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Abstract
This paper studies how complexity impacts markets’ ability to aggregate informa-
tion and distribute risks. I amend fundamental asset pricing theory to reflect agents’
imperfect knowledge about complex dividend distributions and test its clear-cut pre-
dictions in the laboratory. Market equilibria corroborate complexity-averse trading
behavior. Despite being overpriced, markets efficiently share complex risks between
buyers and sellers. While complexity induces noise in individual trading decisions,
market outcomes remain theory-consistent. This striking feature reconciles with a
random choice model, where bounds on rationality are reinforced by complexity.
By adjusting for estimation biases, traders reduce the variation in market-clearing
prices of complex risks.
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That economic decisions are made without certain knowledge of the consequences is pretty
self-evident.
Kenneth J. Arrow

The essence of the situation [the problems of life] is action according to opinion, of greater or
less foundation and value, neither entire ignorance nor complete and perfect information, but

partial knowledge.
Frank H. Knight

1. Introduction

Risk is ubiquitous to decision-making in financial markets, where investors’ trading deci-
sions directly affect their financial well-being. In their seminal work, Debreu (1959) and
Arrow (1964) provide an elegant theory of value and choice under risk in the context
of perfect and complete markets. In sharp contrast to this theoretical benchmark, the
inherent complexity of real-world markets only allows for an imperfect measurement of
financial risks (Knight, 1921) with varying levels of confidence (Keynes, 1921). Thus, it
may come as little surprise that the predictions by Debreu and Arrow’s theory are gener-
ally rejected in the field. Acknowledging this particular discrepancy between theory and
reality, I ask the following three questions: (i) How powerful is the neoclassical theory in
describing market outcomes, i.e., prices and allocations, if one accounts for the complex
risk structure of financial assets? (ii) Can such an amended theory improve our under-
standing of the highly non-trivial process that transforms individual trading decisions into
collective market outcomes? (iii) How does complexity impact financial markets’ ability
to aggregate information and distribute risk? I try to answer these questions in two steps.

I begin with the theory. For the most simple two-state setting, I extend traditional
consumption-based asset pricing theory to reflect agents’ partial knowledge about the
distribution of future dividends (Knight, 1921). The source of complexity that impairs
information quality is exogenous to the model. To increase generality, I incorporate both
kinked as well as smooth complexity preferences by applying two canonical decision theo-
ries under ambiguity (Ghirardato, Maccheroni, and Marinacci, 2004; Klibanoff, Marinacci,
and Mukerji, 2005). In a Walrasian market, both preference classes provide similar qual-
itative implications regarding the trading of complex risks: In the absence of aggregate
uncertainty, competitive market prices are sensitive to mispricing, whereas risk alloca-
tions are relatively more robust to incorrect beliefs. Intuitively, the latter is the result
of increased risk sharing incentives in the face of imperfect information. Contrary to the
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above decision theories, subjective expected utility (Savage, 1954), i.e., the theoretical
foundation of choice under uncertainty, implies relatively less efficient risk sharing under
partial knowledge.

Clearly, whether preferences known to explain behaviour under (pure) ambiguity pre-
serve any explanatory power (over subjective expected utility) for partially measurable
risks remains an empirical question. In a second step, I therefore test the theory’s clear-
cut predictions in the laboratory, constructing a one-to-one replication of the underlying
model economy. The lab is the sole environment that enables me to simultaneously con-
trol for both individual beliefs and strategic uncertainty, a virtual impossibility in the
context of field data. In my main treatment, I introduce complexity in traded risks by
relying on the seminal description of financial risks by Bachelier (1900) and Black and
Scholes (1973).

My findings shed light on the above questions. First, in the presence of complex
risks, asset market equilibria corroborate complexity-averse trading behavior. In line
with markets’ awareness of traders’ imperfect information, complexity reduces the price
elasticity of risk-minimizing supply and demand schedules. Complex risks are generally
overpriced, suggesting that individuals overestimate the drift relative to the volatility
component of financial risks. However, the reduction in price sensitivity overcomes the
sizeable variation in subjective beliefs, allowing complex risks to be shared almost perfectly
between buyers and sellers. This striking feature of market equilibrium under partial
knowledge demonstrates the explanatory power of a conditional rational choice paradigm
that accounts for informational imperfections.

Second, at the individual level, complexity causes more mistakes in trading decisions,
where mistakes are defined as adopting strategies that are strictly dominated in terms
of their risk-return profile.1 Both frequencies and distributions of dominated actions
confirm that individual trading strategies become increasingly noisy under more complex
risks. Crucially, as the number of participants becomes larger, this noise cancels out
in equilibrium and theory-consistent prices and optimal risk allocations prevail. This
aggregation result can be explained by a random choice model in which the relative
likelihood of a given action is increasing in its anticipated utility.2

Third, combining complexity aversion with random choice provides an effective setting
to investigate how complex risks generically impact market outcomes. While complexity

1 Conditions for strict dominance are derived under perfect and imperfect information about dividends.
In the latter case, the conditions hold for both kinked (Ghirardato, Maccheroni, and Marinacci, 2004)
and smooth (Klibanoff, Marinacci, and Mukerji, 2005) preferences.

2 See Section 3 for a formal definition of anticipated utility under imperfect information.
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aversion facilitates robust risk sharing, its implication on the informativeness of prices
is per se ambiguous. However, I find evidence that individual trading behavior exhibits
self-awareness of prevailing estimation biases. More specifically, the bigger the distance
between individual point estimates and the true dividend probability, the less price sensi-
tive the submitted supply and demand curves. Eventually, self-awareness translates into
collective awareness which decreases the variation in market-clearing prices relative to
the variation in subjective beliefs. This showcases the stabilizing effect of discontinuous
trading periods during times of high price uncertainty. In general, markets’ ability to
aggregate subjective beliefs into prices is therefore determined by the trade-off between
reduced price sensitivity and amplified bounded rationality.

Finally, my empirical findings have several implications for the experimental and the-
oretical asset pricing literature: (i) Extending the finding in Biais, Mariotti, Moinas,
and Pouget (2017), I show that, in absence of complex risks, second-order stochastic
dominance is sufficient for generating competitive market outcomes in line with rational
choice.3 (ii) In the presence of complex risks, individual behavior is highly heteroge-
neous, i.e., trading strategies implied by subjective expected utility as well as kinked and
smooth ambiguity preferences are observed. (iii) Notwithstanding individual heterogene-
ity and complexity-induced bounded rationality, incorporating partial knowledge into a
neoclassical asset pricing model convincingly explains market equilibria under imperfect
information. Hence, subjective expected utility à la Savage (1954) is insufficient to un-
derstand market behavior if traders have access to partial knowledge only. Moreover, my
bottom-up approach demonstrates how aggregate stability results from individual hetero-
geneity. This stands in contrast to the rational of representative agent models motivated
by specific singular behavior.

The merits of taking the study of how (complex) individual trading translates into to
market outcomes to the lab are manifold. By design, the lab allows for the construction
of complete markets and—by comparing market-clearing prices to random price draws—
provides a direct test of their competitiveness. Also, the experimenter can exercise full
control over each market participants’ information set and how their individual decisions
interact towards equilibrium. Crucial for any study of complex information, the labora-
tory environment offers the unique virtue of measuring subjective beliefs (expectations).
This generally constitutes an impracticality when confronted with real-world data. Most
importantly, the treatment effect under investigation can be analyzed in isolation, while

3 In the setting studied by Biais, Mariotti, Moinas, and Pouget (2017), rational choice is implied by
first order stochastic dominance.
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controlling for any kind of endogeneity concerns.
The obvious benchmark for this study is the case in which traders face ‘simple’ risks

and hence everybody has perfect information about the objective dividend distribution. In
my experiment, complexity is introduced by linking risky dividends directly to the payoff
of a digital option, i.e., making dividends depending on the realizations of a particular
‘reference path’. In this case, the reference path follows a geometric Brownian motion.
More specifically, participants are provided with the parameters of the reference path in
addition to a dynamic visualization of its past trajectory. Thus, the presence of complex
risks requires them to deductively determine dividend distributions by solving a stochastic
differential equation. Although solvable by hand for certain parameters, deriving the
problem’s closed-form solution proves infeasible for most participants.4 The advantage
of this implementation is the simple structure of the complicated but yet well-defined
task at heart. The problem’s comprehensible form together with its visualization allows
participants to appraise—with more or less certainty—the apparently objective dividend
risk.5 Note, the objectivity of the complex dividend distribution is a necessary condition
for contrasting the empirical data to any kind of theoretical benchmark.

In the absence of perfect information, participants acquire a more or less precise es-
timate of the relevant dividend distribution, i.e., are faced with a smaller or wider set of
possible priors. Being aware of the incompleteness of their knowledge, “it would be irra-
tional for an individual who has poor information about her environment to ignore this
fact and behave as though she were much better informed” (Epstein and Schneider, 2010,
p. 5). Thus, I theoretically study trading decisions under complex risks as a departure
from subjective expected utility by applying two seminal ambiguity models: a general-
ization of the multiple-priors model by Gilboa and Schmeidler (1989), and the smooth
ambiguity model by Klibanoff, Marinacci, and Mukerji (2005). While the former implies
kinked ambiguity preferences, the later allows for smooth ambiguity effects.

In my setting, the main implication of both models is intuitive. If agents are averse
4 This is not surprising given the means at hand and the limited time available during the experiment.

Presenting participants with an obviously solvable but complicated problem represents the design’s
integral treatment.

5 Although this notion of complexity is arguably specific, it naturally extends to real-world financial
markets’ perceived risk structure. There is a vast scientific literature on various notions of complexity.
In computer science and machine learning one distinguishes, e.g., between computational complexity
(required resources), sample complexity (minimum number of draws), and Kolmogorov complexity
(minimum descriptive length) of problem solving. Interestingly enough, recent contributions in deci-
sion science provide evidence for commonalities between the human brain and computer algorithms
solving and reacting to problems with varying levels of complexity (see, e.g., Bossaerts and Murawski
(2016)).
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to perceived ambiguity, they, ceteris paribus, prefer to avoid being exposed to imper-
fectly understood risks. When starting from a zero ambiguity exposure, this leads to a
no-trade interval.6 For nonzero endowments in the risky asset, as pointed out by Dow
and da Costa Werlang (1992), engaging in trade is generally optimal. In my model econ-
omy, incentives to trade stem from nontradable but hedgeable consumption risk. In short,
under both models, agents’ price sensitivity of their perfect hedging strategy decreases
in the presence of complex risks. Intuitively, being completely hedged insures not only
against risk but also against potential complexity-induced ambiguity. The main difference
between the two models lies in their implied conditions for mispricing. Within the smooth
ambiguity model, incorrect beliefs immediately impact equilibrium prices, whereas this
does not unconditionally hold for the multiple-priors model. As noted above, my experi-
ment finds evidence for both preference classes.

To compare the above documented complexity effects to those induced by the canonical
ambiguity instrument in experimental economics, I additionally study both individual
behavior and market allocations in an Ellsberg (1961) environment. My results indicate
that complex risks have similar but more pronounced implications on individual trading
and market outcomes than ambiguity induced by conventional Ellsberg urns.

The remainder of the paper is organized as follows. Section 2 reviews the literature.
Section 3 introduces the model economy and develops the necessary theory for generating
predictions about trading both simple and complex risks. Section 4 describes the exper-
imental design. Section 5 confronts the theoretical predictions with the data. Section 6
concludes.

2. Literature

This paper relates to four distinctive strands of the literature. First, my design directly
builds on the experimental setup proposed by Biais, Mariotti, Moinas, and Pouget (2017).
Relying on a two-state world with two nonredundant assets (a risk-free bond and a risky
stock), it offers the simplest possible setting to test the rational paradigm of general equi-
librium asset pricing theory. Controlling for participants competitive behavior, they find
market outcomes to be consistent with the theory of complete and perfect markets: On
average, (simple) risk is perfectly shared and only aggregate risk is priced. Therefore,
Biais, Mariotti, Moinas, and Pouget’s (2017) parameter-free test of the most fundamental

6 For example, this phenomenon serves Dimmock, Kouwenberg, Mitchell, and Peijnenburg (2016) in
explaining known household portfolio puzzles, e.g., the equity home bias.
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theory constitutes the ideal benchmark upon which the trading of simple and complex
risks can be compared.7 Moreover, its simple market-clearing pricing scheme based on
individual supply and demand functions can be controlled for any kind of strategic uncer-
tainty. This constitutes an impracticality in the context of the continuous double auction
that is most commonly used in experimental asset market studies.

Second, the herein presented analysis naturally relates to experimental studies on
trading ambiguous or complex assets. Implementing a continuous double auction of state-
contingent claims based on an Ellsberg urn, Bossaerts, Ghirardato, Guarnaschelli, and
Zame (2010) analyze how participants’ ambiguity aversion affects asset prices and final
portfolio holdings. Similar to the no-trade result, they find that, for certain subsets of
prices, ambiguity-averse agents prefer to hold nonambiguous portfolios. Furthermore,
Bossaerts, Ghirardato, Guarnaschelli, and Zame (2010) show how, in the presence of
aggregate risk, sufficiently ambiguity-averse investors indirectly impact asset prices by
altering the per capita risk to be shared among marginal investors.

Asparouhova, Bossaerts, Eguia, and Zame (2015) show how ambiguity preferences
can explain asset prices under asymmetric reasoning. They consider a continuous double
auction of arrow securities, where, midway through the auction, agents are confronted with
an involved updating problem regarding the relative likelihood of the underlying states.8

In line with Fox and Tversky’s (1995) comparative ignorance proposition, Asparouhova,
Bossaerts, Eguia, and Zame (2015) argue that agents perceive irreconcilable post-updating
market prices as ambiguous. Hence, if ambiguity-averse, agents who apply incorrect
reasoning become price-insensitive. Consistent with ambiguity aversion, the more price-
sensitive agents there exist, the less severe is the experimentally documented mispricing.

Carlin, Kogan, and Lowery (2013) study how computational complexity alters bidding
behavior in a deterministic environment.9 They find higher complexity to increase volatil-
ity, lower liquidity, and decrease trade efficiency, i.e., to reduce gains from trade. Moreover,
Carlin, Kogan, and Lowery (2013) provide evidence that, additionally to any noise arising
from estimation errors, traders’ bidding strategies are influenced by a complexity-induced
adverse selection problem. Intuitively, given traders’ private values of the tradable asset

7 For their most general predictions, Biais, Mariotti, Moinas, and Pouget (2017) only rely on first order
stochastic dominance. When allowing for deviations from their symmetric payoff distribution, my
analysis assumes expected utility maximization instead.

8 The updating task in Asparouhova, Bossaerts, Eguia, and Zame’s (2015) experimental design is an
adaptation of the famous ‘Monty Hall problem’.

9 In the experimental design by Carlin, Kogan, and Lowery (2013) participants trade different assets
whose values have to be determined deductively by solving systems of linear equations, where the
authors differentiate between simple and complex computational problems.
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are affiliated, the fear of winner’s curse, i.e., to systematically lose by trading against a
better informed counterparty, leads traders to submit more conservative price quotes.

Third, a growing literature investigates the drivers and implications of financial com-
plexity both from a theoretical as well as an empirical perspective. Ellison (2005) and
Gabaix and Laibson (2006) demonstrate theoretically that inefficient levels of financial
complexity can prevail in a competitive equilibrium. Carlin (2009) finds that financial
complexity increases with the degree of competition among financial institutions. Carlin
and Manso (2011) show how educational initiatives aiming to foster financial literacy may
eventually cause welfare diminishing obfuscation, i.e., the strategic acceleration of com-
plexity by financial service providers to preserve industry rents (see Ellison and Ellison
(2009)). From an investor’s view, Brunnermeier and Oehmke (2009) discuss three differ-
ent ways to deal with complexity: (i) applying separation results, (ii) relying on models,
or (iii) via standardization. Arora, Barak, Brunnermeier, and Ge (2011) illustrate how
computationally complex derivatives may worsen asymmetric information costs.

Célérier and Vallée (2017) empirically test the implications of the Carlin (2009) model
and indeed find complexity to be increasing in issuer competition. Furthermore, several
studies analyze the steadily growing market for complex securities, in particular their
pricing, historical performance, as well as the characteristics of the involved issuers and
investors (Henderson and Pearson (2011), Ghent, Torous, and Valkanov (2017), Grif-
fin, Lowery, and Saretto (2014), Sato (2014), and Amromin, Huang, Sialm, and Zhong
(2011)). Relying on expected utility theory, Hens and Rieger (2008) moreover reject
the often-claimed market completing effect of structured products. Hence, there exists
both theoretical and accumulating empirical evidence that financial institutions rely on a
continuing increase in complexity to shield industry rents from competitors and learning
by investors rather than to create higher quality products. My paper complements this
literature by investigating the effects of rising complexity on agents’ trading behavior,
deliberately abstracting from financial innovation’s potential market completion role and
the strategic use of complexity to mitigate competition.10

10 In reality, most markets, including those for financial assets, can hardly be characterized as being com-
plete in a static sense, i.e., in the absence of retrading opportunities. Hence, the financial innovation
industry’s touted services towards market completion have to be evaluated against dynamic complete-
ness as developed in Kreps (1982) and Duffie and Huang (1985). Assuming dynamic completeness, the
existence of a Radner equilibrium (Radner, 1972) crucially depends on agents’ ability of perfect fore-
sight, i.e., to perfectly forecast today all future prices depending on information revealed tomorrow.
Asparouhova, Bossaerts, Nilanjan, and Zame (2016) experimentally show how the inability of perfect
foresight can cause considerable deviations from equilibrium prices. Thus, one reasonable concern
implied by the increasing complexity of traded risks is that agents lacking the required resources to
fully understand their complicated nature may fail to correctly forecast future price movements.
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Finally, this paper also relates to an emerging literature comparing individuals’ pref-
erences towards pure Ellsberg-like ambiguity and complex risk(s), where, as in this paper,
the latter is uniquely defined by an objective probabilistic structure. The findings in
Halevy (2007) give support to a close relation between individuals’ ability to correctly
reduce compound lotteries and their attitudes to pure ambiguity. The vast majority
of participants (95%) who failed to disentangle compound objective lotteries, displayed
nonambiguity-neutral behavior.

