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Abstract

The �nance industry is transforming into a data industry. As data used to inform

investments becomes more central, we need to measure the quantity of data investors have

about various assets. Informed by a structural model, we develop such a cross-sectional

measure. We show how our measure di�ers from price informativeness and use it to

document a new fact: Data about large growth �rms is becoming increasingly abundant,

relative to data about other �rms. Our structural model o�ers an explanation for this

data divergence: Large growth �rms' data became more valuable, as big �rms got bigger

and growth magni�ed the e�ect of these changes in size.
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Data is becoming more central to the practice of �nance. In order to address the myriad of

questions that are arising about data value and data choice, we need a quantitative measure

of data being used by market participants. Firms want to know: How much do others know

about various types of assets? This paper develops a data measure to answer this question.

The challenges with measuring data processing are many-fold. For one, it is not directly

observable. While some of it is bought and sold, much of it is not. There are proxies available �

like counts of news stories, information technology expenditures, or analyst coverage. These are

suggestive, but are quite crude, especially if one wants a precise answer to the question: how

much information about stocks did investors extract through data processing? Measures of the

information contained in market prices do re�ect the amount of data, but are also in�uenced

by market volatility or the price sensitivity to data, factors which di�er across assets.

We address these challenges by building a simple structural model to guide our measurement.

The model shows how data is related to and yet distinct from concepts like price informative-

ness. It also provides a formula to correct a price information measure for the e�ect of asset

characteristics, and obtain a pure measure of data.

Next, we use this toolkit to study cross-sectional patterns in data in the US equity market

over the past few decades. We group assets by size and growth prospects: we chose these

dimensions because they drive the value of data processing in the model. Our analysis reveals a

new fact: diverging trends in data processing across di�erent assets. Investors in large growth

�rms are basing their decisions on more and more data. For other assets, data appears stagnant,

in comparison. In other words, ever-growing reams of �nancial data may be helping price assets

more accurately. But this additional data might not deliver �nancial e�ciency bene�ts for the

vast majority of �rms. This divergence is consistent with reduced-form measures, like price

informativeness measures and analyst coverage patterns, with di�erent magnitudes. However,

quantifying the magnitude of the divergence in units of data precision is valuable, beyond the

reduced-form evidence.

The third contribution of the paper is to explore data valuation. We �nd that the value of

data depends on �rm size and growth. This �nding is what motivated us to sort �rms by size

and growth in the empirical analysis. These are dimensions along which data choices should

vary. When we use size and growth estimates to quantify data value, we uncover a potential
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explanation for data divergence: The value of large, growth �rm data has diverged, as large

�rms have grown relatively larger.

Section 1 begins with a simple model designed to relate data precision to observables. Our

theoretical framework is a standard noisy rational expectations framework with multiple assets.

The theory points to a particular moment as a natural starting point for our analysis of data

processing: Estimate the coe�cient on prices in a regression of future cash�ows on a constant,

prices and controls. This coe�cient, referred to as price informativeness by papers like Bai,

Philippon, and Savov (2016), measures how closely prices re�ect future �rm outcomes. This

is obviously a�ected by the amount of data processed but also depends on other �rm charac-

teristics, making trends in this variable hard to interpret or attribute solely to changes in data

processing. Our model overcomes this di�culty: it o�ers a simple expression that relates the

price informativeness measure to data, in a way that holds with minimal theoretical assump-

tions. Speci�cally, it can be decomposed into components that depend on data processing,

cash�ow growth and volatility. The cash�ow and volatility can be directly estimated from �-

nancial market observables, which allows us to back out a precise measure of data processed by

investors.

Section 2 provides detail of how we estimate our model structurally. This includes the

description of our sample, our variable construction, as well as the moments used for the

structural estimation.

In Section 3, we report how informativeness of prices changes across di�erent classes of

assets and decompose that change into changes in volatility, growth and data. We �nd that,

over the last 50 years, data about most �rms has stagnated. However, one category of data

has become much more abundant: information about large growth �rms. Strikingly, while �rm

growth and volatility have also changed over time, their changes work against this trend for

the most part. For example, by themselves, they would imply falling price informativeness for

large-growth �rms as well. Thus, our measurement exercise reveals that data divergence is the

key to understanding the changes over the last few decades. We also contrast our measure, both

theoretically and quantitatively, with other measures such as price informativeness, comovement

and absolute price informativeness.

Finally, Section 4 uses the model to explore the underlying drivers of this rising abundance
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of data processing on large-growth �rms. Speci�cally, we compute a model implied value of

data, which is increasing in the size of the �rm, volatility of its cash�ows and growth prospects.

While this is not surprising per se, the model yields a simple formula that shows exactly how

these characteristics interact, o�set and amplify each other. This measure allows us to precisely

rank assets based on the value of learning about them, which then predicts the types of assets

are learned about.

We �nd that value of data about large growth stocks has diverged in recent years, which

o�ers a potential explanation for the trends we see in data processing. A key factor behind

this divergence is a similar pattern in �rm size: large �rms got much larger, compared to

small �rms. Since an increase in size allows investors to take larger positions based on their

data processing, the divergence in size makes larger �rms even more attractive to learn about.

Finally, growth ampli�es changes in the value of data. To be precise, growth multiplies size in

data value. Although data for all large �rms became more valuable as large �rms got bigger, in

most decades, this e�ect was strongest for the large growth �rms. The fact that our prediction

about value of data is consistent with the data patterns we see, both o�ers an explanation for

our facts, and gives us greater con�dence in our measurement approach.

Thus, as overall data processing capacity increased in the economy, most of it seems to have

gone to learning about the prospects of large growth �rms. Other types of �rms bene�ted little

from this data revolution.

Related Literature Our methodology is most related to Bai, Philippon, and Savov (2016)

and Davila and Parlatore (2016a), who propose measures of price informativeness. Their mea-

sure captures the ability of prices to forecast or aggregate information. Such a measure is

valuable because it may relate to real e�ciency.1 Similarly, measures of comovement, syn-

chronicity or R2 (Durnev, Morck, and Yeung, 2004) measure aggregate price variation, relative

to stock-speci�c price variation. Our question di�ers. We want to know how the allocation of

1There is an extensive literature on how asset price informativeness a�ects real investment. (Ozdenoren
and Yuan, 2008; Bond and Eraslan, 2010; Goldstein, Ozdenoren, and Yuan, 2013; David, Hopenhayn, and
Venkateswaran, 2016; Dow, Goldstein, and Guembel, 2017; Dessaint, Foucault, Fresard, and Matray, 2018)
complement our work by showing how the �nancial information trends we document could have real economic
e�ects. Bond, Edmans, and Goldstein (2012) review this literature, concluding that the relationship between
market e�ciency and real e�ciency is not necessarily monotone and depends on the environment.
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�nancial data precision, across asset types, has changed over time. Our measure is valuable

because we need it to value or choose data. Section 2.3 compares these measures and reveals

important di�erences: Noise, size and growth all drive a wedge between the previously-used

price informativeness or comovement measures and our data measure. We measure these wedges

and �nd they are quantitatively large. Finally, previous exercises did not explain why trends

emerged. Our approach does.

Empirical work in this area primarily uses proxies for data or information, such as news con-

sumption (Ben-Rephael, Carlin, Da, and Israelsen, 2019), social media text (Ranco, Aleksovski,

Caldarelli, Grcar, and Mozetic, 2015), analyst coverage (Hong and Kacperczyk, 2010; Kelly and

Ljungqvist, 2012), or earnings announcements (Martineau, 2017). These papers measure the

e�ect of a particular information channel and for the most part, are interested in cross-sectional

determinants rather changes over time. Our goal is to measure all the information investors

use, from all channels, and to document how that has changed over time.

Work by Stambaugh (2014) and Glode, Green, and Lowery (2012) does explain the reason

for overall information trends. But their focus is on aggregate trends that a�ect all assets. These

authors highlight forces such as rising institutional ownership and indexation. Such forces could

be incorporated into our measurement framework by changing the marginal bene�t of all �rms'

data. But our focus is on why these trends di�er across asset classes and what part of that

change is information versus divergent asset characteristics.

Finally, the way in which we model data has its origins in information theory/computer

science, and is similar to work on rational inattention (Sims, 2003; Ma¢kowiak and Wiederholt,

2009; Kacperczyk, Nosal, and Stevens, 2015). Similar equilibrium models with information

choice have been used to explain income inequality (Kacperczyk, Nosal, and Stevens, 2015),

information aversion (Andries and Haddad, 2017), home bias (Mondria, Wu, and Zhang, 2010;

Van Nieuwerburgh and Veldkamp, 2009), and mutual fund returns (Pástor and Stambaugh,

2012), among other phenomena. Related microstructure work explores the frequency of in-

formation acquisition and trading (Kyle and Lee, 2017; Dugast and Foucault, 2016; Chordia,

Green, and Kottimukkalur, 2016; Crouzet, Dew-Becker, and Nathanson, 2016). Empirical work

in this vein (Katz, Lustig, and Nielsen, 2017) �nds evidence of rational inattention like infor-

mation frictions in the cross section of asset prices. What we add to this literature is using the
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theory for structural estimation. Our structure allows us to distinguish changes in information

from changes in asset characteristics.

1 A Structural Framework for Data Measurement

The main objective of the paper is to develop a measure of investors' data precision from asset

prices. This is related to measures of price informativeness. But we know that informativeness

also re�ects di�erences in price-earnings ratios, related to �rm growth, and di�erences in �rm

price volatility. One approach would be to simply control for such asset characteristics in a linear

regression. However, one problem with this approach is that growth and volatility themselves

a�ect the value of collecting and processing data and therefore, are likely to be correlated with

investors' data. As such, adding them as controls can remove some of what we hope to measure.

Another problem is non-linearity: the e�ect of growth, for example, is probably not additive.

In fact, this is exactly what happens in our model, where it interacts with the measure of data

multiplicatively. Furthermore, our goal is to develop a measure of data processing that guides

the choice of valuation of data by investors. In order to do so, it needs to be consistent with �

or interpretable in terms of � a valuation or data portfolio choice model. For all these reasons,

we turn to a structural approach to inform us about how to properly measure data.

