, Citibank:

126, Bank of America: 29, Goldman Sachs: 104, Merill Lynch: 59, Lehman Brothers: 36, Morgan Stanley:

69, Credit Suisse: 70.

See ECB Report [34] for counterparty risks associated with credit default swaps (CDSs).
10The single shock environment is enough to reveal the insights into the rescues in the presence of counter-

party risks. One can think about significant drops in a given bank’s asset returns compared to other banks.

On the other hand, multiple shocks environment is closely related to the common asset holdings case where

multiple banks’ assets deteriorate simultaneously.
11Incorporating liquidity driven defaults into the model while considering additional channels such as

potential contagious bank runs is a future research direction.
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The objective of this paper is twofold. The first objective is to investigate the role of

the architecture of the financial network in ultimate failures while taking into account the

endogenous rescues. The second objective is to provide interbank exposure structures that

minimize government bailouts and, thus, the burden on the taxpayers. I study government

assistance in a framework where capital transfers between banks are more efficient than

government bailouts. In this framework, networks that minimize the total amount of bailout

transfers are welfare-maximizing.

Consequently, there are three sets of results of this study. The main results of the paper

show that:

• contagion risk does not necessarily imply financial instability and, surprisingly, leads

to greater stability in certain network structures. In such networks, banks take actions

against any failure risk and endogenously rescue each other to minimize their losses.

Accordingly, I characterize networks that minimize bailouts and maximize social wel-

fare and show that:

• welfare-maximizing financial networks are connected through i) intermediate levels

of interbank liabilities per bank, and ii) no clustering of interbank exposures among

any subset of banks. In such contagious networks, the losses from any default are

(maximally) internalized by banks instead of external creditors (e.g., depositors), which

maximize banks contributions in rescues against any distress scenario. As a result, such

contagious networks emerge as first-best networks.

More specifically, welfare-maximizing networks are first-best networks that emerge un-

conditional on the shock level and the location of the initial distress. In such contagious

networks, banks more than undo the contagion risk and rescue the initially distressed bank

that is hit by the negative financial shock. Contrarily, in financial networks where the coun-

terparty risks are sufficiently low, the contagion risk is eliminated but the failure of a bank hit

by a large shock becomes more likely due to the lack of rescue incentives. On the other hand,

sufficiently high interbank exposures can cause unavoidable contagion risk even though such

high levels of counterparty risks incentivize other banks for rescues. Therefore, intermediate

levels of interbank liabilities emerge as one of the main properties of the first-best networks.

In addition, endogenously arising rescues provide novel insights into the diversification

of interbank exposures, which has been extensively studied in the literature, e.g., Acemoglu,

Ozdaglar, and Tahbaz-Salehi [1] and Elliott, Golub, and Jackson [31]. Although the diver-

sification plays a crucial role in potential systemic risk and contagiousness, the results show

that the ultimate failures do not necessarily depend on the diversification level. Instead,

financial stability is determined by two key properties: i) the potential bankruptcy losses

internalized by banks and ii) banks’ aggregate capital that determines the loss absorption

capacity of the system.

In line with these main results, the second set of results show that inefficiencies occur

in certain network structures. Inefficiencies here refer to cases where some failures are not
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prevented even though they are preventable via contributions of other banks. There are

two main sources of such inefficiencies: the overall structure of the interbank exposures

and the level of interbank obligations per bank. One example of inefficiencies is about the

concentration of interbank exposures among some groups of banks (i.e., clustering). In such

a case, concentration of interbank exposures poses a local contagion risk. Moreover, banks

that are less affected from the potential losses have limited rescue incentives. As a result,

sufficiently large shocks lead to non-prevented local contagion whenever the banks in the

contagious cluster have inadequate capital to rescue each other.

The third set of results show that the government’s rescue decisions are selective. For

large shocks, the government assists in the rescue of the rest of the system to maintain fi-

nancial stability instead of assisting in the rescue of the initially distressed bank. In such a

case, initial failure occurs and the remaining banks absorb the (relatively low) losses with

the government assistance, instead of rescuing the bank hit by a large shock. The results

together offer plausible explanations as to why some of the systemically important financial

institutions (SIFIs) had not been saved, but many mega-mergers among other SIFIs had

been formed with or without government assistance during 2007-2009 period.

Policy implications and historical debate on rescues— Although the global finan-

cial system evolves over time, the debate on financial stability and the rescue of distressed

banks goes back to Thornton [63] and Bagehot [10].12

In his famous book “Lombard Street: A Description of the Money Market”, Bagehot

explained the importance of timely actions for rescues.13 The results in this paper provide

insights into the historical debate on bank rescues. Timely rescues are important for pre-

venting a potential systemic risk. Furthermore, reserves must be lent to banks “whenever

the security is good” in Bagehot’s words, which corresponds to sufficiently small financial

shocks in this framework. Besides, in the presence of counterparty risks, which is one of

the major consequences of the interconnectedness of today’s complex financial system, the

incentives to save distressed banks can be extended to non-crisis circumstances as well.

In addition, the findings help us better understand the implications of current interbank

regulations. First, the results suggest that the limitations on common asset exposures are

more essential than limitations on interbank obligations if ex-ante moral hazard issues are

more prominent than ex-post issues about banks’ contributions in rescues. While common-

asset exposures limit banks’ capabilities to contribute to each others’ rescue, counterparty

12“...If any one bank fails, a general run on the neighboring ones is apt to take place, which if not checked

at the beginning by a pouring into the circulation a large quantity of gold, leads to very extensive mischief.”

(Thornton, 1802, p. 113)
13 “...A panic, in a word, is a species of neuralgia, and according to the rules of science you must not

starve it. The holders of the cash reserve must be ready not only to keep it for their own liabilities, but to

advance it most freely for the liabilities of others. They must lend to merchants, to minor bankers, to “this

man and that man”, whenever the security is good. In wild periods of alarm, one failure makes many, and

the best way to avoid the derivative failures is to arrest the primary failure which caused them.” (Bagehot,

1873, pp. 51–2)
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risks incentivize banks to rescue each other to avoid excessive losses and orderly defaults.

Secondly, the results provide explanations for the potential consequences of clustering of

interbank exposures, which is helpful for understanding the implications of the interbank

regulations defined in Basel III framework that focus on restricting the level of exposures

to a single counterparty or a group of connected counterparties (BIS, [13]). Thirdly, the

results support the importance of the regulations on capital requirements, because not only

it makes each bank more resilient against shocks but also enables banks to transfer resources

to each other, whenever required.

Related literature— Besides the extensive literature on the sources and consequences

of systemic risk, models on private and public rescues to avoid bank failures are limited.

Common asset holdings and correlated portfolio choices that lead to excessive risk taking

and moral hazard issues have attracted considerable attention in the literature. Among

others, Acharya and Yorulmazer [3], Gale and Vives [39], Erol [32], and Dávila and Walther

[21] focus on such moral hazard issues. On the other hand, the studies on bank rescues in the

presence of counterparty risks are limited. Erol [32] builds a model of network formation and

studies the moral hazard problem in financial networks. Leitner [54] and Rogers and Veraart

[59] provide the initial steps towards understanding the private rescue mechanism. Leitner

[54] focuses on the ex-ante optimal size of clusters in a bail-in model. Rogers and Veraart

[59] show that the incentives for bank rescues emerge in the presence of bankruptcy costs

and provide results for canonical network structures. Proposition 1 and Proposition 2 in this

study correspond to the findings of Rogers and Veraart [59] and Leitner [54], respectively.

Bernard, Capponi, and Stiglitz [15], in a simultaneous and independent work to mine, cover

some of the basic questions here with a different model.

Most importantly, different from studies above, I study bank rescues i) under no restric-

tions on the network structure, ii) under no restrictions on coalition formation, iii) for het-

erogenous values of proprietary assets and external liabilities of banks, and iv) with/without

government assistance. Analyzing rescues in a generalized framework provide novel insights

into the problem such as selective rescue decisions, implications of different levels of interbank

liabilities (strong vs. weak connectivity), and the importance of the overall network struc-

ture (non-clustering). Accordingly, I provide a characterization result for welfare-maximizing

networks and show the properties of the first-best networks.

The other specific differences are as follows. The coalition formation nature of the prob-

lem alter the earlier results in Leitner [54]. Leitner [54] shows that an optimal network for

given asset realizations might be non-optimal for some other realization of asset returns.

Different from Leitner [54], I show that welfare-maximizing networks emerge unconditional

on the source and the magnitude of the shock. Bernard, Capponi, and Stiglitz [15] compare

banks’ contributions in ring and complete networks while considering whether a government’s

threat not to bailout is credible or not. As a result, their approach focuses on incentive prob-

lems under a different government intervention method, which is another way of modeling

government intervention under perfect information. Similar to Leitner [54], Bernard et al.
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[15] also focuses on the rescue of the shocked bank only, whereas the coalition formation

framework in this paper provides a systematic approach to rescue formation.

The remainder of the paper is organized as follows. In Section 2 and Section 3, I introduce

the network model and rescue formation, respectively. Section 4 includes the analyses on

sources of inefficiencies in rescues. In Section 5, I study the welfare-maximizing networks

and government assistance. Section 6 concludes.

2 A Model of Interconnectivity, Counterparty Risks,

and Contagion

2.1 Assets, Liabilities, and the Interbank Network

In this part, I introduce the interbank network model that I use throughout the paper,

which is a version of the financial network model introduced by Elliot, Golub, and Jackson

[31]. There is a set N = {1, ..., n} of banks. Each bank i is endowed with an exogenously

given proprietary asset pi that generates cash flow (e.g., interest-earning loans). In addition,

each bank is endowed with exogenously given external and interbank liabilities. The external

liabilities of each bank i is denoted by li and might be thought of as its obligations to external

creditors (e.g., depositors) or other obligations such as operational expenses (e.g., wages or

tax). The interbank obligations among banks are represented as claims that banks hold in

each other. For exogenously given 0 < Cij < 1, bank i is a creditor of bank j, and bank i

claims Cij portion of the total assets of bank j when payments are realized.14 The claims

are such that Cii = 0 for all i ∈ N (a bank holds no interbank claims in itself), Cji ≥ 0

for all i 6= j and
∑
j∈N

Cji < 1 for all i ∈ N . The interdependencies among banks through

interbank obligations can be represented as a weighted directed graph, where the C matrix

is an n×n matrix called the claims matrix. Finally, each bank i is owned by a single distinct

shareholder such that each shareholder only holds the shares of a single bank.15

Given these specifications of the model, a financial network is represented by (C,F ) where C

is the claims matrix representing the network characteristics and F is the bank characteristics

including the information on the proprietary assets, the external liabilities, and lastly the

bankruptcy costs that I discuss next.

14The way of modeling the interbank contracts here is different than the standard way of modeling the

debt contracts among banks. The claims represented in ratios might be thought of as a mapping from “face

values of debt contracts” to “ratios of the face values of debt contracts to total assets”. Then, the only

difference from the standard way of modeling is that the claims create linearities in interbank contracts,

which provide a tractable model of contagion and have no further implications on results except level effects.

Figure 13 in the Appendix depicts the interdependencies in balance sheets.
15This implies that there exist no cross-equity holdings and, hence, no conflict of interest in rescue decisions

among the shareholders of banks.
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Figure 1: Timing of events

2.2 Financial Shock, Payment Equilibrium, and Potential Finan-

cial Contagion

As illustrated in Figure 1, the timing of events16 is as follows.

An exogenously given negative shock s ∈ [0, pr] hits the proprietary asset of a single bank,

denoted by bank r. Banks form rescue consortia to prevent potential failure(s), which occurs

before the payments are realized. After the rescue formation, payments to both external and

internal creditors are realized simultaneously.

In the rest of Section 2, I introduce the financial contagion framework that is built on

Elliot, Golub, and Jackson [31] and explain how financial contagion would occur if there

were no rescue attempts, before introducing the rescue formation in Section 3.

Payment equilibrium captures the bankruptcy situation as follows. When the payments

are realized, any bank that has total assets less than total liabilities becomes insolvent and

bankruptcy (or default) occurs.17 Bankruptcy is costly. The proprietary asset of a bank

drops at some rate in case of bankruptcy. Exogenously given βi captures the bankruptcy

cost of bank i in nominal terms and ζi captures the ratio of bankruptcy cost of bank i to its

proprietary assets. In other words, 1 − ζi is the recovery rate of the asset’s full value in a

bankruptcy situation. Correspondingly, the bank hit by the negative shock has a bankruptcy

cost equal to βr = (pr−s)ζr. Any other bank i 6= r has a bankruptcy cost equal to βi = piζi.

If there is any such bank i that defaults, then the shareholder of bank i is wiped out and

receives nothing, whereas both external and internal creditors of such bank i are rationed in

proportion to total assets of bank i with equal seniority.

By incorporating the bankruptcy condition (with no rescue attempts), the total assets of

bank i 6= r when the payments are realized is given by:

Vi = (
∑
j∈N

CijVj) + (pi − bi) (1)

which is equal to the sum of its interbank assets and the recovery value of its proprietary

asset, where bi = βi if bank i defaults and 0 otherwise. Similarly, the total assets of the bank

hit by the shock is given by:

16In the model, there is no specific notation used for the timing of events. Figure 1 provides a useful

picture of the ordering of the events, which is as implied by the model.
17A bankruptcy in the model refers to an insolvency case.
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Vr = (
∑
j∈N

CrjVj) + (pr − s− br) (2)

In matrix notation:

V = (I − C)−1(p− b) (3)

where p = [p1, ..., pr − s, ..., pn]′ is the vector of proprietary assets after the shock, and b is

the vector of realized bankruptcy costs such that bi = βi if bank i defaults and 0 otherwise.

The total liabilities of bank i is equal to the sum of its interbank and external liabilities,

which is given by:

Li = (
∑
j∈N

CjiVi) + li (4)

Lastly, by incorporating the bankruptcy condition, shareholders’ equity (or net worth) of

bank i is equal to:

ei = max{0, Vi − Li} (5)

Following equations (4) and (5), shareholders’ equity can be rewritten as:

ei = max{0, vi − li} (6)

where vi = ĈiiVi and Ĉii := 1−
∑
j∈N

Cji > 0 is the portion of the total assets of bank i which

is not claimed by other banks in the network.18 The vector v can be rewritten in matrix

notation as follows:

v = Ĉ(I − C)−1(p− b)

v = A(p− b) (7)

A = Ĉ(I − C)−1 matrix is a column stochastic matrix, called the dependency matrix. As a

result, the shareholders’ equity and the payments to internal and external creditors of each

bank are determined simultaneously via the payment solution satisfying Equations (3) to

(7). There always exists a payment solution and there can be multiple solutions.19 The

contagion algorithm below gives the ultimate failures when the payments are realized. As

in Elliott et al. [31], the contagion algorithm is based on the best-case solution in which as

few banks as possible fail. The algorithm works as follows:

18Ĉii is assumed to be strictly positive. In matrix notation, Ĉ is an n × n diagonal matrix such that

Ĉii > 0 ∀i and Ĉij = 0 ∀i 6= j. By this assumption, the inverse (I −C)−1 is well defined and non-negative.
19See Elliott et al. [31] for a detailed discussion on the existence and the multiplicity of payment solution.