In their recent paper, Armantier and Treich (2016) provide strong empirical evidence
for “a tight link between attitudes toward ambiguity and attitudes toward complex risk”
(Armantier and Treich, 2016, p. 5). In their ambiguity treatment, participants are con-
fronted with lotteries whose outcomes depend on draws from an opaque Ellsberg urn,
while complex risks are represented by lotteries that get settled by simultaneous draws
from multiple transparent urns. Based on estimated certainty equivalents for both lottery
types, Armantier and Treich (2016) elicit ambiguity as well as complex risk premiums.
They find a strong positive correlation between the two premiums across participants.

3. Theory

This section introduces the simple model economy for which I study individual trading
behavior conditional on agents’ information quality. If risks are simple, implications of
varying risk-preferences are analyzed within the classical framework of expected utility. In
contrast, if risks are complex, individual preferences are adjusted to account for agents’
imperfect information. The former case provides a clear-cut benchmark for investigat-
ing the latter. At the end of Section 3.3, I provide a summary of the theory’s general
predictions in contrast to subjective expected utility.

3.1. Model

I start from the simple setting of Biais, Mariotti, Moinas, and Pouget (2017). In the
two-period interpretation of this trading economy, t ∈ {1, 2}, uncertainty gets resolved in
t = 2, where there exist two possible states of the world, Ω = {u, d}. The probability of
reaching state u is denoted by π, i.e. P(ω=u) = π and P(ω=d) = 1 − π, respectively.
Contrary to Biais, Mariotti, Moinas, and Pouget (2017), I allow for any nontrivial binary
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payoff distribution π ∈ (0, 1).11 This generalization is crucial, given agents’ subjective
beliefs in the context of complex risks.

The economy offers access to a complete asset market, where shares of a risky asset
(stock) can be traded in exchange for units in the risk-free asset (numéraire). The stock
pays a state-dependent dividend X per share in t = 2, but nothing beforehand. The
dividend fully transfers the stock’s final value to shareholders, i.e., after dividends have
been paid, all shares expire worthless (no continuation value). Without loss of generality,
I assume that X(u) > X(d). The time difference between t = 1 and t = 2 is considered
to be very short, allowing to abstract from any time discounting. Therefore, in-between
periods, the risk-free asset simply serves as pure storage device (cash) that does not pay
any interests.

There is an infinite number of agents populating the economy. I denote the unbounded
set of agents by I. Agent i ∈ I is endowed with nonnegative holdings in the risk-free
asset Bi, Si shares of the risky stock, and some state-contingent nontradable income Ii(ω)
in t = 2. Moreover, every agent belongs to one of two types, i.e., either she is allowed
to buy (potential buyer) or to sell (potential seller) shares. There are as many buyers as
sellers and their respective endowments are identical within each type. Every agent only
cares about her utility of consumption Ci(ω) in t = 2, where consumption equals the sum
of final holdings in the risk-free asset, dividend payments, and nontradable income. In
the first period, potential buyers and sellers are able to trade shares via a call-mechanism
to maximize their increasing utility from consumption Ui(Ci) in the second period.12

Importantly, agents’ nontradable income is set to exactly offset the aggregate con-
sumption risk generated by the stock’s dividend payments. For constant aggregate wealth
(across states), I show in the following that, under risk aversion, the unique rational ex-
pectation equilibrium is independent from heterogeneous attitudes towards simple con-
sumption risks. In particular, under simple risks, the stock market-clearing price and
quantity remain unaffected by the shape of agents’ utility functions (Ui)i∈I . If, despite
the income Ii(ω), aggregate risk prevailed, market equilibrium would necessarily reflect
11 Biais, Mariotti, Moinas, and Pouget (2017) only consider the symmetrical case, i.e., π = 1/2. Imposing

symmetry has the advantage of delivering robust predictions even under the inapplicability of expected
utility theory, i.e., by only assuming the absence of first order stochastically dominated actions.

12 To trade, agents submit either demand or supply schedules for a closed discrete set of prices. In the
spirit of a Walrasian clearinghouse (Friedman (2018)), the call-mechanism then maximizes trade by
minimizing the gap between demand and supply.
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agents’ (average) risk preferences.13

3.2. Trading Simple Risks: The Expected Utility Benchmark

In the presence of simple risks, the probability π is common knowledge, and thus, agents
possess perfect information about the stock’s payoff distribution. According to classical
consumption-based asset pricing theory, the stochastic discount factor then corresponds to
the representative agent’s marginal rate of intertemporal substitution. In Biais, Mariotti,
Moinas, and Pouget’s (2017) simple economy, with consumption restricted to t = 2, ex-
pected utility theory implies an equilibrium stock price P equal to the stock’s normalized
expected payoff weighted by her marginal utilities across states.14 If (Ii(ω))(i∈I) eliminates
aggregate consumption risk, the interconnectedness between P and marginal utilities dis-
appears, allowing for predictions robust to any set of increasing utility functions (Ui)i∈I .
Next, I generalize the analysis in Biais, Mariotti, Moinas, and Pouget (2017), who focus
on π 6= 1/2 only, to any possible dividend distribution.

Recalling the two-state nature of the economy in t = 2, one can write agent i’s expected
utility from consumption as

E
[
Ui(Ci(ω))

]
= π Ui(Ci(u)) + (1− π)Ui(Ci(d))

= π Ui

µi +
√

1− π
π

σi

+ (1− π)Ui
(
µi −

√
π

1− πσi
)
, (1)

where µi ≡ πCi(u) + (1− π)Ci(d) and σ2
i ≡ π(1− π) (Ci(u)− Ci(d))2. Thus, any agent’s

expected utility can be rewritten as a function of the probability π, her expected con-
sumption, and the standard deviation of consumption across states.
13 Constantinides (1982) shows that if agents with different risk attitudes all maximize expected utility

subject to a common prior, equilibrium prices can always be rationalized in a representative agent
framework. Hence, in the absence of complex risks, market equilibrium can be explained by the risk
preferences of this representative agent.

14 When deciding on her optimal trading strategy Q in t = 1, the representative agent solves the following
problem (where Q > 0 implies buying)

max
Q

E[Ui(Ci(ω))] s.t. Ci(ω) = (Si +Q)X(ω) + (Bi −QP ) + Ii(ω),

maximizing her expected utility from consumption in t = 2 subject to her budget constraint (neglecting
any borrowing constraints). Hence, the first order condition yields

P = E

[
U ′

i(Ci(ω))
E[U ′

i(Ci(ω))]X(ω)
]
.
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In the absence of aggregate risk, i.e., if aggregate wealth Σi (SiX(ω) + Ii(ω)) is con-
stant across states, there must exist a tradable quantity Q̂ at which every seller and buyer
is perfectly hedged against any consumption risk in t = 2.15 If agents are risk-averse, i.e.,
whenever Ui is strictly concave for every agent i, there exists a unique equilibrium for the
call-mechanism in t = 1.

Proposition 1. If Ui is differentiable and strictly concave ∀i ∈ I, and there exists a
tradable quantity Q̂ such that every seller and buyer is perfectly hedged, i.e., σi = 0 ∀i ∈ I,
then seller i’s supply and buyer j’s demand curve for the risky asset have the unique
intersection point (E[X], Q̂) ∀{i, j} ∈ I × I.

Proof. For proof see Appendix A.

The driving force behind Proposition 1 is the strict concavity of the utility functions, i.e.,
agents’ aversion to consumption risk. To see this, it is helpful to separately consider the
shape of both seller i’s supply and buyer j’s demand curve for the risky stock.

First, note that for a price equal to the stock’s expected dividend, seller i’s expected
consumption in Eq. (1) is independent of the number of shares sold. Since seller i is
risk-averse, for P = E[X], she will therefore always decide to sell exactly Q̂ shares and
thereby be perfectly hedged against future fluctuations in consumption. However, for
P < E[X] (P > E[X]), her expected consumption only increases, if she sells less (more)
than Q̂ shares. Because she is only willing to bear risk, i.e., deviate from selling Q̂

shares, if appropriately compensated in return, her supply curve must lie somewhere in
the lower left and upper right quadrant of the price-quantity space shown in Subfigure
(a) of Figure 1.

Second, note that for P = E[X], similarly buyer j’s expected consumption in Eq. (1) is
independent of the number of shares bought. Given her risk-aversion, she chooses to buy
exactly Q̂ shares for P = E[X], and more (less) than Q̂ shares if P < E[X] (P > E[X]),
as illustrated in Subfigure (b) of Figure 1. Thus, when there is no aggregate risk, seller
i’s supply and buyer j’s demand curve exhibit the unique intersection point (E[X], Q̂) as
depicted in Subfigure (c).

Interestingly enough, depending on the shape of Ui, a large opposite income effect can
dominate the corresponding substitution effect of a given price change. Hence, seller i’s
supply or buyer j’s demand curve can effectively be nonmonotonic within the respective
dominating quadrants of the PQ-plane. The following remark provides an example of a
nonmonotonic supply curve.
15 Recall that endowments only differ between types.
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P

Q

dominated
(µi ↓ , σi ↑)

dominated
(µi ↓ , σi ↑)

E[X]

(∆
µ
i

=
0)

(∆
µ
i

=
0)

Q̂

(a) Supply

P

Q

dominated
(µi ↓ , σi ↑)

dominated
(µi ↓ , σi ↑)

E[X]

(∆
µ
i

=
0)

(∆
µ
i

=
0)

Q̂

(b) Demand

P

Q

P ? = E[X]

Q? = Q̂

(c) Equilibrium

Figure 1. Trading equilibrium for simple risks

Notes: This figure shows the unique equilibrium for risk-averse agents in the absence of aggregate
consumption risk.

Remark 1. Suppose, seller i’s utility function is defined piecewise as follows

Ui(C) =

c1
C1−ε

1−ε , for 0 ≤ C < C,

c2 − e−αC , for C ≤ C,

where α > ε > 0 and ε small, and c1 and c2 are positive constants such that Ui is
differentiable ∀C ≥ 0. For certain parameter pairs (α, π), seller i’s supply curve can be
nonmonotonic over a nonempty subset of P .

Proof. For proof see Appendix A.
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Figure D.1 in the Appendix D shows an example of a nonmonotonic supply curve for
similar parameter values as in the actual experiment. 16

Absence of Risk Aversion

In case agents are not averse to consumption risk, for all P 6= E[X], an even stricter
separation between dominating and dominated strategies than shown in Figure 1 applies.
From the proof of Proposition 1 it directly follows that whenever Ui is either linear or
convex, seller i always strictly prefers to sell zero shares for P < E[X]. In contrast,
for P > E[X], her expected utility is maximized if and only if she sells her full initial
endowment in shares. The symmetric behavior applies to risk-neutral and risk-loving
buyers, respectively.

For P = E[X], risk-neutral agents are indifferent between trading Q̂ shares or any
other quantity, whereas risk-loving agents are indifferent between trading zero shares or
the maximum number possible. In summary, as long as they do not consistently choose
among their set of indifferent strategies in an asymmetric manner, the equilibrium in
Figure 1 remains unaffected by a nonzero mass of nonrisk-averse agents.

3.3. Trading Complex Risks: Heterogeneous Complexity Preferences

When agents’ information about the distribution of X(ω) is imperfect, I consider the
associated consumption risk to be (more) complex. In the presence of such complex risks,
‘rationality’ in decision making requires some form of acknowledgment of the information’s
inherent degree of (im)precision. The literature provides a vast number of models intended
to account for individuals’ degree of confidence in their relative likelihood estimates. In
the following, I analyze individual trading of complex risks within two classes of seminal
ambiguity models: multiple-priors utility and the ‘smooth ambiguity’ model proposed
by Klibanoff, Marinacci, and Mukerji (2005). In the former, agents’ information quality
has a first-order effect on their trading decision (change in mean), whereas for the latter,
lower information precision increases the total amount of perceived ‘risk’ (see Epstein
and Schneider (2010)). For multiple-priors utility, there exists a direct mapping to rank-
dependent expected utility, which I briefly discuss.
16 The intuition behind this exemplary nonmonotonicity effect is simple. For every seller and any given
Q, both C(d) and C(u) are strictly increasing in P > 0. If prices are high enough, seller i’s higher
CARA coefficient α, relevant for C(ω) > C, can dominate her lower CRRA coefficient ε. Thus, for
even higher prices, she is willing to bear less and less risk, causing her supply curve to decrease until
it eventually reaches Q̂, thereby completely eliminating her consumption risk.
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Multiple-priors Utility

Agents facing complex risks are unable to determine π with certainty, but rather have
to consider several payoff distributions possible. Hence, intuitively, when making their
trading decisions, they are guided by a set of potential probability laws. I denote agent
i’s subjective set of possible priors on the state space Ω by Ci.

Based on this idea of multiple priors, Gilboa and Schmeidler (1989) axiomatize a
multiple-priors maxmin decision rule that assumes infinite ambiguity-aversion. In order
to allow for a full spectrum of ambiguity preferences, I employ the generalization proposed
by Ghirardato, Maccheroni, and Marinacci (2004), the so-called α-maxmin model, instead.
Assuming the set Ci of subjective priors to be convex, agent i’s utility from consumption
in t = 2 is then given by

Ui(Ci(ω)) = αi min
π∈Ci

(
E
[
Ui(π)

])
+ (1− αi) max

π∈Ci

(
E
[
Ui(π)

])
, (2)

where E
[
Ui(π)

]
≡ π Ui(Ci(u)) + (1 − π)Ui(Ci(d)), Ui, as before, is a differentiable and

strictly concave utility function, and αi ∈ [0, 1]. First, note the straightforward interpreta-
tion of Eq. (2). On the one hand, the cardinality or wideness of Ci measures agent i’s ambi-
guity perception: The bigger her set of subjective priors, the more ambiguity she perceives.
On the other hand, her preferences towards ambiguity are expressed by αi: If αi > 1/2,
she puts more weight on the minimal expected utility, implying ambiguity-aversion. In
contrast, if αi < 1/2 (αi = 1/2), then she is ambiguity-loving (ambiguity-neutral). For
their axiomatization, Gilboa and Schmeidler (1989) assume maximal ambiguity-aversion,
i.e., αi = 1. Second, whenever Ci is a singleton, Eq. (2) reduces to Eq. (1) with subjective
probability πi, i.e., Eq. (2) converges to subjective expected utility as Ci → πi. For ease
of notation, I furthermore rely on the following definition:

Ei
[
X
]

:= αiEi
[
X
]

+ (1− αi)Ei
[
X
]
, (3)

where Ei
[
X
]
≡ Eπi [X] with πi := arg min

π∈Ci
µi(π), and Ei

[
X
]
≡ Eπi [X] with πi :=

arg max
π∈Ci

µi(π).

When risks are complex, agents perceive ambiguity regarding the probability π. In
order to analyze individual trading behavior within the α-maxmin model, a case-by-case
analysis is required, whereby agent i can behave differently from agent j in two dimensions:
First, agent i is either averse to (αi > 1/2) or even favors (αi ≤ 1/2) perceived ambiguity.
Second, she can either have correct or incorrect beliefs about the true payoff probability
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Table I. Agent types with multiple-priors utility
Beliefs about π

Correct (π ∈ Bi) Incorrect (π 6∈ Bi)

Ambiguity-averse Yes (αi > 1/2) Type AC Type AI
No (αi ≤ 1/2) Type NC Type NI

Notes: In the presence of complexity-induced ambiguity, I distinguish between four different
types of agents with multiple-priors utility. Agent i can either be ambiguity-averse or does
not dislike ambiguity. Additionally, she can either apply correct or incorrect reasoning when
processing her imperfect information about π.

π. More precisely, I classify agent i as having incorrect beliefs, if π is not sufficiently close
to the midpoint of her set of priors, i.e., if π 6∈ Bi ⊂ Ci, where Bi itself depends on her
ambiguity-aversion:

Bi =

[πM −∆(2αi − 1), πM + ∆(2αi − 1)], for αi > 1
2 ,

πM for αi ≤ 1
2 ,

(4)

where πM denotes the midpoint of Ci with length (or maximum difference) 2∆. We note
that Bi → Ci as αi → 1 and Bi → πM as αi → 1/2. Table I summarizes the four possible
combinations of different types.

Price Sensitivity

To deduce the effect(s) of complexity-driven ambiguity on agents’ trading behavior, the
different types presented in Table I have to be considered separately. I start with the first
row of Table I. If aggregate endowments are constant, any risk-averse agent, as shown
above, prefers to trade exactly Q̂ shares for P = E[X]. Now, given their distaste for
the perceived ambiguity regarding π, agents of type AC and AI eventually both prefer to
trade Q̂ for prices significantly different from E[X]. More precisely, for any given degree
of risk-aversion, the subset of prices for which they wish to be perfectly hedged against
consumption risk is increasing in both their ambiguity aversion and ambiguity perception.

Proposition 2. In the presence of perceived ambiguity and if there exists a tradable
quantity Q̂ such that σi = 0 ∀i ∈ I, then agents of types AC and AI exhibit constant
supply or demand curves over closed subsets of P . Their absolute price elasticity is a
decreasing function in both αi and the cardinality/length of Ci.

Proof. For proof see Appendix A.
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In case of no aggregate risk, it holds for any seller i that πi < πi for Q < Q̂ and πi > πi

for Q > Q̂, respectively. Intuitively, if seller i is hedged against varying consumption by
selling exactly Q̂ shares, her expected consumption µi decreases in 1 − πi (πi) whenever
she sells less (more) than Q̂ shares. Analogously, for any buyer j it holds that πj > πj

for Q < Q̂ and πj < πj for Q > Q̂, respectively. These shifts in relative size of πi
and πi around Q̂ in combination with ambiguity-aversion are the driving force behind
Proposition 2.