We work with the simplest theoretical framework that achieves this objective. The setup is a

standard noisy rational expectations model with multiple assets, in the spirit of Admati (1985)

and Van Nieuwerburgh and Veldkamp (2009). The model yields simple, intuitive expressions for

the objects of interest, including a measure of price informativeness, as a function of both asset

characteristics and investor data. These expressions form the basis for an empirical strategy

that disentangles asset characteristics from investor data, using observable moments of stock

prices and cash �ows.

Model A unit measure of investors trade multiple stocks (indexed by f). We assume that

these assets belonging to di�erent groups ( indexed by j), where assets within a group share a

number of parameters. The empirical analogues and the rationale for choosing will be described

in detail in Section 2.2. A share is a claim to a stream of dividends. Dividends grow at di�erent
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rates across groups. We denote the group-speci�c growth rate by gj. The �ow dividend of stock

f in group j in period 1 has two random innovations � one that is correlated across �rms and the

other idiosyncratic (i.e. stock-speci�c). These are denoted by ε̄fj1 and εfj1 respectively. For our

baseline analysis, we will assume that the correlated innovation has a one-factor structure, i.e. it

is the product of a �rm-speci�c loading and the realization of an aggregate factor: ε̄fj1 = β̃f,j ε̄1,

where β̃f,j is the �rm-speci�c loading.2 The idiosyncratic component is normally distributed

with a zero mean. Formally,

d∗fj1 = gjd
∗
fj0 + ε̄fj1 + εfj1, , εfj1 ∼ N(0,Σjd). (1)

The dividends for periods s = 2, 3.... are given by d∗fjs = gs−1
j d∗fj1.

The assumption of no residual uncertainty after period 1 is only for simplicity. It implies

that the value of the stock at the end of period 1 is given by 3

V ∗fj1 ≡
∞∑
s=1

d∗fjs
rs

=
r

r − gj
d∗fj1 . (2)

where r is the riskless rate. Note how gj enters the factor that determines the earnings-to-

valuation ratio. This will be helpful for the interpretation of gj as growth later on.

Supply The supply of each asset has a (commonly known) asset-speci�c mean xfj as well

as an unobserved random component x̃fj ∼ N(0,Σjx). Assets within a group have the same

mean supply, i.e. xfj = xj. Formally, the total supply of asset f in group j is xj + x̃fj shares.

Thus, as with the cash�ow process, parameters driving asset supply are group-speci�c.

Preferences and Portfolio Choice Investors, indexed by i, are endowed with an initial

wealth W
i
and mean-variance preferences over their end-of-period wealth.

At the start of period 1, investors make portfolio choices, conditional on an information set

2In the Appendix B.3, we show that our results hold under a more complicated, group-level multi-factor
structure.

3An obvious alternative assumption is that all uncertainty is not resolved at the end of period 1 and
investors sell their assets at a market price, which depends, among other things, on the information of future
participants, as in Farboodi and Veldkamp (2017). This delivers a similar solution, except that the dependence
on future information introduces another �xed point problem, which complicates the analysis considerably,
without providing additional insight.
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I i. Formally, investor i with absolute risk aversion ρi chooses {qij}, the number of shares of

asset j, to solve:

max
{qifj}

E[U i|I i] = max
{qifj}

ρiE
[
W i|I i

]
− ρ2

i

2
V ar(W i|I i) . (3)

where W i = rW
i
+
∑
j

∑
f

qidj(V
∗
fj1 − rP ∗fj1).

r is the riskless rate, P ∗fj1 is the equilibrium market clearing price of asset f in group j and

V ∗fj1 is the present discounted asset value from (2). At the end of the period, dfj1 is observed,

investors sell their holdings and consume.

This mean-variance representation is a simple way to a broad array of preference speci�ca-

tions. For example, the coe�cient of absolute risk aversion ρi is allowed to be any non-random

function of initial wealth,W
i
. Thus, these preferences could be derived from decreasing absolute

risk aversion preferences, or even constant relative risk aversion, in initial wealth.

Information Our focus is on data used to pick stocks, rather than for timing the overall

market. This focus is motivated by our interest in cross-asset di�erences, which empirically seem

to be driven mostly by stock-speci�c factors. In our sample, more than 90% of the variation in

prices is stock-speci�c. Moreover, time-variation in cross-sectional moments is easier to precisely

estimate. 4

With this goal in mind, we make the simplifying assumption that all investors know the

common component of the asset payo�s (i.e. the aggregate factor ε̄1 ). This assumption, along

with the structure of payo�s and preferences, allows us to analyze asset-speci�c learning without

making further assumptions on the distribution of the common component.

For each risky asset f in group j, investor i privately observes kij data points. We call kij

investor i's net private data about asset j. Each data point is a noisy private signal (with errors

4Having said that, one could easily adapt the framework and the empirical strategy to measure data about
aggregate factors instead.
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that are iid across assets and investors) of the end-of-period asset-speci�c cash�ow εfj1:
5

ηi,mfj = εfj1 + ei,mfj , ei,mfj ∼iid N(0, 1) ,

for m ∈ {1, . . . , kij}. The average amount of private data about asset j in the market is

Kj =

∫
kij di . (4)

In addition, investors also observe the realized market-clearing price P ∗fj1 (characterized

later) and also optimally incorporate the information contained in that price. Thus, investor i's

information set, for asset f in group j, consists of the dividend realization in period 0, a set of

private signals, and the market-clearing price: I i = {{d∗fj0}, {η
i,m
fj }

kij
m=1, {P ∗fj1}}. We conjecture

(and later verify) that the information in the market price can be expressed as a signal of

the cash-�ow innovation, εfj1 with additive Gaussian noise. Then, Bayes' law for normally

distributed random variables yields the following expression for investor i's precision about the

cash�ow d∗fj1 of any assets in group j, denoted (Σi
j)
−1:

(Σi
j)
−1 ≡ V ar[εfj1|I i]−1 = Σ−1

jd + (Σi
jp)
−1 + kij , (5)

where (Σi
jp)
−1 is the precision of the market price signal (to be characterized later). This

notation allows for the possibility that di�erent investors learn di�erently from market prices.

This could occur, e.g., if it was costly to extract information from prices. The symmetric case,

with (Σi
jp)
−1 = Σ−1

jp is a natural starting point and is maintained in our characterization of

equilibrium below.

The average market-wide precision, denoted
(
Σj

)−1
, is

(Σj)
−1 =

∫
(Σi

j)
−1di = Σ−1

jd +

∫
(Σi

jp)
−1di+

∫
kijdi

= Σ−1
jd + Σ−1

jp +Kj . (6)

5This language suggests discrete numbers of signals. Since working with discrete variables complicates the
analysis considerably and adds little insight, we treat kij as a continuous variable. Formally, we can take a

quasi-continuous limit. If each data point has variance α, this limit takes the number of data points to be αkij
and then sends α→∞. In the limit, the precision of the set of signals becomes continuous.
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where Σ−1
jp and Kj are (market-wide) averages of the precision gained from the price signal and

net private data respectively.

Equilibrium A rational expectations equilibrium is a set of functions for prices P ∗fj1, and

portfolio choices qifj such that, (i) given the induced information sets I i, the portfolio choices

solve (3), and (ii) markets clear, i.e. ∀f, j,
∫
qifjdi = xj + x̃fj.

To solve for the equilibrium, we conjecture a linear form for the price function and solve

for the corresponding coe�cients. We relegate the details to the Appendix and present the

solution in the following result:

Proposition 1. In equilibrium, the price of asset j is given by:

rP ∗fj1 = Afj +Bjεfj1 + Cjx̃fj , (7)

where Afj = P̄fj1 +

(
r

r − gj

)
gjd
∗
fj0 − ρ̄

(
r

r − gj

)2

Σjx̄j , (8)

Bj =
r

r − gj

(
1− Σj

Σjd

)
, (9)

Cj = −
(

r

r − gj

)2

Σj

(
KjΣjx

ρ̄
+ 1

)
. (10)

Σ−1
jp =

(
Bj

Cj

)2

Σ−1
jx (11)

ρ̄−1 := Σj

∫
ρ−1
i (Σi

j)
−1di is a precision-weighted average of investors' risk tolerance.6 The

term P̄fj1 captures the valuation of the common component of dividends (ε̄fj).

Equation (9) shows that the coe�cient on current innovations to cash-�ows, Bj, is the usual

Gordon growth factor, r
r−gj , adjusted by a factor

(
1− Σj

Σjd

)
. This factor captures the e�ects of

data processing by investors, thus we call it data. If investors have no data at all about asset

j (apart from their prior), then the average posterior variance Σj is equal to the prior variance

Σjd, and the coe�cient Bj = 0. In other words, the price cannot possibly re�ect information

that no investor has learned. At the other extreme, if the average investor is perfectly informed

about current cash�ows, then Σj = 0 and Bj = r
r−gj , the Gordon growth factor. Thus, the

6Assuming ρ̄ is constant across assets amounts to assuming that risk tolerance and precision are either
uncorrelated, or do not covary di�erently for di�erent assets.
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extent to which the stock price covaries with cash�ow innovations is informative about how

much data related to asset j is processed by the average investor.

Equation (11) characterizes the precision of the price as a signal of future dividends. The

linear form of the equilibrium price implies that it is informationally equivalent to
rP ∗

fj1−Afj

Bj
=

εfj1 +
Cj

Bj
x̃fj, i.e. a noisy signal of the innovation to cash�ows with a precision

(
Bj

Cj

)2

Σ−1
jx . The

signal is more precise when the sensitivity of the equilibrium price to fundamentals relative to

supply noise (Bj/Cj) is high, or the variance of supply Σjx is low.

Next, we construct a moment, which we term stock-speci�c price informativeness, or PINF ,

that will guide our empirical strategy in the following section. Formally, we de�ne s-period-

ahead stock-speci�c price informativeness of group-j as:

PINFjs ≡
Cov(d∗fjs, P

∗
fj1|d∗fj0, ε̄1)

StdDev(P ∗fj1|d∗fj0, ε̄1)
(12)

This moment captures the extent to which the stock-speci�c components of current prices and

cash�ows s periods ahead covary with each other. As we will see in the next section, this can be

easily estimated with a simple linear regression using data on market capitalization, cash�ows

and assets.

