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Abstract

Big data technologies change the way in which data and human labor combine to

create knowledge. Is this a modest technological advance or a transformation of our basic

economic processes? Using hiring and wage data from the �nancial sector, we estimate

�rms' data stocks and the shape of their knowledge production functions. Knowing how

much production functions have changed informs us about the likely long-run changes

in output, in factor shares, and in the distribution of income, due to the new, big data

technologies. Using data from the investment management industry, our results suggest

that the labor share of income in knowledge work may fall from 44% to 27% and we quantify

the corresponding increase in the value of data.

Machine learning, arti�cial intelligence (AI), or big data all refer to new technologies that

reduce the role of human judgment in producing usable knowledge. Is this an incremental

improvement in existing statistical techniques or a transformative innovation? This nature of

this technological shift is similar to industrialization: Industrialization changed the capital-labor

ratio, allowing humans to be more e�cient at goods production. Machine learning is changing

the data-labor ratio, allowing humans to be more e�cient at knowledge production. Economists

model industrialization as a change in production technology: a move from a technology with

starkly diminishing returns to capital, to one with less diminishing returns. One measure of
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the importance of the industrial revolution is the magnitude of the change in the production

parameter that governs diminishing returns.

Using labor market data from the �nancial sector, we estimate two production functions �

one for classical data analysis and one for machine learning. The decline in diminishing returns

shows up as an exponent on on data in the production function that is closer to one: We

estimate that the data exponent rose from 0.560 to 0.734. The magnitude of the change in

the diminishing returns parameter informs us about the importance of the innovation. As the

economy transitions from producing knowledge using old statistical techniques to producing

with new, machine learning technologies, this change in diminishing returns governs changes in

input use, income shares and productivity. In other words, our results inform us about how the

demand for labor and data will change, how to value each in the new economy, and how the

distribution of income is likely to shift, absent policy intervention.

Estimating old and new knowledge production functions is challenging, because for most

�rms, we do not know how much data they have, nor how much knowledge they create, nor

do they announce which technology or what mix of technologies they employ. What we can

observe is hiring, skill requirements and wages. A simple model of a two-layer production

economy teaches us how to infer the rest. The two layers of production are as follows: Raw

data is turned into usable, processed data (sometimes called information) by data managers;

processed data and data analyst labor combine to produce knowledge. Thus, we use hiring

of data managers to estimate the size of the �rm's data stock, the skills mix of analysts to

estimate the mix of data technologies at work, and we bypass the need to measure knowledge

by using wage data to construct income shares, which inform us about the returns, and the rate

of diminishing returns, to each factor.

To estimate production functions, it is imperative that we precisely categorize job postings

and match postings by employer. Unlike other work that measures machine-learning-related

employment(e.g., Acemoglu and Restrepo (2018)), our work demands a �ner partition of jobs.

We need to distinguish between workers that prepare data to be machine-analyzed, workers

that primarily use machine learning, and workers that use similar statistical skills, that are

frequently co-listed with machine learning, but are of a previous vintage. We also need to know

whether data managers are being hired by the same �rm that is also hiring machine-learning

analysts.

Because di�erent industries have di�erent job vocabularies, we can categorize jobs more

accurately by focusing on one industry: �nance, more speci�cally we focus on investment

management. Since investment management is primarily a knowledge industry, with no

physical output, it is a useful setting in which to tease apart these various types of knowledge
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jobs.1 We use Burning Glass hiring data, including the textual descriptions of each job, to

isolate �nancial analysis jobs that do and do not predominantly use machine learning, as well

as data management jobs, for each company that hires �nancial analysts. We adjust the

number of job postings by a probability of job �lling. That product is our measure of a

company's desired addition to their labor force. This series of worker additions, along with job

separations by job category, enables us to build up a measure of each �rm's labor stock.

The next challenge is to estimate the amount of data each �rm has. We consider data

management work to be a form of costly investment in a depreciating data asset. Therefore, we

use the job postings for data managers, the job �lling and separation rates for such jobs, and an

estimate of the initial data stock to construct data in�ows (investments), per �rm, each year.

To estimate the 2010 initial stock of data of each �nancial �rm, we estimate which stock best

rationalizes the �rm's subsequent hiring choices. Speci�cally, we choose an initial stock of data

that minimizes the distance between each �rm's actual hiring and the optimal amount of hiring

in each category, dictated by the �rm's �rst order conditions. Combining this initial stock, with

a data depreciation rate and a data in�ows series gives us an estimate of the size of the data

stock that every �nancial �rm has in its data warehouse.