To foster the reader’s intuition, the result in Proposition 2 is illustrated in Figure 2
from the perspective of an ambiguity-averse seller—the analogous reasoning also applies
to any ambiguity-averse buyer. First, due to seller i’s risk-aversion, it can be shown that
for P = Ei[X], selling exactly Q̂ shares strictly dominates trading any other quantity of
the risky asset. Moreover, given Eq. (2), she is only willing to sell less than Q̂ shares for
prices strictly below Ei[X] (see proof of Proposition 2). This is illustrated in Subfigure
(a) of Figure 2. Analogously, seller i only agrees to sell more than Q̂ shares in return for
P > Ei[X] (see Subfigure (b)). Second, due to the above discussed order effect of πi and
πi, it follows that the lower price bound L in Subfigure (a) and the upper price bound U
in Subfigure (b) do not coincide. Therefore, putting everything together, the piecewise
constant supply curve depicted in Subfigure (c) prevails, where seller i’s supply of the
risky asset is constant over the closed subset [L,U ].

In comparison to the analysis under simple risks in Section 3.2, a nice and intuitive
interpretation of Proposition 2 emerges. Since agents of types AC and AI are averse to
ambiguity, selling or buying Q̂ shares becomes even more attractive compared to situations
with objective payoff distributions. By trading exactly Q̂ units of the risky asset, agents
not only are able to avoid risk, but additionally to dispose any exposure to perceived
ambiguity. Trading Q̂ shares hence simultaneously corresponds to the perfect hedging
strategy against both risk and ambiguity. In return for this dual insurance, agents are
willing to forego potential gains from trade.

I now turn to the second row in Table I. For nonambiguity-averse agents, there are
two cases to be distinguished between. First, if αi equals 1/2, agent i is ambiguity-neutral.
For a seller with αi = 1/2, L and U in Figure 2 coincide, i.e., under complex risks, she
behaves as a subjective expected utility-maximizer. The analogous argument applies for
an ambiguity-neutral buyer. Second, if αi < 1/2, agent i is ambiguity-loving. The same
reasoning as in the proof of Proposition 2 implies that for an ambiguity-loving seller, it
holds that L > U . Hence, when risks are complex, there exists a certain price between U
and L for which she is indifferent between gaining exposure to ambiguity from selling less
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(L, Q̂)
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Ei[X]
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Q̂

(a) Willingness to sell Q ≤ Q̂ of types A

(U, Q̂)

P

Q
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Ei[X]

Ei[X] Ei[X]

Q̂

(b) Willingness to sell Q ≥ Q̂ of types A

(L, Q̂)

(U, Q̂)

P

Q

Ei[X] Ei[X]

Q̂

(c) Supply of types A

Figure 2. Supply curve of ambiguity-averse seller with multiple-priors

Notes: This figure shows the piecewise flat supply curve for complex risks implied by the α-
maxmin model (Eq. (2)) for a risk-averse and ambiguity-disliking seller i.

or more than Q̂ shares. At or precisely beyond this threshold, her supply curve therefore
exhibits a discontinuity, i.e., jumping from strictly below to strictly above Q̂.17 For prices
below and above the threshold, her supply curve’s price elasticity increases in comparison
to simple risks. Again, the analogous argument can be made for an ambiguity-loving
buyer.
17 This can be interpreted as the natural counterpart of ambiguity-averse sellers’ piecewise flat supply

curves.
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Mispricing and Suboptimal Risk Sharing

How complex risks are priced and shared in equilibrium, crucially depends on agents’
beliefs regarding π. If aggregate wealth is constant, the risky asset is mispriced when-
ever the market-clearing price deviates from its expected dividend.18 Hence, whenever
the market-clearing quantity (per capita) is different from Q̂, consumption risk is only
suboptimally shared between risk-averse buyers and sellers. I therefore subsequently refer
to the market-clearing price and quantity for simple risks, i.e., (E[X], Q̂), as benchmark
equilibrium.

Nonambiguity-loving agents (αi ≥ 1/2) with correct beliefs (π ∈ Bi) never cause any
mispricing or incomplete risk sharing, simply because their supply or demand curves
always contain the benchmark equilibrium (see above). Due to the jump of their supply
(demand) curve between U and L, an ambiguity-loving seller (buyer) almost surely never
chooses to sell (buy) Q̂ shares at P = E[X], independently of her beliefs regarding π.
While it is clear why ambiguity-neutral agents with incorrect beliefs provoke mispricing
and suboptimal risk sharing (due to their piecewise constant supply and demand curves)
this is, however, less clear for ambiguity-averse agents whose subsets of beliefs Bi does
not contain π.

Proposition 3. In the presence of perceived ambiguity and if there exists a tradable
quantity Q̂ such that σi = 0 ∀i ∈ I, then any nonzero mass of type AI sellers (buyers)
moves aggregate supply (demand) away from the benchmark equilibrium under simple
risks.

Proof. For proof see Appendix A.

Figure 3 illustrates the mechanics behind Proposition 3 for the simplified case of only
three sellers and buyers, respectively. Subfigure (a) depicts the exemplary supply curves
(for a given discrete price grid) for three different types of sellers. Assuming type NC to
be ambiguity-neutral, she rationally chooses—in line with her correct beliefs—to sell Q̂
shares for P = E[X]. Because of AC’s pronounced ambiguity-aversion, her supply curve
is constant over a considerable subset of prices (delimited by circles in Subfigure (a)).
Importantly, since π ∈ BAC, the constant part still contains the benchmark equilibrium.
In contrast, the constant piece of type AI’s supply curve (delimited by squares) does
not include the point (E[X], Q̂). Hence, neither the length of CAI nor the degree of her
ambiguity-aversion αAI > 1/2 are sufficiently large to prevent that π 6∈ BAI (see Eq. (4)).
18 The absence of aggregate risk in combination with a complete market allows for perfect risk sharing.
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Figure 3. Equilibrium analysis for complex risks under multiple-priors
utility

Notes: For the α-maxmin model (Eq. (2)), this figure illustrates how ambiguity-averse agents
with incorrect beliefs can cause mispricing and suboptimal risk sharing of complex risks in equi-
librium (Proposition 3). Subfigure (a) shows three exemplary supply curves of one ambiguity-
neutral (type NC) and two ambiguity-averse (type AC and AI) sellers. All exemplary buyers
in Subfigure (b) are assumed to be nonambiguity-loving and to have correct beliefs. Subfigure
(c) finally shows, how the incorrect beliefs of seller AI cause mispricing and incomplete risk
sharing of complex risks in equilibrium. Due to the absence of aggregate consumption risk, both
distortions are unambiguously defined and measurable.

Therefore, due to her incorrect beliefs, she pulls the average supply curve (solid line) away
from the benchmark equilibrium.

For simplicity, all three buyers in Subfigure (b) are assumed to hold correct beliefs
such that their demand curves all contain the benchmark equilibrium. This ensures that
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any mispricing and incomplete risk sharing in equilibrium is solely driven by the AI-type
seller’s supply curve in Subfigure (a). The solid line constitutes the resulting average
demand curve. Finally, Subfigure (c) depicts the market-clearing price P ? and quantity
Q? (per capita) that corresponds to the intersection of the average supply and demand
curves. Due to seller AI’s underestimation of π, the market-clearing price is smaller than
the stock’s expected dividend, implying mispricing equal to |P ?−E[X]|. Furthermore, the
average market-clearing quantity of shares is greater than Q̂, i.e., in equilibrium, agents
do not share complex risks perfectly.

Intuitively, Proposition 3 establishes a condition under which ambiguity-induced price
insensitivity is sufficiently large to offset any equilibrium effects of incorrect beliefs about
complex risks. Given the midpoint of agent i’s set of priors Ci, the more ambiguity-averse
she is, i.e., the larger her αi, the wider becomes the subset of payoff distributions Bi for
which incorrect beliefs do not cause any deviations from the benchmark equilibrium. Note
that for any αi < 1, the subset Bi in Eq. (4) is strictly smaller than Ci. Thus, as long
as agent i is not maximally ambiguity-averse, requiring the true payoff distribution π to
be contained in Ci is not sufficient for precluding differences between simple and complex
equilibria.

Another implication of the multiple-priors model’s constant supply (demand) curve is
the arising possibility of multiple equilibria. In an economy with heterogeneous agents
(with respect to their beliefs as well as their preferences towards risk and ambiguity),
multiple equilibria are nevertheless unlikely to prevail. For instance, if the supply curve
of a given mass of sellers equals Q̂ for a nonsingleton subset of prices, a nonzero mass
of sellers whose supply is not constant over the same subset is sufficient for the average
supply curve to be nonconstant.

From Multiple-priors to Rank-dependent Expected Utility

Since the seminal work by Tversky and Kahneman (1992), cumulative prospect theory
has become the most prominent alternative to expected utility for modeling decision mak-
ing under uncertainty. Therefore, a reasonable question to ask is how trading decisions
under complex risks of agents with rank-dependent utility differ from the above analysis?
For binary acts, e.g., the herein considered risky asset, Chateauneuf, Eichberger, and
Grant (2007) show that ‘neo-additive’ decision weights allow for a one-to-one correspon-
dence from αi and Ci in Eq. (2) to (i) a likelihood sensitivity index and (ii) a pessimism
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(optimism) index as generally used in rank-dependent expected utility models.19

Smooth Ambiguity Preferences

Proposition 2’s somehow extreme result of (local) perfect price inelasticity is clearly linked
to the kinked preferences induced by the maxmin property of Eq. (2). To emphasize the
generalizability of its main implications, I now analyze individual trading behavior under
the ‘smooth ambiguity’ model by Klibanoff, Marinacci, and Mukerji (2005). Adopting
the above notation, agent i’s utility from consumption in t = 2 can then be written as

Ui(Ci(ω)) =
∫

∆(Ω)
φi
(
E
[
Ui(π̃)

])
dµi(π̃), (5)

where ∆(Ω) is the simplex of all possible payoff distributions on Ω, µi is agent i’s subjec-
tive probability measure on ∆(Ω), and φi is a continuous, strictly increasing, real-valued
function.

Eq. (5) has an intuitive interpretation: On the one hand, the more payoff distributions
exhibit a nonzero probability mass under µi, the bigger agent i’s set of possible priors.
On the other hand, the curvature of φi(·) expresses her ambiguity preferences: As for
utility functions for simple risks, concavity of φi(·) implies ambiguity-averse, linearity
ambiguity-neutral, and convexity ambiguity-loving preferences. Hence, similar to the α-
maxmin model in Eq. (2), the smooth ambiguity model allows for a separation between
the level of perceived ambiguity as well as agent i’s general preferences towards it. For
ease of notation and analog to Eq. (3), I rely on the following definition:

Ei[X] :=
∫

∆(Ω)
Eπ̃[X]dµi(π̃), (6)

where Eπ̃[X] denotes the expected payoff of the risky asset based on P(ω=u) = π̃ and
P(ω=d) = 1− π̃, respectively.

Proposition 4. Let µi(π̃) be the normalized Lebesgue measure on agent i’s set of possible
priors [πi, πi] ⊂ [0, 1], i.e., µi(π̃) := 1/(πi − πi)dπ̃ ∀π̃ ∈ [πi, πi]. In the presence of perceived
ambiguity, if there exists a tradable quantity Q̂ such that σi = 0 ∀i ∈ I, then

(i) agent i’s price elasticity is an increasing function in the second order derivative of
φi(·).

19 In rank-dependent expected utility models, the likelihood sensitivity index measures the steepness of
the probability weighting function and the optimism (pessimism) index its intersection point with the
45-degree line.
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Ei[X]

Q̂

Figure 4. Supply curve of ambiguity-averse seller with smooth prefer-
ences

Notes: This figure shows the decreased price elasticity of the supply curve for complex risks
implied by the smooth ambiguity model (Eq. (5)) for a risk-averse and ambiguity-disliking seller
i.

(ii) any nonzero mass of sellers (buyers) for whom πi+πi
2 6= π moves aggregate supply

(demand) away from the benchmark equilibrium under simple risks.

Proof. For proof see Appendix A.

As implied by the proof of Proposition 4, with utility as in Eq. (5), any agent’s supply
(demand) curve goes through (Q̂, Ei[X]). Thus, independently of her ambiguity pref-
erences, she always finds it optimal to sell (buy) Q̂ shares for a price P equal to her
subjective expected payoff per share given her subset of priors.

For prices below and above Ei[X], Figure 4 exemplary illustrates how imperfect infor-
mation about π affects an ambiguity-averse seller’s supply curve. The demand curve for
any ambiguity-averse buyer behaves analogously. If, under complex risks, seller i dislikes
any perceived ambiguity regarding π, selling Q̂ shares generally becomes more attractive
than under simple risks. Due to her smooth distaste for ambiguity, i.e., the concavity of
φi(·), she smoothly decreases her supply’s price elasticity for prices different from Ei[X],
as displayed in Figure 4. However, in contrast to Figure 2, her supply curve never becomes
perfectly inelastic for any interior nonempty subset of prices.

In case seller i is ambiguity-loving, i.e., φi(·) is convex, the slope of her supply curve
amplifies when moving from simple to complex risks. Comparing Figure 4 to Subfigure
(a) in Figure 1 moreover shows how increasing complexity under Eq. (5) manifests itself
similarly as a shift in sellers’ risk aversion under Eq. (1): If seller i is ambiguity-averse,
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she is always willing to accept a lower µi in return for a gradual reduction in σi.
For equally probable priors, the second part of Proposition 4 states that whenever

there is a critical mass of agents for whom π is different from their respective midpoint
of priors, they shift aggregate supply (demand) away from the benchmark equilibrium.
Under the smooth ambiguity model, the pricing and allocation of complex risks is therefore
more sensitive to agents’ ex-ante beliefs than under kinked ambiguity-preferences. For
smooth preferences, ambiguity-induced price insensitivity can never offset a critical mass’
distorting equilibrium effects of incorrect beliefs, no matter how small the respective
deviations from π.

In contrast to the multiple-priors model, the pricing of complex risks by ambiguity-
averse agents with smooth preferences is more sensitive to incorrect beliefs. Under the
multiple-priors model, the necessary mispricing condition requires the exclusion of the
true probability π from a set of priors, i.e., π 6∈ Bi, instead of ‘only’ a pointwise deviation.

Summary

In general, for both kinked and smooth ambiguity preferences, complexity has (quali-
tatively) similar implications for individual trading behavior and aggregate market out-
comes. This is illustrated in Figure 5. If averse to complexity-induced ambiguity, the price
sensitivity of agents with nonsingleton priors decreases under complex risks. In the pres-
ence of incorrect beliefs, these agents can cause mispricing and potentially trade towards
suboptimal risk allocations. However, their reduced price sensitivity is likely to mitigate
averse effects on risk sharing. This is intuitive, since, under complexity, ambiguity-averse
agents always prefer to trade towards lower consumption risk for a wider range of prices.
Importantly, the latter is not true under subjective expected utility (Savage, 1954).20

To summarize, decision theory under ambiguity implies the following two predictions
regarding the trading of complex risks:

P1: Mispricing–Equilibrium prices are a function of subjective beliefs.

P2: Robust risk sharing–Equilibrium allocations are less sensitive to incorrect beliefs
relative to subjective expected utility.

20 Under subjective expected utility, the trading of complex risks can be modeled according to Propo-
sition 1, while simply accounting for subjective beliefs πi. Hence, there does not exist any a priori
mechanism that decreases the sensitivity of either equilibrium prices nor risk allocation with respect
to subjective beliefs.
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Figure 5. General comparison between equilibria for simple versus com-
plex risks

Notes: This figure summarizes the main implications of trading simple versus complex risks.
Subfigure (a) shows the uniquely defined equilibrium for simple risks. Subfigure (b) shows
exemplary supply and demand curves for complex risks of two traders with different subjective
beliefs. Subfigure (c) illustrates (i) that, in the presence of complexity, incorrect beliefs can
cause mispricing, whereas (ii) the local reduction in price sensitivity mitigates their averse effect
on risk sharing.

Finding conclusive evidence in favour or against the above predictions remains an empir-
ical matter. Crucially, doing so requires compliance with the underlying model assump-
tions.

Finally, note that, in contrast to risk allocations, the impact of incorrect subjective
beliefs on equilibrium prices can be reinforced by a complexity-induced decrease in price
sensitivity. Figure 6 illustrates how a (relatively) large and small supply shift can lead to
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(b) Price impact under very low price sensi-
tivity

Figure 6. Price impact of incorrect beliefs about complex risks

Notes: This figure illustrates the ambiguous price impact of incorrect subjective beliefs under
varying levels of price (in)sensitivity. Subfigure (a) shows the price impact from a large shift
of a relatively more price-sensitive supply curve. Subfigure (b) shows the price impact from a
small shift of a less price-sensitive supply curve. Due to the lower price sensitivity of the demand
curve in Subfigure (b), the two price impacts exactly coincide.

identical price impacts in case of an offsetting difference in demand price (in)sensitivities.
However, a negative21 (positive) correlation between the magnitude of estimation errors
and individual price sensitivities clearly decreases (increases), ceteris paribus, the mis-
pricing effect of the former. An empirical correlation analysis should therefore provide
valuable insights into the price stability of complex risks in equilibrium.

3.4. Price-taking Behavior, Asymmetric Information, and Strategic Uncer-
tainty

Before turning to the experimental test of the above theory, three potentially interfering
effects need to be addressed more carefully. First, my model economy assumes infinitely
many agents. When implementing it in the laboratory, complying with this particular
assumption constitutes an apparent impossibility. I meet this practical constraint by
running all sessions with a relatively high number of at least 16 participants.22 Moreover, I
21 As opposed to the supply shifts in Figure 6.
22 This minimum number is in line with the average number of 17.6 participants per session in Biais,

Mariotti, Moinas, and Pouget (2017).
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alternate between two different pricing schemes: market-clearing—as persistently assumed
above—and random price draws (see below). Comparing participants’ supply and demand
functions between these two pricing schemes allows me to control for their price-taking
behavior.