Our framework implies that PINFjs can be expressed as follows:

PINFjs =
Σjd

StdDev(Pfj1)︸ ︷︷ ︸
volatility

gsj
r − gj︸ ︷︷ ︸
growth

[
1− Σj

Σjd

]
︸ ︷︷ ︸

data

. (13)

where Pfj1 = rP ∗fj1 − Afj is the component of prices that pertains to the stock-speci�c in-

novation, εfj1. Equation (13) forms the core of our analysis. It reveals that PINFjs can be

decomposed into three parts. We term the �rst component volatility : it is the ratio of the

variability of cash�ow innovations to that of prices. All else equal, an asset whose prices are

more volatile (relative to cash�ows) will exhibit a lower degree of informativeness.7

The second component is related to growth. Intuitively, a faster growing cash�ow process

implies that prices load on current cash�ows to a greater extent. This increases their covariance

and contributes to a higher PINF . In our structure, growth prospects (or equivalently, the

7This insight also appears in Davila and Parlatore (2016b).
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cash�ow `multiple') are summarized by the parameter gj. More generally, the growth component

is related to any characteristic that scales up prices, relative to cash�ows.

Finally, the last term re�ects data: the more information the average investor has about

cash-�ows, the lower is Σj and therefore, the higher is PINFjs. This link is what makes PINF

an informative moment for our purposes. Our empirical strategy involves estimating the growth

and volatility components from observables and using them to recover the data component from

the observed PINF . 8

2 Estimation of the Structural Model

This section describes how we estimate our structural model to construct our data measure.

We describe our sample in detail, as well as construction of variables and moments used for the

structural estimation. We also discuss how these estimates relate the the corresponding objects

in the model.

2.1 Data Sample and Data Adjustments

All data are for the U.S. market, over the period 1962�2016. Stock prices come from CRSP

(Center for Research in Security Prices). All accounting variables are from Compustat. We

measure prices at the end of March and accounting variables at the end of the previous �scal

year, typically December. This timing convention ensures that market participants have access

to the accounting variables that we use as controls. In line with common practice, we exclude

�rms in the �nance industry (SIC code 6).

The equity valuation measure, i.e. the empirical counterpart for the price P ∗fj1 in the model,

is market capitalization over total assets, denoted M∗
f,j,t/A

∗
f,j,t. For our cash-�ow variable, d∗fjs,

is proxied using earnings over assets. More precisely, we take earnings before interest and taxes

(the EBIT variable in Compustat), denoted E∗f,j,t and divide by current total assets A∗f,j,t.

Both ratios are winsorized at 1%.

8Note that this data component re�ects the e�ect of both information extracted from the price signal and
net private data processing. We will show how we can disentangle these di�erent types of data from observable
time series.

11



We make a couple of adjustments to the raw data. The �rst is to deal with in�ation, which

can create predictability in nominal earnings and prices. This is particularly relevant for periods

of high in�ation, such as the 1960s and 1970s. Therefore, we adjust all cash-�ow variables with

a GDP de�ator. The second pertains to exiting �rms. Our preferred solution is to only consider

periods during which a �rm has non-missing information.9

Finally, motivated by our focus on measuring stock-speci�c data, we remove the common

(or aggregate) components from both cash�ows and prices. To do this, we �rst construct the

analogous `market' variables using total assets, market capitalization and EBIT for the universe

of S&P 500 �rms. Then, separately for each stock in our sample, we project our cash�ow and

price series for the period 1960-2012 on the corresponding market variables (and a constant)

and extract a residual. In what follows, we denote this �rm-speci�c component of prices and

cash�ows by
Mf,j,t

Af,j,t
and

Ef,j,t

Af,j,t
respectively.

2.2 Variable Construction

Size, Growth and Volatility Sorting, measuring, and mapping these variables to the model

is critical for our approach. We start by describing our strategy to sort individual stocks into

groups. We choose two particular characteristics to construct our groups: size and growth.

This choice is motivated by two considerations. First, as we will show in Section 3, the value

of data to an investor is closely tied to the overall size of the asset and the growth prospects.

Second, these are canonical asset pricing groups, so using them allows us to make contact

with the empirical asset pricing literature that examines how large and growth stocks di�er

from their small and value counterparts.10 At the same time, the reader should not be led

into thinking that we are pricing risk factors, as would traditionally be done in that literature.

Recall that our price and cash�ow variables have been stripped of common factors, leaving only

�rm-speci�c components. As such, we are looking at whether �rms with these size and growth

characteristics have di�erent prevalence of data about their �rm-speci�c cash �ows.

9Our results are also robust if we make cash-�ows zero when the �rm exits or to use a weighted industry
cash-�ow as a proxy, as in Bai, Philippon, and Savov (2016) (along with the delisting price as the equity
valuation variable).

10Of course, we could have used other asset-pricing factors (e.g. momentum, beta) to group �rms as well,
but their link to the value of data about �rm-speci�c factors is less clear.
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We group �rms into Large and Small, based on whether or not they belong to the 500 largest

�rms in terms of market capitalization. Next, we classify �rms into Growth and Value based on

their book-to-market ratio (de�ned as the di�erence between total assets and long term debt,

divided by the �rm's market capitalization). Firms in the top three deciles of book-to-market

we call value �rms, while those in the bottom three deciles are our growth �rms. Combining

these two dimensions yields 4 groups: Small Growth, Large Growth, Small Value and Large

Value. The number of �rms in each of these groups for each decade starting with the 1960s is

reported in Table 4 in the appendix.

Connecting Measures to the Model To understand why we give the empirical measures

of size and growth the same names as the objects x̄ and g in the model, we need to consider

why these parameters matter and then ask if these empirical measures capture the relevant

concerns.

Size matters because there is more asset value to pro�t from, with good information. In

reality, assets that investors can actively trade large positions on are the equity of high market-

capitalization �rms. These are more valuable to learn about because if an investors gets very

good or bad news, they can make a big trade on that information and earn a big pro�t. In

the model, greater size means more shares. Our empirical notion of a share is $1 worth of the

asset. This is just a normalization. 500 shares worth $2 each, with variance 4, or one with

1000 shares, worth $1 each, with variance 1, are isomorphic representations. We then measure

everything else � number of shares, prices, dividends, second moments � consistent with this

normalization. Thus, the number of shares is simply given by the value (in dollars) of the �rm's

assets. For consistency, prices and cash�ows �per share" are a �rm's market cap and EBIT,

divided by the value of its assets.

Growth (g) matters for data because it scales the earnings-to-valuation ratio. Firms with

high g have prices that are a high multiple of earnings and therefore have prices that are very

sensitive to earnings news. Growth is a scaling factor. In the data, market-to-book performs

a similar function. It scales up the asset's value for a given level of earnings. In both cases,

growth increases the loading of prices on cash�ows, through the Gordon growth term r
r−gj . In

other words, the same amount of cash-�ow data a�ects growth �rms' prices by more.
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Estimating PINF The starting point for our approach to measuring data is estimating

stock-speci�c price informativeness as de�ned in (12) and characterized in (13). Recall that

this moment captures the extent to which stock prices in year t re�ect cash-�ows in year t+ s

and can be estimated from a regression of the latter on the former, along with controls for other

observable asset characteristics. Given our interest in long-term trends, we perform this exercise

separately for each of the 4 groups in each decade (starting with the 1960s). Speci�cally, we

run the following cross-sectional regression separately for each asset group j and decade:

Ef,j,t+s

Af,j,t

= αj + βj,s ·
Mf,j,t

Af,j,t

+ γj ·Xf,j,t + εf,j,t+s (14)

where Ef,j,t+s/Af,j,t is the cash-�ow (EBIT ) of �rm f in group j in year t+s, scaled by its total

assets in year t; log(Mf,j,t/Af,j,t) is market capitalization scaled by total assets; and Xf,j,t are

a set of �rm-level controls, namely past earnings and industry �xed e�ects, meant to capture

publicly available information. We use s = 3 in our estimation.

To obtain the measure in (12), we scale the coe�cient βj,s by the variability of the regressor:
11

PINFjs = βjs · σM/A
j , (15)

where σ
M/A
j denotes the cross-sectional standard deviation of

Mf,j,t

Af,j,t
(conditional on controls).

This strategy and the measure PINFjs is very closely related to the one in Bai, Philippon, and

Savov (2016).12 From our perspective, it is a convenient starting point for recovering the object

we are ultimately interested in, namely the extent of data processed about �rm-speci�c factors.

3 Results

Next, we employ this framework to measure cross-sectional and time series patterns of data in

the market. We further separate this information into cross-asset di�erences in the e�ciency

with which market aggregates net private data, i.e. investor data above and beyond what could

11We use the absolute value of the estimated price informativeness, since the theory cannot reconcile negative
estimates (this only matters for a couple of observations and does not a�ect conclusions about longer term
trends).

12There are some important di�erences, both conceptual and measurement-related. See Section 3.2 and
Appendix F for more details.
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1960s 1970s 1980s 1990s 2000s 2010s

Persistence gj:

Small Growth 0.830 0.877 0.702 0.725 0.740 0.741
Large Growth 0.988 0.981 0.954 0.949 0.917 0.912
Small Value 0.829 0.697 0.538 0.572 0.669 0.636
Large Value 0.901 0.865 0.853 0.813 0.828 0.851

Variance of Innovations Σjd:

Small Growth 0.005 0.007 0.019 0.022 0.017 0.013
Large Growth 0.002 0.002 0.002 0.003 0.003 0.003
Small Value 0.002 0.004 0.009 0.008 0.009 0.006
Large Value 0.002 0.001 0.001 0.001 0.002 0.001

Table 1: Estimated Cash Flow Parameters: Persistence/Growth gj, Variance of
Innovation Σjd. Persistence gj is estimated by running regressions of cash�ows on their lagged values, as
speci�ed in equation (1). Σjd is estimated as the variance of residuals from a projection of cash�ows on controls.

possibly be extracted from prices.