There exists two main sources of the multiplicity of the payment solution. One source is based on the story of

self-fulfilling failures as in the Diamond and Dybvig [24] model, and the other source of the multiple solution

is based on the interdependencies in the financial network.
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At step t of the algorithm, let ℵt be the set of failed banks. Initialize ℵ0 = ∅.20 At step

t ≥ 1:

(i) Let bt−1 be a vector with element bi = βi if i ∈ ℵt−1 and bi = 0 otherwise.

(ii) Let ℵt be the set of all j such that entry j of the following vector is negative:

A[p− bt−1]− l

(iii) Terminate if ℵt = ℵt−1. Otherwise return to step 1.

When the algorithm terminates at step T , the set ℵT corresponds to the set of banks that

fail in the best-case solution. The algorithm provides us the domino failures in the network,

where various banks default at each step, which are triggered by the defaults in the previous

steps. By using this algorithm one can find the set of failures for a given financial network

(C,F ). This hierarchical default structure works for any given financial network.

Next, I provide definitions on banks and networks and show simplified illustrations for

financial contagion.

Definition 1 Bank i is a distressed bank if i ∈ ℵT , and it is a healthy bank if i ∈ N \ ℵT .

Following Definition 1, any bank that would default if there were no rescue attempts in

a given financial network is called a distressed bank, and any bank that would not default if

there were no rescue attempts is called a healthy bank.

Definition 2 is about the contagiousness of a financial network (C,F ). A financial network

(C,F ) is potentially contagious if both the shocked bank (bank r) and its creditors (doutr ) are

distressed banks. Formally,

Definition 2 Consider a given financial network (C,F ) and shock s hitting bank r in

(C,F ). Then,

i) (C,F ) is potentially contagious if {r ∪ doutr } ⊆ ℵT , where doutr is the set of creditors of

bank r and ℵT is the set of distressed banks in (C,F ). Any potential failure i ∈ {ℵT \ r} is

called a potential contagious failure.

ii) (C,F ) is non-potentially contagious if ℵT ⊆ {r} (either there exists no distressed bank

or only bank r is a distressed bank).

In a potentially contagious network, there might be additional potential failures than the

shocked bank and its creditors, due to the domino effects of financial contagion. Potential

contagion scenarios are illustrated in Figure 2.21 A link emanating from bank i directed to

bank j represents the case that bank j is the creditor of bank i, and there is a flow from

bank i to bank j when the payments are realized. One can imagine that there exists no

20For s = 0, it is considered that a given financial network (C,F ) is such that all banks are always able to

pay back their external and interbank liabilities in full and the net worth of each bank is non-negative.
21The bank and the network characteristics are not specified in the illustration in Figure 2. A specific

numerical example can always be written for given potential contagion cases.
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Figure 2: Illustrations of potential contagion scenarios

potential contagious failure if the interbank liabilities among banks are sufficiently small,

which is represented in Figure 2.a. Levels of interbank liabilities, level of the shock, network

architecture and bank characteristics all together determine the extent of potential contagion

as illustrated in Figure 2.b and 2.c.

3 Rescue Formation

Coalitions among banks are formed after the shock hits but before the payments are realized.

Therefore, coalitions that are formed before the shock propagates into the system can avoid

costly bankruptcies. A rescue consortium might include two banks, referring to a rescue

merger, or more than two banks, referring to a multi-bank rescue consortium. In the rest of

the paper, I use the terms consortium and merger interchangeably. The coalition formation

framework allows for formation of multiple rescue mergers, where each bank is involved in

at most one merger.

A merger is defined in a standard way. The total assets and total liabilities of the

members of a given merger are summed up, and unchanged for the non-merged banks.22 A

consortium might be thought of as pooling the available capital for rescues. For instance,

22Formation of mergers requires restructuring of the claims matrix. Lemma 2 in the Appendix shows that

there exists a unique way of restructuring the claims which satisfies the properties in Definition 3 for every

given proprietary asset return vector p. The restructured claims are set according to the result in Lemma 2.
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the formation of the grand coalition does not represent a case where all banks become a

single bank; rather, it represents the case in which all banks contribute to the rescue of the

failure of the shocked bank at some degrees. This is equivalent to capital injections by other

banks to the bank hit by a financial shock. Formally, M = {m1, ...,mn} is the set of rescue

consortia formed and φ ⊆ N is the set of banks that are involved in any rescue consortium.

The financial network after the mergers23 are formed is defined as follows:

Definition 3 (C,F )M is the financial network after a set of banks φ ⊆ N form the set of

mergers M = {m1, ...,mn} in a given financial network (C,F ). (C,F )M has the following

properties:

i) NM = (N \ φ) ∪M ,

ii) pMj = pj, l
M
j = lj, β

M
j = βj ∀j ∈ N \ φ,

iii) V M
j = Vj, L

M
j = Lj ∀j ∈ N \ φ,

iv) pMmk =
∑
k∈mk

pk, l
M
mk

=
∑
k∈mk

lk, β
M
mk

=
∑
k∈mk

βk ∀mk ∈M ,

v) V M
mk

=
∑
k∈mk

Vk, L
M
mk

=
∑
k∈mk

Lk ∀mk ∈M .

Next, I define rescue merger. A merger mk ∈M is a rescue merger if it prevents at least

one additional failure compared to the case that mk has not been formed, all else constant.

Formally,

Definition 4 A merger mk ∈M is a rescue merger if ℵMT ( ℵM\mkT , where ℵMT and ℵM\mkT

are the sets of distressed banks in (C,F )M and (C,F )M\mk , respectively.

Next, I define the social welfare and socially efficient set of mergers.

Definition 5 The social welfare in (C,F )M is equal to W (C,F )M =
∑

i∈NM

(pi−bi)−s where

bi = βi if bank i ∈ NM defaults, and 0 otherwise.

In this framework, maximizing the social welfare is equivalent to minimizing the sum of the

realized bankruptcy costs since the losses are the shock that is irreversible and the sum of

Besides its uniqueness property, the restructuring rule given in Lemma 2 is a natural way of restructuring

the interbank obligations.
23Mergers are formed after the shock hits before the payments are realized. In this framework, it means

that mergers are formed after a bank that is known by every other bank is hit by the shock but before any

payments are realized and, so, before the shock propagates into the system. Therefore, the given definition of

mergers that does not take the shock into account is the appropriate way of defining the pooling of available

capital for rescues. As a result, pM in Definition 3 does not capture the shock. However, in order to avoid

heavy notation, I used the same superscript as in Definition 3 for proprietary assets, total assets and total

liabilities (pM , VM , LM ) for payment realization after the mergers are formed, which captures the shock and

the realized bankruptcy costs as well.
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the realized bankruptcy costs that might be reduced or totally eliminated via rescues. For

any given financial network (C,F ), a set of mergers M is socially efficient if it maximizes

the social welfare. Formally,

Definition 6 A set of mergers M is socially efficient if @M ′ s.t. W (C,F )M
′
> W (C,F )M .

3.1 Rescue Formation Game

Informally, the game can be explained as follows. Mergers are formed under perfect infor-

mation. Before the shock and payments are realized, each bank announces the mergers in

which it accepts to be involved. Given all strategies, mergers are formed simultaneously

where each bank is involved in at most one merger. Given the sharing rule, banks share

the payoff of the coalition. Sharing the payoff of a coalition can be thought of as sharing

the contributions in rescues. Then, the economy following the formation of mergers is a

partition of the initial economy, now consisting of rescue consortia and the remaining banks.

A partition is an equilibrium outcome if there exists no coalition that deviates where each

bank in the deviating coalition receives weakly higher payoff after deviation.

Formally, the rescue formation game is a simultaneous move game Γ = ((Si)i∈N ; (fi)i∈N)

consisting of set of banks N = {1, ..., n}, a strategy set Si for each bank i ∈ N , and a payoff

function fi :
∏

i∈N Si → R for each bank i ∈ N . A particular strategy si ∈ Si represents

the set of mergers that bank i has willingness to be involved. The strategy set of bank

i is Si = P ({T ∪ i | T ⊆ P (N \ i)}) where P (N \ i) is the set of subsets of N \ i and

P ({T ∪ i | T ⊆ P (N \ i)}) is the set of subsets of {T ∪ i | T ⊆ P (N \ i)}. Given the strategy

profiles, a bank is involved in at most one merger. A merger mk is formed if {mk} ⊆ sj for

all j ∈ mk and there exists no other ml and j ∈ mk,ml s.t. {ml} ⊆ si for all i ∈ ml. If there

exist such ties, then the ties are broken in a way that the social welfare is maximized.

The solution concept is the strong Nash equilibrium (SNE)24, which requires stability

against deviations by every conceivable coalition. Thus, an equilibrium is strong if there

exists no coalition, taking the actions of its complement as given, that can deviate in a way

that benefits all the members of the coalition. Formally, s∗ ∈
∏

i∈N Si is a SNE if and only

if ∀G ⊆ N and ∀sG ∈
∏

i∈G Si, there exists an agent i ∈ G such that fi(s
∗) ≥ fi(sG, s

∗
N\G).

Next, I define payoffs. For given (C,F )M and the sharing rule, each bank i ∈ N receives

a payoff denoted by eMi .

First, I define a class of sharing rules ∆. In summary, the class of sharing rules below

guarantees that there exists no unintuitive sharing rule that would cause technical issues in

the analysis. More specifically, the property below ensures that if a collective action taken

by a set of agents increase the total payoffs of these agents, then all agents in this group

should weekly benefit from such an action. It is similar to the monotonicity property in

24See Section 7.1 in the Appendix for the discussion on coalition formation in a cooperative game setting
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Kalai-Smorodinsky bargaining solution, but since there are externalities and the payoffs are

based on the partition of the economy, I provide the Definition 7.

Definition 7 A class of sharing rules ∆ is such that any sharing rule δ ∈ ∆ satisfies the

following properties:

i) fi(si, s−i) = αmki eMmk where
∑
i∈mk

αmki = 1 for all mk ∈ M (equivalently
∑
i∈mk

fi(si, s−i) =

eMmk for all mk ∈M),

ii) Consider any given three partitions M ,M ′ and M ′′ of a given economy and consider

mergers mj ∈ M ′′, mk ∈ M ′, ml ∈ M , where mk ∪ ml = mj. If eM
′′

mj
≥ eM

′
mk

+ eMml, then

f
mj
i (M ′′) ≥ fmki (M ′) for all i ∈ mj ∩mk and f

mj
i (M ′′) ≥ f

mj
i (M) for all i ∈ mj ∩ml. This

holds for any such triple ((ml,M), (mk,M
′), (mj,M

′′)) for any given economy.

Any sharing rule having properties described above is such that i) the total payoff of a

coalition is shared among its members, and ii) for everything else constant, if the superset of

some coalitions results in a weakly higher payoff than their separate sum, then any member

involved in one of these coalitions receives weakly higher individual payoff if the superset is

formed.

I choose any δ ∈ ∆ and fix it as the sharing rule. For given set of mergers, the contagion

algorithm introduced in 2.2 applies for finding the set of failures in the network (C,F )M

after the mergers are formed.

3.2 Bankruptcy Costs

Before moving to network structure related inefficiencies, first, I discuss the role of bankruptcy

costs in rescue decisions. Rogers and Veraart [59] show that the existence of bankruptcy costs

is crucial for rescues. The same result applies here as well, which is given in Proposition 1

below.

Proposition 1 Consider a financial network (C,F ) such that the bankruptcy costs are equal

to zero (ζi = 0 for all i ∈ N), the shocked bank (bank r) has high external liabilities (there

exists an l∗r such that lr is greater than the threshold level l∗r ), and there exists at least one

distressed bank in (C,F ). Then, there exists no strong Nash equilibrium in which any bank is

involved in a rescue merger, and there exists a strong Nash equilibrium in which no merger

has been formed.

Proposition 125 shows that whenever bankruptcy costs are zero, potential rescuer banks have

no incentives to form rescue mergers. The reason is that any rescue that does not prevent

emergence of bankruptcy costs is unprofitable for rescuers because rescuing a distressed

25lr > l∗r is a condition that rules out formation of some unintuitive mergers, where a set of banks affect

the propagation of the initial shock into the system via formation of a merger that includes bank r.
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bank is a costly action since total assets of a distressed bank is lower than its total liabilities.

Following this initial result, I provide a simplifying assumption.

Assumption 1. ζi = 1 (bankruptcy costs are high), pi = 1 and li = l for all i ∈ N .

(homogeneity assumption, which is relaxed in Section 5)

Assumption 1 is a simplifying assumption implying that the proprietary asset of any

single bank or coalition drops to zero if it defaults.26 Besides, pi = 1 and li = l are the other

simplifying assumptions for the rest of the analysis in Section 4 and first part of Section 5. I

relax this assumption and study heterogeneity in bank sizes and connectivity in the second

part of Section 5. Focusing on networks with homogeneity in bank characteristics ensures

that any inefficiency is due to the network characteristics rather than the heterogeneity in

sizes or leverage ratios of the banks.

Assumption 2. 0 ≤
∑
j∈N

Cji ≤ 1
2

holds for all i ∈ N for any financial network (C,F ).

For the rest of the analysis, I consider that the interbank liabilities of a bank cannot

exceed half of its total assets in any given financial network.27

4 Network Characteristics and Inefficiencies in Res-

cues

First, I provide Definition 8 on network characteristics. The diversification and the integra-

tion are the two measures of network characteristics.

Definition 8 i) The financial network (C ′, F ) is more diversified than the financial network

(C,F ) if and only if

C ′ji ≤ Cji for all (i, j) such that Cji > 0, and C ′ji < Cji for some (i, j),

C ′ji > Cji = 0 for some (i, j).

ii) The financial network (C ′, F ) is more integrated than the financial network (C,F ) if

and only if
∑
j:j 6=i

C ′ji ≥
∑
j:j 6=i

Cji for all i, with strict inequality for some i.

A financial network becomes more diversified when the number of creditors of each bank i

weakly increases, where the interbank liabilities of bank i to its each original creditor weakly

decrease. Thus, the diversification captures the spread of interbank contracts in a financial

26Acemoglu et al. [1] explain this situation as follows: “...Furthermore, during bankruptcy, the liabilities

of the institution may be frozen and its creditors may not immediately receive payment, leading to effectively

small recovery rates.” (Acemoglu et al. [1]).
27Assumption 2 is a technical assumption, which guarantees that the shock itself mostly affect the bank

hit by the shock and its creditors.
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Figure 3: Potential failures in disconnected vs connected networks

network. On the other hand, a financial network becomes more integrated if the ratio of the

interbank liabilities to the total assets becomes higher for each bank. This refers to stronger

interbank dependencies (or stronger ties) for given set of counterparties for each bank.