Second, and more importantly, depending on how agents self-assess their information
processing capabilities relative to others, they might perceive considerable information
asymmetries in the presence of complex risks. In a Grossman and Stiglitz (1980) rational-
expectation equilibrium, market-clearing prices imperfectly reflect informed traders’ costly
information about the risky stock’s expected payoff. Applied to my setting, there exists
a dominant strategy for (completely) uninformed agents whose implications are in line
with the ambiguity preference-based theory above: Agents who perceive themselves as
uninformed (i.e., face too high information processing costs) and simultaneously believe
markets to generate, at least partially, informative prices should always submit perfectly
inelastic supply (demand) functions, i.e., Qi(P ) = Q̂ ∀P .

Somewhat similar to Grossman and Stiglitz (1980), I require some unobservable het-
erogeneity in agents’ information processing abilities (costs) to prevent market-clearing
prices to be fully informative.23 Otherwise, given the implied conditionality of agents’
supply (demand) functions on market-clearing prices, no one would have an incentive to
engage in processing complex information in the first place. Thus, Grossman and Stiglitz’s
(1980) informational efficiency paradox would prevail.

Third, any further potential implications caused by strategic uncertainty must be ac-
counted for. In a trading game such as the one considered herein, agent i generally faces
strategic uncertainty about the behavior of the remaining −i traders. Whenever agent i
forms subjective beliefs about her opponents’ actions, these beliefs—whether rationaliz-
able or not—may affect her trading decisions ex-ante.

Alternating between market-clearing and random price draws not only allows for test-
ing the price-taking hypothesis, but additionally enables me to control for any potential
effects from either perceived asymmetric information or strategic uncertainty.
23 Whenever agent i believes that there is a nonzero mass of agents submitting supply (demand) functions

based on relatively less informative beliefs, she finds herself better off trading according to her own
more informative beliefs.
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4. Experiment

In this section, I first present the parameterization of the model economy that balances
tradable and nontradable income such to eliminate aggregate risk. This is followed by a
motivation of the main design feature of my experiment, i.e., the creation of simple and
complex risks in the laboratory. Second, I provide a detailed overview of the conducted
sessions, including summary statistics and randomizations checks.

4.1. Design and Parameterization

The selection process of the model parameters is twofold. On the one hand, the distri-
bution of the stock’s binary dividend needs to be fixed. In order to control for a natural
focal point effect, I alternate between two values of π, i.e., π ∈ {1/3, 1/2}. Furthermore, to
simplify calculations of expected payoffs, I set the stock’s dividend X(ω) equal to ECU
150 (experimental currency units) in state u and ECU 0 in state d, respectively.

On the other hand, agents’ endowments need to be as such that aggregate consumption
is constant across states. Table II presents the endowments for both sellers and buyers
that independently apply at the beginning of every trading round. Note, in the presence
of equally many sellers and buyers, consumption risk is zero on the aggregate level. In
particular, if any seller i and any buyer j agree to trade Q̂ = 2 shares at a price per share
of P , both are perfectly hedged with constant consumption equal to ECU 300 + 2P and
ECU 600− 2P , respectively. The symmetry between sellers’ and buyers’ potential overall
consumption is intentional. When comparing local sensitivities between their supply and
demand, symmetry arguments allow me to isolate and solely analyze preference-driven
differences.24

Complex versus Simple Risks in the Laboratory

When implemented in the laboratory, complex risks need to satisfy two necessary condi-
tions to generate data that can be analyzed in the light of the above theory:

(i) complex risks have to follow an objective underlying probability distribution, and

(ii) participants have to be aware of the problem’s well-defined nature and the existence
of its unique solution.

24 Despite the symmetry in total consumption, endowment effects and reference-dependent preferences
(see, e.g., Kahneman, Knetsch, and Thaler (1991)) could still be at play. However, I find no evidence
of this in my experimental data.
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Table II. Endowments for sellers and buyers

Seller Buyer
Stock 4 0
Bond 0 300
Cont. income I(ω)

State u: I(u) 0 0
State d: I(d) 300 300

Agg. wealth constant

Notes: This table shows the respective endowments for sellers and buyers that apply at the
beginning of every independent trading round. All figures except the number of shares are
in experimental currency units (ECU). The state-contingent nontradable income I(ω) exactly
offsets the aggregate risk from stock endowments.

Moreover, when aiming for informative empirical data, the (imperfect) information about
complex risks should:

(iii) not be too complex, i.e., imposing nontrivial restrictions on participants’ sets of
priors, but still be complex enough such that subjective priors neither are singletons.

I argue that the following implementation satisfies (i), (ii), and (iii). Consider the
geometric Brownian motion shown in Subfigure (a) of Figure 7. In the ‘complex risk
treatment’, participants were provided with both the dynamic visualization of a reference
path between t = 0 and t = 1, as well as the formal specification of the stochastic
differential equation governing its evolution. To map this continuous process St into the
required binary payoff distribution,25 a simple threshold approach was applied. More
specifically, whenever the reference path in t = 2 was greater or equal than a predefined
threshold L, i.e., if S2 ≥ L, the risky stock paid a dividend X(u) equal to 150 and
zero otherwise. As demonstrated in Appendix B, the problem of determining P(S2≥L)
in Figure 7 can be solved with a back-of-the-envelope calculation applying Itō calculus.
Essentially, this implementation of complex risks links the stock’s dividend to the payoff
of a digital option in a Black and Scholes (1973) model.

Before submitting their respective supply (demand) functions during the first stage of
trading complex risks, participants were presented the type of information displayed in
Subfigure (a) of Figure 7. Simultaneously, they were given the possibility to repeatedly
observe the reference path’s dynamic evolution between t = 0 and t = 1. Across complex
25 Not to be confused with seller i’s share endowment Si in Section 3.
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(a) Pre-trading screenshot (b) Post-trading screenshot

Figure 7. Complex risks in the laboratory

Notes: This figure shows the information about complex risks participants were provided with
during the experiment. For the first stage, Subfigure (a) presents an example of the information
displayed on participants’ screens when asked to enter their supply (demand) schedules. When-
ever the blue reference path ends up in the green region, the stock pays a dividend per share
equal to ECU 150 (experimental currency units) and zero otherwise. Given the here considered
parameterization, Appendix B shows that the former probability equals 1/2. For the second
stage, Subfigure (b) presents a possible realization of the process and the stock’s corresponding
payoff per share.

trading rounds, two different parameterizations of St were used—one for π = 1/3 and one
for π = 1/2, respectively—whereas the realized path was unique to every round. At the
second stage, participants were informed about their number of shares sold (bought) and
were presented with the realization of S2 as shown in Subfigure (b).

For submitting their supply (demand) schedules, participants faced—similar as in Bi-
ais, Mariotti, Moinas, and Pouget (2017)—a predefined price vector. The increment of the
uniformly spaced price vector was set to five ECU, i.e., for every P ∈ {0, 5, 10, ..., 145, 150},
participants were asked to choose the preferred number of shares to be sold (bought).26

These quantities were reported with a precision of two decimal places.
To test the above theoretical predictions more precisely, it is helpful to control for

participants’ subjective beliefs about complex risks. This is achieved in the following
way. During the first stage of complex trading rounds, participants were additionally
26 In order to minimize the number of necessary keyboard entries, the decision process was divided into

two substages (see the experimental instructions in Appendix E for details).
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asked to provide their point estimate regarding the stock’s expected payoff per share.27

Independently of subjective preferences, the so elicited point estimates allow to anchor
participants’ individual sets of priors.

In contrast, during the first stage of the ‘simple risks treatment’, participants knew the
exact probability of the stock paying a dividend equal to 150. For the case where π = 1/2,
participants were confronted with an urn containing 15 green and 15 red balls, as depicted
in Subfigure (a) of Figure 8. At the second stage, the color of one randomly drawn ball was
revealed. Whenever this ball happened to be green, the stock paid a dividend per share
equal to ECU 150 and zero otherwise.28 Finally, as a control treatment, the tradable
risks of the last trading round were purely ambiguous. Instead of a ‘transparent urn’,
participants were confronted with the Ellsberg (1961)-like urn shown in Subfigure (b),
whose composition of green and red balls was unknown.

For both treatments, two different pricing schemes were applied: market clearing
versus random price draws. Whereas the former maximizes trade by minimizing the
difference between supply and demand,29 the latter randomly picks one price from the
given price vector, each with equal probability.30

4.2. Sessions Structure, Incentivization, and Participant Summary Statis-
tics

Table III provides an overview of the six sessions conducted in the ‘Laboratory for Ex-
perimental and Behavioral Economics’ at the University of Zurich during fall 2016.31 The
number in parenthesis indicates the number of participants in a given session.32 Each
session consisted of ten independent trading rounds. All participants only participated in
one session. For every single trading round, Table III lists the actual payoff distribution,
the nature of the underlying consumption risk, simple (S) versus complex (C), and the
applied pricing scheme, market clearing (MC) versus random price draw (random). A
27 Depending on participants’ respective preferences, the risky asset’s expected payoff under complex

risks is either defined by the mean of Eq. (3) for trading more or less than Q̂ shares, or by Eq. (6),
respectively.

28 Similarly, for π = 1/3, the presented urn contained ten green and 20 red balls.
29 To prevent any effects due to anticipated rationing, following Biais, Mariotti, Moinas, and Pouget

(2017), all orders at the market-clearing price were fully executed.
30 The inherent logic of the random price draw is equivalent to the standard mechanism proposed by

Becker, DeGroot, and Marschak (1964).
31 The experiment was fully computerized using z-Tree (Fischbacher, 2007).
32 To be eligible, participants were required to have some basic finance knowledge (i.e., major or minor

in finance, internship or other work experience in the field of finance, or free-time trading experience).

30



GR

?

1	Ball	is	randomly	drawn.

R G R

G G GR R

GR R G R

G G GR R

GR R G R

G G GR R

15	x										/	15	x	G R

G

R

Dividend	=	150	if			

Dividend	=	0	if			

(a) Pre-trading screenshot for simple risks
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(b) Pre-trading screenshot for ambiguous risks

Figure 8. Simple and ambiguous risks in the laboratory

Notes: This figure shows the information about simple and ambiguous risks participants were
provided with at the first stage during the respective trading rounds of the experiment. When-
ever the randomly drawn ball is green, the stock pays a dividend per share equal to ECU 150
(experimental currency units) and zero otherwise. In contrast to simple risks in Subfigure (a),
the distribution of green and red balls in Subfigure (b) is arbitrary.

‘high’ (‘low’) π refers to an integer parameterization of the stochastic reference path St

that results in a probability P(S2≥L) of 84.21% (15.89%). ‘P’ denotes a practice round.
To control for potential ‘comparative ignorance effects’ (see Fox and Tversky (1995)), the
sequential ordering of simple and complex risks was reversed between the first three and
the last three sessions.

In each session, after the ten trading rounds shown in Table III, participants were ad-
ditionally presented with two lotteries, each based on one of the two urns in Figure 8. For
both lotteries, their certainty equivalents were elicited via Abdellaoui, Baillon, Placido,
and Wakker’s (2011) computerized iterative choice list method.33 Importantly, the lotter-
ies’ payoffs were chosen such that they exactly matched the range of possible consumption
levels in each of the previous trading rounds (see Figure D.2 in Appendix D). Overall,
one session lasted approximately 90 minutes.

At the end of every session, one out of the seven nonpractice trading rounds or one of
the two lottery outcomes was randomly chosen, each with equal probability. Participants
then were paid either their final wealth of the selected trading round or the outcome of
the selected lottery (divided by twelve in either case). Additionally, if their point estimate
regarding π was correct (within ±3%), they earned an extra three Swiss francs, whenever
33 No risk or ambiguity aversion is assigned to participants with multiple switching points for either the

simple (one) or the ambiguous lottery (two).
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Table III. Sessions overview

Session 1 (#16) Session 2 (#18) Session 3 (#16)

Round π Type Pricing π Type Pricing π Type Pricing
1 1 C (P) MC 1 C (P) MC 1 C (P) MC
2 high C (P) random high C (P) random high C (P) random
3 low C (P) MC low C (P) MC low C (P) MC
4 1/2 C MC 1/3 C random 1/3 C MC
5 1/3 C MC 1/2 C random 1/3 C random
6 1/2 C random 1/3 C MC 1/2 C MC
7 1/3 C random 1/2 C MC 1/2 C random
8 1/2 S MC 1/2 S random 1/2 S MC
9 1/3 S random 1/3 S MC 1/3 S random
10 ambig A MC ambig A random ambig A MC

Session 4 (#16) Session 5 (#16) Session 6 (#16)

Round π Type Pricing π Type Pricing π Type Pricing
1 1/2 S (P) MC 1/2 S (P) MC 1/2 S (P) MC
2 9/10 S (P) random 9/10 S (P) random 9/10 S (P) random
3 1/2 S MC 1/2 S random 1/2 S MC
4 1/3 S random 1/3 S MC 1/3 S random
5 high C (P) MC high C (P) MC high C (P) MC
6 1/2 C MC 1/3 C random 1/3 C MC
7 1/3 C MC 1/2 C random 1/3 C random
8 1/2 C random 1/3 C MC 1/2 C MC
9 1/3 C random 1/2 C MC 1/2 C random
10 ambig A MC ambig A random ambig A MC

Notes: This table provides an overview of the six conducted sessions. Each session consisted of
ten independent trading rounds. The number in parenthesis indicates the number of participants
in a given session. For every session, the first column lists the actual payoff distribution, the
second column the nature of the underlying consumption risk (simple (S) versus complex (C)),
and the third column the applied pricing scheme (market clearing (MC) versus random price
draw (random)). The ‘high’ (‘low’) π refers to an integer parameterization of the geometric
Brownian motion that implies a 84.21% (15.89%) probability of a dividend per share equal to
150. Trading rounds with a ‘P’ in parenthesis are practice rounds.

the corresponding trading round was selected for payment. On average, participants
received 38.40 Swiss francs, with a maximum of CHF 50 and a minimum of CHF 25.

Recruited participants were students from either the University of Zurich or ETH
Zurich, majoring in economics, business, mathematics, physics, engineering, or computer
science, respectively. Their respective role of either a buyer or a seller was randomly
assigned at the beginning of the experiment and thereafter retained throughout all trad-
ing rounds. The instructions provided to participants acting as sellers are provided in
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Table IV. Summary statistics and randomization check

Total sample Sellers Buyers p-value
Variable (N = 98) (N = 49) (N = 49)

Age 23.674 23.837 23.510 0.689
(3.008) (3.287) (2.724)

Gender 0.337 0.286 0.388 0.393
(0.475) (0.456) (0.492)

UZH (ETH) 0.582 0.653 0.510 0.219
(0.496) (0.481) (0.505)

# semesters 3.806 3.633 3.980 0.365
(2.827) (2.928) (2.742)

Knowledge BM 0.459 0.367 0.551 0.105
(0.501) (0.487) (0.503)

Risk aversion 0.060 0.087 0.035 0.328
(0.265) (0.294) (0.232)

CRRA-γ 0.684 1.045 0.323 0.335
(3.358) (4.415) (1.740)

Ambiguity aversion 0.101 0.067 0.133 0.133
(0.245) (0.225) (0.262)

Notes: This table reports means and standard deviations (in parenthesis) in the total sample
and across sellers and buyers, respectively. p-values for the null hypothesis of perfect random-
ization are listed in the last column (Wilcoxon signed rank tests for interval variables and Yates
(1934)’ corrected χ2 tests for binary variables). ‘Age’ is reported in years. ‘Gender’ and ‘UZH’
are dummy variables indicating female participants and students from the University of Zurich
(versus ETH). ‘# semesters’ denotes the number of completed semesters. ‘Knowledge BM’ is a
dummy variable equal to one for participants who have heard about the mathematical object
‘Brownian motion’ before. Risk aversion is measured as the normalized difference (∈ [−1, 1])
between the simple lottery’s expected payoff and participants’ respective certainty equivalents.
CRRA-γ denotes the corresponding constant relative risk aversion coefficient. Ambiguity aver-
sion is measured as the individual differences in certainty equivalents between the simple and
ambiguous lottery.

Appendix E.34

Table IV presents the average values (proportions) of certain socioeconomic variables
collected via a short questionnaire following the main experiment. Risk aversion is mea-
sured as the normalized difference between the simple lottery’s expected payoff and par-
ticipants’ respective certainty equivalents. A value of one (minus one) denotes maximum
34 Analogous instructions were provided to participants acting as buyers and are available upon request.
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(minimum) risk aversion,35 a value of zero implies risk-neutrality. The total sample’s
average risk aversion of 0.060 corresponds to a constant relative risk aversion (CRRA) co-
efficient of 0.684.36 Ambiguity aversion is defined as the individual differences in certainty
equivalents between the simple and ambiguous lottery. Hence, a positive value indicates
ambiguity aversion. A standard randomization check reveals no significant indications of
an unbalanced sample.37

5. Results

This section presents the analysis of the experimental data. I investigate trading decisions
and outcomes both at the aggregate and the individual level. For the latter, I construct
two different measures of price sensitivity based on the theory in Section 3. The increasing
discrepancy between individual behavior and aggregate outcomes for simple relative to
complex risks is linked to varying bounds on quasi-rational choice. Finally, I investigate
markets’ effectiveness in aggregating traders’ imperfect information about complex risks.