Extracting Data from PINF Equation (13) shows that we need to remove the e�ects of

volatility and growth from the estimate of informativeness in order to isolate the data com-

ponent. For this, we need quantitative estimates of these two components for each group and

decade. The volatility component is related to the variability of the unpredictable innovation in

cash-�ows and the (conditional) standard deviation of prices. These are estimated by projecting

our cash-�ow and price measures on a set of controls and calculating the standard deviation

of the residuals (again, separately for each group and decade). The resulting estimates for

the variance of the innovation to cash�ows (Σjd) is reported in the bottom panel of Table 1.

Dividing this by the (conditional) standard deviation of prices yields the volatility component

in (13).

Next, we turn to the estimation of the growth component. Recall that this term arises

because growth rates in�uence the factor by which earnings are scaled in the equilibrium pricing

equation (7): in other words, the growth factor r
r−gj converts per-period cash�ows to the same

units as price. It is closely related to the price-earnings ratio, though the latter will also pick

up e�ects of informational frictions and risk premia.
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We estimate growth rates (by group and decade) by running regressions of cash�ows on their

lagged values. The resulting autoregressive coe�cients map directly into gj and are reported

in the top panel of Table 1. As we would expect, growth �rms generally have higher growth

rates (relative to their counterparts in the corresponding value category). Assuming a riskless

interest rate of 2.5% (r = 1.025), these estimates directly yield
gsj

r−gj , the growth component.13

3.1 Data Divergence

The estimates of PINF, along with the corresponding growth and volatility components in (13),

allow us to back out the information component 1− Σ̄j

Σjd
, our measure of data. Speci�cally, for

each decade-group, we divide the estimated PINF for that decade-group by the corresponding

growth and volatility components, as de�ned in (13), to back out the implied data term:

1− Σj

Σjd

=
PINFj,s

gsj
r−gj

Σjd

Std(Pfj1)

(16)

Our decade-by-group estimates for PINF and its components14 are reported in Table 2. We

plot these estimates along with �tted linear trend lines for each series in Figure 1. Critically,

the top left panel shows that PINF has trended up for the Large-Growth group, much faster

than for all other groups. The top right panel reveals that changes in data played a central role

in the divergence.

The remaining panels in Figure 1 show the trends in other components. In particular, the

growth component (bottom right panel) highlights why it is important to distinguish between

data and a measure like price informativeness.15 Growth declines most dramatically for large-

growth assets. By itself, this trend should have reduced the informativeness of (the stock-speci�c

components of) those assets. Had this change been larger, we might have found PINF and

13In our baseline analysis, we use r = 1.025 for the entire sample. In Appendix B, speci�cally in Figure 5,
we relax this assumption and show that our results are robust to using decade-speci�c values for interest rates.

14For one decade-group pair, the right hand side of (16) produced an estimate larger than 1, which would
be inconsistent with the structural model. We therefore top-coded those estimates using a bound of 0.95. This
adjustment made only a negligible di�erence to the overall trends.

15The decline in gj for large-growth �rms is consistent with Gschwandtner (2012), who also �nds a long run
decline in the persistence of �rm pro�ts. This could re�ect, for example, an increase in competition because of
globalization.
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1960s 1970s 1980s 1990s 2000s 2010s

PINF

Small Growth 0.012 0.003 0.003 0.008 0.013 0.007
Large Growth 0.015 0.014 0.018 0.011 0.037 0.023
Small Value 0.003 0.007 0.003 0.002 0.011 0.004
Large Value 0.003 0.006 0.002 0.003 0.014 0.001

Volatility

Small Growth 0.005 0.008 0.012 0.013 0.011 0.010
Large Growth 0.002 0.002 0.003 0.002 0.002 0.003
Small Value 0.016 0.054 0.064 0.044 0.037 0.034
Large Value 0.012 0.017 0.012 0.011 0.013 0.008

Growth

Small Growth 2.94 4.56 1.07 1.27 1.42 1.44
Large Growth 25.87 21.34 12.33 11.31 7.17 6.69
Small Value 2.91 1.03 0.32 0.41 0.84 0.66
Large Value 5.91 4.06 3.60 2.54 2.88 3.53

Data

Small Growth 0.84 0.08 0.22 0.50 0.80 0.50
Large Growth 0.36 0.40 0.57 0.44 0.95 0.95
Small Value 0.06 0.12 0.12 0.10 0.36 0.17
Large Value 0.04 0.09 0.04 0.10 0.38 0.03

Table 2: Stock-Speci�c Price Informativeness and its Components. The table reports
structurally estimated values of the various terms in equation (13) using cash�ow parameters in Table 1. The
left hand side is estimated using equations (14) and (15).

data moving in opposite directions. Instead, the rise in data about large-growth �rms was

su�ciently large that it overwhelmed the e�ect of declining growth on informativeness.

Market Information vs Net Private Data Next, we explore where data came from. Was

the �rm speci�c data information mined from public prices, or was it extracted from other

sources? To answer this question, we decompose overall information, Σ̄−1
j , into its components

as in (6). Speci�cally, the prior or unconditional precision (Σ−1
jd ), the information content of the

price signal (Σ−1
jp ) and the net private data (Kj). To estimate the second component, namely

the information conveyed by the price signal, we run (14) with s = 0 and calculate the variance
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Figure 1: Data Divergence: Trends in Data and Other Components of Stock-Speci�c
Price Informativeness. Graphical representation of Table 2. For each component, the dots show the
estimates reported in Table 2 while the corresponding lines show the (linear) trend.
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of the residuals, denoted by V ar(efj). Appendix A.3 derives the following mapping between

Σjp and V ar(efj):

Σjp =
V ar(efj) · Σjd

Σjd − V ar(ej)
. (17)

Substituting the resulting estimates of Σjp, along with the overall market information Σ
−1

j and

the prior precision, Σ−1
jd , into (6) yields the net private data for each group-decade, Kj:

Kj = Σ
−1

j − Σ−1
jd − Σ−1

jp (18)

Table 3 presents the estimates for price information Σ−1
jp and net private data Kj, by group

and decade. Figure 2 plots the associated �tted trend-lines. They show a generally declining

trend in �rm-speci�c market information across all groups. The trends in total data, most

notably the rise for Large-Growth stocks, can be attributed mostly to changes in net private

rather than price information.

Note from Table 3 that the estimates for net private data Kj are negative in some cases,

particularly in the early part of the sample for value stocks. This happens when the PINF (or

more precisely, the price-earnings covariance) is less than what it would be if all investors were

learning the maximum possible from market prices. In other words, this pattern suggests that

the average investor may not fully process all the information contained in prices (e.g. because

learning from prices is also costly). In such a scenario, our approach to decomposing total

data would over-estimate price information Σ−1
jp , or equivalently, under-estimate Kj. However,

since price information accounts for only a small fraction of total information, this source of

mis-measurement is small, relative to the trends in data processing.

Dating the Data Revolution Table 3 also tells us when �nancial markets started to embrace

big data: net private data rose sharply during the 2000's for all groups. Investors in all four

types of assets more than quadruple their private precision between the 1990's and 2000's. This

is the same time as the widespread adoption of information technology in the �nancial sector

(Abis, 2018) and is consistent with a rapid advance in data technology in the last two decades.

But, more interestingly, this rise was the most stark for the large growth �rms: in other words,
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1960s 1970s 1980s 1990s 2000s 2010s

Price Information, Σ−1
jp :

Small Growth 10 1 0 1 1 0
Large Growth 80 18 82 41 55 16
Small Value 77 20 3 0 3 0
Large Value 130 105 72 41 8 1

Net Private Information, Kj:

Small Growth 1013 12 15 45 236 75
Large Growth 269 362 451 193 7151 5868
Small Value -49 13 14 13 59 33
Large Value -106 -33 -40 45 258 30

Table 3: The Sources of Information. Price information and net private data are estimated using
(17) and (18) respectively.

Figure 2: Rising Large-Growth Firm Data Comes from Net Private Information
Graphical representation of the trends in the estimates reported in Table 3. For each component, the plot shows
the linear trend �tted to the estimates from the table. Total is the sum of Price Information (Σ−1

jp ) and Net
Private Information (K). This total is the same as Data, plotted in Figure 1.

the data revolution disproportionately favored learning about large-growth �rms, contributing

signi�cantly to the trend of data divergence.

Adjusting Data for Market Power We know that market power can e�ect price informa-

tiveness, but how does it a�ect our measure of data? From Kyle (1989), we know that incor-

porating market power involves replacing the conditional variance V [ft|Ii] with V [ft|Ii] + λ/ρ,

where λ is Kyle's lambda, the price impact of a unit of demand and ρ is absolute risk aversion.

What this means for measurement is that, if we are ignoring investor market power, we then

are overestimating the conditional variance. Conversely, we are underestimating data precision.
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So, our estimates might be considered a lower bound on the size of the data stock. However,

the measure of V [ft|Ii] + λ/ρ is useful, by itself. This sum is the object that appears in the

marginal value of data when investors have market power.

3.2 Relating Data to Other Information Measures

There are a number of measures for the information embedded in prices in the literature. In

this subsection, we clarify how our data measure is di�erent from them.

Price Informativeness PINF , which measures stock-speci�c price informativeness is an

input in our measurement strategy and is closely related to the one in Bai, Philippon, and

Savov (2016). As we discussed earlier, it is conceptually di�erent from our data measure. PINF

measures the extent to which (the stock-speci�c components of) prices and future cash�ows

co-vary, which is also a�ected by growth and volatility e�ects in addition to data processing.

We develop a tool designed to isolate the latter and show that is has diverged over the last few

decades.

Our analysis also di�ers in its focus on �rm-speci�c factors. We remove aggregate/common

components from both cash�ows and prices while Bai, Philippon, and Savov (2016) work with

unadjusted cash�ows and so pick up informativeness of prices with respect to both common

and stock-speci�c factors. There are a couple of other measurement di�erences as well. First,

we work with MktV al
Assets

in levels, rather than logs, to be consistent with our structural model.

Furthermore, the price informativeness measure in Bai, Philippon, and Savov (2016) is obtained

by scaling the regression coe�cient of the current price by the unconditional standard deviation

of prices, while our structural framework suggests scaling by the standard deviation of prices

conditional on the controls. These adjustments tighten the connection to the structural model

and a�ect magnitudes but, as we will show below, do not signi�cantly change the overall trends.