4.1 Beyond Bank Level Network Characteristics: The Network

Topology

In addition to the bank level network characteristics, the network topology is the other

main characteristics of a given network. Figure 3 shows how networks that have different

topologies can have different potential contagion risks even though the bank level network

characteristics (diversification and integration) are identical in the two networks. In Figure

3, each bank has a single counterparty and the integration level is equal to
∑
j

Cji = c for

each bank i in both networks. In Figure 3.a, potential contagion is local, whereas in Figure

3.b connectedness creates a system-wide contagion risk.28

One source of inefficiencies that arise due to network characteristics is the disconnected-

ness. For this result, I consider a network consisting of isolated islands where banks in each

island form complete connections. Formally,

Definition 9 A financial network (C,F ) is an islands-connected financial network if the

network consists of set of J = {J1, ..., Jn} isolated islands where banks in each island form

complete connections and banks in different islands have no connections. An islands-connected

financial network (C,F ) satisfies the following properties:

28The potential contagion in financial networks in Examples 1 and 3 are illustrated in Figure 2.a and 2.b,

respectively.
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Figure 4: Non-prevented local contagion (Potential failures (panel a) and equilibrium (panel

b) in Example 1)

(C,F ) :=



∑
k∈N

Ckl = cJk ∀l ∈ Jk

Ckk = 0 ∀k ∈ N
Ckl =

cJk
|Jk|−1

∀k, l 6= k ∈ Jk,∀Jk ∈ J
Ckl = 0 ∀k ∈ Jk, l /∈ Jk,∀Jk ∈ J

where cJk is the integration level of each bank in an isolated island Jk ∈ J , and | Jk | is

the number of banks in an isolated island Jk ∈ J .

Example 1 below shows how inefficiencies arise in disconnected networks. In the rest of

the paper, I provide five more examples that each of them are a modified version of Example

1. Each example illustrates the findings in the related part and is useful for the comparison

of findings in that part with the findings in the previous parts.

Example 1 Consider a financial network (C,F ) with the following interbank claims and

bank characteristics:

C =


0 0.1 0 0

0.1 0 0 0

0 0 0 0.1

0 0 0.1 0


li = 0.93 for all i ∈ N
pi = 1 for all i ∈ N∑

j

Cji = 0.1 for all i ∈ N

s = 0.25 hits bank 1

Figure 4 depicts the equilibrium outcome in Example 1, where banks 3 and 4 have no rescue

incentives and banks 1 and 2 are not adequately capitalized for rescues. As a result, as

represented in Figure 4, a non-prevented local contagion occurs even though there is enough

capital in the system to prevent all failures. On the other hand, connectedness might bring

system-wide contagion risk as illustrated in Figure 3. The ways to avoid such risks in

connected networks are discussed in Section 4.2 and 5.

Next, I provide a result on the disconnectedness. Definition 10 is the formal statement

of the rescue capabilities in a financial network.
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Figure 5: Partially prevented contagion (Potential failures (panel a) and equilibrium (panel

b) in Example 2)

Definition 10 In a given financial network (C,F ), banks have the capability to avoid the

bankruptcy of a set of distressed banks D ⊆ ℵT if there exists a set of mergers M such that

i) i /∈ ℵMT for all i ∈ D, i /∈ φ where φ is the set of banks that are involved in a merger,

and

ii) mk /∈ ℵMT for all i ∈ D, i ∈ mk, mk ∈ NM .

Proposition 2 Consider an islands-connected financial network (C,F ) where the bank hit

by the shock is located in the isolated island Jr. Consider also that banks in (C,F ) have the

capability to prevent the bankruptcy of any subset of the set of distressed banks. Then, for

s >| Jr | (1 − l) and cJr > c∗(s, l, | Jr |), there exists no strong Nash equilibrium in which

any distressed bank is involved in a rescue merger, and there exists a strong Nash equilibrium

in which no merger has been formed. Consequently, a non-prevented local contagion occurs,

where all banks in the contagious island default.

As a result, capacity constraints in the contagious region and lack of rescue incentives of

the unaffected banks lead to local unavoided contagion in disconnected networks (or islands-

connected networks).

Similar to the disconnected case, high concentration of interbank exposures among some

group of banks is another source of inefficiencies. Example 2 below shows how concentration

of exposures of banks 1 and 2 results in partially prevented contagion. Bank characteristics,

integration levels and the shock level in Example 2 are the same as in Example 1.

Example 2 Consider a financial network (C,F ) with the following interbank claims and

bank characteristics:

C =


0 0.1 0 0.1

0.05 0 0 0

0.05 0 0 0

0 0 0.1 0


li = 0.93 for all i ∈ N
pi = 1 for all i ∈ N∑

j

Cji = 0.1 for all i ∈ N

s = 0.25 hits bank 1

In Example 2, there is a system-wide contagion risk as shown in Figure 5.a. The payoffs

for different merger configurations are given in Table 1 in the Appendix. Different from the
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Figure 6: A sequence of d−ring lattices with four banks

case in Example 1, here banks form a rescue merger, yet the merger prevents the potential

failures partially. The main insight from Example 2 is that the losses due to failure of banks

1 and 2 are mostly borne by external creditors of these two banks and are not internalized by

banks 3 and 4. There exists no strong Nash equilibrium in which bank 1 or bank 2 is rescued.

The only merger that can rescue bank 1 is the grand coalition. However, it cannot be an

equilibrium outcome since banks 3 and 4 deviate and receive a larger payoff. Moreover, the

two mergers that can prevent the failure of bank 2 are the grand coalition and the merger of

banks 2, 3, and 4. In both cases, banks 3 and 4 deviate and receive a larger payoff. On the

other hand, in any equilibrium, banks 3 and 4 form a coalition and absorb the losses from

the failures of banks 1 and 2. This example shows that banks can prefer preventing failures

partially, which represents another source of inefficiencies.

Next, I define a network structure in which banks form non-clustered connections as

opposed to the disconnected/clustered networks cases.

Definition 11 i) A d-ring lattice (c, d, F ) is an evenly-connected network with properties

below, where i − {k}k≤N−1 refers to the kth node preceding the node i when the nodes are

ordered on a circle.

(c, d, F ) :=


Cii = 0 ∀i ∈ N
Cij = c

d
∀{i, j : i− d ≤ j ≤ i− 1}

Cij = 0 otherwise

ii) ψR(c, F ) is a class of d-ring lattices where a given network (c, d, F ) ∈ ψR(c, F ) has in-

tegration level c, diversification level d, and bank characteristics F . The networks in ψR(c, F )

only differ in diversification level, all else equal.

Figure 6 is an illustration of a sequence of d-ring lattices.
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Figure 7: Non-concentrated interbank exposures (no clustering) solve partially avoided con-

tagion issue (Potential failures (panel a) and equilibrium (panel b) in Example 3)

In a given d-ring lattice (c, d, F ), the ratio of the interbank liabilities to the total assets

is equal to c =
∑
j∈N

Cji for each bank i ∈ N . Moreover, each bank is the creditor of the

closest d number of preceding banks and the borrower of the closest d number of following

banks in any given (c, d, F ). In addition, Cij = c
d

for all (i, j) such that Cij > 0, which

capture the homogeneity in the weights of the links. For a given d-ring lattice (c, d, F ), the

diversification is increasing in d for given integration c. The diversification level of d = 1

refers to the ring network in which each bank i is the single borrower of the bank following

bank i, and d = N − 1 refers to the complete network in which every pair of distinct nodes

is connected by a pair of links.

Example 3 illustrates an evenly-connected network. Bank characteristics, integration

level and shock level in Example 3 are same as in previous examples. The only difference

here is the formation of linkages.

Example 3 Consider a financial network (C,F ) with the following interbank claims and

bank characteristics:

C =


0 0 0 0.1

0.1 0 0 0

0 0.1 0 0

0 0 0.1 0


li = 0.93 for all i ∈ N
pi = 1 for all i ∈ N∑

j

Cji = 0.1 for all i ∈ N

s = 0.25 hits bank 1

As shown in Figure 7, evenly-connectedness solve partially prevented contagion issue. The

main insight here is that banks internalize sufficiently high amounts of potential bankruptcy

losses from each potential contagious failure. In that case, banks prefer to stop all potential

contagious failures as long as it is feasible.
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Figure 8: Sufficiently high integration and evenly-connectedness maximize rescue incentives

(Potential failures (panel a) and equilibrium (panel b) in Example 4)

4.2 The Levels of Interbank Exposures

4.2.1 Low Levels of Interbank Liabilities

In addition to the disconnectedness and non-evenly-connectedness, another source of inef-

ficiencies is weak interbank ties (low integration). As shown in Figure 7, although non-

concentrated exposures solve the partially avoided contagion issue, the shocked bank is still

non-rescued in this example. In this part, I explain the ways to avoid such inefficiencies.

The insight here is that for sufficiently high shocks, preventing the failure of the shocked

bank might be the second-best solution for the remaining banks. This might still be the case

even if there exists a potential cascade of failures that threatens all banks in the network.

In that case, remaining banks use the alternative rescue method: rescuing the rest of the

system instead of rescuing the shocked bank. This alternative rescue method is illustrated

in the equilibrium of Example 3 in Figure 7.b. Next, I provide Example 4 below, in which

banks have a higher level of integration with all else the same as in previous examples.

Example 4 Consider a financial network (C,F ) with the following interbank claims and

bank characteristics:

C =


0 0 0 0.2

0.2 0 0 0

0 0.2 0 0

0 0 0.2 0


li = 0.93 for all i ∈ N
pi = 1 for all i ∈ N∑

j

Cji = 0.2 for all i ∈ N

s = 0.25 hits bank 1

Figure 8 depicts how sufficiently high integration solves the issue of non-rescue of the shocked

bank. Accordingly, Theorem 1 is the first main result.

Theorem 1 Consider a d-ring lattice (c, d, F ) such that 1 − l < c(1−c)
d

(which guarantees

that (c, d, F ) is potentially contagious) where the banks in (c, d, F ) have the capabilities to
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prevent all potential failures and have the capabilities to prevent “the potential contagious

failures in full” even if the shocked bank defaults. Then, all potential contagious failures

are prevented in any strong Nash equilibrium, and there exists a threshold level of interbank

claims c∗(s) such that

i) for c > c∗(s), the unique strong Nash equilibrium outcome is such that all potential

failures, including the failure of the shocked bank, are prevented, and

ii) for c < c∗(s), the unique strong Nash equilibrium outcome is such that the shocked

bank is not rescued but “potential contagious failures” are prevented in full,

where the minimum level of interbank liabilities that is required to incentivize other banks

to rescue the shocked bank is increasing in the shock s.

Theorem 1 has two interpretations.

First, Theorem 1 shows how non-concentrated (non-clustered) interbank exposures elim-

inate the inefficiencies that would arise in disconnected or clustered networks, as discussed

earlier. In such evenly connected networks, banks maximally internalize the potential losses

that would arise from any failure.

Secondly, it explains the inefficiencies that arise due to the weak interbank ties. The

key insight here is that the rescue costs are increasing in the level of the negative financial

shock, and the potential losses are increasing in the level of the failing bank’s prior interbank

obligations. Therefore, ”the ratio of the financial shock to the interbank obligations” become

the key determining factor in banks’ rescue decisions. As a result, if the integration is

sufficiently low, then the failure of the shocked bank incurs sufficiently small costs to the

rest of the system. In such a case, the remaining banks find the rescue of the shocked

bank costly and prefer absorbing the losses that arise following the failure of the shocked

bank instead of rescuing that bank. Correspondingly, non-rescue of the shocked bank can

be eliminated via increasing the level of the potential losses to the system, so the interbank

liabilities, up to a threshold level. For sufficiently high levels of interbank liabilities per bank,

the remaining banks always find it profitable to rescue the shocked bank instead of letting

it fail and absorbing the losses.

This result is related to the results in Acemoglu et al. [1] on how the shock level to-

gether with integration and diversification levels determine the extent of contagion. In their

framework, for different shock and integration levels, complete network (high diversified) and

ring network (low diversified) have different implications in terms of resilience and stability.

Similarly, as shown in Elliott et al. [31], the diversification level play a key role if we consider

only the contagion without rescue attempts. However, as shown in Theorem 1, whenever we

consider the endogenously arising rescues, then the diversification level of each bank does

not play key role in ultimate contagion as long as the distribution of links are such that the

banks internalize the potential losses in the given network. Therefore, the overall network

structure and the integration level of each bank as a function of the shock determine the

ultimate stability of the system.

Theorem 1 part i is conditional on the fact that banks are adequately capitalized to
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Figure 9: High integration causes non-preventable contagion for large shocks (Potential

failures (panel a) and equilibrium (panel b) in Example 5)

rescue all distressed banks. Next, I consider what happens if the shock is sufficiently high

such that banks do not have adequate aggregate capital (or capabilities) to prevent all

potential failures.

4.2.2 High Levels of Interbank Exposures

Example 5 shows how high integration causes non-avoidable system-wide contagion whenever

the shock is large. In Example 5, I consider a higher shock level and higher integration

level than in previous examples, all else equal. Figure 9 depicts the potential failures and

equilibrium outcome in Example 5, where banks are not able to form any rescue merger.

Example 5 Consider a financial network (C,F ) with the following interbank claims and

bank characteristics:

C =


0 0 0 0.3

0.3 0 0 0

0 0.3 0 0

0 0 0.3 0


li = 0.93 for all i ∈ N
pi = 1 for all i ∈ N∑

j

Cji = 0.3 for all i ∈ N

s = 0.3 hits bank 1

Proposition 3 provides the related result.

Proposition 3 Consider a class of d-ring lattices ψR(c, F ) such that N < N∗ and l > l∗.

Then,

i) there exists a set of mergers that can prevent all potential failures in any given (c, d, F ) ∈
ψR(c, F ) iff the shock is sufficiently low, s ≤ N(1− l),

ii) for sufficiently high levels of shock, s > N(1 − l), there exists a set of mergers that

can prevent “the potential contagious failures in full” in any given (c, d, F ) ∈ ψR(c, F ) iff

the interbank liabilities per bank are sufficiently low, c ≤ (N − 1)(1− l), so that the potential

losses from the initial failure are sufficiently low and the remaining banks are always able to

absorb the losses from the failure of the shocked bank.
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As a result, even though high integration serves as an insurance mechanism whenever the

shock is small, such benefits might reverse whenever the shock is large. I show that for

sufficiently large shocks, banks can not rescue the bank hit by the shock. Nonetheless, it

is always feasible to avoid potential contagious failures (if exist) via rescues as long as the

interbank liabilities are sufficiently low. Consequently, the results so far imply that interbank

liabilities entail a trade-off: strong ties among banks increase the rescue incentives, whereas

they might cause a unavoidable systemic failure for large shocks. In Section 5.1, I analyze

welfare-maximizing networks while considering both small and large shocks.

5 Welfare-Maximizing Interbank Networks and the Gov-

ernment Assistance

5.1 A Class of Welfare-Maximizing Interbank Networks without

the Government Assistance in Rescues

Following the earlier results and examples, in this part, I provide results on network charac-

teristics which would overcome inefficiencies in rescues. First, I define a class Ω of networks.