5.1. Aggregate Market Outcomes

For both dividend distributions and for both types of risks, Figure 9 plots all individual
and the corresponding average supply and demand curves. This first glance of the em-
pirical results showcases three important findings: First, despite extensive heterogeneity
in individual behavior, average supply and demand curves are smooth and well-behaved.
Second, average market-clearing prices are close to expected payoffs for simple risks and
almost identical to average estimations thereof for complex risks. Third, notwithstanding
the vast variation in subjective beliefs (see below), average market-clearing allocations of
complex risks are generally closer to the perfect hedging quantity than under simple risks.

Figure 10 shows average supply and demand curves across sessions with identical
ordering of simple versus complex risks. Independently of whether participants first trade
simple or complex risks, the price sensitivity of average supplies and demands locally
decreases around (average) expected payoffs under complexity.
35 According to Abdellaoui, Baillon, Placido, and Wakker’s (2011) iterative choice list method.
36 My estimate of average relative risk aversion is in line with the experimental literature: see Holt and

Laury (2002) for binary lotteries, Goeree, Holt, and Palfrey (2002) for private value auctions, Goeree,
Holt, and Palfrey (2003) for generalized matching pennies games, and Goeree and Holt (2004) for
one-shot matrix games. Similarly, Biais, Mariotti, Moinas, and Pouget (2017) find the representative
investor’s CRRA coefficient to approximately equal 0.5.

37 Throughout the entire paper, I report two-sided p-values.
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Figure 9. From individual to average supply and demand

Notes: This figure shows individual and average (across participants and sessions) supply and
demand curves for trading rounds with simple and complex risks. In the top (bottom) row,
averages are computed for simple (complex) risks. In the left (right) column, averages are
computed across trading rounds where π equals 1/2 (1/3). The dotted horizontal line indicates
the perfect hedging quantity. The dotted vertical line indicates the risky asset’s expected payoff.
The solid vertical line indicates participants’ average point estimate of the risky asset’s expected
payoff under complex risks.

In accordance with Figure 10, Table V reports average market-clearing prices and
quantities as well as average point estimates of expected payoffs for complex risks. More-
over, columns four and five of Table V list the degree of mispricing and suboptimal risk
sharing as defined in Section 3. Unsurprisingly, mispricing is clearly less pronounced un-
der simple than under complex risks. Complex risks are overpriced by approximately 8%
(20%) for π = 1/2 (π = 1/3). This indicates that participants generally overestimate the
impact of the reference path’s positive drift relative to its volatility.38 On average, both
simple and complex risks are well shared. Strikingly, in three out of four cases, the degree
38 Such misestimation is in line with participants failing to adjust for the second order effect from the

Brownian motion’s nonzero quadratic variation.
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Figure 10. Average supply and demand

Notes: This figure shows the average supply and demand curves across participants and trading
rounds. In the top (bottom) row, averages are computed across sessions where complex (simple)
trading rounds are followed by simple (complex) trading rounds. In the left (right) column,
averages are computed across trading rounds where π equals 1/2 (1/3). The dotted horizontal
line indicates the perfect hedging quantity. The dotted vertical line indicates the risky asset’s
expected payoff. The solid vertical line indicates participants’ average point estimate of the
risky asset’s expected payoff under complex risks.

of risk sharing between buyers and sellers is higher or equal under the latter. This is
remarkable given the extensive variation in subjective beliefs about complex risks (see
Figure D.3 in Appendix D).

To better visualize local differences in price sensitivity, I adjust the average supply and
demand curves under complex risks to control for subjective beliefs. Essentially, the price
grid in Figure 10, against which individual curves are plotted, is adapted such that average
payoff estimates coincide with true expectations (see Appendix C for details). Figure D.4
in Appendix D presents the adjusted supply and demand curves under complex risks. In
contrast to Figure 10, it allows for a direct comparison of price sensitivities. For prices
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Table V. Average market-clearing prices and quantities

Market clearing
Avg Point

Mispricing
Suboptimal

Estimate risk sharing

P ? Q? Avg (Ei[X]) |P ? − E[X]| |Q? − Q̂|

Simple risks
π = 1/2

Sessions 1-3 76.87 2.10 – 1.87 0.10
Sessions 4-6 79.47 2.33 – 4.47 0.33
π = 1/3

Sessions 1-3 52.82 2.01 – 2.82 0.01
Sessions 4-6 46.89 2.00 – 3.11 0.00

Complex risks
π = 1/2

Sessions 1-3 80.30 1.94 80.10 5.30 0.06
Sessions 4-6 80.98 2.10 81.62 5.98 0.10
π = 1/3

Sessions 1-3 63.47 1.99 62.46 13.47 0.01
Sessions 4-6 56.98 2.15 58.13 6.98 0.15

Notes: This table reports average market-clearing prices and quantities across sessions with
identical ordering of trading rounds involving simple and complex risks, respectively. Moreover,
average point estimates of expected payoffs as well as the measures of mispricing and suboptimal
risk sharing as defined in Section 3 are listed in columns three to five.

close to but below E[X], all four supply curves for simple risks lie below the respective
supply curves for complex risks, only to cross the latter for prices close to but (generally)
higher than E[X] (dotted vertical lines in Figure D.4). The opposite holds true for the
two demand curves where π equals 1/2 (left column of Figure D.4). For π equal to 1/3,
demand curves coincide for very low prices, but are higher in the case of complex risks
for prices around and above E[X].

For a more systematic investigation of the supply and demand functions depicted in
Figure D.4, I plot the respective averages across all sessions (to reduce noise) together with
their corresponding error bounds, indicating standard errors of the mean. The resulting
supply and demand curves are shown in Figure 11. The above described pattern now
manifests itself more clearly. For π equal to 1/2 (left column of Figure 11), the average
supply (demand) for simple risks crosses the respective supply (demand) for complex
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Figure 11. Differences in average supply and demand for simple and com-
plex risks

Notes: This figure shows the average adjusted supply and demand curves across participants
and trading rounds. Average curves for complex risks are adjusted as described in Appendix C
to account for deviations of average beliefs from the true underlying payoff distribution. In the
top (bottom) row, average supply (demand) curves are computed across all sessions. In the left
(right) column, averages are computed across trading rounds where π equals 1/2 (1/3).

risks from below (above). For π equal to 1/3, the same is true for sellers, whereas for
buyers, average demands converge at a price close to the risky stock’s expected payoff.
Furthermore, in all four cases, there is a clear difference in sensitivity for prices close to
expected payoffs.

I test the statistical significance of the differences in Figure 11 by conducting a
Wilcoxon signed-rank test, where, in the case of complex risks, I use interpolated quanti-
ties. The results are plotted in Figure D.5 in Appendix D. As conjectured, the average
supply curves are statistically different for prices below and above expected payoffs. In
case of π equal to 1/2, the same statistically significant hump-shaped pattern around E[X]
is observed for average demand curves. For π equal to 1/3, respective p-values are close to
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Figure 12. Average supply and demand across pricing schemes

Notes: This figure shows the average adjusted supply and demand curves for complex risks
across participants and the two different pricing schemes: market clearing (MC) and random
price draws (random). Average curves are adjusted as described in Appendix C to account for
deviations of average beliefs from the true underlying payoff distribution. In the top (bottom)
row, average supply (demand) curves are computed across all sessions. In the left (right) column,
averages are computed across complex trading rounds where π equals 1/2 (1/3).

0.1 below E[X], temporarily increase around E[X], and decrease again sharply to values
close to zero thereafter.

Naturally, an analogous analysis lends itself to contrast participants’ behavior between
the two applied pricing mechanisms: market clearing and random price draws. Figure 12
presents the respective supply and demand curves averaged across complex trading rounds
with equal pricing schemes. Overall, average supplies and demands for complex risks look
very similar between the two pricing mechanisms. The p-values of the corresponding
Wilcoxon signed-rank test are plotted in Figure D.6 in Appendix D. The patterns in
Figure D.6 indicate that there exists no statistical evidence against the null hypothesis of
a globally (across pricing schemes) adopted price-taking behavior. Hence, markets behave
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Figure 13. Selected individual supply and demand curves

Notes: This figure shows selected individual supply and demand curves for four different par-
ticipants. Only trading rounds with π equal to 1/2 are shown. The solid vertical line indicates
participants’ point estimate of the risky asset’s expected payoff under complex risks.

competitively and neither asymmetric information nor strategic uncertainty affects local
price sensitivity under complex risks.

5.2. Individual Behavior

Aggregate market outcomes appear to corroborate the predictions from theory: Equilib-
rium quantities are less price-sensitive under complex than simple risks, thereby mitigating
the suboptimality in the allocation of the former. However, as Figure 13 illustrates by
using data from four selected participants, individual behavior is very heterogeneous. For
instance, subject 1’s trading decisions are unaffected by complexity, whereas the behavior
under complex risks displayed by participants 11 and 19 indicates kinked and smooth
preferences, respectively. Additionally, participant 19’s supply and participant 47’s de-
mand curves foreshadow an increased error-proneness under complex risks. Therefore,
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(a) Average perfect hedge frequency (b) Average local slope

Figure 14. Individual measures of price sensitivity

Notes: This figure shows average individual trading behavior under simple and complex risks
across all participants. Subfigure (a) plots the average number of prices for which participants
adopt the perfect hedging strategy, i.e., choosing to trade Q̂ shares (see Eq. (7)). Subfigure
(b) plots the average slope of participants’ supply and demand curves at their individual point
estimates of the risky asset’s expected payoff (see Eq. (8)). Error bars indicate standard errors
of the mean.

and to ensure that the previous results are not simply due to averaging, I now turn to the
testing of the theory’s general predictions at the individual level. To do so, I propose two
different measures for the local price sensitivity of individual supply and demand curves.

First, starting from a quantity perspective, I count for each participant i the number
of prices for which her submitted supply (demand) schedule equals the perfect hedging
quantity Q̂ shares, i.e.,

HFi := |{Q = Q̂}i|, (7)

where bars denote the cardinality of the considered set.
Second, starting from a pricing perspective, I compute the slope of each participant
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i’s supply (demand) function at her individual point estimate Ei[X], i.e.,

Slopei := ∆Qi(Ei[X]), (8)

where for sellers
∆Qi(Ei[X]) =̂Qi(Pl+2)−Qi(Pl),

and for buyers
∆Qi(Ei[X]) =̂Qi(Pf−2)−Qi(Pf ),

respectively, with Pl (Pf ) denoting the last (first) price strictly below (above) seller (buyer)
i’s point estimate Ei[X]. The ‘±2’ in the index ensures that Pl < Ei[X] < Pl+2 for
sellers and Pf−2 < Ei[X] < Pf for buyers, respectively. Note, if sellers’ (buyers’) supply
(demand) curves are upward (downward) sloping, Slopei is expected to be positive. By
construction, it can only be computed if Pl+2 (Pf ) is smaller or equal to the maximum
price of 150. Under simple risks it holds of course that Ei[X] = E[X] ∀i ∈ I. Moreover,
Slope can be interpreted as a less extreme measure of price sensitivity than HF, where the
latter only accounts for perfect price inelasticity, and thus requires kinked preferences.

Figure 14 displays the between-treatment average values of HF and Slope across all
participants. Subfigure (a) plots the average frequency with which the perfect hedging
strategy is adopted (relative to the total cardinality of the price grid). The average number
of prices for which participants choose to trade exactly Q̂ shares decrease by 0.278 under
complex relative to simple risks (p-value = 0.580, t-test). Average slopes of pooled supply
and demand curves are plotted in Subfigure (b). Price sensitivity locally decreases by
0.232 when moving from complex to simple risks (p-value = 0.003, t-test).

The results presented in Figure 14 are somewhat inconclusive. While, from a ‘slope
perspective’, the empirical evidence is in line with the general theoretical predictions,
from a ‘pure quantity perspective’, no significant increase in the average frequency of
the perfect hedging strategy is observed. One can think of two possible reasons: (i)
participants exhibit smooth ambiguity preferences instead of multiple-priors utility, or (ii)
participants more frequently fail to trade in their best interest when risks are complex.

The second argument requires some more elaboration. A priori the theory does not
provide any reason, why agents failing to trade Q̂ shares at a price equal to Ei[X] should
adopt the perfect hedging strategy more frequently under complex relative to simple
risks. Put differently, increasing complexity of traded risks may tighten the bounds on
traders’ rationality, thereby abating the explanatory power of the theory based on kinked
preferences.
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Complexity Bounds on Rationality

In order to control for varying bounds on rationality, I follow Biais, Mariotti, Moinas, and
Pouget (2017) by contrasting individual trading data to a setting of bounded rationality in
the spirit of a McKelvey and Palfrey (1995, 1998) quantal response model.39 As proposed
by Luce (1959), I hereafter assume that agent i’s trading decisions follow a random choice
model. Specifically, for a given price P and under slight misuse of notation, her probability
density of trading Qj shares under simple risks is given by

fi(Qj|P ) = ψiE[Ui(Qj|P )]∫
ψiE[Ui(Q|P )]dQ , (9)

where ψi(·) denotes an increasing differentiable function and Q runs from zero to the
maximum number of tradable shares.

Since ψi(·) is increasing in E[Ui(Qj|P )], Eq. (9) implies that the likelihood with which
agent i decides to sell (buy) Qj shares is also increasing in E[Ui(Qj|P )]. In other words,
the higher the expected utility from trading Qj shares for a price P , the greater the
probability that agent i actually ends up doing so. Hence, the lower the slope of ψi(·), the
more frequently she deviates from her optimal strategy, i.e., the more severe the bounds
on her rationality.

As in Biais, Mariotti, Moinas, and Pouget (2017), applying bounded rational behavior
as formalized in Eq. (9) to the above theory of trading simple risks imposes the following
three implications:40

S1 For P = E[X], the distribution of supplied and demanded shares has a unique mode
at Q̂.

S2 For P < E[X], the distribution of supplied and demanded shares is asymmetric
around Q̂ and decreasing above (below) Q̂ for sellers (buyers).

S3 For P > E[X], the distribution of supplied and demanded shares is asymmetric
around Q̂ and decreasing below (above) Q̂ for sellers (buyers).

39 A somewhat stricter caveat as in Biais, Mariotti, Moinas, and Pouget (2017) applies: In my competitive
setting with sufficiently imperfect price information (see Section 3.4), agents solely trade according to
their own beliefs. By differentiating between market-clearing and random pricing, I control for any
deviations from such individual behavior.

40 In contrast to Biais, Mariotti, Moinas, and Pouget (2017), risk-aversion, i.e., the accordance of agents’
expected utilities with second order stochastic dominance, is a necessary condition for the decreasing
quantity distributions for prices different than Ei[X]. If π = 1/2, which always holds in Biais, Mariotti,
Moinas, and Pouget (2017), first order stochastic dominance is sufficient.
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According to Proposition 1, every risk-averse agent whose rationality is bounded as in
Eq. (9) most likely chooses to trade Q̂ shares for P = E[X]. Similarly, such agents
more often adopt nondominated instead of dominated strategies. Moreover, for a given
price, the bigger the distance between a dominated quantity and the corresponding set
of dominating trades, the less frequently should they opt for the former. Because of the
randomness implied by Eq. (9), all three implications are convergence results. Hence, if
actual behavior is indeed governed by Eq. (9), whether the limited number of participants
in my sample suffices to yield according results remains again an empirical question.

Accordingly, under complex risks, a boundedly rational agent i decides to trade Qj

shares for a price P with probability density

f
i
(Qj|P ) = ψiUi(Qj|P )∫

ψiUi(Q|P )dQ , (10)

where Ui(·) denotes agent i’s utility from consumption under her subjective beliefs, as-
suming either multiple-priors utility (Eq. (2)) or smooth ambiguity preferences (Eq. (5)).

Proposition 5. The supply and demand curves of infinitely many, ambiguity-averse, and
boundedly rational agents who trade simple risks according to Eq. (9) and complex risks
according to Eq. (10), respectively, generate the following three distributional properties:

C1 For P = Ei[X], the distributions of supplied and demanded shares exhibit a unique
mode at Q̂ under both {fi}i∈I and {f

i
}i∈I, where the former is less dispersed than

the latter.

C2 For P < Ei[X], the distribution of supplied and demanded shares is less asymmetric
around Q̂ and decreases (increases) less rapidly above (below) Q̂ for sellers (buyers)
under {f

i
}i∈I than under {fi}i∈I.

C3 For P > Ei[X], the distribution of supplied and demanded shares is less asymmetric
around Q̂ and increases (decreases) less rapidly below (above) Q̂ for sellers (buyers)
under {f

i
}i∈I than under {fi}i∈I.

Proof. For proof see Appendix A.

Intuitively, the lower price sensitivity under complex risks implies more frequent devi-
ations from the optimal trading strategy relative to simple risks. Analogously to S1–S3,
the three implications C1–C3 require sufficient convergence in distribution, which is only
guaranteed as the number of observations approaches infinity.
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Figure 15. Supply distribution for prices equal to expected payoffs

Notes: This figure shows the number of shares supplied by sellers for prices equal to (estimated)
expected payoffs. The empirical distributions are computed across participants and sessions.
The left (right) plot contrasts average distributions between simple and complex trading rounds
with π equal to 1/2 (1/3). If, under complex risks, sellers’ point estimate Ei[X] lies between two
elements of the predefined price vector, linearly interpolated quantities are reported.

Figure 15 presents the supply distribution for P = Ei[X]. While integer numbers are
more frequently supplied than fractions of shares, all distributions are roughly symmetric
around Q̂ = 2, constituting the clear mode under simple risks and complex risks with
π = 1/2 (left plot in Figure 15). When moving from simple to complex risks, the frequency
of the perfect hedging strategy decreases sharply, i.e., from 0.694 to 0.235 for π = 1/2 (p-
value = 0.000, t-test) and from 0.469 to 0.163 for π = 1/3 (p-value = 0.000, t-test). In
the case of π = 1/3, the frequencies of the most extreme deviations from Q̂ increase
considerably under complex risks. These results are in line with both implications S1 and
C1.