Figure 3 plots the trend in the price informativeness measure of Bai, Philippon, and Savov

(2016), estimated decade-by-decade for 4 sub-samples of �rms: Large-Growth, Large-Value,

Small-Growth and Small-Value. It shows that informativeness has increased for the Large-

Growth group, but declined for the others. While Bai, Philippon, and Savov (2016) also noted

the divergence between �rms in and out of the S&P 500, we show that this is a size e�ect, not
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Figure 3: Price Informativeness by Firm Size and Growth. The diamonds show the
estimated price informativeness de�ned as in Bai, Philippon, and Savov (2016), along with 95% con�dence
intervals. For the detailed speci�cation, see equation (36) in Appendix F. Large �rms are the 500 largest by
market capitalization and small denotes the rest. Firms in the bottom (top) 30% are labeled growth (value)
�rms. The lines are �tted trend lines.

an index inclusion e�ect. 16

Comovement, R2, and Synchronicity Many papers have applied comovement, synchronic-

ity or R2 approaches to measuring stock market informativeness across countries (Durnev,

Morck, and Yeung, 2004; Edmans, Jayaraman, and Schneemeier, 2016). These measures are

valuable tools for cross-country analysis of price movements, but are not appropriate for measur-

ing the precision of data, about one type of �rm versus another. For example, asset comovement

(R2) could be high because of aggregate information is precise, causing many assets to move

with that aggregate information, or because stock-speci�c information is imprecise. Any map-

ping to data precision requires decomposing aggregate and stock-speci�c data, which in turn,

requires an independent measure of one or the other. Our approach explicitly constructs that

measure and uses the structure of the model to back out data processing.

Furthermore, an R2 measure shares many of the same interpretation problems of the price

informativeness measure. To see why, note from the pricing equation (7), if the aggregate cash

�ow shock ε̄ is observed, the R2 is the explained sum of squares B2var(ε̄), divided by the total

sum of squares, B2var(ε̄)+C2var(ε)+D2var(x̃). Just like PINF, these quantities depend on the

16Appendix F.1 shows that the informativeness of stocks currently in the S&P 500 is similar to non-S&P 500
stocks with similar characteristics. Furthermore, price informativeness trends consistently over size deciles.
These results suggests that di�erences in asset characteristics, rather than inclusion in S&P 500 per se, is the
source of the divergence.
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coe�cients, like B and C, which are a�ected by the amount of data, but also are contaminated

by volatility and scaling terms like growth. For example, Brogaard, Nguyen, Putnins, and Wu

(2018) argue that stock return comovement, as measured by R2, has increased signi�cantly over

time, because idiosyncratic price noise declined.

Absolute Price Informativeness Davila and Parlatore (2016a) propose an alternative mea-

sure of �absolute price informativeness,� which captures the ability of asset prices to aggregate

dispersed information. Their measure is the precision of an unbiased signal of the current cash-

�ow innovation, constructed from prices. In our setting, this corresponds to Σ−1
jp , what we call

�price information� in Table 3 and Figure 2.

As Figure 2 shows, absolute price informativeness declines across all four asset groups.

Thus, despite more net private data processed by investors about stock-speci�c characteristics

(higher Kj) prices actually became less accurate as signals (the Davila-Parlatore notion of price

informativeness). This di�erence arises because the noise component of prices (from the Cjx̃j)

grew over time and overwhelmed the rising covariance with fundamentals.

This �nding di�ers from Davila and Parlatore (2016a) primarily because we strip out the

aggregate component of prices and cash �ows, while they do not. If we re-do their exercise with

raw prices and earnings, price information does show a rising trend. These results suggest that

prices may be getting better at aggregating market information, but are becoming less clear

signals about �rm-speci�c cash�ow risk.

Other Proxies for Data Many papers explore proxies for information, including news

counts, analyst coverage, advertising or social media text (see examples cited below). Of course,

these proxies are useful for qualitative validation and do not obviate the need for a quantita-

tive measure like ours. Moreover, while these document interesting cross-sectional patterns, to

the best of our knowledge, none of them focus on how these patterns have changed over time,

especially over the horizons we are interested in.

Coverage by equity analysts on Wall Street is a natural proxy for information processing.

Hong, Lim, and Stein (2000) and Guo and Mota (2020) analyze determinants of coverage, but

do not discuss time trends. In Appendix E, we estimate time trends in analyst coverage (using
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the I/B/E/S database of analyst forecasts) and show that there was a sharp increase in the

relative coverage of growth �rms during the 2000s and 2010s. This is particularly striking for

large �rms and the timing of this increase lines up quite well with the results of our structural

approach.

Of course, it is worth noting that analyst coverage is likely a rather crude measure of data

precision. For one, it doesn't capture variation in quality of data processing, both in the

cross-section and over time. An analyst might be reporting mostly redundant or low-quality

information that does little to reduce investor uncertainty (in fact, to the extent it disagrees

with other analysts' forecasts, it might even seed uncertainty). Moreover, analyst coverage

also does not capture data processing done in-house by investors (e.g. hedge funds), which

has arguably displaced work traditionally done by sell-side analysts over time. So while this

evidence is reassuring and suggestive, it hardly displaces the need for a data precision measure,

nor does it reveal the source of the divergent data trends.

Firms also use advertising to convey information to outsiders. Chemmanur and Yan (2019)

examine the e�ect of such advertising on stock prices and �nd that the e�ects are smallest for

large-growth �rms. Our model suggests that new information, such as that contained in an ad,

is likely to have small e�ects when the existing information is already of high quality. In other

words, one explanation for �ndings in Chemmanur and Yan (2019) is that data on large growth

�rms is relatively abundant, consistent with our results. Note that similar to the literature

on analyst coverage, this paper also focuses on the cross-section and not changes over time.

Nevertheless, the fact that the cross-sectional evidence is broadly consistent with our story is

a re-assuring �nding.

4 Why Did Large Growth Firm Data Become More Abun-

dant?

Our results show that, while asset characteristics did change over this period, divergence in

the price informativeness for Large-Growth �rms came predominantly from data divergence.

This raises an obvious question: why did so many investors process increasing amounts of data
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about large growth stocks and not about other assets?

One possibility is that data choices changed over time because the cost of data changed.

For this to explain our �ndings, the cost of large growth �rm data must be falling, relative

to the cost of data about other �rms. Given that we have no direct evidence to support or

quantify this channel, we focus on the relative bene�t of data on large growth �rms. Here,

our structural framework can help us talk about how observed changes in asset characteristics

should change the value of data and through that, data choices. This is the approach we take:

we abstract from di�erences in costs, use the estimates from the structural model to see whether

the model-implied bene�t of data has changed in a manner consistent with observed patterns

in data choices across groups. This does not rule out � and in fact, is complementary to � the

possibility of changes in relative costs.

One might be tempted to look at equilibrium marginal values for this purpose. However,

they are not very useful in predicting the amount of data allocated to di�erent assets. This

is because equilibrium forces push to equate marginal values across assets. In other words, in

equilibrium, agents will process di�erent amounts of data for di�erent assets up to a point where

the marginal value of additional data processing is the same. We are interested in explaining

how much data is processed about a particular asset � the equilibrium marginal value cannot

tell us that. The same logic that Berk and Green (2004) applied to mutual fund �ows also

applies to data �ows: Equilibrium forces should equalize marginal returns.

If equilibrium marginal value does not reliably explain the amount of data processing, what

does? One candidate is the initial value of data, de�ned as the value of the �rst increment of

precision, i.e. the marginal utility gain from a unit of data in a hypothetical world where no one

else processed any data on that asset. The basic idea is that assets with the highest initial value

will see the most amount of data processed (even if all assets have the same marginal value

in equilibrium)17 If the assets for which data processing is high also have high initial values of

information, this could explain the data divergence we see in the previous section.

17This concept is related to what is sometimes referred to as a water-�lling equilibrium in the information
choice literature. In equilibrium, agents sequentially choose risk factors to learn about: learning about a risk is
like �lling its `bucket' with water. Once su�ciently full, investors move on to �lling the next deepest bucket.
Our value of information can be thought of the depth of each bucket, before being �lled with water. At the
optimum, all buckets will be �lled to the same level (equal marginal value), but the deepest buckets will have
consumed the most amount of water.
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We use the model to estimate the initial value of one unit of processed data (one precision

unit) about each asset type, in each decade. We �nd that the value of learning about large

�rms rose substantially over this period, both in absolute terms as well as relative to small

�rms. The divergence in data value was driven by the increase in large �rms' relative size. This

surge in the relative size of large �rms is the same divergence in �rm size documented by Davis

and Haltiwanger (2015). The source of this divergence is the subject of an active debate in the

macroeconomics and IO literatures.

4.1 Derivation of Initial Value of Information

To arrive at the value of information, we compute the ax-ante expected utility and determine

its sensitivity to information choice. Ex-ante expected utility of investor i from assets in group

j is given by

E[U i
j ] =

1

2
E
[
(Πi

j)
2
]( r

r − gj

)−2

(Σi
j)
−1 where Πi

j ≡ E[Vj − Pjr|I i]. (19)

(Πi
j) is the interim (i.e. conditional on a data set I i) expected pro�t per share of asset j, and

(Σi
j)
−1 is investor i's posterior precision about cash�ows. This form of expected utility arises

in a large class of noisy rational expectations models. Intuitively, investor i's interim pro�ts

are qijΠ
i
j. The optimal asset demand qij is proportional to V ar[V |Ii]−1Πi

j where V ar[V |Ii]−1 =(
r

r−gj

)−2

(Σi
j)
−1.

Equation (19) directly shows that the marginal utility of a unit increase in the investor's

posterior precision is 1
2
E
[
(Πi

j)
2
] (

r
r−gj

)−2

. This is the marginal value of data. Data is more

valuable when pro�ts are expected to be high (in absolute value)18 and/or more volatile because

that makes the expected value of the squared pro�t high.