The class Ω of networks is designed only by using the homogeneity in bank characteristics,

which is relaxed in Section 5.3 and Section 5.4. In other words, there is no condition on the

architecture of the network in the defined class Ω of financial networks except the condition

in Assumption 1.29 Formally, a financial network in the set of Ω has the following features:

ψ(C,F ) ∈ Ω :=



Cii = 0 ∀i ∈ N
Cij ≥ 0 ∀i, j ∈ N∑
j∈N

Cji ≤ 1
2

∀i ∈ N

pi = 1 ∀i ∈ N
li = l < 1 ∀i ∈ N
ζi = 1 ∀i ∈ N
N(1− l) ≤ 1

2

Next, I redefine the shock environment. Different from the previous parts, there exists a

shock s, which hits a randomly selected bank and can be either small or large with probabil-

ities below. The large shock sL represents the case that banks do not have adequate capital

to avoid all potential failures.

29The only imposed condition on link formation is
∑
j∈N

Cji ≤ 1
2 . In addition, I consider that N(1− l) ≤ 1

2 ,

which provides consistency in analysis under the condition
∑
j∈N

Cji ≤ 1
2 .
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s :=

{
sS ∈ [0, N(1− l)] with probability q

sL ∈ (N(1− l), 1] with probability 1− q

The sharing rule is the same as before. In the rest of the analysis, I focus on the welfare-

maximizing strong Nash equilibrium.30

Given these specifications, the constrained optimization problem is as follows:

max
ψ(C,F )

W (ψ(C,F )
M
∗
ψ(C,F )) subject to ψ(C,F ) ∈ Ω

where M∗
ψ(C,F )

is the equilibrium set of mergers that maximizes the social welfare in

ψ(C,F ).

Next, I formally define optimal networks.

Definition 12 An interbank network ψ∗(C,F ) ∈ Ω is optimal if

W (ψ∗(C,F )M
∗
ψ∗(C,F )) ≥ W (ψ(C,F )

M
∗
ψ(C,F )) for every interbank network ψ(C,F ) ∈ Ω.

Theorem 2 is the second main result of the paper.

Theorem 2 There exist c∗ and c∗∗ such that for c∗ ≤ c ≤ c∗∗ (integration is intermediate),

any d-ring lattice (c, d, F ) ∈ Ω which is potentially contagious such that d < c(1−c)
1−l or any d-

ring lattice (c, d′, F ) ∈ Ω which is non-potentially contagious is an optimal interbank network.

Theorem 231 provides a class of welfare-maximizing networks. First, non-clustering and

sufficiently high interbank liabilities ensure that banks are incentivized to avoid all potential

bankruptcies as long as feasible since any single bankruptcy poses sufficiently high costs to

other banks. Second, sufficiently low interbank liabilities ensure that the remaining banks

can always absorb the losses that would arise due to the initial failure. The absorption of

losses due to the initial failure becomes crucial whenever the initial failure is unavoidable

following a large shock.

In addition, the absorption of such losses might require rescue of the potential contagious

failures in the rest of the system or not, which depends on the diversification level. Even

though the diversification level plays key role in potential contagiousness, it does not play

30The existence of SNE and the welfare comparison among SNE for a given financial network ψ(C,F ) ∈ Ω

is non-trivial. However, Theorem 2 shows that there exist networks in which SNE exists where the economy

reaches the maximum possible level of social welfare for given bank characteristics. Therefore, the existence

of SNE for any network ψ(C,F ) ∈ Ω has not been studied in this part.
31The result in Theorem 2 is given based on the potentially-contagiousness instead of the diversification

level. The reason is that the dependency of creditors to a given bank might have small differences in decimals

in the dependency matrix A, which would go to zero for sufficiently large N . These difference in decimals

complicates the potential contagion ordering and the proof of Theorem 2 with no additional insight. In order

to avoid these complications, I provide results for these cases separately.
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Figure 10: Examples of optimal networks (without government intervention)

key role in ultimate contagion because banks endogenously rescue each other and absorb the

losses that would otherwise cause contagious failures.

Consequently, the result implies that potential contagiousness does not necessarily imply

financial instability. Rather, when we consider the endogenously arising rescues, financial

stability is determined by two main properties: i) potential bankruptcy losses internalized by

banks, which depend on the overall structure of the interbank network, and ii) loss absorption

capacity of the system (i.e., banks’ aggregate capital), which depends on the primitives of

the economy and is independent from the interbank network. For instance, the interbank

network in Example 4, which is a potentially contagious network, is an example of an optimal

interbank network. In addition, Figure 10 illustrates two optimal networks with different

diversification levels. The ring network is potentially contagious, whereas the complete

network is non-potentially contagious network. Bank characteristics and integration levels

are same as given in Example 4.

The analysis so far has focused on rescue formation with no government assistance. The

findings show that the government assistance is not required in certain networks. Next, I

discuss welfare effects of government-assistance.
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5.2 Government Assistance in Rescues

First, I revisit the timing of events. Before the rescue formation by banks, the government

announces a transfer scheme ~t, which includes the information of the amount of the non-

negative government assistance to each bank i ∈ N . The government assistance is realized

after the shock hits and before the formation of rescues by banks. The vector of proprietary

assets after the shock and the realization of the government assistance is given by p =

[p1 + t1, ..., pr − s+ tr, ..., pn + tn]′.

Following the government assistance, banks form rescue consortia as previously defined

in Section 3.

In other words, the government decides how much to assist in rescues while taking into

consideration the potential contributions of banks in a perfect information framework.

The government transfers might come from a variety of sources such as tax collected

from households and might be thought of as a cash injection that is designed to support the

private-sector resolution of distressed banks.

The social welfare with the government intervention is redefined as follows:

Definition 13 The social welfare in (C,F )M with the government assistance is equal to

W (C,F )M =
∑

i∈NM

(pi − bi) − s − η
∑
i∈N

ti where bi = βi if i ∈ NM defaults, and 0 otherwise.

η > 0 captures the relative inefficiency of government bailouts.

Definition 13 captures the fact that the capital transfers by banks are more efficient than

the bailout transfers by the government. This might be explained as follows. A bank’s

capital serves a safety net against its own failure risk. Accordingly, the minimum capital

requirements are designed to ensure that each bank always holds sufficiently high levels of

capital. In this (rescue) framework, the available capital in the system can be used for

rescue transfers between banks and, hence, serves a safety net against any failure risk in the

system. As a result, such capital transfers are transfers of resources that banks are obliged

to hold. However, government bailouts are transfers to banks that would be otherwise used

for providing funds to health care, education, or social services. To this end, I consider that

the capital transfers between banks are costless, whereas the government bailouts incur some

costs for the society. Consequently, the government bailouts are socially less efficient than

the capital transfers between banks.

Parameter η > 0 captures the fact that the government bailouts are relatively less efficient

than the capital transfers between banks (i.e. rescue mergers). For simplicity, I consider

η = 1. Next, I define welfare-maximizing government and transfer scheme.

Definition 14 For any given financial network (C,F ), t is a social welfare-maximizing

government-assistance if @t
′

such that

W (C,F, t′)
M∗

(C,F,t′) > W (C,F, t)M
∗
(C,F,t) where M

∗

(C,F,t) and M∗
(C,F,t′) are equilibrium set of

mergers which maximize the social welfare in (C,F, t) and (C,F, t′), respectively. A govern-

ment is social welfare-maximizer if it implements the social welfare-maximizing government-

assistance for any given network (C,F ).
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Correspondingly, I consider that the government is a social welfare-maximizer government.

Proposition 4 shows the selective rescue decision of the government. When the shock is

sufficiently large, the government prefers to assist in the rescue of the rest of the system

instead of the rescue of the shocked bank. This result together with the previous results

offers plausible explanations for the rescue decisions in the 2007-2009 period.

Proposition 4 Consider a potentially contagious d-ring lattice (c, d, F ) such that d < c(1−c)
1−l

, where there exists no rescue consortia that can “prevent all potential failures” or “prevent

the potential contagious failures in full” without government-assistance. Then, there exists

s∗ such that

i) for s ≤ s∗, all potential failures are prevented by a government-assisted rescue consor-

tium,

ii) for s > s∗, the government does not assist in the rescue of the shocked bank, but the

potential contagious failures are prevented in full by a government-assisted rescue consortium,

where s∗ is increasing in the integration level c.

Proposition 5 revisits the class of network described in Section 5 and provides welfare-

maximizing network structures with government intervention.

Proposition 5 Consider the class of optimal interbank networks provided in Theorem 2

(under no government intervention), where c∗ ≤ c ≤ c∗∗ holds for any such optimal interbank

network (c, d, F ) ∈ Ω. Then, any such evenly-connected network (c, d, F ) ∈ Ω where c = c∗∗

is an optimal network with government intervention. The class of optimal networks with

government intervention satisfies the following properties:

i) for s = ss, all potential failures are avoided with no government assistance,

ii) s = sL ≤ [1+N(1−l)]
2

, all potential failures are avoided by a government-assisted rescue

consortium,

iii) for s = sL >
[1+N(1−l)]

2
, the government does not assist in the rescue of the shocked

bank, but potential contagious failures (if exist) are avoided in full with no government-

assistance.

This last result shows that the optimal networks with government intervention are such that

there is no need for the government assistance when the shock is small. On the other hand,

whenever a large shock s > N(1 − l) hits, the government’s decision about whether or not

to assist in the rescue of the shocked bank depends on the shock level. Sufficiently high

integration reduces the required amount of government transfer for rescuing the shocked

bank and, hence, results in a welfare-improving government intervention. As a result, the

highest threshold level of integration c∗∗ together with evenly-connectedness emerge as a

class of welfare-maximizing networks with government intervention. In such networks, banks’

contributions in rescues are maximized unconditional on the shock level. Consequently, in

such networks, the government assists in the rescue of the shock bank as long as the shock

is smaller than the threshold level given in Proposition 5 part ii.
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Figure 11: Examples of optimal networks with government intervention (Equilibrium for

small shock (panel a) and large shock (panel b) in Example 6)
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Example 632 and Figure 11 illustrate optimal networks with government intervention.

Example 6 Consider a financial network (C,F ) with the following interbank claims and

bank characteristics:

C =


0 0 0 0.21

0.21 0 0 0

0 0.21 0 0

0 0 0.21 0


li = 0.93 for all i ∈ N
pi = 1 for all i ∈ N∑

j

Cji = 0.21 for all i ∈ N

The integration level in Example 6 is higher than the integration level in Example 4 that

illustrates an optimal network with no government intervention. In addition, one of the

other main differences between the two scenarios is that with the government intervention,

rescues are still formed for relatively higher shocks compared to the case with no government

intervention, as discussed above. For large shocks, banks would not be able to rescue the

shocked bank without government assistance even if they have the incentives. Accordingly,

for large shocks up to a threshold level, sufficiently high levels of government assistance

makes the rescue of all potential failures feasible. This explains the welfare-improvement by

the government intervention.

5.3 Rescues in Networks with Heterogenous Assets, Liabilities,

and Interbank Exposures

The analysis in Section 5 so far has focused on a class of evenly-connected networks that

provide us the key insight about rescue formation. In such evenly-connected networks,

potential losses are internalized by banks in the system and, therefore, contributions in

rescues are maximized. Next, I consider a class of non-evenly connected networks: star

networks. The star structure can be described as follows. A single bank is located at the

core and connected to all other banks and each other bank is connected to only the core

bank. Next, I formally define star network and provide the result on star network.

Definition 15 A star network (C,F ) that consists of a single core bank c ∈ N and a set

of periphery banks {N \ c} is such that:

32In Example 6, the optimal integration level c∗∗ = 0.21 is rounded to the nearest 0.01.
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(C,F ) :=



Ccp = αc ∀p ∈ N \ c
Cpc = αp ∀p ∈ N \ c
Cpp′ = 0 ∀p, p′ ∈ N \ c
Ccc = Cpp = 0 ∀p ∈ N \ c
pc > pp = 1 ∀p ∈ N \ c∑
j∈N

Cji ≤ 1
2

∀i ∈ N∑
i∈N

(pi − li) ≤ 1
2

The integration level of the core bank and any periphery bank is equal to (N − 1)αp
and αc, respectively. I also normalize the proprietary asset value of any periphery bank to

pp = 1.

Proposition 6 Consider an economy with four banks. There exists exogenously given

(pc, lc, pp, lp) and interbank claims α∗c(pc, lc, pp, lp) and α∗p(pc, lc, pp, lp) such that a star network

with claims α∗c(pc, lc, pp, lp) and α∗p(pc, lc, pp, lp) is an optimal interbank network.

Proposition 6 captures the heterogeneity in both asset sizes and connectivity. The result

implies that for exogenously given proprietary assets and liabilities, a star network can be

an optimal interbank network. For simplicity, I consider four banks in Proposition 6 that can

be extended to n banks with the same insights. Next, I provide an example with four banks.

As illustrated in Example 7, the integration level of periphery bank is higher than integration

level of the core bank, which guarantees that the connectedness of each periphery bank to

the rest of the system is at a sufficient level. As a result, the optimal level of integration and

connectivity depends on the exogenously given asset sizes and external liabilities.

Example 7 For exogenously given pp = 1, pc = 5, lp = 42
44
< 1, and lc = 1033

220
< 5 and

N = 4, the star network with α∗c = 4
10

and α∗p = 1
10

is an optimal network.

In addition to the analysis on the star network, one might think about the core-periphery

structure, which is another network structure that has been extensively studied in the litera-

ture. The core-periphery structure is in some sense an extended version of the star network,

which includes some additional connectivity layers such as connectivity among core banks.

Therefore, in addition to the insights driven from the star network, the optimal connectivity

among core banks play a key role in the effectiveness of rescues in a core-periphery structure.

The earlier results on evenly-connected networks provides us an idea about the connectivity

of the core banks. Consequently, putting together the results about evenly-connected net-

works (for core-core connectivity) and star network (for core-periphery connectivity) guide

us to understand optimal connectivity in a core-periphery network.

As a result, for exogenously given proprietary assets and external liabilities, the prop-

erties of welfare-maximizing networks depend on the primitives of the economy. Then, a
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Figure 12: An optimal network structure in Example 7: Star Network

fundamental question arises: For exogenously given proprietary assets and external liabil-

ities, what are the general properties of welfare-maximizing connectivity in the financial

system? I answer this question in the next part.

5.4 Characterization of Welfare-Maximizing Interbank Exposures

In this part, I characterize the welfare-maximizing connectivity under no homogeneity con-

straint and with government assistance. For the constrained optimization, the class of net-

works Ω in this part is defined as follows:

ψ(C,F ) ∈ Ω :=



Cii = 0 ∀i ∈ N
Cij ≥ 0 ∀i, j ∈ N∑
j∈N

Cji ≤ 1
2

∀i ∈ N∑
i∈N

(pi − li) < 1
2
< min{p1, ..., pn} ∀i ∈ N

vi − li ≥ 0 ∀i ∈ N
The last two parts guarantees that for large shocks banks are not capable of rescuing all

distressed banks and initially all banks are solvent.