Armed with data stocks, labor forces in each category, and wages, we estimate the data

and labor income shares. These income shares correspond to the exponents in a Cobb-Douglas

production function. We estimate a constant-returns Cobb-Douglas speci�cation because we

are exploring the analogy that AI is like industrialization. Therefore, we model knowledge

production in a parallel way to industrialization, to facilitate comparison, while recognizing the

non-rival nature of data. By comparing the estimated exponent for classical data analysis and

machine-learning data analysis, we can assess the magnitude of the technological change. Of

course, this knowledge is then combined with capital to generate excess �nancial returns. But

it turns out that we do not need to model or measure this downstream value-creation to make

inference about knowledge production. Just like we can determine the production function for

milk, without knowing what factors are needed to turn it into ice cream, we can estimate the

production of knowledge, without asking how that knowledge is turned into excess �nancial

returns.

Our data reveals a shift underway in the employment of knowledge workers in the investment

management sector. We see a steady increase in the fraction of the workforce skilled in new

big data technologies. The number of old technology jobs in the sector has not fallen; it

simply represents a smaller share of employment. While AI job postings were a tiny fraction

of all analysis jobs through 2015, by the end of 2018, about 1/7th of all �nancial analysts in

1According to Webb (2019) and Brynjolfsson et al. (2018b), �nance is also the industry with the greatest
potential for arti�cial intelligence labor substitution.
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investment management �rms had big data or AI-related skills.

Related Literature A handful of recent working papers also use labor market data to

investigate how machine learning and arti�cial intelligence are a�ecting labor demand. They

primarily use a di�erence-in-di�erence approach. Acemoglu and Restrepo (2018), Babina et al.

(2020) and Deming and Noray (2018) identify industries and/or regions that are more exposed

to machine learning-related technology. Then, controlling for other labor-related variables,

they report how many jobs have been lost or gained, relative to unexposed regions or

industries. Others o�er useful inputs in this exercise by reporting the number of AI jobs

postings or patents by industry and occupation (Cockburn et al. (2018) and Alekseeva et al.

(2020) paper). Agrawal et al. (2017) and Agrawal et al. (2018b) argue that machine learning

is likely to be a general purpose technology, because of the breadth of industries in which it is

being adopted.

Our paper contributes a structural, production function approach. Estimating how much

the production function has changed allows us a more holistic understanding of the nature of

the transformation. A structural model allows us to forecast, to make inferences about income

redistribution, and to understand the social welfare e�ects, beyond job counts. The number of

jobs gained or lost due to machine learning to date is an important question; it informs our

work, but it is just one piece of our overall puzzle.

Others examine the productivity gains or potential discrimination costs that follow the

adoption of AI techniques in providing credit (Fuster et al. (2018)), in equity analysis

(Grennan and Michaely (2018)), or in deep learning more generally (Brynjolfsson et al. (2017)

and Brynjolfsson et al. (2018a)). Our emphasis, on how inputs combine to create knowledge,

is complementary to such studies that examine the outputs and e�ects of machine learning.

Berg et al. (2018) take a similar structural approach, with a more theoretical focus, on a

somewhat di�erent topic. They explore models with di�erent elasticities of substitution between

robots and manual workers. Our focus is on knowledge production, rather than manual task

automation. The scope for computers to replace human thought and judgment may be quite

di�erent from their ability to replicate repetitive physical movements. However, our quantitative

approach using hiring data could be applied to study robotics as well.

Models of the role of data in the process of economic growth (Jones and Tonetti (2018),

Agrawal et al. (2018a), Aghion et al. (2017) and Farboodi and Veldkamp (2019)) share our

model-based approach but equate data and knowledge. In these theories, �rms accumulate a

stock of useable knowledge that enhances productivity or facilitates prediction. In contrast, this

study unpacks how raw data is transformed into that valuable output-enhancing knowledge.

Finally, our approach is related to work using Q-theory and income shares to impute the
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value of intangible assets (Crouzet and Eberly, 2020), (?). Our approaches are di�erent: Q

theory backs out a production function exponent from asset prices and book values, while our

approach builds up a production function from labor inputs. Our objectives are also di�erent:

previous work is decomposing the sources of value in a �rm. We are interested in how much

two technologies, often both used within the same �rm, di�er.

1 A Model for Measurement

The objective in writing down this model is not to provide insight into new economic

mechanisms, nor it is to provide the most realistic, detailed description of �nancial knowledge

production. Rather, the goal is to write down a simple framework that maps objects we

observe into those that we want to measure. It needs to relate hiring to labor as well as

quantities and prices of labor to data stocks and knowledge production. There are three types

of workers: AI (arti�cial intelligence) analysts, old technology (OT) analysts, and data

managers. We use AI as a shorthand to denote a diverse array of big data technologies. The

data managers create structured data sets, which, along with labor, are the inputs into

knowledge production. Among data managers we also include workers who select, purchase

and integrate externally produced data sets into the �rm's databases. We de�ne as data (D)

only information that is readily available for analysis. This production process is illustrated in

Figure 1.