Next, we compute the unconditional expected pro�t per share. 19

E
[
Πi

j

]
= ρ̄

(
r

r − gj

)2

Σjx̄j . (20)

18High negative expected pro�ts are also valuable, because they present pro�table shorting opportunities.
The 1/2 in eq. (19) comes from subtracting a variance term in the formula for the mean of a log-normal variable.

19Note E
[
(Πi

j)
2
]

= (E
[
Πi

j

]
)2 + V ar(Πj). See Appendix C for the derivation of V ar[Πi

j ] and other details.

26



Thus, the expected pro�t per share is the product of the total amount of asset j risk borne

by the average investor, scaled by aggregate risk aversion ρ̄. Faster growth, or equivalently, a

higher valuation-to-cash-�ow ratio (higher r
r−gj ) means greater uncertainty about the discounted

values of the entire cash-�ow stream, for a given level of uncertainty about current cash-�ows

(Σj). Similarly, larger supply (higher x̄j) implies more risk exposure for the average investor's

portfolio and therefore, a larger compensation in the form of expected pro�ts. In other words,

it is more valuable to learn about large, fast-growing �rms with greater uncertainty.

To compute the initial value of data, we simply replace the equilibrium information level Σj

with its value before any data is processed, the prior variance Σjd in (19). Then, compute the

partial derivative with respect to (Σi
j)
−1. This is what we call the initial value of information

(V Ij):

V Ij =
1

2

[
ρ̄2

(
r

r − gj

)2

Σ2
jdx̄

2
j

]
+

1

2
Σjd (21)

The �rst term in (21) is related to the mean of the expected pro�t per share of asset j from

(20). As we saw earlier, higher growth (gj), larger size (x̄j) and more uncertainty (Σjd) all raise

V Ij, making information about the asset's cash-�ows more valuable. Moreover, these factors

enter multiplicatively and therefore, amplify each other. This interaction makes Large-Growth

�rms valuable for many investors to learn about.

The second term in (21) stems from the variance of expected pro�ts per share. Quantita-

tively, however, this term is dominated by the �rst term, because r
r−gj and x̄j are both large,

relative to other terms. In other words, most of the variation in the value of the information,

both in the cross-section and over time, comes from changes in the size and scale of pro�table

trading opportunities.

4.2 Estimation of Initial Value of Information

We construct a time series for the value of information (V Ij), for each of the four asset groups

by decade. Computing V Ij requires parameters already estimated in Section 2, as well as risk

aversion ρ̄ and the asset supply (x̄j). To estimate total supply, we �rst calculate the average

(book) value of assets of �rms in group j by decade. We then project �rm-level assets on
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Figure 4: The Initial Value of Information, by Asset Class, over Time. The initial value
of information V Ij is de�ned in (21). gj and Σjd estimates are reported in Table 1, while x̄j estimates are
reported in Table 4. r = 1.025 and ρ̄ = 0.02.

total assets of the S&P 500 and estimate the fraction of the variance that is unexplained by

the regressor (i.e. 1-R2). The value of assets associated with stock-speci�c component is then

obtained by multiplying this factor (the average value for each group) and the average book

value of assets (also by group, reported in Table 4 in the appendix). Finally, we assume the

risk aversion coe�cient is ρ̄ = 0.02.

The resulting estimates in Figure 4 o�er a simple explanation for why so much data has been

processed for large �rms, especially large growth �rms. Information about such �rms is more

valuable. Both size and growth increase the value of information, which is also ampli�ed by

their interaction. The combination of being large and growing quickly makes a �rm a desirable

target for data analysis. In the �gure, the value of information for small growth and small value

stocks is very close to zero, orders of magnitude lower than the value of the large �rms' data.

The time series for V Ij in Figure 4 shows a dramatic rise in the value of large �rms' infor-

mation during the 1990s and 2000s. These patterns are driven almost entirely by movements in

the �rst term in (21). Why did this component rise so sharply and then fall? The increase can

be traced to the rise in their size (x̄j): in other words, large �rms grew larger (both in absolute

and relative terms) during the 1990s and 2000s, raising expected pro�ts per share and making

data about them more valuable.

The value of large value �rms' information surpasses that of large growth �rms for one

decade in our sample. This was likely the combined result of a decrease in the growth prospects
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of large growth �rms and a rise in the relative size of large value �rms. One possibility is that

these changes in �rms' characteristics was unexpected. If data processing can be frictionlessly

reallocated, one would expect a quick reaction to the surprise change in growth and size. But,

in reality, research expertise takes time to build: time to hire personnel, and time for them to

develop the necessary knowledge. As a result, it is quite likely that, much like physical capital,

information processing is slow to adjust. A full exploration of this possibility is a question for

another paper.

5 Conclusions

Financial services are increasingly centered around data processing. Making optimal data

choices and valuing data requires knowing the precision of other market participants' forecasting

data. We develop a tool to measure this data precision. Our tool can be applied in many possible

ways to various groupings of assets.

Since our framework tells us that size and growth make data valuable, we use our tool to

measure data for �rms sorted by size and growth. We �nd data divergence: Investors seem to

be processing more and more data about large growth assets, but not about others.

To explore why data processing might diverge, we use the estimated structural model to

impute a value of data. We �nd that the value of large growth �rm data has increased, primarily

because these �rms grew larger. Larger �rms are more valuable to learn about, particularly if

they are also expected to grow faster. While our tool has uncovered a new fact and suggested

a logical explanation for it, there will surely be many reasons to want to measure data along

other dimensions, as we continue to learn more about the �nancial data economy.
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Appendices

A Structural Framework: Derivations

A.1 Proof of Proposition 1

Solving for the equilibrium follows a standard guess-and-verify procedure, widely used in the noisy

rational expectations equilibrium (REE) literature. First, we express total demand for each asset j,

as a function of price (Pj1), and equate it with total supply (x̄+ x̃j). Then, we match coe�cients on

both sides of this market clearing condition to obtain a system of equations in Aj , Bj , Cj . Speci�cally,

all constant terms are equated to Aj ; terms that multiply εj1 get equated to Bj and �nally, those

multiplying x̃j must equal Cj . Simplifying that system of equations yields the stated result.

A.2 Decomposing Price Informativeness: Derivation of Equation (13)

PINFj,s =
Cov(d∗fjs , P

∗
fj1|d∗fj0, ε̄1)

StdDev(P ∗fj1|d∗fj0, ε̄1)
= gsj

Cov(d∗fj1 , P
∗
fj1|d∗fj0, ε̄1)

StdDev(P ∗fj1|d∗fj0, ε̄1)
(22)

= gsj
Cov(εfj1 , Pfj1)

StdDev(Pfj1)
=
gsj
r

BjΣjd

StdDev(Pfj1)
(23)

=
Σjd

StdDev(Pfj1)

gsj
r − gj

(
1− Σj

Σjd

)
(24)

where the last line uses the expression for Bj from (9).

A.3 Estimating Σjp: Derivation of Equation (17)

The stock-speci�c components of cash-�ows and prices, i.e. the residuals after conditioning on (d∗fj0, ε̄1),

are given by:

dfj1 = εfj1 (25)

Pfj1 = Ãj +
Bj

r
εfj1 +

Cj

r
x̃fj , (26)
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where Ãj = −ρ̄
(

r
r−gj

)2
Σj x̄j . The coe�cients from regressing dfj1 on Pfj1 and a constant are:

β̂j =
Cov(εfj1, Pfj1)

V ar(Pfj1)
=

rBjΣjd

B2
j Σjd + C2

j Σjx
,

αj = E(εfj1)− β̂jE
(
Ãj + (Bj/r)εfj1 + (Cj/r)x̃j

)
= −β̂jÃj ,

where we use E[εfj ] = E[x̃fj ] = 0. The estimated residuals and their variance are:

efj = εfj1 − αj − β̂j
(
Ãfj +

Bj

r
εfj1 +

Cj

r
x̃fj

)
=

(
1− β̂j

Bj

r

)
εfj1 − β̂j

Cj

r
x̃fj ,

=

(
1−

BjΣjd

B2
j Σjd + C2

j Σjx
Bj

)
εfj1 −

(
BjΣjd

B2
j Σjd + C2

j Σjx

)
Cj x̃fj ,

=

(
C2
j Σjx

B2
j Σjd + C2

j Σjx

)
εfj1 −

(
B2

j Σjd

B2
j Σjd + C2

j Σjx

)
Cj

Bj
x̃fj ,

=


C2

j

B2
j
Σjx

Σjd +
C2

j

B2
j
Σjx

 εfj1 −

 Σjd

Σjd +
C2

j

B2
j
Σjx

 Cj

Bj
x̃fj ,

⇒ V ar(efj) =


C2

j

B2
j
Σjx

Σjd +
C2

j

B2
j
Σjx


2

Σjd +

 Σjd

Σjd +
C2

j

B2
j
Σjx


2

C2
j

B2
j

Σjx . (27)

Noting that Σjp =
C2

j

B2
j
Σjx, we can write (27) more succinctly as

V ar(efj) =

(
Σjp

Σjd + Σjp

)2

Σjd +

(
Σjd

Σjd + Σjp

)2

Σjp =
ΣjpΣjd

Σjd + Σjp
. (28)

Solving (28) for Σjp yields the expression in (17).

B Structural Estimation: Details and Additional Results

B.1 Sample Size

Table 4 lists the number of �rms and average value of assets for the �rms in our sample, separately for

each decade and each asset group.
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1960s 1970s 1980s 1990s 2000s 2010s

Number of �rms
Small Growth 1,699 4,739 7,224 9,253 6,444 3,505
Large Growth 1,696 4,229 6,270 7,963 5,662 3,327
Small Value 1,734 4,664 7,229 9,153 6,382 3,472
Large Value 1,653 4,040 6,146 7,742 5,534 3,272

Average assets ($ millions)
Small Growth 125 173 109 175 410 599
Large Growth 2,697 3,510 3,521 8,661 12,928 13,802
Small Value 517 565 852 2,140 4,478 5,398
Large Value 6,129 11,592 15,726 22,003 52,550 61,588

Table 4: Number of Firms and Total Assets by Decade and Type

B.2 Time-varying Interest and Growth Rates

In our baseline estimation, we assumed a constant r = 1.025 over time. In this subsection, we show

that this is not a critical assumption. In particular, we compute the actual average real interest rate

for each decade (de�ned as the di�erence between 1-year nominal Treasury yield from the Federal

Reserve Board's H15 release and realized in�ation over the subsequent year, computed using the

PCE Price Index) and use that series to re-estimate the growth and information components of price

informativeness (note that the volatility component remains una�ected). Figure 5 plots the estimated

trends for all three components and looks very similar to the baseline results in Figure 1.