Figure 16 shows the distribution of shares supplied for P < Ei[X] and P > Ei[X],
respectively. Under both simple and complex risks, supplies of less (more) than Q̂ shares
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Figure 16. Supply distribution for prices different from expected payoffs

Notes: This figure shows the number of shares supplied by sellers for prices different from
expected payoffs. The empirical distributions between simple and complex risks are computed
across participants and sessions. In the top (bottom) row, total supplies for prices below (above)
Ei[X] are reported. The left (right) column shows average supply distributions across trading
rounds with π equal to 1/2 (1/3).

clearly occur most often for low (high) prices. Additionally, except for complex risks with
π = 1/3 (upper right plot in Figure 16), the frequency of supplying more (less) than Q̂

shares is decreasing (increasing) in Qi for P < Ei[X] (P > Ei[X]), with generally lower
frequency levels under simple risks. The supply distributions presented in Figure 16 rec-
oncile well with the above proposed implications. First, participants more often choose
nondominated instead of dominated actions, where the occurrence of the latter is decreas-
ing in their inferiority (see implications S2–S3). Second, under complex risks, participants
deviate more frequently from utility-maximizing actions than under simple risks (C2–C3).
The analogous analysis of the corresponding demand distributions (see Figure D.7 and
Figure D.8 in Appendix D) reveals similar evidence in support of S1–S3 and C1–C3 for
buyers.
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(a) Same participants (b) No dominated actions

Figure 17. Conditional frequency of perfect hedging strategy

Notes: This figure shows the average frequency of the perfect hedging strategy under simple
and complex risks, conditional on rational trading behavior. Both subfigures plot conditional
average cardinalities of the subsets of prices for which participants supply (demand) Q̂ shares
(see Eq. (7)). In Subfigure (a), averages are only based on participants who, under complex risks,
supply (demand) Q̂ shares at P = Ei[X]. In Subfigure (b), the average value for simple risks is
computed across all nondominated (see Figure D.9) supply (demand) curves. The corresponding
average for complex risks is determined across all nondominated supply (demand) curves with
Q̂ at P = Ei[X]. Error bars indicate standard errors of the mean.

In summary, my empirical findings reconcile well with the random choice models pos-
tulated in Eq. (9) and Eq. (10): Complexity tightens the bounds on risk-averse agents’
rational behavior, where, rationality under complex risks is defined in line with decision
theory under ambiguity. A simple counting exercise further underpins this hypothesis.
Figure D.9 in Appendix D shows the distributions of dominated action frequencies be-
tween risk types. As expected, participants more frequently fall for dominated trading
strategies if risks are complex. Although, as can be deduced from Figure D.10 in Ap-
pendix D, some limited learning takes place over the course of trading complex risks.

Once varying levels of rationality are controlled for, the inconclusiveness regarding the
above two price sensitivity measures disappears. Figure 17 shows the between-treatment
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average values of HF, where two different rationality conditions are applied. In Subfigure
(a), averages are only computed for participants who prefer to be perfectly hedged for
P = Ei[X] under complex risks. For these participants, the average number of prices for
which they supply (demand) Q̂ shares increases by 5.436 under complex relative to simple
risks (p-value = 0.000, t-test).

In contrast, Subfigure (b) plots averages computed across potentially different partic-
ipants: Under simple risks, only nondominated supply and demand curves (as presented
in Figure D.9) are considered. Accordingly, the corresponding average for complex risks
is solely based on nondominated supply and demand curves equal to Q̂ at P = Ei[X].
Relying on these conditions, the average cardinality of the set of prices for which the per-
fect hedging strategy is adopted increases by 4.180 under complex risks (p-value = 0.004,
t-test). Hence, for both cases in Figure 17, the conditional HF measure relates strikingly
well with the theoretical predictions implied by kinked ambiguity preferences.

Regression Analysis

For a controlled regression analysis, I additionally include the remaining data from each
session’s last trading round (see Table III), where tradable risks are based on the draw from
the nontransparent Ellsberg urn depicted in Figure 7. Since participants’ beliefs in these
rounds are ambiguous, classifying individual trades into dominated and nondominated
actions is no longer possible.

Columns I and II in Table VI reports GLS coefficient estimates of the following pooled
regression model:

Slopeir = β0 + β1Complexityr + β2Ambiguityr + β3RAi

+ β4 (AAi × Complexityr) + β5 (AAi × Ambiguityr) + bXir + ui + εir, (11)

where the dependent variable is the slope of participant i’s supply (demand) curve (see
Eq. (8)) in trading round r. Complexityr and Ambiguityr are dummy variables indicating
trading rounds with complex and ambiguous risks, respectively. RAi and AAi measure
individual risk and ambiguity aversion (see Table III). Finally, Xir contains trading
round-specific, socio-economic, as well as further individual control variables, ui is a par-
ticipant random effect, and εir denotes the idiosyncratic error term. Robust standard
errors clustered at the participant level are reported in parenthesis.

The reported coefficients in columns I and II in Table VI affirm the findings reported in
Subfigure (b) of Figure 14. Complex risks significantly decrease the slope of local supply
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Table VI. Regression Analysis

I II III IV V VI

Dependent variable Slope Slope HF HF
Slope× Slope×

Complexity Complexity

Complexity −0.236a −0.315a

(0.062) (0.086)
Complexity cond. 0.857a 1.219a

(0.125) (0.156)
Complexity×EstError −0.730b −0.723b

(0.288) (0.304)
Ambiguity 0.001 0.571a

(0.120) (0.155)
RA −0.254 0.813a −0.087

(0.230) (0.259) (0.221)
AA×Complexity −0.053 0.150 −0.054

(0.127) (0.323) (0.163)
AA×Ambiguity −0.136 0.237

(0.267) (0.469)
Order×Complexity 0.121 −0.450b −0.026

(0.093) (0.195) (0.089)
Gender −0.283a 0.388a −0.214a

(0.098) (0.147) (0.082)
Constant 0.627a −0.333 1.210a 1.840b 0.513a −0.716

(0.084) (0.671) (0.092) (0.788) (0.093) (0.682)
Controls No Yes No Yes No Yes
N 686 665 686 665 392 380

Notes: This table reports coefficient estimates from linear GLS (columns I, II, IV, and V) and Poisson
(columns III and IV) regressions with random effects at the participant level. The dependent variables
‘Slope’ and ‘HF’ measure the slope of individual supply (demand) curves and the perfect hedge fre-
quency as defined in Eq. (8) and Eq. (7), respectively. The dependent variable in the last two columns
corresponds to the interaction between the former and the dummy variable ‘Complexity’. ‘Complexity’
indicates trading rounds with complex risks. ‘Complexity cond.’ is a dummy variable indicating trading
rounds with complex risks for which participants are perfectly hedged at prices equal to expected pay-
offs. ‘Complexity×EstError’ is the interaction between ‘Complexity’ and participants estimation error,
i.e., the absolute distance between individual point estimates and true probabilities. ‘Ambiguity’ is a
dummy variable indicating trading rounds with ambiguous risks. ‘RA’ measures participants’ risk aver-
sion as the normalized difference between the expected payoff of the simple lottery and their respective
certainty equivalents. ‘AA×Complexity’ (‘AA×Ambiguity’) controls for the effect of ambiguity aver-
sion (‘AA’) in trading rounds with complex (ambiguous) risks, where ambiguity aversion is measured
as the difference between participants’ certainty equivalents for the simple and the ambiguous lottery.
‘Order×Complexity’ is the interaction between the dummy variable ‘Order’, indicating sessions where
complex risks were preceded by simple risks, and ‘Complexity’. ‘Gender’ is a dummy variable indicating
female participants. ‘Controls’ comprise participants’ age, university affiliation, and number of completed
semesters. Furthermore, ‘Controls’ contain participants’ self-evaluated understanding and difficulty level
of the task (measured by integers from one to five) and two additional dummy variables controlling for
their familiarity and knowledge regarding the Brownian motion. Numbers in parenthesis denote robust
standard errors. Superscripts a and b indicate statistical significance at the 1% and 5%-level, respectively.
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(demand) by approximately 0.315 on average (p-value = 0.000, t-test). While the estimate
of β2 is essentially zero, the estimates of β3, β4, and β5 all exhibit the expected (negative)
sign, but lack statistical significance. Moving from the univariate model in column I to
the full model in column II, the number of observations slightly decreases. This is due to
the removal of one participant (two participants) with multiple switching points for the
multiple price lists used to elicit RAi (AAi).41

Given that HF (see Eq. (7)) is a count variable, columns III and IV report the corre-
sponding coefficient estimates from a Poisson regression with participants’ perfect hedge
frequency as dependent variable. In contrast to Eq. (11), the main independent variable
‘Complexity cond.’ is a conditional indicator of complex trading rounds for which par-
ticipants choose to be perfectly hedged at prices equal to expected payoffs. In line with
Figure 17, ‘rational’ participants on average increase their perfect hedge frequency by a
ratio of more than three (e1.219, p-value = 0.000, t-test) under complex risks. For more
risk-averse participants, the number of prices for which they choose to adopt the per-
fect hedging strategy also increases significantly. Furthermore, the average perfect hedge
frequency is significantly higher during trading rounds with ambiguous risks (Ellsberg
urn).

Columns V and VI finally only focus on trading rounds with complex risks. Imple-
menting an otherwise identical regression model as described in Eq. (11), the slope of
participants’ supply (demand) curve is regressed on their individual estimation errors un-
der complex risks. The latter is defined as the absolute distance between participants’
point estimate and the true probability (both expressed in decimal numbers) of a high
dividend payment. I find evidence that participants’ price sensitivity is negatively cor-
related with their estimation error (-0.723, p-value = 0.017, t-test). Put differently, the
bigger participants’ mistake in estimating complex risks, the less price sensitive their sub-
mitted supply (demand) curve. The impact of this negative correlation on price stability
is analyzed in more detail below.

Overall, female participants’ price sensitivity reacts stronger to complex risks under
which they more often follow the perfect hedging strategy. This somewhat contrasts the
findings in Borghans, Heckman, Golsteyn, and Meijers (2009) that men require higher
compensation for the introduction of ambiguity than do women. Moreover, introducing
ambiguity via a standard Ellsberg urn significantly increases the perfect hedge frequency.
This reassures my design’s effectiveness in translating ambiguity preferences into measur-
able theory-consistent trading outcomes. More interestingly, however, complex risks lead
41 The same holds true for all fully controlled models in Table VI (even columns).
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to a more pronounced decrease in price sensitivity than pure ambiguity. Hence, while
ambiguity preference-based theories appear to explain individual behavior under complex
risks reasonably well, relying on pure ambiguity only would underestimate the latter’s
impact on market outcomes.

Given the fundamental difference regarding the existence of a uniquely defined risk
structure, it is not surprising that the magnitudes of participants’ reactions to complex
and ambiguous risks are different. Even though their beliefs under pure ambiguity are
unknown, a similar analysis as presented in Figure 15 lends itself as a simplified compari-
son of relative bounded ‘rationality’. For both simple and ambiguous risks, Figure D.11 in
Appendix D presents the joint distributions of supplied and demanded shares at a price of
ECU 75. Assuming participants adopt the natural reference point (fifty-fifty) under pure
ambiguity, there is no evidence that pure ambiguity affects participants’ ‘rationality’.

5.3. Market’s Effectiveness in Aggregating Complex Information

In light of the attained insights regarding individual trading behavior, I can now return
to an equilibrium perspective asking a final overarching question: How well are financial
markets suited to cope with complexity? In particular, are they capable of efficiently
allocating complex risks at informative prices in a reliable way? I investigate this question
by dissecting both the equilibration process of the above asset markets and their outcomes.

Figure 18 displays bootstrapped distributions of aggregate market outcomes. All den-
sities are based on ten thousand resamples of 49 individual supply and demand func-
tions.42 For any given resample, average supply and demand are crossed and the linearly
interpolated market-clearing price P ? and average quantity Q? deduced.

Comparing estimated densities between simple and complex risks unveils three striking
characteristics of the market equilibrium. First, and not surprisingly, both distributions
of P ? under simple risks are closer to and more centered around the risky asset’s true
expected payoff than those under complex risks. Second, and contrary to market-clearing
prices, the centers of both Q? distributions under complex risks are remarkably close to
the perfect hedging quantity (Q̂ = 2). In case of π = 1/2 (lower left plot in Figure 18),
complex risks are even more efficiently shared between buyers and sellers than simple
risks. Both observations are in line with actual market outcomes reported in Table V.

Third and foremost, the increase in variation for simple relative to complex risks is
much larger for market-clearing prices than for average market-clearing quantities. Given
42 This ensures an identical resampling size under simple and complex risks.
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Figure 18. Bootstrapped equilibrium distributions

Notes: This figure shows bootstrapped densities of market-clearing prices and quantities for
simple and complex risks. Every average supply and demand curve is based on resampling
49 individual supply and demand schedules (same resampling size under simple and complex
risks). For each pair of averaged supply and demand, the linearly interpolated market-clearing
price and average quantity are computed. Repeating this procedure ten thousand times yields
the depicted estimated densities of equilibrium prices (top row) and average quantities (bottom
row). The left (right) column shows bootstrapped densities for trading rounds with π equal to
1/2 (1/3).

their predicted decrease in supply and demand sensitivity, this observation aligns well with
the above ambiguity preference-based theories. Figure D.12 in Appendix D furthermore
illustrates how these relative variations in P ? and Q? depend on the underlying resampling
size. All variability ratios are considerably stable in the number of traders. At the
maximum resampling size, both standard deviations of P ? under complex risks are still
more than twice as high as under simple risks. In contrast, standard deviations of average
market-clearing quantities are consistently much closer for simple and complex risks. In
the limit, the variation in Q? under complex risks only exceeds the one under simple risks
by approximately 30% for π = 1/2 and less than 10% for π = 1/3. Hence, throughout this
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‘equilibration path’, the variation in markets’ overall risk sharing ability are remarkably
similar for simple and complex risks.

To directly evaluate markets’ ability to reliably aggregate agents’ subjective informa-
tion about complex risks into equilibrium prices, the actual variation in subjective beliefs
has to be accounted for. The above distributions of P ? under complex risks do not yet
control for the dispersion of participants’ heterogeneous beliefs regarding the risky asset’s
true expected payoff. Therefore, I propose the following ratio as a measure of relative
price stability:

P ?-Stability =

√√√√ V ar(P ?
c )

V ar (P ?
s ) + V ar (E?

c [X]) , (12)

where P ?
s (P ?

c ) denotes the bootstrapped market-clearing price for simple (complex) risks,
and E?

c [X] indicates resampled participants’ average estimate of E[X] under complex
risks. When comparing variations in P ?

c to those in P ?
s , Eq. (12) thus controls for the

fluctuations of participants’ point estimates by accounting for the variations in E?
c [X].43

The question whether the ratio in Eq. (12) is eventually greater or smaller than unity,
i.e., whether markets reliably aggregate complex information or not, can only be answered
empirically. From a theoretical perspective, however, the answer is: it depends. The
decisive factor is whichever of the following trade-off effects dominates: increased severity
of bounded rationality versus reduced price sensitivity. In the absence of both effects, the
ratio in Eq. (12) should equal one. Whenever risk-averse agents’ behave fully rationally,
P ?
s coincides with E[X] and is thus deterministic. Moreover, if agents are neutral to

complexity-induced ambiguity, V ar(P ?
c ) exactly corresponds to V ar(E?

c [X]), since the
market-clearing price equals the average of agents’ point estimates.

In the presence of ambiguity aversion and a thereby implied decrease in local price
sensitivity under complex risks, V ar(P ?

c ) may fall below V ar(E?
c [X]), thereby pushing

Eq. (12) downwards.44 However, as shown in Figure 6, the effect of an unconditional
decrease in price sensitivity on pricing stability may be ambiguous. This is because a
given shift in supply (demand) has a bigger impact on the equilibrium price, if demand
43 Note that due to the balanced resampling size (see above), the variance of E?

c [X] is nonzero (twice as
many trading rounds with complex than simple risks).

44 For a simple example, consider two different agents with multiple-priors utility (see Table I): an
ambiguity-neutral seller and an infinitely ambiguity-averse buyer. Facing complex risks, the seller
shall belief that E[X] ∈ [a, b] with uniform probability, while the buyer believes that E[X] is uniformly
distributed over [ a+b

2 , b], where a < b. Hence, the seller’s supply curve goes through ( a+b
2 , Q̂), whereas

the buyer’s demand curve is completely flat at Q̂ over the nonempty subset of prices [ a+b
2 , b]. Therefore,

the unique trading equilibrium equals ( a+b
2 , Q̂) with P ?

c = a+b
2 and E?

c = 3a+5b
8 . However, if instead

the buyer believes that E[X] ∈ [a, a+b
2 ], P ?

c would still equal a+b
2 , but E?

c would jump to 5a+3b
8 .
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Figure 19. Relative variability of market-clearing prices

Notes: Conditioning on participants’ maximum number of dominated actions (see Figure D.9),
this figure shows the ratio

P ?-Stability =
√

V ar(P ?c )
V ar (P ?s ) + V ar (E?c [X]) ,

where P ?s (P ?c ) denotes the market-clearing price for simple (complex) risks, and E?c [X] indicates
participants’ average estimate of E[X] under complex risks. Both estimates P ?s and P ?c are
bootstrapped based on resampling and averaging individual supply and demand schedules. For
each pair of averaged supply and demand, the linearly interpolated market-clearing price is
computed. The respective resample size is set to the minimum number of sellers or buyers who
satisfy the given rationality condition (maximum allowed number of dominated actions). This
procedure is repeated ten thousand times. The left (right) plot shows standard deviation ratios
for trading rounds with π equal to 1/2 (1/3).