Figure 1: Production process for knowledge

The new technology knowledge production function is:

KAI
it = AAIt Dα

itL
1−α
it , (1)

where Dit is structured data, Lit is labor input for data analysts with machine-learning skills,

and KAI
it is the knowledge generated using the new technology. The old technology knowledge

production function is:

KOT
it = AOTt Dγ

itl
1−γ
it , (2)
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where lit is labor input for data analysts with traditional analysis skills, KOT
it is the knowledge

generated using the old technology. AAIt and AOTt are time-varying productivity parameters.

We use a Cobb-Douglas production function for knowledge because it o�ers a clear mapping

between incomes shares and the production function parameters and it facilitates our comparison

between new data technologies and the changes induced by industrialization. Our speci�cation

does embodies the non-rival nature of data: Both technologies make use of the same data set,

at the same time.

Of course, one might object to assuming constant returns to scale, within each type of

knowledge production. However, keep in mind that this is not di�erent from what the growth

literature does with idea production. Idea or technology production is typically produced

using constant, or even diminishing returns. Then the ideas or technologies themselves enter

into goods production in a way that creates increasing returns. In our setting, the analog to

the increasing returns in growth models would be a �nal goods sector that produced with

increasing returns to scale in knowledge, capital and labor:

(�nal outputit) = (KOT
it + KML

it ) capitalζ labor1−ζ . For our measurement exercise, we do not

need to take a stand on this form of �nal goods production. But our exercise does not rule out

increasing returns to knowledge.

Similarly, one could include capital in the knowledge production function. We exclude it for

simplicity, beacuse it is small and fairly constant. For the types of �nancial analysis �rms we

examine, physical capital is a small, stable fraction of their �rm value. In our measurement,

the value of capital is simply re�ected in the residual productivity term At.

Finally, this structure also implies that the nature of the data inputs is the same for both

types of analysis. This simpli�es measurement, but the obvious counterfactual would be:

Machine learning can make use of a broader array of data types than traditional analysis. One

way to interpret this is that it is the source of greater decreasing returns to data from the old

technology. Suppose that data is ordered, from easily usable to di�cult to use. Once the

easiest data is incorporated, the next additional piece of data for traditional analysis has very

low marginal value. For machine learning, that next piece of data has higher marginal value.

Thus, the di�erence in the usability of data could be the primary reason for the di�erence in

returns to data.

Data management and Data Stocks. Data inputs for analysis are not raw data. They need

to be structured, cleaned and machine-readable. This requires labor. Suppose that structured

data, sometimes referred to as �information," is produced according to ADMλ1−φit , where λit

is labor input for data managers and ADM is the productivity of data manager (DM) labor.

Labor with diminishing marginal returns can turn raw or purchased data into an integrated,
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searchable data source that the �rm can use. New processed data is added to the existing stock

of processed data. But data also depreciates at rate δ. Overall, processed data follows the

dynamics below:

Di(t+1) = (1− δ)Dit + ADMλ1−φit = Di0(1− δ)t +
t∑

s=0

(1− δ)t−sADMλ1−φis . (3)

If we estimate the rate of diminishing returns to data management labor λit, initial data Di0

and the depreciation rate δ, we can recover Dit from data management labor λit.

Equilibrium We are interested in a competitive market equilibrium where all �rms choose

the three types of labor to maximize �rm value. We can express this problem recursively, with

the �rm's data stock as the state variable. In this equilibrium, each �rm i solves the following

optimization problem:

v(Dit) = max
λit,Lit,lit

AAIt Dα
itL

1−α
it + AOTt Dγ

itl
1−γ
it − wL,tLit − wl,tlit − wλ,tλit +

1

r
v(Di(t+1)) (4)

where Di(t+1) = (1− δ)Dit + ADMλ1−φit , (5)

and v(Dit) is the present discounted value of �rm i's data stock at time t. Note that we have

implicitly normalized the price of knowledge to 1. This is not restrictive because knowledge

does not have any natural units. In a way, we are saying that one unit of knowledge is however

much knowledge is worth $1. Seen di�erently, our A parameters measure a combination of

productivity and price. We cannot disentangle the two and do not need to for our purposes.