Theorem 3 A financial network (C,F ) ∈ Ω is a welfare-maximizing network iff (C,F )

satisfies the following properties:

• (1− Akk) pk =
∑

j∈N\k
(vj − lj) for each singleton k ∈ N (or equivalently

∑
i∈N\k

∑
j∈N\k

Aijpj =∑
j∈N\k

lj) (intermediate integration)

•
∑
i∈K

∑
j∈K

Aijpj ≤
∑
i∈K

li for all K ⊂ N (no clustering of interbank exposures)
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The characterization result shows that there are two key properties of welfare-maximizing

networks: interbank exposures that are formed with no clustering among any subset of

banks, and intermediate level of interbank liabilities per bank. Part i implies that the total

dependency to any given bank should be at intermediate level, which is similar to the result

in previous parts. In addition, part ii implies that the network should be non-clustered such

that for any given set of banks, the interbank exposures among any subset of banks should

be smaller than a threshold level. The key insight is that i if bank i defaults (for large

shocks), remaining banks always maintain stability with no government assistance, and ii

banks contributions in rescue of the bank hit by the shock is always maximized due to the

system-wide potential contagion risk. As a result, in such non-clustered connected networks,

the available capital in the system is always used for injecting capital to the distressed banks

whenever it is required, which minimize the government bailout transfers.

6 Conclusion

Recently, 2007-2008 global financial crisis has brought private-sector bank resolution meth-

ods to the forefront of the discussions and has shown that timely rescues play key role in

maintaining stability in interconnected systems. On the other hand, there is a historical

debate on bank rescues and financial stability going back to the discussions by Bagehot and

Thornton in 19th century. In this study, I develop a coalition formation framework to analyze

bank failures and systemic risk while considering banks’ rescue incentives against failure risks.

The results provide general insights into how rescues can work as a self-correction mechanism

in networks that face threats against individual or systemic stability. The results show how

the system-wide structure of the interbank network play a key role in effectiveness of rescues

by banks.

This study focuses on the counterparty risks while abstracting away from common asset

exposures of banks. In order to fully understand the potential gains from private-sector res-

olution, the next step of research is investigating the endogenous formation of the interbank

network and banks’ asset portfolio in the pre-crisis period, which would help us understand

whether the interbank obligations established in non-crisis period can work as a commitment

mechanism for rescues in distressed times.

Lastly, although the focus of this study is financial networks, this study provides general

insights into how agents behave collectively to resolve individual or systemic threats in

networks where payoffs of agents are interdependent. As an example, one can consider the

resolution of sovereign debt crises (e.g., European sovereign debt crisis), where different

countries have different incentives to contribute to rescue plans. Another related example

is the rescue of distressed firms in manufacturing sector (e.g., rescues in auto-industry in

Japan and US), which are designed to avoid disruptions in supply chains. Analyzing rescues

in a production economy requires different modeling and potentially incorporates different

insights, which is left as a future research direction.
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7 Appendix

Lemma 1 i) Aij =
∑
k∈N

AikCkj for all i 6= j.

ii) Aii = Ĉii +
∑
k∈N

AikCki for all i ∈ N .

Proof of Lemma 1:

First, I show that A = AC + Ĉ holds for any given C matrix such that Ĉ is a diagonal

matrix with entries Ĉii = (1 −
∑
j∈N

Cji) > 0 for all i and Ĉij = 0 for all i 6= j, where

A = Ĉ(I − C)−1.

Suppose that A = AC + Ĉ holds. Then,

A = AC + Ĉ implies

Ĉ(I − C)−1 = Ĉ(I − C)−1C + Ĉ, which can be rewritten as:

Ĉ(I − C)−1 = Ĉ[(I − C)−1C + I].

Since Ĉ is a diagonal matrix with non-zero diagonal elements,

(I − C)−1 = [(I − C)−1C + I] holds, which can be rewritten as:

(I − C)−1(I − C) = I, and hence I = I holds, which completes the proof.

A = AC+ Ĉ implies that Aii = Ĉii +
∑
k∈N

AikCki holds for all i ∈ N , and Aij =
∑
k∈N

AikCkj

holds for all i 6= j.

end of proof.

Lemma 2 Consider a financial network (C,F ) in which a set of banks φ ⊆ N form the set

of mergers M = {m1, ...,mn}, which satisfies the properties below:

NM = (N \ φ) ∪M
pMj = pj lMj = lj βMj = βj ∀j ∈ N \ φ
pMmk =

∑
k∈mk

pk lMmk =
∑
k∈mk

lk βMmk =
∑
k∈mk

βk ∀mk ∈M

Then, for any given set M , there exist unique structures for CM and AM that satisfy
V M
j = Vj LMj = Lj ∀j ∈ N \ φ
V M
mk

=
∑
k∈mk

Vk LMmk =
∑
k∈mk

Lk ∀mk ∈M

for every asset return vector p ∈ RN
+ . The unique structures have the following properties:

CMij = Cij ∀i, j ∈ N \ φ CMmkj =
∑

k∈mk Ckj ∀j ∈ N \ φ

CMmkmk =

(∑
k∈mk

∑
l∈mk

(ClkVk)∑
k∈mk

Vk

)
∀mk ∈M CMjmk =

(∑
k∈mk

(CjkVk)∑
k∈mk

Vk

)
∀j ∈ N \ φ

CMmkml =

(∑
l∈ml

∑
k∈mk

(CklVl)∑
l∈ml

Vl

)
∀mk,ml ∈M

AMij = Aij ∀i, j ∈ N \ φ AMmkj =
∑

k∈mk Akj ∀j ∈ N \ φ

AMmkmk =

(∑
k∈mk

∑
l∈mk

(Alkpk)∑
k∈mk

pk

)
∀mk ∈M AMjmk =

(∑
k∈mk

(Ajkpk)∑
k∈mk

pk

)
∀j ∈ N \ φ

AMmkml =

(∑
l∈ml

∑
k∈mk

(Aklpl)∑
l∈ml

pl

)
∀mk,ml ∈M
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The restructuring of the claims can be summarized as follows:

i) the claims among the non-merged banks remain same,

ii) the claims that a given merger holds in a given non-merged bank is equal to the sum

of the claims that each bank in that merger holds in that non-merged bank,

iii) the claims of a given non-merged bank in a merger is equal to the weighted sum of

its claims in each bank in the merger,

iv) the claims of a given merger in another given merger is a weighted sum of the claims

of each bank in the banks in the other merger.

Proof of Lemma 2:

The equations below are satisfied before the mergers:

Vj = (
∑
k∈φ

CjkVk) + (
∑

i∈N\φ
CjiVi) + pj∑

k∈mk
Vk = (

∑
k∈mk

∑
j∈N

CkjVj) +
∑
k∈mk

pk

Call the claims matrix given in Lemma 2 C∗. The equations below are satisfied after the

mergers:

V M
j = (

∑
i∈N\φ

C∗jiV
M
i ) +

∑
mk∈M

(C∗jmkV
M
mk

) + pMj ∀j ∈ N \ φ

V M
mk

= (
∑

j∈N\φ
C∗mkjV

M
j ) + C∗mkmkV

M
mk

+ (
∑

ml 6=mk
C∗mkmlV

M
ml

) + pMmk ∀mk ∈M

I claim that C∗ satisfies the given properties in Lemma 2. In order to show this, I rewrite

the equations after the merger by using the asset returns and the new claims C∗ after the

merger, which are given in Definition 3:

V M
j = (

∑
i∈N\φ

CjiV
M
i ) +

∑
mk∈M

( ∑
k∈mk

(CjkVk)∑
k∈mk

Vk
V M
mk

)
+ pj ∀j ∈ N \ φ

V M
mk

= (
∑

j∈N\φ

∑
k∈mk

CkjV
M
j ) +

(∑
k∈mk

∑
l∈mk

(ClkVk)∑
k∈mk

Vk

)
V M
mk

+
∑

ml 6=mk

(∑
l∈ml

∑
k∈mk

(CklVl)∑
l∈ml

Vl

)
V M
ml

+∑
k∈mk

pk

We know that the financial system before the merger has a unique solution. We also

know that the new system has a unique solution. Then, if we plug Vj = V M
j ∀j ∈ N \ φ and

V M
mk

=
∑
k∈mk

Vk ∀mk ∈M into the equations for V M
j and V M

mk
, we get:

Vj = (
∑

i∈N\φ
CjiVi) +

∑
mk∈M

(
∑
k∈mk

CjkVk) + pj = (
∑
k∈φ

CjkVk) + (
∑

i∈N\φ
CjiVi) + pj , and∑

k∈mk
Vk = (

∑
k∈mk

∑
j∈N

CkjVj) +
∑
k∈mk

pk

These are the equations that we had before the mergers. Thus, from the uniqueness

property, Vj = V M
j ∀j ∈ N \ φ and V M

mk
=
∑
k∈mk

Vk ∀mk ∈ M is also the unique solution for

the system after the merger. So, C
∗

satisfies the properties given in Lemma 2.

Next, I show that A
∗

also satisfies the properties given in Lemma 2. The given properties

in Definition 1 implies that ej = eMj ∀j ∈ N \ φ and eMm =
∑
k∈mk

ek ∀mk ∈ M holds for

the shareholders’ equity. Equation (7) implies v = Ap holds before the shock, and hence
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e = v − l = Ap− l holds before the shock. Since l is given exogenously, v = vM must hold,

and hence AMpM = Ap must hold.

For any given (C,F ), A is the unique Leontief inverse matrix derived from the given C

matrix. By Definition 1, for a given set of mergers, one can find pM and vM . Next, I show

that vM = A∗pM holds for every p ∈ RN
+ , which means that A∗ satisfies the given properties

in Lemma 2.

vMj =
∑

mk∈M
(A∗jmkp

M
mk

) +
∑

i∈N\φ
A∗jip

M
i =

∑
mk∈M

(∑
k∈mk

(Ajkpk)∑
k∈mk

pk

) ∑
k∈mk

pk +
∑

i∈N\φ
(Ajipi) =∑

i∈N
Ajipi = vj

holds for every p ∈ RN
+ . Similarly,

vMmk = A∗mkmkp
M
mk

+
∑

ml 6=mk
(A∗mkmlp

M
ml

) +
∑

j∈N\φ
A∗mkjp

M
j =

(∑
k∈mk

∑
l∈mk

(Alkpk)∑
k∈mk

pk

) ∑
k∈mk

pk +∑
ml 6=mk

(∑
l∈ml

∑
k∈mk

(Aklpl)∑
l∈ml

pl

)∑
l∈ml pl +

∑
j∈N\φ

∑
k∈mk

Akjpj =
∑
k∈mk

∑
j∈N

Akjpj =
∑
k∈mk

vk

holds for every p ∈ RN
+ . Thus, vM = A∗pM holds for every p ∈ RN

+ .

This completes the first part of the proof that CM and AM satisfy the given properties

of mergers for every p ∈ RN
+ .

Next, I show that there exist unique structures for CM and AM satisfying the desired

properties for every asset return vector p ∈ RN
+ .

First, I show that A∗ is the unique structure satisfying the properties in Lemma 2 for

every p ∈ RN
+ .

I already showed that vM = A∗pM holds for every p ∈ RN
+ for any given M . Fix any given

M . Suppose that there exist another matrix A∗∗ satisfying the desired properties on total

assets and liabilities for every p ∈ RN
+ for M . Then, vM = A∗pM and vM = A∗∗pM hold for

every p ∈ RN
+ , which implies A∗∗pM = A∗pM holds for every p ∈ RN

+ . Then, A∗∗εj = A∗εj
∀ej holds where εj is the vector such that jth element of εj is equal to 1 and all other elements

of εj are equal to ε.

A∗∗εj = A∗εj ∀ εj implies A∗kj = A∗∗kj ∀k, j as ε→ 0 . Then, this implies A∗ = A∗∗. Thus,

A∗ is unique.

Next, I show the uniqueness of C∗. I already showed that V M = (I − C∗)−1pM holds

for every p ∈ RN
+ for any given M . Suppose that there is another C∗∗ satisfying V M =

(I−C∗∗)−1pM for every p ∈ RN
+ for M . Then, similarly, (I−C∗)−1 = (I−C∗∗)−1 must hold.

(I −C∗)−1 = (I −C∗∗)−1 =⇒ ((I −C∗)−1)−1 = ((I −C∗∗)−1)−1 =⇒ I −C∗ = I −C∗∗
holds from the uniqueness of the inverse matrix, which also implies C∗ = C∗∗. Thus, C∗ is

unique.

Lastly, A∗and C∗ being the unique structures satisfying the desired properties for every

p ∈ RN
+ for any given M implies that A∗ = Ĉ∗(I − C∗)−1, where Ĉ∗ is a diagonal matrix

derived from C∗.

Thus, AM and CM are the unique structures satisfying the desired properties for every

asset return vector for any given set of mergers, which completes the proof.
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Next, I provide Definition 16, which I use extensively for the proofs.

Definition 16 Bank i’s distress rank is equal to dri = t if bank i would default at step t of

the contagion if there were no rescue attempt in financial network (C,F ). For any healthy

bank i ∈ N \ ℵT , bank i’s distress rank is equal to dri = N . 33

Proof of Proposition 1:

First, I provide the complementary result below. Proposition 7 is on the existence of

rescue mergers in financial networks. Definition below follows from the contagion algorithm.

Proposition 7 Consider a potentially contagious financial network (C,F ) and the financial

network (C,F )M that is formed by the set of mergers M such that dri = drj for all (i, j) ∈ mk

for all mk ∈ M , and @mk ∈ M such that r ∈ mk. Then, there exists no rescue merger

mk ∈M .

Proposition 7 highlights the fact that the existence of rescue mergers depends on the potential

contagion structure. The result shows that a merger that only involves banks with same

distress ranks does not prevent any failure unless there exists any other merger which is

formed by banks with different distress ranks.

• Proof of Proposition 1 continued:

For ζ = 0, ℵT= ℵ1 (the contagion algorithm stops after one step) where the only potential

failures are the potential first step failures. 1 − l − Airs < 0 holds for all i ∈ ℵ1, and

1− l − Airs ≥ 0 holds for all i ∈ N \ ℵ1.
By Proposition 7, there exists no rescue merger which is formed among banks in the set

ℵ1 \ r or among banks in the set N \ ℵ1.
Then, any rescue merger must involve at least one bank from each set N \ℵ1 and ℵ1 \ r .

Consider an outcome of the game which involves at least one such rescue merger. Select

any of these rescue mergers arbitrarily, and denote that merger by mk. For any such outcome,

the net worth of mk is equal to eMmk =
∑

i∈mk\ℵ1
(vi− li−Airs) +

∑
i∈{ℵ1∩mk}

(vi− li−Airs), where

there exist K − h number of healthy banks and h number of distressed banks involved in

mk.

For any distressed bank i ∈ {ℵ1 ∩ mk}, vi − li − Airs < 0 holds, and therefore, there

always exists a healthy bank i ∈ mk that has a payoff less than vi − li − Airs. Thus, given

the strategies of other banks, revealing the strategy si = {i} is a profitable deviation for any

such healthy bank i ∈ mk.