(supply) is less price sensitive. Hence, to reliably generate lower pricing variability, a
negative correlation between price sensitivity and extreme subjective beliefs is needed. In
contrast, more severe bounds on rationality under complex risks generally increase the
noise in P ?

c relative to P ?
s , which ultimately pushes Eq. (12) upwards.

Both trade-off effects are present in the data. Figure 19 shows the respective values
of Eq. (12), conditional on participants’ maximum number of dominated actions (see
Figure D.9). Unconditionally, the price stability ratio for π = 1/2 lies below one (0.813),
whereas for π = 1/3 it exceeds one (1.170). This is in line with the observations from
Figure 15 and Figure 16, as well as Table VI: Relative to π equal to one half, the number
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of strongly dominated actions is substantially higher for π equal to one third, implying
more severe bounds on participants’ rationality in the latter case. As shown in the right
plot of Figure 19, the ratio for π = 1/3 is decreasing in the strictness of the applied
rationality constraint. In other words, the negative correlation between participants’
price sensitivity and their individual estimation errors begins to take over, driving down
the variability of equilibrium prices. Focusing solely on participants who mostly abstain
from dominated actions, the price stability ratio eventually also falls below unity.

To sum up, markets prove to be notably efficient in pricing and sharing complex
risks, despite increased noise levels in individual trading behavior. Reliable pricing is
achieved because participants whose believes are further away from the truth become less
price-sensitive. Eventually, beyond binding limits to bounded rationality, information
aggregation is impaired, while efficient risk sharing nevertheless prevails.

6. Concluding Remarks

This paper studies the trading of complex but purely objective risks in a competitive
asset market. Relying on decision theory under ambiguity, I provide a novel perspective
on agents’ trading behavior in the presence of imperfectly understood uncertainty. In
his seminal work, Ellsberg (1961) characterizes ambiguity as “a quality depending on
the amount, type, and ‘unanimity’ of information, and giving rise to one’s degree of
‘confidence’ in an estimate of relative likelihoods” (Ellsberg, 1961, p. 657). Based on
Ellsberg’s original interpretation, I advocate for a bridging of decision theories under
ambiguity with models of financial markets. The former can viably assist the latter in
explaining the transformation of increasingly complex information into prices.

In the absence of aggregate risk, the controlled setting of Biais, Mariotti, Moinas,
and Pouget (2017) offers an ideal starting point to distinctively test for complexity’s
impact on individual trading decisions and aggregate market outcomes. Starting from
the implications of Debreu (1959) and Arrow’s (1964) general equilibrium theory under
simple risks, ambiguity models provide significant insights regarding both adopted trading
strategies and achieved equilibrium allocations under complex risks.

I find asset markets to prove remarkably effective in pricing complex risks and even
more robust in sharing them optimally across risk-averse investors. However, the former
quality crucially depends on the severity by which complexity curtails agents’ rationality
under the perceived ambiguity of complex risks. Strikingly, individual trading behavior
appears to exhibit self-awareness of prevailing estimation biases, which helps to reduce

55



the variation in market-clearing prices.
Moreover, my findings demonstrate that aggregate stability results from individual

heterogeneity in preferences. However, despite being relatively common at the individual
level, kinked ambiguity preferences can not be inferred from any of the aggregate market
outcomes. This raises questions about the generalizability of the many representative
agent models that are omnipresent in modern asset pricing theory.

Finally, I argue that my findings shed new light on the question why modern exchanges
rely on discontinuous trading periods in times of high valuation uncertainty, e.g., dur-
ing preopening hours. Importantly, my argument is complementary to the endogenous
concentration of liquidity and informed traders in the presence of ex-ante information
asymmetries (Admati and Pfleiderer, 1988) and the facilitation of coordination through
binding orders (Biais, Bisière, and Pouget, 2013).

The closest paper that looks at asymmetric reasoning in a continuous open book sys-
tem is Asparouhova, Bossaerts, Eguia, and Zame (2015). In their setting, after observing
dissenting opening prices, the trading decisions of the vast majority of participants—more
than 90% on average—become independent of past prices. Intuitively, the more traders
discard their own information, the higher the documented degree of mispricing. Absent
of the authority of public prices, I find that equilibrium prices reliably reflect the average
beliefs of all participants. Thus, discontinuous trading over periodically updated price
thresholds, as, e.g., in the Nasdaq opening cross, could facilitate robust price discovery.
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Internet Appendix

Appendix A: Proofs

Proof of Proposition 1. Here I prove the case if agent i is a seller. In the case of a buyer,
the analogous reasoning applies. Relying on the identities in Eq. (1), any agent i’s ex-
pected utility from consumption can be rewritten as (neglecting the subscript i)

E
[
U(C(ω))

]
= π U

µ+
√

1− π
π

σ

+ (1− π)U
(
µ−

√
π

1− πσ
)

, f(µ, σ, π),

and since U is increasing it follows that

∂f

∂µ
= π U ′

µ+
√

1− π
π

σ

+ (1− π)U ′
(
µ−

√
π

1− πσ
)

> 0, (A.1)

and from decreasing marginal utility from consumption that

∂f

∂σ
= π U ′

µ+
√

1− π
π

σ

√1− π
π

+ (1− π)U ′
(
µ−

√
π

1− πσ
)(
−
√

π

1− π

)

=
√
π(1− π)U ′

µ+
√

1− π
π

σ

−√π(1− π)U ′
(
µ−

√
π

1− πσ
)

< 0. (A.2)

When selling Q shares for a price equal to P , the seller’s consumption in t = 2 equals

C(u) = (S −Q)X(u) + (B +QP ) + I(u) (A.3)

in state u, and
C(d) = (S −Q)X(d) + (B +QP ) + I(d) (A.4)

in state d.
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Let us now denote the expected asset payoff E[X] by P ?, i.e.,

P ? := πX(u) + (1− π)X(d).

Furthermore, I define Q̂ as the quantity for which σ2 = 0, i.e.,

σ2 = 0 ⇔ C(u) = C(d)

⇔ (S −Q)X(u) + I(u) = (S −Q)X(d) + I(d)

⇔ Q̂ = S + I(u)− I(d)
X(u)−X(d) , (A.5)

where I assume that Q̂ > 0. From the definition of µ together with (Eq. (A.3)) and
(Eq. (A.4)) it follows that

∂µ

∂Q
= π(P −X(u)) + (1− π)(P −X(d)),

and thus

∂µ

∂Q


< 0 if P < P ?,

= 0 if P = P ?,

> 0 if P > P ?.

(A.6)

First, strict concavity now implies

E
[
U(C(ω))

]
< U

(
πµ+

√
π(1− π)σ + (1− π)µ−

√
(1− π)πσ

)
= U(µ),

hence, from (Eq. (A.5)) and (Eq. (A.6)) it follows that, ∀π ∈ (0, 1), (P ?, Q̂) strictly dom-
inates all other points on the line (P ?, Q).

Second, (Eq. (A.1)) & (Eq. (A.6)) together with (Eq. (A.2)) & (Eq. (A.5)) imply that

(i) for any given price P < P ?, any point in the upper left quadrant of Subfigure (a)
of Figure 1 is strictly dominated by (P, Q̂);

(ii) for any given price P > P ?, any point in the lower right quadrant of of Subfigure
(a) of Figure 1 is strictly dominated by (P, Q̂).

Hence, ∀π ∈ (0, 1), the seller’s supply curve has to lie somewhere in the lower left and
upper right quadrant and has to go through the point (P ?, Q̂). This completes the proof.
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Proof of Remark 1. Since ε can be arbitrarily small, I directly consider the limit ε → 0,
i.e., limε→0 Ui(C) = c1C, for 0 ≤ C ≤ C. The corresponding first and second derivatives
of Ui(C) are

lim
ε→0

U ′i(C) = c1, and lim
ε→0

U ′′i (C) = 0.

For C ≥ C, the respective derivatives are

U ′i(C) = αe−αC , and U ′′i (C) = −α2e−αC .

The following conditions ensure the differentiability of Ui(C) at C:

c1C = c2 − e−αC ⇔ c2 = c1C + e−αC , (A.7)

c1 = αe−αC . (A.8)

Given Eq. (A.3) and Eq. (A.4), the FOC for E
[
U(C(ω))

]
with respect to Q implies

πU ′(C(u))(P −X(u)) + (1− π)U ′(C(d))(P −X(d)) = 0. (A.9)

Taking the first derivative of the LHS of Eq. (A.9) with respect to P yields

πU ′(C(u)) + (1− π)U ′(C(d)) + πU ′′(C(u))Q(P −X(u)) + (1− π)U ′′(C(d))Q(P −X(d)).

Since ∂
∂Q

(LHS of Eq. (A.9)) < 0 ∀(P,Q) ∈ R2
≥0, agent i’s supply curve is decreasing in

P if ∂
∂P

(LHS of Eq. (A.9)) < 0. For the here considered utility function, this is the case
whenever

c1 <
1− π
π

αeαC(d) (αQ(P −X(d))− 1) .

Together with Eq. (A.8), this implies that for high enough prices, i.e., if

P > X(d) +
1 + π

1−παe
−α(C−C(d))

αQ
,

seller i’s supply curve can be locally decreasing in P . This completes the proof.

Proof of Proposition 2. Here I prove the case if the ambiguity-averse agent i, i.e., αi > 1/2,
is a seller. In the case of a buyer, the analogous reasoning applies. Relying on the identities
in Eq. (1), any agent i’s utility from consumption according to the α-maxmin in Eq. (2)
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can be rewritten as (neglecting the subscript i)

U(C(ω)) = αmin
π∈C

(
E
[
U(π)

])
+ (1− α) max

π∈C

(
E
[
U(π)

])
= α

(
π U

(
µ+

√
1− π
π

σ

)
+ (1− π)U

(
µ−

√
π

1− πσ
))

+ (1− α)
π U

µ+
√

1− π
π

σ

+ (1− π)U
(
µ−

√
π

1− πσ
) ,

where π = arg min
π∈C

E
[
U(π)

]
(π = arg max

π∈C
E
[
U(π)

]
) and µ (µ) and σ (σ) denote expected

consumption and standard deviation of consumption according to π (π). For Q 6= Q̂, i.e.,
for strictly positive σ and σ, it directly follows from U ’s strict concavity that

U(C(ω)) < αU(µ) + (1− α)U(µ) < U(αµ+ (1− α)µ).

Eq. (A.3) and Eq. (A.4) imply

αµ+ (1− α)µ = α
(
π ((S −Q)X(u) + (B +QP ) + I(u)) +

(1− π) ((S −Q)X(d) + (B +QP ) + I(d))
)

+ (1− α)
(
π ((S −Q)X(u) + (B +QP ) + I(u)) +

(1− π) ((S −Q)X(d) + (B +QP ) + I(d))
)

= ... terms indep. from Q ...+Q
(
P −

(
αEπ[X] + (1− α)Eπ[X]

))
.

Hence, if P = αEπ[X] + (1−α)Eπ[X], denoted by P̃ hereafter, the linear combination of
expected consumption (for constant π and π) does not change for different quantities of
shares sold. Therefore, for P̃ , it is optimal for the seller to exactly sell Q̂ share and get
the constant utility U(αµ+ (1− α)µ) = U(αµ) = U((1− α)µ).

In general, it holds that

U(C(ω)) = α
(
πU(C(u))

)
+ (1− π)U(C(d))

)
+ (1− α)

(
πU(C(u)) + (1− π)U(C(d))

)
,
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and, for any given price, the corresponding FOC reads

∂U
∂Q

= α
(
πU ′(C(u))(P −X(u)) + (1− π)U ′(C(d))(P −X(d))

)
+ (1− α)

(
πU ′(C(u))(P −X(u)) + (1− π)U ′(C(d))(P −X(d))

)
= 0. (A.10)

As shown, for P̃ , it is optimal to sell Q̂ shares. Hence, the question now is, for what prices
it is optimal to sell less (more) than Q̂? Or, put differently, starting from P̃ per share,
below (above) which price does it become beneficial to sell less (more) than Q̂ shares?

Since when selling Q̂ shares C(u) = C(d), Eq. (A.10) yields

∂U
∂Q

∣∣∣∣∣
Q=Q̂

= 0 ⇔ P = P̃ .

I denote by P̃ (Q̂ ↓) = L (P̃ (Q̂ ↑) = U) the lowest (highest) price for which the seller
prefers to sell Q̂ shares. Because π < π whenever the seller considers to sell less than Q̂,
and π > π whenever she thinks about selling more than Q̂, it follows that L < U .

Therefore, in summary, seller i’s supply curve is constant over the closed subset
[L,U ] ⊂ P and the difference U − L becomes larger as her C becomes wider and/or
as α→ 1. This completes the proof.

Proof of Proposition 3. Whenever there is a nonzero mass of ambiguity-averse agents
whose supply (demand) curves do not go through the benchmark equilibrium (E[X], Q̂),
they draw average supply (demand) away from the latter. Given the result in Proposi-
tion 2, this clearly occurs if either

L > E[X] or U < E[X]. (A.11)

For ambiguity-averse agents, L is always strictly smaller than U , hence, the two cases in
Eq. (A.11) are mutually exclusive.

I begin with the first inequality in Eq. (A.11). For any ambiguity-averse seller i it
holds that (neglecting the subscript i)

L = αEπ[X] + (1− α)Eπ[X],

where α > 1/2 and π < π since L denotes the lower price limit below which she prefers to
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sell less than Q̂ shares. Thus, denoting by πM the midpoint and by 2∆ the length of the
seller’s set of priors,45 the inequality L > E[X] can be written as

E[X] < L

E[X] < α ((πM −∆)X(u) + (1− (πM −∆))X(d))

+ (1− α) ((πM + ∆)X(u) + (1− (πM + ∆))X(d))

πX(u) + (1− π)X(d) < π′X(u) + (1− π′)X(d), (A.12)

where π′ := πM−∆(2α−1). By the analogous argument and relying on the same notation,
it follows that the second inequality in Eq. (A.11) is equivalent to

E[X] > U

πX(u) + (1− π)X(d) > π′′X(u) + (1− π′′)X(d), (A.13)

whereas now π′′ := πM + ∆(2α− 1).
Together, Eq. (A.12) and Eq. (A.13) imply that

L < E[X] < U ⇔ π′ < π < π′′, (A.14)

where π′ < π′′ because α > 1/2. Hence, whenever π 6∈ B as defined in Eq. (4), the
seller’s supply curve draws average supply away from the benchmark equilibrium. Because
of perfect symmetry, the same condition simultaneously holds for any ambiguity-averse
buyer. This completes the proof.

Proof of Proposition 4. I first prove (ii). Eq. (5) can be written as (neglecting the sub-
script i)

U(C(ω)) = 1
π − π

∫ π

π
φ
(
E
[
U(π̃)

])
dπ̃.

For any given price, the FOC with respect to Q reads

∂U
∂Q

= 1
π − π

∫ π

π
φ′
(
E
[
U(π̃)

]) (
π̃
∂

∂Q
U(C(u)) + (1− π̃) ∂

∂Q
U(C(d))

)
dπ̃ = 0. (A.15)

Eq. (A.3) and Eq. (A.4) imply

1
π − π

∫ π

π
φ′
(
E
[
U(π̃)

]) (
π̃U ′(C(u))(P −X(u)) + (1− π̃)U ′(C(d))(P −X(d))

)
dπ̃ = 0.

45 Alternatively, for a discrete set of priors, 2∆ refers to the difference max(C)−min(C).
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For Q = Q̂ the agent bears no consumption risk, i.e., C(u) = C(d) ∀π̃ and E[U ]⊥⊥ π̃.
At Q = Q̂, Eq. (A.15) therefore becomes

1
π − π

∫ π

π
π̃(P −X(u)) + (1− π̃)(P −X(d))dπ̃ = 0 ⇔

1
π − π

∫ π

π
Pdπ̃ = 1

π − π

∫ π

π
π̃X(u) + (1− π̃)X(d)dπ̃ ⇔

P = 1
2
π2 − π2

π − π
X(u) +

(
1− 1

2
π2 − π2

π − π

)
X(d) ⇔

P = π − π
2 X(u) +

(
1− π − π

2

)
X(d). (A.16)

Hence, any seller’s (buyer’s) supply (demand) curve only goes through the benchmark
equilibrium (Q̂, E[X]), if the RHS of Eq. (A.16) equals the stock’s expected dividend, i.e.,

π − π
2 X(u) +

(
1− π − π

2

)
X(d) = E[X] ⇔ π = π + π

2 .

Thus, whenever π does not correspond to the midpoint of her set of priors [π, π], she
induces mispricing and suboptimal risk sharing of complex risks.

I hereafter prove (i) for the case where the considered nonzero mass of agents are
sellers. In the case of buyers, the analogous reasoning applies. For a given seller i and
price P per share, let Q?

i (P ) denote the number of shares satisfying Eq. (A.15). Taking
the first order derivative of the second integrand in Eq. (A.15) with respect to π̃ yields
(neglecting again the subscript i)

∂

∂π̃

(
π̃U ′(C(u))(P −X(u)) + (1− π̃)U ′(C(d))(P −X(d))

)
=

U ′(C(u))︸ ︷︷ ︸
>0

(P −X(u))− U ′(C(d))︸ ︷︷ ︸
>0

(P −X(d)) < 0, (A.17)

i.e., is always strictly negative for X(d) ≤ P ≤ X(u).
Regarding the first integrand in Eq. (A.15), there are three different cases. First, if

seller i is ambiguity-neutral, i.e., if φ′(·) is a positive constant, only the second integrand is
relevant for determining the optimal number of shares to be sold at P , hereafter denoted
by Q?

N(P ). Second, if seller i is ambiguity-averse, i.e., if φ′(·) is a decreasing function, then
the first integrand becomes relevant for determining Q?

A(P ). Third, if she is ambiguity-
loving, her increasing function φ′(·) conversely affects Q?