Figure 5: Time-Variation in Riskless Rate. The plots show a linear trend �tted to the structural
estimates of the components of PINF as described in (13) and decade-speci�c interest rates. For details of how
the interest rates r are estimated, see text.
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B.3 Alternative Speci�cation for Common Component

In this section, we show that our results about the trends in data processing hold under an alternative

assumption about the common component in �rm cash�ows. Recall that in the baseline analysis, we

imposed a single factor structure on the common component. Now, we allow for multiple aggregate

factors with group-speci�c weights. Speci�cally, the correlated component is now given by

ε̄fj1 =

H∑
h=1

β̃jhε̄h1 ,

where H is the number of aggregate factors and β̃jh are the group-speci�c loadings.

Under these conditions, we can strip out the correlated components by taking out a group-year

�xed e�ect from the observed cash�ow and price variables. The rest of the estimation procedure to

estimate PINF and its components remains unchanged. The results from this version are shown in

Figure 6. Comparing it to our baseline results, reveals that the overall pattern of divergence emerges

even under this alternative approach, indicating that our conclusions are not sensitive to how we adjust

for common components.

C Marginal Value of Information

C.1 Derivations

Interim expected utility, i.e. after chosen information and prices are observed, is

E[U i
j |Ii] =

1

2

(E[Vj1 − rPj1|Ii])2

V ar[Vj1 − rPj1|Ii]
=

1

2

(Πi
j)

2(
r

r−gj

)2 (Σi
j)
−1 (29)

Note that, from an ex-ante perspective, Πi
j is a random variable, since it is a function of the data

observed by i. In our Gaussian setting, the posterior variance, Σi
j , depends only on second moments
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Figure 6: Data Divergence: Using group-year �xed e�ects. Structural estimation of equa-
tion(13) after residualizing cash�ows and prices using a group-year �xed e�ect. For each component, the lines
plot a linear trend �tted to our structural estimates.
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(which are known ex-ante, i.e. before data is observed). Ex-ante expected utility therefore becomes:

E[U i
j ] = E[E[U i

j |Ii]] =
1

2

E
[
(Πi

j)
2
]

(
r

r−gj

)2 (Σi
j)
−1 (30)

=
1

2

(E
[
Πi

j

]
)2 + V ar(Πi

j)(
r

r−gj

)2

 (Σi
j)
−1 , (31)

The unconditional mean and variance of expected pro�t per share can be computed directly from

the equilibrium price function:

E
[
Πi

j

]
= ρ̄

(
r

r − gj

)2

Σj x̄j . (32)

V ar(Πi
j) = B2

j Σjp +

(
r

r − gj
−Bj

)2

(Σjd − Σi
j)− 2

(
r

r − gj
−Bj

)
BjΣ

i
j (33)

The variance of expected pro�t depends, among other things, on the equilibrium pricing coe�cient

Bj and the noise in the price signal Σjp. Higher sensitivity to dividends or more noise leads to more

ex-ante variability in expected pro�ts. Substituting the mean and variance of the expected pro�t per

share into (31), we get:

E[U i
j ] =

[
ρ̄2

(
r

r − gj

)4

Σ
2
j x̄

2
j

]
(Σi

j)
−1

2
(

r
r−gj

)2

+

[
B2

j Σjp +

(
r

r − gj
−Bj

)2

(Σjd − Σi
j)− 2

(
r

r − gj
−Bj

)
BjΣ̂

i
j

]
(Σi

j)
−1

2
(

r
r−gj

)2

=

ρ̄2

(
r

r − gj

)2

Σ
2
j x̄

2
j +

(
Bj
r

r−gj

)2

Σjp +

(
1− Bj

r
r−gj

)2

Σjd

 (Σi
j)
−1

2
+Hj

=

[
ρ̄2

(
r

r − gj

)2

Σ
2
j x̄

2
j +

(
1− Σj

Σjd

)2

Σjp +

(
Σj

Σjd

)2

Σjd

]
(Σi

j)
−1

2
+Hj

= Mj · (Σi
j)
−1 +Hj

where

Mj =
1

2

[
ρ̄2

(
r

r − gj

)2

Σ
2
j x̄

2
j

]
+

1

2

[(
1− Σj

Σjd

)2

Σjp +

(
Σj

Σjd

)2

Σjd

]
(34)

is the marginal value of information for asset j and the precision of the price signal and Hj is an
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equilibrium constant that does not depend on i's information.

Note that Mj is a function, among other things, of the amount of data processed by the average

investor (through Σ
2
j and Σjp terms). The value of information in (21) in the main text removes these

e�ects by setting Σ
2
j = Σjd. The implications for Σjp comes from the pricing coe�cients � see (11). If

no data is processed by others, then no information can be revealed in prices, so Bj = 0 and Σjp =∞.

At the same time, the term
(

1− Σj

Σjd

)2
becomes zero. Using L'Hospital's rule, we can show that the

latter dominates and therefore, the product becomes zero in the no-information limit. Combining, the

value of information Mj reduces to the expression for V Ij in (21).

D Evolution of Firm Size

Figure 7 show that S&P 500 �rms got larger, relative to non-S&P 500 �rms. Here, we use market

capitalization as our measure, but the pattern looks similar with assets as well. As we showed in

Section 4 in the main text, size is a key determinant of the value of information, so this diverging trend

in size helps explain the diverging trends in data.

Figure 7: S&P 500 Firms Became Larger relative to Non-S&P 500 Firms. The graph
shows the average size of S&P 500 and non-S&P 500 �rms over time. Size is de�ned as �rm's total market value
in 2009 dollars. The sample contains publicly listed non-�nancial �rms from 1960 to 2010.
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E Evidence from Analyst Coverage

In this section, we present some evidence suggestive of increased data processing with respect to

growth �rms. We use the I/B/E/S database to estimate time trends in analyst coverage for di�erent

sub-samples of �rms. Formally, we regress the number of analysts at the �rm-year level on a growth

dummy, interacted with dummies for �ve-year windows. We estimate this regression (allowing for year

�xed e�ects) separately for large �rms and for small �rms. The coe�cient on the growth dummy thus

represents the relative coverage of growth �rms. The results, presented in Figure 8 below, show a sharp

increase in the relative coverage of growth �rms. This is particularly striking for large �rms and the

timing of this increase lines up quite well with the results of our structural approach.
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Figure 8: Analyst Coverage Has Increased for Growth Firms. The graph reports coe�cients
βt from the following regression: Number of Analystsit = βtGrowthi× Half-decadet + δt + eit, where Growthi
is a dummy equal to one if the �rm is a growth �rm and Half-decadet is a dummy for each �ve year interval
starting from 1985. We estimate the regression separately for large �rms (the red line) and small �rms (the
blue line).

Of course, it is worth noting that analyst coverage is likely a rather crude measure of data precision.

For one, the number of analysts doesn't capture variation in quality of data processing, both in the cross-

section and over time. An analyst might be reporting mostly redundant or low-quality information that

does little to reduce investor uncertainty (in fact, to the extent it disagrees with other analysts' forecasts,

it might even seed uncertainty). Finally, analyst coverage also does not capture data processing done
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in-house by investors (e.g. hedge funds), which has arguably become more important over time. So

while this evidence is reassuring and suggestive, it is not a substitute for a structural data precision

measure.

F Price Informativeness: Additional Empirical Results

This appendix performs a number of exercises to show the evolution of price informativeness, de�ned as

in Bai, Philippon, and Savov (2016). It is worth keeping in mind that these reduced-form patterns are

hard to interpret because they confound changes in information with variation in other characteristics,

precisely why a structural approach is necessary. Having said that, these are still instructive and helps

us connect our �ndings to various papers studying price informativeness.

Formally, we follow Bai, Philippon, and Savov (2016) and estimate the following speci�cation: 20

E∗f,j,t+s

A∗f,j,t
= αj + βj,s · ln

(
M∗f,j,t
A∗f,j,t

)
+ γj ·Xf,j,t + εf,j,t+s (35)

and de�ne price informativeness as

PINF ∗j,s = βj,sσ
M∗/A∗

j , (36)

where σ
M∗/A∗

j denotes the (unconditional) standard deviation of ln

(
M∗

f,j,t

A∗
f,j,t

)
. Finally, since we are

interested in longer term trends, we �t the following trendline (separately for each j):

PINF ∗j,s,t = PINF ∗j,s

(
1 + Trendj,s ·

t− 1962

2010− 1962

)
+ ej,s,t (37)

The coe�cient of interest is PINF ∗j,s · Trendj,s, which describes how price informativeness changes

over the period 1962-2010.

Price Informativeness for Largest (Smallest) Firms Has Been Rising (Falling). In

order to explore the connection between �rm size and informativeness, we estimate PINF ∗j,s and its

trend for two sub-samples: `largest' and `small' �rms, where `largest' comprises the 500 largest �rms,

by market cap, and small the rest.

20Throughout this appendix, we work with unadjusted prices and cash�ows, i.e. without taking out common
components, in order to maintain comparability to Bai, Philippon, and Savov (2016) and the rest of the literature.
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Dep. Var Price Informativeness

Sample (j) S&P 500 Large Firms Small Firms

Horizon s=3 s=5 s=3 s=5 s=3 s=5

(1) (2) (3) (4) (5) (6)

PINF ∗j,s · Trendj,s .016*** .027*** .0035 .019*** -.052*** -.057***
(.006) (.006) (.004) (.0065) (.0038) (.0061)

PINF ∗j,s .033*** .038*** .041*** .048*** .043*** .054***
(.0023) (.0036) (.0023) (.0038) (.0018) (.0029)

Observations 17,650 16,114 19,193 17,680 61,034 49,238

Sector FE X X X X X X

Firm Controls X X X X X X

Table 5: Price Informativeness: The Role of Firm Size. Results from estimating (37) for
di�erent sub-samples of �rms. Large �rms are the 500 largest �rms based on market capitalization. Small �rms
are the rest. Newey-West standard errors with four lags are in parentheses. *** denotes signi�cance at the 1%
level.