33The distress rank for a healthy bank can be at most N . In the extreme case, consider a network where

only one bank defaults at each step of the algorithm and only one bank remains healthy (N \ ℵT consists

of a single bank). In that case, the distress rank is equal to N − 1 for the bank that fails lastly and, thus,

the distress rank is equal to N for the remaining single healthy bank. This example shows that the distress

rank is always less than or equal to N for a healthy bank in a given financial network, and that’s why I fix

it to N for generality.
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This holds for any arbitrarily selected rescue merger mk for any set of strategies resulting

in set of merger M that involves at least one rescue merger.

Next, I show that there exists a SNE in which no merger has been formed. Consider the

strategies such that si = {i} for all i ∈ N , which results in an outcome M = ∅.
First, there exists no coalitional deviation among the banks in the set N \ ℵ1 (healthy

banks), since for any coalitional deviation the payoffs are summed. Similarly, for any coali-

tional deviation among the banks in the set ℵ1 \ r, the payoffs would be equal to zero. In

addition, as I showed above, any coalitional deviation that involves at least one healthy bank

and one distressed bank from the set of ℵ1 \ r is a non-profitable deviation for any healthy

bank involved in such a coalitional deviation. Lastly, for lr > l∗r , there exists no profitable

coalitional deviation that involves bank r. Therefore, si = {i} for all i is an equilibrium set

of strategies.

Proof of Proposition 2:

By Lemma 1, Aki = 0 for any k ∈ N \ R, i ∈ R where R is the set of banks located in

the connected component that includes bank r. This implies that any k /∈ R is a healthy

bank and has a net worth of ej = 1− l − Air = 1− l.
Next, consider the set of mergers M as an outcome of the game. Consider that there

exists a merger mk ∈ M which includes a healthy bank h. For mk to be a rescue merger,

there must be a bank i : i ∈ mk ∩ R. Consider the set of mergers M ′ = M \ mk, an

alternative outcome of the game. eM
′

h = 1 − l holds for any healthy bank h ∈ mk. Then,

if eMh < 1 − l holds for any healthy bank h ∈ mk, then the strategy s′h = {h} is always a

profitable deviation for h, and M cannot be an equilibrium set of mergers in that case. So,

for M to be an equilibrium outcome, eMh ≥ 1− l must hold, and thus eMmk ≥ 1− l must also

hold.

Suppose that eMmk ≥ 1 − l. Then, either there exists at least one more healthy bank

in mk, or there exists at least one distressed bank j in mk such that j is a healthy bank

in (C,F )M\mk . Otherwise, if all banks in mk \ h are distressed banks in (C,F )M\mk , then

v
M\mk
j < lj holds for all {j : j 6= h, j ∈ mk}, which implies that eMmk < 1− l. As a result, M

cannot be an equilibrium outcome.

Consider that h is the only healthy bank in mk, but there exists at least one distressed

bank j such that j would not default in (C,F )M\mk . Denote the set of such banks {j : j ∈
mk ∩ (NM\mk \ ℵM\mk)} by D. Then, for any arbitrarily selected sharing rule, eMj holds if

eMj < e
M\mk
j = 1 − l holds for some j ∈ D. In this case, s′j = {j} is a profitable deviation

for any {j : j ∈ mk ∩ (NM\mk \ ℵM\mk)}, and hence M cannot be an equilibrium outcome.

Next, consider that there exists more than one healthy bank in mk. In this case, for

eMj ≥ 1 − l to hold, either all banks are healthy banks and reallocate the net worth, which

implies that mk is never a rescue merger, or if mk is a rescue merger the condition above

holds for some j ∈ D or there exists a healthy bank i ∈ mk s.t. eMi < 1 − l. Then, for any

such bank i having eMi < 1− l, s′i = {i} is a profitable deviation. As a result, M cannot be

an equilibrium outcome in this case as well. This completes the proof by showing that there
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exists no equilibrium outcome in which any bank in N \ R is involved in a rescue merger.

Next, by Proposition 3, for s > (d+1)(1− l) and c > c∗(s, l, d), there exists no rescue merger

which is formed among the banks in the set R.

Lastly, similar argument in the proof of Proposition 1 follows here, and si = {i} for all i

is an equilibrium set of strategies.

Proof of Proposition 3:

Proof of part i)

For s > N(1− l), if there exists no distressed bank, then vi − l −Airs ≥ 0 must hold. If

this holds for all i, then
∑

(
i

vi − l − Airs) = N(1 − l) − s ≥ 0 holds as well. However, for

s > N(1− l), it is a contradiction. Thus, for s > N(1− l), there exists at least one distressed

bank.

By Lemma 1 and Assumption 1, Aii = (1 − c) +
∑
k∈N

AikCki >
1
2

, and since A matrix is

a column-stochastic matrix, in any given d-ring lattice (c, d, F ), Aii > max
j 6=i
{Aij} holds for

any i ∈ N . Thus, bank r is a distressed bank in this case. Then, r must be included in a

merger to prevent all potential failures.

If there exists no other i ∈ ℵ1, then the grand coalition of all banks, denoted by G, is the

most resilient merger that involves bank r. To see that, first observe that vi − l − Airs > 0

holds for all i 6= r in this case.

Excluding a set T of banks from the grand coalition decrease the exposure of the re-

maining banks in the coalition G/T to the shock by
∑

t∈T A
M
tr . However, it also decrease

the payoff of the coalition by
∑

t∈T (vt − lt). For having a set of mergers M , which can pre-

vent all potential failures, any configuration among the banks in T must remain healthy

and the coalition G/T must remain healthy as well. Consider that this is true, then, since

vi− l−Airs > 0 holds for all i 6= r, excluding such set of banks decrease the resilience of the

coalition that involves bank r even though the excluded set of banks remain solvent. This

holds for any T ⊆ N \ r.
However, for s > N(1 − l), the payoff of grand coalition is equal to N(1 − l) − sAGG =

N(1 − l) − s, which follows from Lemma 2. Therefore, there exists no mergers which can

prevent all failures.

On the other hand, if there exists some other i ∈ ℵ1, then each bank i ∈ ℵ1 must be

involved in a merger. A similar argument applies in this case as well. The grand coalition

is the most resilient merger that involves all banks in the set ℵ1, but it defaults if formed.

Thus, there exists no set of mergers which can prevent all potential failures. On the other

hand, for s ≤ N(1− l), the grand coalition can prevent all potential failures.

Proof of part ii)

For s ≤ N(1− l), I already showed that the grand coalition of all banks can prevent all

potential failures, and hence all potentially contagious failures can be prevented.

For s > N(1− l) there exists no such merger. In that case, for r /∈ φ, in order to prevent

potential contagious failures in full (if exists), all banks in ℵ2\r must be involved in a merger.
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Otherwise, any bank in ℵ2 \ r would default since vi− li−Air(s+ (1− s)ζ) < 0 holds for all

i ∈ ℵ2 .

Similar to the proof in part i, if the coalition of banks N \ r cannot prevent potential

contagious failures in full, then no other coalition excluding bank r can prevent the potential

contagious failures in full. This follows from the fact that:

i) each bank in ℵ2 must be involved in a merger to prevent potential contagious failures

in full,

ii) vi − li − Airs ≥ 0 holds for all i /∈ ℵ2.
In that case, the payoff of coalition of banks N\r is equal to (N−1)(1−l)−

∑
i∈N\r Air(s+

(1− s)ζ). Therefore, for (N − 1)(1− l) >
∑

i∈N\r Air, then there exists a set of mergers that

can prevent potential contagious failures in full.

By the column stochasticity of the A matrix, the default of bank r reduces the remaining

banks’ total net worth by (1−Arr). In addition, Lemma 2 implies that AGr = 1−Arr holds,

where G is the coalition of banks N \ r. Therefore, (N − 1)(1− l)−AGr = (N − 1)(1− l)−
(1− Arr) ≥ 0 must hold.

Lemma 1 implies that for a finite N , Aii > 1− c and 1−Aii < c holds for all i ∈ N and

for all 1 ≤ d ≤ N − 1.

Therefore, for c ≤ (N−1)(1−l)
s+(1−s)ζ , (N − 1)(1 − l) −

∑
i∈N\r Air(s + (1 − s)ζ) > 0 holds, and

hence, there exists a set of mergers that can prevent potential contagious failures in full

regardless of the diversification level. There exist N∗ and l∗ such that for N < N∗ and

l > l∗, and for ζ = 1, there exists such c ≤ (N − 1)(1− l).

Proof of Theorem 1:

Step 1) For ζ = 1, first I show that in a potentially contagious d-ring lattice (c, d, F )

such that 1− l < c(1−c)
d

, all banks are distressed banks.

Under Assumption 2, In any d−ring lattice if there exists any bank i with dri = 1, then

drr = 1 holds.

The C matrix of a given d-ring lattice (c, d, F ) is a circulant matrix, where each row

vector is rotated one element to the right relative to the preceding row vector.

By Theorem 3.2.4 of Davis [22], if A and B are circulant matrices of order n and αk
scalars, then α1A + α2B and AB are also circulant matrices. This theorem implies that

I−C is also a circulant matrix, since I is a circulant matrix as well. Theorem 3.2.4 of Davis

[22] shows that if A is a non-singular circulant matrix, then A−1 is also a circulant matrix.

Given that (I−C) is invertible, (I−C)−1 is also a circulant matrix. Finally, A = Ĉ(I−C)−1

is also a circulant matrix since Ĉ and (I−C)−1 are circulant matrices of order n. This implies

that {Aii}d = {Ajj}d holds for any given dwhere {Aii}d is the Aii of bank i in (c, d, f) with

diversification level d. Moreover, Ai,i+k = Aj,j+k for all i, j ∈ N for any k ≤ N − 1 where

i+ k is the kth immediate neighbor of node i.

Therefore, for 1− l < c(1−c)
d

, by Lemma 2, for any j ∈ doutr , Ajr >
c(1−c)
d

, and each bank

j ∈ doutr is a distressed bank.

Given that the A matrix is circulant and ζ = 1, the losses of any single bank from r+d+1
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to r+ 2d is greater than c(1−c)
d

, which implies that any single bank from r+d+ 1 to r+ 2d is

also a distressed bank. The contagion algorithm proceeds similarly, and thus all banks are

distressed banks.

Step 2) Consider an outcome of the game such that M = {N \ r}. Next, I show that

there exists no profitable coalitional deviation by any set T of banks such that T ( N \ r.
The net worths in (c, d, F )M are such that eMr = 0 and eMN\r = (N − 1)(1− l)− (1−Arr).
Consider any coalitional deviation by set T ( N \ r, where T excludes some members

of set doutr . Denote the set of such excluded banks by E, where {doutr \ E} ⊆ T . Following

such a coalitional deviation, any single bank in set E defaults since r /∈ T and any single

bank in E is a creditor of the shocked bank. Next, I show that such an outcome cannot be

an equilibrium.

Rank the members in E based on their distance to r where ith member of E is denoted

by r + i, where i ≤ d.

First, consider that the set E is a singleton. Suppose that the coalition T involves

(r + i + i)th node. Then, whenever coalition T is a strictly profitable deviation, then the

coalition T ∪ i is also a strictly profitable deviation. To see that, involving the (r+ i)th bank

into the coalition T would increase the total payoff of T by 1− l−Ar+i,r and would eliminate

the loss of coalition T due to the failure of bank r + i, which is greater than Ar+i+i,r+i.

Given that the A matrix of a d-ring lattice is a circulant matrix, Ar+i+i,r+i = Ar+i,r. As a

result, whenever coalition T is a strictly profitable deviation, then the coalition T ∪ i is also

a strictly profitable deviation.

However, coalition T ∪ i is not a strictly profitable deviation since involving any subset

of banks in N \ {T ∪ i} to the coalition T ∪ i increase the individual payoffs of banks in

{T ∪ i} \ℵ2. Therefore, any profitable coalitional deviation T cannot involve the (r+ i+ i)th

bank. If (r + i + i)th bank is not involved in T , then it defaults, and the same argument

applies for (r+ i+ i+ i)th bank. Thus, in any strictly profitable deviation, (r+ j× i)th nodes

must be excluded.

Then, given that i < d, all (r + j × i)th nodes default if they are excluded, and thus the

loss of such T is higher than c(1−c)
d
| {T \ doutr } | . Moreover, any k ∈ doutr ∩ T has losses

higher than c(1−c)
d

. Combining these together, any such T that excludes all (r+j× i)th nodes

would default.

If E is not a singleton (more than one creditor of r is excluded from the rescue consortia),

then the same results hold and any such coalitional deviation would also default.

Step 3) Following Step 2 of the proof, next consider any coalitional deviation that

includes bank r. Similar to the previous proofs, if the deviation of grand coalition is not

profitable, then any coalitional deviation by T ∪r such that T ( N \r cannot be a profitable

deviation as well.

Next, consider the payoffs when the grand coalition deviates and rescues the shocked

bank.

The total payoff would be equal to N(1− l)− s . On the other hand, if there is no such
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deviation, then the total payoff of N \ r is equal to (N − 1)(1− l)− (1− Arr).
Then, there exists no profitable deviation if (N − 1)(1− l)− (1− Arr) ≥ N(1− l)− s.
By Lemma 1, (1−Arr) < c. Therefore, for c < s− (1− l), there exists no such coalitional

deviation.

Proof of part i follows from the the previous steps, and for c ≥ s − (1 − l), there exists

a SNE in which banks form the grand coalition and rescue the shocked bank. Otherwise,

N \ r is always a profitable coalitional deviation.

Proof of Theorem 2:

If a network satisfies the following properties, then it is an optimal network:

i) for s = sS, there exists a strong Nash equilibrium in which all potential failures (if

exist) are prevented.

ii) for s = sL, there exists a strong Nash equilibrium in which potential contagious failures

are prevented in full (if exist).

Any network satisfying the properties above weakly dominates any other network be-

cause the social welfare in such a network is equal to W (c, d, F )M = q[(
∑

i∈NM

pi) − s] + (1 −

q)(
∑

i∈NM\r
pi), which is the maximum possible value for W (C,F )M in any given network for

the given shock and external liabilities for the given set of banks.

The sufficient condition for capability of rescuing all potentially contagious failures (if

exist):

[(N − 1)(1− l)− (1− Aii(C,F ))] ≥ 0 (8)

Case 1) Potentially contagious d-ring lattice (c, d, F ):

In any potentially contagious d-ring lattice (c, d, F ) such that 1 − l < c(1−c)
d

, then the

condition for c in Theorem 1 applies here as well. Thus, for c ≥ ss − (1 − l), there exists a

SNE in which banks form the grand coalition and rescue the shocked bank in any potentially

contagious d-ring lattice (c, d, F ) such that 1− l < c(1−c)
d

.

For any given small shock ss ≤ N(1 − l), there exists a 1
2
≥ c ≥ ss − (1 − l) for

(N − 1)(1− l) ≤ 1
2
.

So, there always exists a SNE in which the first failure is prevented in a contagious d-ring

lattice (c, d, F ) such that d < c(1−c)
1−l .

Next, consider the large shock, sL.