L(P ).
Because Eq. (A.17) strictly decreases at a constant rate over [π, π], Eq. (A.15) can only
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hold for Q?
N(P ), if the second integrand changes its sign between π and π. For Q < Q̂, it

holds that
∂

∂π̃
E
[
U(π̃)

]
= U(C(u))− U(C(d)) > 0 ∀Q < Q̂,

i.e., whenever seller i is ambiguity-averse, the first integrand in Eq. (A.15) is a strictly
decreasing function over [π, π]. Hence, for Q?

A(P ) the second integrand in Eq. (A.15)
needs to switch its sign for a smaller π̃ ∈ [π, π], relative to Q?

N(P ), in order to satisfy the
first order condition.

Taking the first order derivative of the second integrand in Eq. (A.15) with respect to
Q yields

∂

∂Q

(
π̃U ′(C(u))(P −X(u)) + (1− π̃)U ′(C(d))(P −X(d))

)
=

π̃ U ′′(C(u))︸ ︷︷ ︸
<0

(P −X(u))2 + (1− π̃)U ′′(C(d))︸ ︷︷ ︸
<0

(P −X(d))2 < 0,

i.e., is always strictly negative for any risk-averse seller. It therefore follows that Q?
A(P ) >

Q?
N(P ), i.e., that Q?

A(P ) is closer to Q̂ than Q?
N(P ). Since, for any ambiguity-loving seller,

the first integrand in Eq. (A.15) then is a strictly increasing function over [π, π], the
analogous reasoning implies Q?

L(P ) < Q?
N(P ). Thus, the distance between Q̂ and Q?

L(P )
is larger than between Q?

N(P ) and Q̂. Finally, the symmetric argument for Q?(P ) > Q̂

yields Q?
A(P ) < Q?

N(P ) < Q?
L(P ). This completes the proof.

Proof of Proposition 5. Here I prove the distributional results for sellers (supply side). In
the case of buyers, the analogous reasoning applies. From the proof of Proposition 1 it
follows that for every risk-averse seller i

arg max
Q

fi(Q|P=E[X]) = Q̂.

From the proofs of Proposition 2 and Proposition 4 it follows that for every ambiguity-
averse seller i

arg max
Q

f
i
(Q|P=Ei[X]) = Q̂.

Hence, for P = Ei[X], the law of large numbers implies a unique mode at Q = Q̂ under
both simple and complex risks.

Since Ei[X] is subjective under complex risks, I assume π = π+π
2 in order to compare

the relative sensitivity of ∂E[Ui]
∂Q

and ∂Ui
∂Q

for given prices. For multiple-priors utility with
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αi > 1/2, it follows from Eq. (A.1) and Eq. (A.10) that for P = Ei[X]
∣∣∣∣∣∂E[Ui]
∂Q

∣∣∣∣∣ >
∣∣∣∣∣∂Ui∂Q

∣∣∣∣∣ ∀Q 6= Q̂ (A.18)

and for P < Ei[X] (P > Ei[X])
∣∣∣∣∣∂E[Ui]
∂Q

∣∣∣∣∣ >
∣∣∣∣∣∂Ui∂Q

∣∣∣∣∣ ∀Q > Q̂ (∀Q < Q̂). (A.19)

To see this, consider the following case. If at a fixed price P < Ei[X] ≤ X(u) and a
fixed quantity Q0 > Q̂ it holds that ∂E[Ui]

∂Q
> 0, then Q0 < Q? and

∣∣∣π U ′(C(u))(P −X(u))︸ ︷︷ ︸
part 1

∣∣∣ < ∣∣∣(1− π)U ′(C(d))(P −X(d))︸ ︷︷ ︸
part 2

∣∣∣. (A.20)

Recall that, in general, π < π if C(u) > C(d) and π > π if C(u) < C(d). Since, for seller
i, Q0 > Q̂ implies C(u) < C(d), it follows in this case that π > π. Hence, αi > 1/2 in
Eq. (A.10) puts a relatively higher weight on part 1 in Eq. (A.20) than on part 2, which
in turn implies the corresponding inequality in Eq. (A.19). Analogous reasoning applies
to the other cases.

Similarly, for smooth ambiguity preferences, strict concavity of φi(·) in Eq. (5) implies
a lower sensitivity with respect to Q of Eq. (10) relative to Eq. (9).

Since, for every seller i with fixed ψi(·), the area under both pdfs fi and fi has to
equal unity, it needs to hold that

fi(Q̂|P=E[X]) > f
i
(Q̂|P=E[X])

fi(Q|P=E[X]) < f
i
(Q|P=E[X]) and fi(Q|P=E[X]) < f

i
(Q|P=E[X])

fi(Q|P<E[X]) < f
i
(Q|P<E[X]) and fi(Q|P>E[X]) < f

i
(Q|P>E[X])

for Q� Q̂ and Q� Q̂ distant enough from Q̂. C1–C3 then follow from the law of large
numbers. This completes the proof.
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Appendix B: Determining π in the Presence of
Complex Risks

Starting point is the SDE of the geometric Brownian motion in Figure 7, i.e.,

dSt = 10%Stdt+ 32%StdWt,

where Wt is a standard Brownian motion. Applying Itō to f := ln(St) yields

S2 = exp
{(

10%− 32%2

2

)
+ 32%(W2 −W1)

}
.

Hence,

P(S2 ≥ 1.05) = P
(
W2 −W1 ≤

(
ln(1.05)− 10% + 32%2

2

)
1

32%︸ ︷︷ ︸
≈0

)
.

Recalling that the increment W2 −W1 has a standard normal distribution,46 it follows
that P(S2≥1.05) corresponds to 1/2.47

Appendix C: Adjustment of average supply and
demand curves according to subjective beliefs

For a given case, I denote by ĒS[X] sellers’ average point estimate of the risky asset’s
expected payoff under complex risks. In order to account for deviations of ĒS[X] from
E[X], the following linear transformation is applied to the predefined price vector used
to elicit sellers’ supply functions:

adj(P ) =


P − (ĒS[X]− E[X]) P−X(d)

ĒS [X]−X(d) , for X(d) ≤ P < ĒS[X]

P − (ĒS[X]− E[X]) X(u)−P
X(u)−ĒS [X] , for ĒS[X] ≤ P ≤ X(u).

Furthermore, let Q̄S denote the linearly interpolated average supply curve and Q̄S,adj

the corresponding curve plotted against adj(P ) instead of P . It then still holds that Q̄S,adj

spans from X(d) to X(u), but simultaneously that Q̄S,adj(E[X]) = Q̄S(ĒS[X]). The exact
46 This information was provided as part of the instructions.
47 Strictly speaking, it holds that P(S2≥1.05) = 0.49999. Linearly approximating ln(1.05) by 0.05

implies P(S2≥1.05) = 0.50150.
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same linear transformation with ĒB[X] instead of ĒS[X], with B for buyers, is also used
to adjust average demand curves under complex risks.
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Appendix D: Additional Figures

Figure D.1. Example of nonmonotonic supply curve

Notes: Supply curve for seller i with utility function as defined in Remark 1. Parameters:
X(u) = 1.5, X(d) = 0, π = 1/10, ε = 0, α = 1, C = 3 + 2πX(u), Ei = 4, Ii(u) = 0, Ii(d) = 3.
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1	Ball	is	randomly	drawn.
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GR R G R
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15	x										/	15	x	G R

G

R

Figure D.2. Lottery based on urn with simple risks

Notes: This figure shows the lottery based on the urn with simple risks. Whenever the randomly
drawn ball is green, the lottery pays ECU 600 (experimental currency units) and ECU 300 if it is
red. participants’ respective certainty equivalents were elicited via Abdellaoui, Baillon, Placido,
and Wakker’s (2011) iterative choice list method.
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Figure D.3. Distribution of expected payoffs under complex risks

Notes: This figure plots the distribution of participants’ point estimates of the risky asset’s
expected payoff under complex risks. In the left (right) column, the distribution is based on
trading rounds where π equals 1/2 (1/3). The dotted horizontal line indicates the true expected
payoff. The dotted vertical line indicates the mean point estimate across participants.
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Figure D.4. Average supply and demand adjusted for subjective beliefs

Notes: This figure shows the average adjusted supply and demand curves across participants
and trading rounds. Average curves for complex risks are adjusted as described in Appendix C
to account for deviations of average beliefs from the true underlying payoff distribution. In
the top (bottom) row, averages are computed across sessions where complex (simple) trading
rounds are followed by simple (complex) trading rounds. In the left (right) column, averages are
computed across trading rounds where π equals 1/2 (1/3). The dotted horizontal line indicates
the perfect hedging quantity. The dotted vertical line indicates the risky asset’s expected payoff.
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Figure D.5. Testing for differences in price sensitivity

Notes: This figure reports the p-values of a Wilcoxon signed-rank test of the differences between
average supply (demand) curves for simple and complex risks. Averages are computed across
participants and trading rounds. Average curves for complex risks are adjusted as described
in Appendix C and linearly interpolated to allow for a direct comparison with simple risks. In
the top (bottom) row, average supply (demand) curves are computed across all sessions. In the
left (right) column, averages are computed across trading rounds where π equals 1/2 (1/3). The
dotted line indicates a p-value equal to 10%.
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Figure D.6. Testing for price-taking behavior under complex risks

Notes: This figure reports the p-values of a Wilcoxon signed-rank test of the differences between
average supply (demand) curves for complex risks under market clearing and random price draws.
Averages are computed across participants and complex trading rounds. Average curves are
adjusted as described in Appendix C and linearly interpolated to allow for a direct comparison
with simple risks. In the top (bottom) row, average supply (demand) curves are computed
across all sessions. In the left (right) column, averages are computed across complex trading
rounds where π equals 1/2 (1/3). The dotted line indicates a p-value equal to 10%.
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Figure D.7. Demand distribution for prices equal to expected payoffs

Notes: This figure shows the number of shares demanded by buyers for prices equal to (es-
timated) expected payoffs. The empirical distributions are computed across participants and
sessions. The left (right) plot contrasts average distributions between simple and complex trad-
ing rounds with π equal to 1/2 (1/3). If, under complex risks, buyers’ point estimate Ei[X]
lies between two elements of the predefined price vector, linearly interpolated quantities are
reported.
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Figure D.8. Demand distribution for prices different from expected pay-
offs

Notes: This figure shows the number of shares demanded by buyers for prices different from
expected payoffs. The empirical distributions between simple and complex risks are computed
across participants and sessions. In the top (bottom) row, total demands for pries below (above)
Ei[X] are reported. The left (right) column shows average demand distributions across trading
rounds with π equal to 1/2 (1/3).
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Figure D.9. Frequency of dominated trading strategies

Notes: This figure shows the distributions of dominated action frequencies across all participants.
Under simple risks, dominated actions correspond to offered (demanded) quantities above (be-
low) Q̂ shares for P < E[X] and vice versa for P > E[X]. Under complex risks, dominated
actions correspond to offered (demanded) quantities above (below) Q̂ shares for P < Ei[X]
and vice versa for P > Ei[X]. Note that in the presence of complex risks, the price thresholds
depend on participants’ individual point estimates.
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Figure D.10. Learning under complex risks

Notes: This figure shows the evolution of the average percentage of dominated trading strategies
(see Figure D.9) over the four trading rounds with complex risks (see Table III). Error bars
indicate standard errors of the mean.
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Figure D.11. Distribution for prices equal to expected payoff (reference
point)

Notes: This figure shows empirical distributions of supplied and demanded shares at a fixed
price of ECU 75. Percentages are computed across participants and sessions. For simple risks,
only the trading round with π equal to 1/2 is considered. For ambiguous risks, a price of ECU
75 corresponds to the natural reference point, assuming that participants believe in a fifty-fifty
likelihood under pure ambiguity.
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Figure D.12. Equilibration variability

Notes: This figure shows bootstrapped standard deviation estimates of market-clearing prices
and quantities for simple and complex risks. Average supply and demand curves are deter-
mined for different resample sizes. For each pair of averaged supply and demand, linearly
interpolated market-clearing prices and quantities are computed. Repeating this procedure ten
thousand times yields the depicted standard deviation estimates of equilibrium prices (top row)
and quantities (bottom row). The left (right) column shows bootstrapped moment estimates
for trading rounds with π equal to 1/2 (1/3). Error bars indicate 99%-confidence intervals.
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Appendix E: Experimental Instructions

The instructions for participants acting as sellers are provided on the following pages.
Analogous instructions were distributed to participants acting as buyers and are available
upon request.
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Instructions I/II

Welcome to this experiment at the Department of Banking and Finance, University of Zurich. This

is the first out of 2 instruction sheets. Please read each sheet very carefully. Fully understanding the

instructions will allow you to perform better on the task, thereby earning more money. Raise your hand

if you have any questions or as soon as you have read everything and are ready to continue.

1 Situation

The experiment consists of a sequence of 7 trading rounds. In each trading round the same number

of buyers and sellers are present. You are a seller. Your role will not change throughout the experiment.

At the beginning of every round, you will receive a fresh supply of 4 shares of a given security. During

each round you can sell between 0 and 4 of these shares. The security either pays a dividend per share

equal to 150 or 0. Besides this dividend per share, the security does not pay anything else (no capital

gains). Additionally, you are provided with some non-tradable income: whenever the security happens

to pay a dividend of 150 per share, you receive 0, and if it does not pay anything (dividend of 0),

you receive 300. This additional income does not depend on how many shares you are selling. The

following graph summarizes your holdings at the beginning of every round:

Shares: 4 ×
per

share Dividend = 150

per share Dividend = 0

+

Income = 0

Income = 300

You can sell up to 4 shares Non-tradable

Your wealth at the end of each round is the sum of received proceeds from trading, collected dividends,

and additional income. It is not carried over to the subsequent round, this means you always start out

with 4 shares. At the end of every round, the trading outcome, realized dividends, and your respective

wealth are displayed.

2 Trading

Trading happens in 2 phases. First, you have to select how many shares you want to sell in case the

price equals 0, 25, 50, 75, 100, 125, or 150. The computer then linearly fills up your selling quantities

for the remaining 5-unit steps between 0 and 150 (5, 10, 15, ...). Second, you are asked to make further

adjustments until you end up with the exact quantities you want to sell for any given price. Note,

quantities can be entered with up to 2 decimal places of precision.

The price determination method of the current round is always displayed in the upper right corner of

your screen. There are two ways how prices are determined. If there is market clearing, the computer

sets the price such that the number of traded shares is maximized. Alternatively, the computer will

choose the price randomly (random price) with equal probabilities across the full list of given prices.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
You will now go through a first practice round. This practice round will not impact your payment.

1
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Instructions II/II

Please read this sheet very carefully. Raise your hand if you have any questions or as soon as you have

read everything and answered the comprehension questions at the end.

3 How Dividends Are Determined

The computer randomly determines whether the security is going to pay a dividend or not. However,

the information about the structure that governs the computer’s random choices varies between trading

rounds. There are 2 different cases:

1. Urn.—The computer draws 1 ball out of an urn with 30 balls. The balls are either green or red, the

respective composition is revealed at the beginning of the trading round. Whenever the color of the

drawn ball is green, the security pays a dividend equal to 150 per share (and 0 if red).

2. Simulated reference path.—The computer simulates the evolution of a reference path over 2 time

periods, but only the first period will be displayed. Whenever the path ends up above a certain limit,

the security pays a dividend equal to 150 per share (and 0 if the path ends up below this limit). The

only purpose of this path is to determine whether the security pays a dividend or not.

What you will see.—You are provided with a formal description of the reference path St, where the

random component is denoted by Wt. Wt follows a normal distribution with mean equal to 0 and

variance equal to the corresponding change in time. For example, the full description of the path St

could look like this

dSt = 5%Stdt + 10%StdWt,

where dSt denotes the change of St over the very small (infinitesimal) time change of length dt. Addi-

tionally, you will see a video of the path St between time 0 and the end of period 1:

(a) Beginning of period 1 (b) Middle of period 1 (c) End of period 1

The difference of the random component Wt between the ends of period 1 and 2, W2 −W1, follows

a normal distribution with mean 0 and variance 1. For simplicity, every path is scaled such that S1 = 1.

Based on this information you can assess the probability of the dividend being equal to 150 (→ path

ends up in the green region at time 2).

4 List of Lotteries, Questionnaire, and Payment

After the 7 trading rounds, you have to repeatedly choose 1 out of 2 options for 2 lists of lotteries. For

both lists, the computer randomly selects and plays 1 of your chosen options. Finally, you will be asked

1
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to fill-in a short questionnaire.

Your final payment will be determined as follows:

1. The computer randomly picks 1 out of the 7 trading rounds or 1 of the 2 lottery outcomes with

equal probability (19 for each). It is therefore critical that you concentrate on every round. You

will be paid either your wealth at the end of the selected trading round or the outcome of the

selected lottery, both in CHF divided by 12.

2. In all rounds with simulated reference paths, you are asked to submit your best guess regarding

the probability of the dividend being equal to 150. If your guess is correct (within +/- 3%), you

earn an additional 3 CHF whenever this round is selected for payment.

5 Comprehension Questions

(1) Assume you have sold 4 shares at a price of 50 per share, what is your wealth in the 2 scenarios?

per
share Dividend = 150 → Wealth =

per share Dividend = 0 → Wealth =

(2) Assume you have sold 4 shares at a price of 150 per share, what is your wealth in the 2 scenarios?

per
share Dividend = 150 → Wealth =

per share Dividend = 0 → Wealth =

(3) Assume you have sold 2 shares at a price of 50 per share, what is your wealth in the 2 scenarios?

per
share Dividend = 150 → Wealth =

per share Dividend = 0 → Wealth =

(4) Does the difference between your wealth in the green and the red scenario depend on...?

� The paid price � The number of sold shares

(5) What is the difference between your wealth in the 2 scenarios, if you exactly sell 2 shares?

Difference =

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Raise your hand after you have answered the comprehension questions. After double-checking, you will

go through 2 last practice rounds. These practice rounds will not impact your payment.
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