Table 5 reports the results for S&P 500 �rms (columns 1-2), largest �rms (columns 3-4) and small

�rms (column 5-6). The increase in price informativeness is very similar for S&P 500 �rms and the set

of largest �rms, both for 3-year (columns 1 and 3) and 5-year horizons (columns 2 and 4). By contrast,

the price informativeness of small �rms, which started from roughly the same levels as that of largest

�rms in 1962, fell sharply over this time period. These patterns are robust to alternative criterion for

size: we also split the sample into deciles of size, and �nd that moving from the lowest decile to the

highest decile of size implies a 17-fold increase in price informativeness (c.f. Appendix F.3).

Next, we explore the relationship between growth and price informativeness. We classify �rms

based on their current book-to-market ratio, following Fama and French (1995). Speci�cally, �rms in

the bottom 30% by book-to-market are labeled `growth' �rms and the top 30% `value' �rms. We then

run our price informativeness regressions (35) separately for these two groups.

Columns (1) and (2) of Table 6 reveal that price informativeness declines for both growth and value

�rms. However, when we split each category between large and small, we �nd that large growth �rms

show a signi�cant increase (positive coe�cient in column 4) while the small growth group displays the

sharpest decline (column 3). In other words, growth �rms drive both the rise in price informativeness

for large �rms and the declining trend for smaller �rms. The informativeness for value �rms, both

large and small, shows more modest declines. The rate of change in small value �rms' (column 5) price
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informativeness is half that of small growth �rms (column 3). The divergence is summarized in Figure

9, which plots the linear trends in price informativeness for large vs. small �rms (left panel) and for

large-growth vs. large-value �rms (right panel). Both panels exhibit divergence. Recall from Figure 3

that small �rms, both growth and value, show a declining trend.

Dep. Var Price Informativeness (s = 5)

Sample (j) Growth Value Growth�
Small

Growth�
Large

Value�
Small

Value�
Large

(1) (2) (3) (4) (5) (6)

PINF ∗j,s · Trendj,s -.035*** -.02*** -.058*** .04*** -.024*** -.01*
(.0083) (.0039) (.011) (.01) (.0044) (.0052)

PINF ∗j,s .052*** .014*** .054*** .053*** .017*** .005*
(.0052) (.0024) (.007) (.0067) (.0027) (.0029)

Observations 31,988 28,066 23,110 8,814 24,823 3,167

Sector FE X X X X X X

Firm Controls X X X X X X

Table 6: Price Informativeness Trends: The Role of Firm Growth. This table presents
results from estimating (37) for di�erent sub-samples of �rms. Large refers to the 500 largest �rms in our data
� the rest are labeled Small. Growth �rms are those in the bottom 30% of the distribution of book-to-market;
value �rms are in the top 30%. Newey�West standard errors, with four lags are in parentheses. *** denotes
signi�cance at the 1% level.
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Figure 9: Large and Small Firms' Price Informativeness Diverges. The plots show the
trends in price informativeness for horizon s = 5, estimated using (37), along with 95% con�dence interval based
on Newey-West standard errors with four year lags. Large refers to the 500 largest �rms in our data � the rest
are labeled Small. Growth �rms are those in the bottom 30% of the distribution of book-to-market; value �rms
are in the top 30%.
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Figure 10: Price Informativeness is Falling (Rising) for all Public Firms (S&P 500
Firms). The plots show the trends in price informativeness, estimated using (37), along with 95% con�dence
interval based on Newey-West standard errors with 5�lags. The left panel depicts S&P 500 non�nancial �rms,
while the right shows results for the whole sample.

F.1 Price Informativeness in the S&P 500

Price Informativeness for all Public Firms (S&P 500 Firms) Has Been Falling

(Rising). The two panels of Figure 10 plot the �tted values from (37) for the subsample of

�rms in the S&P 500 (left) and the universe of listed �rms (right). The �gures show that

although informativeness rose for the S&P 500 �rms, it fell for the market as a whole.

Table 7 quanti�es the magnitude of the divergent trends for S&P 500 and non-S&P 500 �rms

and shows that they are both statistically signi�cant and economically large. PINF ∗j,s reports

the magnitude of the predictive power of stock prices for future cash�ows at the beginning of our

sample period. Because we normalize the time trend between zero and one, the coe�cient on

PINF ∗j,s · Trendj,s can be directly interpreted as the total evolution of price informativeness

over the period. For the S&P 500 sample, price informativeness at the 5�year horizon rose

by 70% (0.026/0.038). For the non�S&P 500 �rms, it fell by around 80%. In all cases, the

evolution is signi�cant at the 1% level.

To explore whether there is something speci�c to �rms in the S&P 500, we perform two

di�erent tests. First, we looked at �rms that have never been included in the S&P 500 but are

relatively close in terms of market capitalization and size. It turns out these �rms exhibit a

rise in price informativeness nearly identical to that of the S&P 500 �rms (though the levels

of price informativeness are somewhat di�erent). This suggests that the rising trend in price

informativeness has more to do with �rm characteristics (like size) rather than inclusion in

the S&P 500 per se (though being part of the index does increase the level of informativeness

somewhat).
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Dep. Var Price Informativeness

Sample (j) S&P 500 Non S&P 500

Horizon s=3 s=5 s=3 s=5

(1) (2) (3) (4)

PINF ∗j,s · Trendj,s .016*** .026*** -.047*** -.048***
(.0037) (.006) (.0027) (.0045)

PINF ∗j,s .033*** .038*** .046*** .056***
(.0023) (.0036) (.0018) (.0028)

Observations 17,662 16,120 105,580 86,550

Sector FE X X X X

Firm Controls X X X X

Table 7: Price Informativeness Grew (Fell) for S&P 500 (other) Firms. This table
shows the estimates of (37) for di�erent subsamples of �rms. Newey�West standard errors, with four lags are
in parentheses. *** denotes signi�cance at the 1% level.

We also looked at �rms that were in the S&P 500 only for a part of our sample period. We

estimate two separate speci�cations of Equation (35) � one for the period of the �rm life when

it is in the S&P 500 and for when it is not. We �nd that, among the sample of �rms that are in

the S&P 500 at some point in their life, the trend in price informativeness is similar for �rms

currently in and out of the S&P 500. In levels, price informativeness is actually higher when a

�rm is not in the S&P 500, than when they are in.

F.2 Other Possible Data Groupings

One potential concern with our analysis is that growth and size are not the characteristics that

are driving these trends, but are correlated with other, more relevant �rm characteristics. In

this subsection, we discuss a couple of other groupings of �rms that might help dig into this

further.

Technology Firms. A potential explanation for the decrease in informativeness for the mar-

ket as a whole is that the share of �rms, whose shares are harder to price � speci�cally high

tech �rms � has increased over time. Could the increased prevalence of technology �rms also

explain divergence? However, we �nd that quantitatively, the rise of such �rms explains little

of the divergence in price informativeness, because the technology-related time trends in the

large �rm and small �rm samples were not su�ciently di�erent.
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We use R&D intensity (R&D spending scaled by assets) as a proxy for high tech intensity.

First, we sort the full sample of �rm-year observations into deciles of R&D intensity. We then

estimate price informativeness for each decile, using the same method as before. We �nd that

price informativeness declines strongly with R&D intensity, as we conjectured.

Next, we analyze changes in R&D composition in the cross-section. We use inclusion in the

S&P 500 as our indicator of being a large �rm. In both the S&P 500 and the non-S&P 500

sample, the fraction of �rms investing more in R&D has increased steadily. The share of high-

tech �rms has grown slightly more rapidly in the full sample than in the S&P 500 sample.

Until the early 80's, the high-tech shares for S&P 500 and non-S&P 500 �rms track each other

closely. There is some signs of divergence in the mid-80's, when the share of high-tech �rms

increases more in the whole sample, essentially driven by a rapid entry rate of tech �rms. But

then, in the early 2000's, the share of tech �rms in the S&P 500 increases and converges to

that of the non-S&P 500 sample. Thus, there isn't a clear trend in the tech composition of

the di�erent sub-samples. We therefore conclude that prevalence of tech �rms, while it may

explain the average decline in informativeness, cannot explain the cross-sectional divergence.

Note also that our structural approach explicitly adjusts the e�ect of di�erences in funda-

mentals, e.g. a more volatile or faster growing cash-�ow. So to the extent that technology �rms

are di�erent for these reasons, our analysis in that section adjusts for technology intensity, and

�nds divergence.

Market Power. Recent work suggests that market power is rising in the US economy over the

last few decades. In Kacperczyk, Nosal, and Sundaresan (2018), market power considerations

reduces price informativeness: large investors with price impact trade less aggressively on their

information, leading to lower price informativeness. This could be a potential explanation for

the overall decline in price informativeness. This would imply that price informativeness we

estimate is a lower bound (as is our structural measure of data). But, for this to explain why

only large, growth �rms have much more informative prices than they used to, w would have to

argue that the market for those stocks has become much more competitive over time. To the

best of our knowledge, there is no evidence which suggests enormous increases in competition

in some equity markets and the evaporation of competition in others.

F.3 Price Informativeness by Size

In this subsection, we show that price informativeness varies systematically by size. Speci�cally,

we pool all �rm-year observations and construct deciles of �rm size (de�ned as market value in

2009 dollars). We then run the cross-sectional regression (35) within each bin, i.e. the subscript

j now refers to a size bin and estimate PINF ∗j,s. The results, presented in Figure 11, show
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a clear pattern: the informativeness of large �rms is signi�cantly higher than those of smaller

�rms, especially for those at the very top.

Figure 11: Price Informativeness by Decile. The �gure shows the average PINF ∗
j,s,t, de�ned as in

(36), over the entire sample for each size decile. We run the regression in (35) for each year t = 1962, ..., 2010
with horizon s = 5 for each size decile. The sample contains publicly listed non-�nancial �rms from 1962 to
2010.
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