In any given network ψ(C,F ) ∈ Ω, following a large shock, there exists at least one

distressed bank and there exists no set of mergers which can prevent all potential failures.

Then, the desired condition in this case is given by Equation (8). For (N − 1)(1 − l) ≥ c

, (N − 1)(1 − l) ≥ c > (1 − Arr(c, d, F )) also holds and banks can prevent all potential

contagious failures in a given potentially contagious d-ring lattice (c, d, F ).

Combining these two conditions together, for ss − (1 − l) ≤ c ≤ (N − 1)(1 − l), any

potentially contagious d-ring lattice (c, d, F ) such that d < c(1−c)
1−l is an optimal network.

Case 2) Non-potentially contagious d-ring lattice (c, d, F ):
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In any non-potentially contagious network, equation (8) strictly holds.

Therefore, in any non-potentially contagious (c, d, F ), given the sharing rule, whenever

equation (9) below holds, then such a network is optimal.

N(1− l)− sS ≥ (N − 1)(1− l)− (1− Aii(C,F )) (9)

Thus, for c ≥ ss − (1 − l), there exists a SNE in a non-potentially contagious (c, d, F )

in which banks form the grand coalition and rescue the shocked bank. Therefore, a non-

potentially contagious d-ring lattice (c, d, F ) such that ss − (1 − l) ≤ c ≤ (N − 1)(1 − l) is

also an optimal network.

The set of non-potentially contagious d-ring lattices satisfying the condition ss−(1− l) ≤
c ≤ (N − 1)(1 − l) depends on the level of sS. For instance, for sS = N(1 − l), the only

non-potentially contagious network would be the complete network, and for smaller values

for sS, the set extends.

Lastly, as shown in proof in Theorem 1, since the A matrix of a d-ring lattice is a circulant

matrix, Aii = Ajj for all i, j holds, thus the result holds for arbitrarily selected shocked bank

r, and hence the result holds under the condition that the shock hits a single bank uniformly

at random.

Proof of Proposition 4:

For such a network (c, d, F ), [N(1− l)−s] < 0 and [(N−1)(1− l)−(1−Arr(c, d, F ))] < 0.

The minimum amount of the required government transfer to prevent all potential failures is

equal to s−N(1− l). The social welfare in this case would be equal to W (c, d, F )
M∗
ψ(c,d,F ) =

(
∑

i∈NM

pi)− s− (s−N(1− l)), if the grand coalition is formed with the minimum amount of

the required government transfer and all potential failures are prevented.

On the other hand, if the government does not assist the rescue of the shocked bank,

but assists in the rescue of the contagious failures in full, then the minimum amount of the

required government transfer is equal to [(1−Arr(c, d, F ))− (N−1)(1− l)]. In that case, the

social welfare is equal to W (c, d, F )
M∗
ψ(c,d,F ) = (

∑
i∈NM

pi)−s−[(1−Arr(c, d, F ))−(N−1)(1−l)],

if the grand coalition excluding bank r is formed with the minimum amount of the required

government transfer, and the contagious failures are prevented in full.

On the other hand, Theorem 1 implies that the required government transfer for prevent-

ing the contagious failures partially would be higher than the required government transfer

for preventing the contagious failures in full. To see that, the government always prefers to

assist in the rescue of any potential contagious failure since the bankruptcy cost of such a

bank is always greater than the required amount of transfer. So, a social welfare-maximizer

government leaves no contagious failures out. Lastly, the required government transfer to

prevent all potential contagious failures is minimized whenever the grand coalition or the

coalition of N \ r is formed, which follows from Theorem 1.

Next, I compare the social welfare under two cases: i) NM = {N}, and ii) NM ′ =

{r, (N \ r)} .
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For (
∑

i∈NM

pi)− s− [(1− Arr(c, d, F ))− (N − 1)(1− l)] ≤ (
∑

i∈NM

pi)− s− (s−N(1− l)),

the government prefers to assist in the rescue of the shocked bank. Given that with no

intervention all banks would fail and the shareholders payoff would be equal to zero, then

there exists no coalitional deviation as shown in the proof of Proposition 1, and the shocked

bank would be rescued at equilibrium, where the promised government transfer is (s−N(1−
l)) for the grand coalition and zero for any other merger configuration.

The condition for the shock can be rewritten as s ≤ s∗ = [(1−Arr(c, d, F ))+(1− l)]. For

given vector of external liabilities l, s∗ is increasing in (1−Arr(c, d, F )), which is increasing

in the integration level c, by Lemma 2 in Elliott et al. (2014).

For, s > s∗ = [(1− Arr(c, d, F ) + (1− l)], the government prefers to assist in the rescue

of the rest of the system, and there exists an equilibrium in which all potential contagious

failures are prevented, where the promised government transfer is (1− Arr(c, d, F ))− (N −
1)(1− l) for the coalition (N \ r) and zero for any other merger.

Proof of Proposition 5:

Theorem 2 implies that for s = sS, all potential failures are prevented with no government

assistance in such a network. For s = sL, the government assistance is required to prevent

all potential failures.

Next, I show that there exists s = [1+N(1−l)]
2

such that the government never assists in

the rescue of all potential failures if the large shock sL > s = [1+N(1−l)]
2

.

For any level of large shock sL > N(1−l), the minimum level of the required amount of the

government transfer is equal to tr = sL−N(1−l). Therefore, the government never assists in

the rescue of the shocked bank in any network (C,F ) ∈ Ω if N−sL− [sL−N(1− l)] < N−1,

which can be rewritten as sL >
[1+N(1−l)]

2
.

For s = sL, the social welfare with no government assistance in an optimal d-ring lattice

is equal to W (c, d, F )
M∗
ψ(c,d,F ) = (

∑
i∈NM

pi)−pr = N−1. On the other hand, if the government

transfers sufficiently high amount of resources to the shocked bank so that the “rescue of

all potential failures” emerges as an equilibrium outcome, then the social welfare is equal to

W (c, d, F )
M∗∗
ψ(c,d,F ) = (

∑
i∈NM

pi)−sL−t where t is the sum of the government-assistance. Thus,

the government assists in the rescue of all potential failures if (
∑

i∈NM

pi)−sL−t ≥ (
∑

i∈NM

pi)−pr,

which can be rewritten as N − sL − t ≥ N − 1.

Proposition 4 implies that the transfer of tr = sL−N(1−l) results in the prevention of all

potential failures in a d-ring lattice (c, d, F ) such that (N − 1)(1− l)− (1−Arr(c, d, F )) = 0.

Thus, in such a d-ring lattice, whenever N − sL − (sL − N(1 − l)) ≥ N − 1 , the

government always prefers to assist in the rescue of all potential failures. The condition can

be rewritten as sL ≤ [1+N(1−l)]
2

. Moreover, the required amount of transfer is equal to the

possible minimum amount of transfer that is required to prevent all potential failures in any

network (C,F ) ∈ Ω, which is equal to sL − N(1 − l). Lastly, since the government is a

social welfare-maximizer, the social welfare is equal to N − sL− [sL−N(1− l)] ≥ N − 1 for
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sL ≤ [1+N(1−l)]
2

, and the social welfare is equal to N − 1 for sL >
[1+N(1−l)]

2
.

The integration level c that satisfies (N − 1)(1− l) = (1−Arr(c, d, F )) is an intermediate

integration since (N − 1)(1− l) = (1− Arr(c, d, F )) > c(1− c), where c(1− c) is increasing

in c for c ∈ [0, 1
2
]. This completes the proof.

Proof of Proposition 7:

Index the mergers in M based on the distress ranks of the banks involved, and denote a

given merger by mk if dri = drj = k ∀(i, j) ∈ mk, and denote the set of mergers mk by Mk.

Consider that bank r is not involved in any merger, r /∈ φ.

Suppose that there exists a merger m1 ∈ M . We know that vi − li − Airs < 0 holds for

all i ∈ m1. By Lemma 2, AMm1r
=
∑
i∈m1

Air holds since r /∈ φ. Then,
∑
i∈m1

(vi − li) − AMm1r
=∑

i∈m1

(vi − li) −
∑
i∈m1

Air < 0 also holds, which means that m1 defaults at step 1 in (C,F )M .

This result holds for any m1 ∈ M1. On the other hand, by Lemma 2, Ajr = AMjr ∀j /∈ φ,

which implies that vj − lj − Ajr = vj − lj − AMjr < 0 holds for all {j : j /∈ φ, drj = 1};
thus any such bank j defaults at step 1 in (C,F )M . Lastly, Lemma 2 implies that any

{j : j /∈ φ, drj > 1} remains solvent at step 1 in (C,F )M . Similar argument follows for each

subsequent step of the algorithm. Formally, for pi = 1 for all i ∈ N , and βi = β for all i 6= r,

we have:

AMmkml
∑

l∈ml βl =
(∑

l∈ml

∑
k∈mk

(Aklpl)∑
l∈ml

pl

)∑
l∈ml βl = (

∑
l∈ml

∑
k∈mk Akl)β.

Therefore, for any mk, its total loss due to the failures up to the kth step of the conta-

gion algorithm in (C,F )M is equal to (
∑

l:l<k,l∈Ml

∑
k∈mk Akl)β +

∑
i/∈φ,i∈ℵk−1

∑
k∈mk Aki)β +∑

k∈mk Akr(s + βr), which is equal to the sum of the individual losses of each bank in mk

due to the failures up to the kth step of the contagion algorithm that would be realized if

merger mk has not been formed, all else equal.

For any individual bank that has the distressed level of k, we know that vk− lk−Akr(s+

βr)−(
∑

i∈ℵk−1
Aki)β < 0 holds. Thus,

∑
k∈mk(vk−lk−Akr(s+βr))−(

∑
l:l<k,l∈Ml

∑
k∈mk Akl)β−

(
∑

i/∈φ,i∈ℵk−1

∑
k∈mk Aki)β < 0 also holds, and hence; any mk defaults at step k of the conta-

gion algorithm in the network (C,F )M . This holds for any mk ∈ Mk and any k.Thus, there

exists no rescue merger in M , which completes the proof.
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(eM)′

NM = {1, 2, 3, 4} (0, 0, 0, 0)

NM = {{1, 2}, 3, 4} (0, 0, 0, 0)

NM = {{1, 2}, {3, 4}} (0, 0.0355)

NM = {1, 2, {3, 4}} (0, 0.0355)

NM = {{1, 3}, 2, 4} (0, 0, 0, 0)

NM = {{1, 3}, {2, 4}} (0, 0, 0, 0)

NM = {1, 3, {2, 4}} (0, 0, 0, 0)

NM = {{1, 4}, 2, 3} (0, 0, 0, 0)

NM = {{1, 4}, {2, 3}} (0, 0, 0, 0)

NM = {1, 4, {2, 3}} (0, 0, 0, 0)

NM = {{1, 2, 3}, 4} (0, 0, 0, 0)

NM = {{1, 2, 4}, 3} (0, 0, 0, 0)

NM = {{1, 3, 4}, 2} (0, 0, 0, 0)

NM = {{2, 3, 4}, 1} (0.02, 0)

NM = {{1, 2, 3, 4}} (0.02)

Table 1. Potential rescue configurations and total payoffs in Example 134

Table 1 depicts the outcomes for potential configurations in Example 1, where (eM)′ is

the total payoffs of banks in NM in each potential partition of set N .

In Example 1, one can see that there exists a strong Nash equilibrium in which banks 3

and 4 form a coalition. In addition, there exists no strong Nash equilibrium in which banks

1 or 2 are involved in a rescue merger. This example illustrates a case of partially prevented

contagion where banks in the network have the capability of preventing all failures, which

would occur if the grand coalition has been formed, and also have the capability of preventing

all potential contagious failures, which would occur if a coalition by banks 2,3, and 4 has

been formed.

Moreover, one can see that the results in this example would hold for various sharing

rules. As an example, consider the outcome NM = {{1, 2, 3, 4}}. In this case, even if

the sharing rule is such that banks 1 and 2 receives zero payoff, banks 3 and 4 would still

deviate and form the coalition of {3, 4}. Similarly, consider the outcome NM = {{2, 3, 4}, 1}.
Similarly, even if bank 2 receives zero payoff , banks 3 and 4 would still deviate and form

the coalition of {3, 4}.

Proof of Proposition 6:

For given claims in a star network, the matrix (I−C) can be represented as an “arrowhead

matrix” such that:

34Non-zero entries in Table 1 are rounded up if necessary.
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I − C =



1 0 0 · · · 0 −αp
0 1 0 · · · 0 −αp
0 0 1 · · · 0 −αp
...

...
...

. . .
...

...

0 0 0 · · · 1 −αp
−αc −αc −αc · · · −αc 1


where core node is represented as the nth element of the matrix above.

Following Theorem 2.1 in Najafi et al. (2014), the modified Sherman-Morrison inverse of

(I − C) is as follows:

(I − C)−1 = (I − S1)
(
I − 1

1+ω
(S2(I − S1))

)
where 1 + ω 6= 0, ω = −(n− 1)αpαc, and S1 and S2 are strictly lower and strictly upper

triangular parts of (I − C) such that (I − C) = I + S1 + S2.

Then,

S2(I − S1) =



0 0 0 · · · 0 −αp
0 0 0 · · · 0 −αp
0 0 0 · · · 0 −αp
...

...
...

. . .
...

...

0 0 0 · · · 0 −αp
0 0 0 · · · 0 0





1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

αc αc αc · · · αc 1



I − S2(I−S1)
1+ω

=



1−(n−2)αpαc
1−(n−1)αpαc

αpαc
1−(n−1)αpαc · · ·

αpαc
1−(n−1)αpαc

αp
1−(n−1)αpαc

αpαc
1−(n−1)αpαc

1−(n−2)αpαc
1−(n−1)αpαc · · ·

−αpαc
1−(n−1)αpαc

αp
1−(n−1)αpαc

...
...

...
...

...
αpαc

1−(n−1)αpαc
αpαc

1−(n−1)αpαc · · ·
. . . αp

1−(n−1)αpαc
0 0 0 · · · 1



(I−C)−1 =



1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

αc αc αc · · · αc 1





1−(n−2)αpαc
1−(n−1)αpαc

αpαc
1−(n−1)αpαc · · ·

αpαc
1−(n−1)αpαc

αp
1−(n−1)αpαc

αpαc
1−(n−1)αpαc

1−(n−2)αpαc
1−(n−1)αpαc · · ·

−αpαc
1−(n−1)αpαc

αp
1−(n−1)αpαc

...
...

...
...

...
αpαc

1−(n−1)αpαc
αpαc

1−(n−1)αpαc · · ·
. . . αp

1−(n−1)αpαc
0 0 0 · · · 1



(I − C)−1 =



1−(n−2)αpαc
1−(n−1)αpαc

αpαc
1−(n−1)αpαc · · · αpαc

1−(n−1)αpαc
αp

1−(n−1)αpαc
αpαc

1−(n−1)αpαc
1−(n−2)αpαc
1−(n−1)αpαc · · · αpαc

1−(n−1)αpαc
αp

1−(n−1)αpαc
...

...
...

...
...

αpαc
1−(n−1)αpαc

αpαc
1−(n−1)αpαc · · · . . . αp

1−(n−1)αpαc
αc

1−(n−1)αpαc
αc

1−(n−1)αpαc
αc

1−(n−1)αpαc · · · 1
1−(n−1)αpαc


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Ĉ =


1− αc 0 · · · 0

0
. . . 0

...
... 0 1− αc 0

0 · · · 0 1− (n− 1)αp


The dependency matrix A is equal to:

A = Ĉ(I−C)−1 =



(1−αc)(1−(n−2)αpαc)
1−(n−1)αpαc

(1−αc)αpαc
1−(n−1)αpαc · · · (1−αc)αpαc

1−(n−1)αpαc
(1−αc)αp

1−(n−1)αpαc
(1−αc)αpαc
1−(n−1)αpαc

(1−αc)(1−(n−2)αpαc)
1−(n−1)αpαc · · · (1−αc)αpαc

1−(n−1)αpαc
(1−αc)αp

1−(n−1)αpαc
...

...
...

...
...

(1−αc)αpαc
1−(n−1)αpαc

(1−αc)αpαc
1−(n−1)αpαc · · · . . . (1−αc)αp

1−(n−1)αpαc
αc(1−(n−1)αp)
1−(n−1)αpαc

αc(1−(n−1)αp)
1−(n−1)αpαc

αc(1−(n−1)αp)
1−(n−1)αpαc · · · 1−(n−1)αp

1−(n−1)αpαc


Then, for pp = 1 for all p ∈ N \ c , and for given pc, before any shock hits, we have:
v1
v2
v3
v4

 =


(1−αc)(1−(n−2)αpαc)

1−(n−1)αpαc
(1−αc)αpαc
1−(n−1)αpαc

(1−αc)αpαc
1−(n−1)αpαc

(1−αc)αp
1−(n−1)αpαc

(1−αc)αpαc
1−(n−1)αpαc

(1−αc)(1−(n−2)αpαc)
1−(n−1)αpαc

(1−αc)αpαc
1−(n−1)αpαc

(1−αc)αp
1−(n−1)αpαc

(1−αc)αpαc
1−(n−1)αpαc

(1−αc)αpαc
1−(n−1)αpαc

(1−αc)(1−(n−2)αpαc)
1−(n−1)αpαc

(1−αc)αp
1−(n−1)αpαc

αc(1−(n−1)αp)
1−(n−1)αpαc

αc(1−(n−1)αp)
1−(n−1)αpαc

αc(1−(n−1)αp)
1−(n−1)αpαc

1−(n−1)αp
1−(n−1)αpαc




1

1

1

1

pc


where bank 4 is the core bank and other banks are the periphery banks. Then, by some

lines of algebra,

vp = (1−αc)(pp+αppc)
1−(n−1)αpαc

vc = (1−(n−1)αp)(αcpp(n−1)+pc)
1−(n−1)αpαc

For n = 4 and pp = 1:

vp =
[
(1−αc)(1+αppc)

1−3αpαc

]
for all p ∈ N \ c, and vc = (3αc+pc)(1−3αp)

1−3αpαc .

Moreover, the assumption
∑
i∈N

(pi − li) ≤ pp guarantees that for sufficiently large shocks

banks are not capable of preventing all failures. The conditions for the optimal network are

as follows.

i) For the core bank, the optimality requires:∑
i∈N\c

Aic = 1− Acc =
∑

i∈N\c
(vi − li), which can be rewritten as:

(n− 1) (1−αc)αp
1−(n−1)αpαc = (n− 1)

[
(1−αc)(pp+αppc)
1−(n−1)αpαc − lp

]
By further simplification:

lp =
[
(1−αc)(pp+αppc−αp)

1−(n−1)αpαc

]
αp
αc

=
[

(lp+pp(αc−1))
αc(pc−1−αc(pc−1−(n−1)lp))

]
For n = 4,

αp
αc

= (lp+αc−1)
αc(pc−1−αc(pc−1−3lp))
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This gives us the first condition.

ii) For each periphery bank p ∈ N \ c, the optimality requires:

1− App = (vc − lc) +
∑

i∈N\(p∪c)
(vi − li)

1− App =
[
(1−(n−1)αp)(αcpp(n−1)+pc)

1−(n−1)αpαc − lc
]

+ (n− 2)
[
(1−αc)(pp+αppc)
1−(n−1)αpαc − lp

]
Then, I plug lp =

[
(1−αc)(pp+αppc−αp)

1−(n−1)αpαc

]
into above and get:

1− App =
[
(1−(n−1)αp)(αcpp(n−1)+pc)

1−(n−1)αpαc − lc
]

+ (n− 2)
[

(1−αc)αp
1−(n−1)αpαc

]
(n− 2) (1−αc)αpαc

1−(n−1)αpαc + αc(1−(n−1)αp)
1−(n−1)αpαc =

[
(1−(n−1)αp)(αcpp(n−1)+pc)

1−(n−1)αpαc − lc
]

+ (n− 2)
[

(1−αc)αp
1−(n−1)αpαc

]
Then, by rewriting the equation above:

lc = −(n−2)( (1−αc)αpαc
1−(n−1)αpαc )−

αc(1−(n−1)αp)
1−(n−1)αpαc +

[
(1−(n−1)αp)(αcpp(n−1)+pc)

1−(n−1)αpαc

]
+(n−2)

[
(1−αc)αp

1−(n−1)αpαc

]
lc = (n−2)(1−αc)2αp+(αc(pp(n−1)−1)+pc)(1−(n−1)αp)

1−(n−1)αpαc

For pp = 1 and n = 4, we get:

lc = 2αp(1−αc)2+(2αc+pc)(1−3αp)
1−3αpαc

αp
αc

= (2αc+(pc−lc))
αc[(10−3lc)αc−2α2

c+3pc−2]

This gives us the second condition.

By combining the two equations for αp
αc

, we get:

αp = 2αc+(pc−lc)
αc[(10−3lc)αc−2α2

c+3pc−2] = (lp+αc−1)
αc(pc−1−αc(pc−1−3lp))

which gives us a solution for αc as a function of pc, lc, pp, and lp. By plugging α∗c(pc, lc, pp, lp)

into conditions above, we get α∗p(pc, lc, pp, lp).

Lastly, for each bank to be initially solvent before any shock hits, it should be that vc ≥ lc
and vp ≥ lp. First, as one can see from the equations above, vp ≥ lp always holds. Second,

vc ≥ lc holds iff αc(1−3αp)
2αp(1−αc)2 ≥ 1 holds, which is the third condition.

These three conditions together characterize the solution for star network.

Then there exists (pc, lc, pp, lp) such that a star network with claims α∗c(pc, lc, pp, lp) and

α∗p(pc, lc, pp, lp) satisfies these initial conditions for the optimality.

Next, I show that in such star network with α∗c(pc, lc, pp, lp) and α∗p(pc, lc, pp, lp), whenever

there is a distressed bank, the grand coalition is formed at equilibrium (with or without

government intervention, depending on the shock level).

Under the assumption that
∑
i∈N

(pi − li) ≤ 1
2
, it is always true that whenever a periphery

bank is hit by a shock and becomes distress, then the core bank and the other periphery

banks also become distressed. Similarly, whenever the core bank is hit by the shock and

becomes distressed, then under the assumption that pc > 1 , all other banks are distressed

banks as well because Aic = vi − li for all i ∈ N \ c implying that Aicpc > vi − li for all

i ∈ N \ c.
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Next, in the given star network,
∑
i∈N

(pi − li) ≤ 1
2

implies that any single default would

cause a total loss at least as much as the total available capital in the system. Moreover,

whenever the shocked bank is in distress, any coalitional deviation that involves the shocked

bank would default due to the shock. Any coalitional deviation that does not involve the

shocked bank would default. Therefore, whenever any coalition that does not involve some

banks and if those banks default, then any other coalition among the remaining banks would

also default. Therefore, similar to the previous proofs, it follows form here that the grand

coalition is equilibrium (with or without government assistance, depending on the shock

level) whenever there exists any distressed bank following a given shock.

Example 7.

I set pp = 1, pc = 5, lp = 42
44
< 1, lc = 1033

220
< 5.

Then, αp = 0.1 and αc = 0.4 is an optimal network, where vc = 1085
220

for the core bank,

and vp = 45
44

for each periphery bank, and the dependency matrix is

A =


69
110

3
110

3
110

3
44

3
110

69
110

3
110

3
44

3
110

3
110

69
110

3
44

14
44

14
44

14
44

35
44


Proof of Theorem 3:

The dependency matrix and vector ~v is given by:

A =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann



v1
v2
...

v4

 =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann



p1
p2
...

pn


Step 1) First, the Assumption of

n∑
i=1

(pi − li) < 1
2
< min{p1, ..., pn} implies that the

shock to any bank can be large enough that banks are not capable of preventing all failures.

In such a case, the government assistance is required to prevent all failures. Whenever

the government decides to assists, the level of assistance does not depend on the level of

connectivity but only depends on
n∑
i=1

(pi − li), which is exogenously given. Whenever, the

government decides not to rescue, then the rest of banks can prevent all potential contagious

failures if 1 − Akk ≤
∑

j∈N\k
(vj − lj). Therefore, similar to the proof of Theorem 2 and

Proposition 5, for each bank k, the following property is the first desired property.

(1− Akk) pk =
∑

j∈N\k
(vj − lj)
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where (1 − Akk) measures the total dependency of other banks to bank k. In this case,

failure of a bank causes a loss to the rest of the system equal to the total net worth of

remaining banks.

By using v̂ = Ap̂, the expression can be rewritten as:∑
i∈N\k

∑
j∈N\k

Aijpj =
∑

j∈N\k
lj for all k ∈ N (k is a singleton)

This equation implies that the dependency of other banks to bank k, (1 − Akk), is at

intermediate levels since it is a function of p̂ and l̂, and it is always greater than zero.

Step 2) For (1− Akk) pk =
∑

j∈N\k
(vj − lj) for all k ∈ N (k is a singleton), it holds that

whenever the shocked bank (a randomly chosen bank) is distressed either

i) there exists at least one extra bank that is distressed (there exists a bank j ∈ N \ r
s.t. (1− Ajr) pr > vj − lj), or

ii) (1− Ajr) pr = (vj − lj) holds for each j ∈ N \ r (net worth of each bank in the set of

{N \ r} drops to zero, as in the complete network case).

If the second condition holds (such as in complete network), then we are done. If the

first condition holds, move to step 3.

Step 3) Next, I show that whenever the condition below holds and the banks do not have

capability to rescue the shocked bank, then there exists no group of banks that can deviate

from grand coalition and have a shareholders’ value greater than zero without government

support. ∑
i∈K

∑
j∈K

Aijpj ≤
∑
i∈K

li for all K ⊂ N

Any K ⊂ N defaults. For any K ⊂ N \ r, the condition above implies that either

i)
∑

j∈N\k
Akrpr >

∑
j∈K

(vj − lj), otherwise

ii) there exists a bank in j ∈ N \ {K ∪ r} such that Ajrpr > vj − lj. Then, for any

consequent steps the similar scenario holds, and eventually the loss emanating from failing

banks outside of group K exceeds
∑
j∈K

(vj − lj). So, any coalition that does not involve bank

ralso defaults, so deviation is not profitable.

Next, consider the small shocks where banks can coalitionally prevent all failures. In such

a case, the sharing rule guarantees that there exists no profitable deviation by a coalition

smaller than the grand coalition that involves bank r. The reason is that for a deviation to be

profitable it should be that any remaining bank must be solvent, otherwise as shown above

the total loss exceed
∑
j∈K

(vj − lj) and the coalition defaults. Consider a partition {K,N \K}

such that coalition K involves bank r and can absorb the shock, and the remaining banks

are solvent. Then, given the sharing rule the grand coalition gives at least as much as payoff

as each bank in coalition K receives in partition {K,N \ K}. Thus, the grand coalition

becomes an equilibrium outcome.
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Any financial network (C,F ) that does not satisfy these two properties is not a social-

welfare maximizing network. First, whenever part i) does not hold and the integration level

for any bank is greater than the given intermediate level of integration, then this implies

that for sufficiently large shocks, the government has to step in to maintain the stability in

the rest of the system that drops the social welfare. On the other hand, if there exists a

bank that has a lower integration level than the given intermediate level of integration, then

the contributions of other banks in rescue of that bank would be lower, which again drops

the social welfare.

Second, whenever part ii) does not hold, then as discussed above there always exists a

coalition that can deviate from the grand colation and end up with a value greater than zero,

which implies that there exist cases where the welfare is less than the first-best case.

Lastly, the characterization result here relies on the dependency matrix A but the exis-

tence of such networks relies on the claims matrix C where A = Ĉ(I−C)−1. Lastly, Lemma

1 together with the conditions given in Theorem 3 imply that there always exists a C matrix

where A = Ĉ(I − C)−1 satisfies the conditions in Theorem 3. This finalizes the proof.
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Figure 13: Interdependencies in balance sheets

The Linearities in Interbank Contracts.—Figure 13 illustrates how a decline in the proprietary

asset return of bank i affects the interbank liabilities and the net worth of bank i and j.

Figure 13 shows the linearities in interbank assets and liabilities. Such linearities might

be thought of as the voluntary “write-downs” of interbank liabilities in distressed times. For

instance, if any bank faces a sharp reduction in mortgage loan repayments by households,

then its assets decrease and the claim structure implies that its interbank liabilities also drop

at some rate. Given that the external liabilities always remain fixed, the drop in its total

liabilities is always smaller than the drop in its total assets. This feature makes the model

with bankruptcies robust to the feature of linearities. Equation (3) shows that when the

total assets of bank i (Vi) decreases by one unit, its interbank liabilities decrease in amount

of
∑
j∈N

Cji < 1 units.
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7.1 Discussion on Cooperative Game and Non-Cooperative Game

Settings

The coalition formation framework built on a contagion model has two specific features.

First, bank rescues are similar to public goods, where all banks weakly gain some benefits

from any rescue that prevent a costly bankruptcy, whereas rescuer banks pay some costs.

The (potential) costs for rescuers might exceed the (potential) benefits in some cases. Sec-

ondly, rescue mergers are complements to each other and, hence, the superset of a given set

of rescue mergers is also a rescue merger, for everything else constant. These two specifi-

cations together imply that both a cooperative game setting and a non-cooperative game

setting would work similarly and provide the same insights and results about welfare analysis.

Similarly, among non-cooperative game settings, solution concepts of strong Nash equilib-

rium and coalition-proof Nash equilibrium provide the same results. In the paper, I define

a non-cooperative game for rescue formation and use strong Nash equilibrium as a solu-

tion concept. Alternatively, a cooperative (or coalitional) game setting could be used under

proper core definitions that captures the externalities35 and the possibility of formation of

coalitions smaller than the grand coalition.

35Partition Function Games (PFGs) are the cooperative games that capture the externalities in a given

economy, different than the Characteristics Function Games. In a PFG, payoffs of agents in a coalition

depends on the partition of the economy, so depends on what other agents do.
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