Optimal �rm hiring and wages. The �rst order condition with respect to new technology

(AI) analyst labor Lit is

(1− α)KAI
it − wL,tLit = 0, (6)

which says that total payments to new technology analysis labor wL,tLit are a fraction (1− α)

of the value of knolwedge output from AI analysis, KAI
it . The �rst order condition with respect

to old tech analyst labor lit is

(1− γ)KOT
it − wl,tlit = 0. (7)

This says that the total payments to old technology analysis labor wl,tlit are a fraction (1− γ)

of the value of total output KOT
it . Taking the ratio of the two �rst order conditions implies that

(1− α)KAI
it

(1− γ)KOT
it

=
wL,tLi,t
wl,tli,t

(8)
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This ratio varies by time t and it measures how much knowledge production technology has

changed. The �rst order condition with respect to data management labor λit is

1

r
v′(Di(t+1))(1− φ)ADMλ−φit = wλ,t. (9)

If the marginal value of data today and tomorrow are similar, we can solve for v′(D) and replace

ADMλ1−φ by the change in the data stock, to get2

(αKAI
it + γKOT

it )(1− φ)

r − (1− δ)
Di(t+1) − (1− δ)Dit

Dit

− wλ,tλit = 0. (10)

Intuitively, total payments to data management wλ,tλit are a portion of (αKAI
it +γKOT

it )(1−φ),

pdv (Gordon growth), or total output times the percentage increase in the data stock.

Using these expressions for optimal labor choices, we can derive an expression for the optimal

stock of data for a �rm. This is an expression we will use to impute the initial data stock of

each �rm. We start with (10) and substitute in ADMλ1−φit , in place of Di(t+1) − (1 − δ)Dit.

Next, we need to replace KAI
it and KOT

it which are the unobserved knowledge produced with

each technology. To do this, we use the �rst order conditions for AI and OT labor, (6) and (7),

to substitute wage per worker expressions; KAI
it = wL,tLi,t/(1 − α) and KOT

it = wl,tli,t/(1 − γ).

This yields an expression that relates �rm i stock of data to production function exponents and

observable hiring and wages:

Dit −

(
α

1−αwL,tLi,t + γ
(1−γ)wl,tli,t

)
(1− φ)

r − (1− δ)
ADMλ−φit
wλ,t

= 0. (11)

2 Data and Estimation

Why look at the investment management industry? Our model is about knowledge

production generally, in any industry. But as we turn to estimating this model, we use asset

management industry labor and data estimates. One reason we do this is that the investment

management industry is primarily a knowledge industry, where information is processed to form

forecasts about asset returns and pro�table portfolios. But the main reason is that �nance is an

early adopter of AI and big data technology. If we want to study the nascent adoption of this new

technology, it is helpful to look in corners of the economy where adoption is most substantial.

In independent studies with di�erent methodologies, Felten et al. (2018) and Brynjolfsson et al.

(2018c) both came to the conclusion that the �nance/insurance industry was the one with the

greatest potential for labor substitution with AI. Acemoglu et al. (2019) document that �nance

2See appendix for step-by-step derivation.
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has the third most number of AI job postings, behind information and business services.

Finally, the �nancial industry is a useful laboratory because �nance jobs are typically �lled.

JOLTS data tell us that �nance is an industry with one of the highest vacancy conversion rates

into new employment, presumably because the �nance sector pays more than others. Thus,

when they want a worker with a speci�c set of skills, they can buy them. Since our work relies

on job postings, it is helpful if many of these postings are, in fact, �lled.

Of course, one could argue that we could include the investment management industry, as

well as all other industries, to broaden our sample and sharpen our estimates. The problem

with this approach is that distinguishing which workers combine data and labor to produce

knowledge is tricky. Determining which workers use which technology is even more delicate.

Di�erent industries use di�erent vocabularies to describe this type of work. The type of work

that the investment management industry calls an analyst, the retail industry might call an

online marketing expert. Both are using data and labor to make predictions that will enhance

their company's pro�t. But because the language used to describe jobs di�ers, one needs a

separate dictionary/model to identify relevant jobs in each context. Therefore, restricting our

analysis to the asset management sector allows us to obtain a cleaner sample of job postings

and improve the accuracy of our estimates.

Labor demand Our data is the job postings data set collected by Burning Glass, from

January 2010 through December 2018. These postings are scraped from more than 40, 000

sources (e.g. job boards, employer sites, newspapers, public agencies, etc.), with a careful focus

on avoiding job duplication. Acemoglu et al. (2019) show that Burning Glass data covers 60-80%

of all U.S. job vacancies. The �nance and technology industries have especially good coverage.

It includes jobs posted in non-digital forms as well. Importantly, for a large portion of job

postings, the data reports employer names, as well as the sector, job title, skill requirements,

and sometimes the o�ered salary range. In addition to the structured data �elds, we also make

use of the full text of the job posting, as written by employers.

The total number of job postings for the employers in our sample is 507, 971, we categorize

143, 809 of them as searching for old-tech �nancial analysts, AI �nancial analysts, or data

managers. The unique number of employers goes from 620 in January 2015 to 797 in December

2018. The total number of unique employers is 928.

In order to construct this data set of interest, we develop various data �lters that (1) subset

the Burning Glass data to candidate jobs in the �nancial industry, (2) identify which of those

jobs require investment management skills, (3) assign all jobs to unique employers and (4) keep

only job postings from employers that signi�cantly hire in investment management. Finally,

among all job postings for the employers of interest, we identify those searching for AI/old-tech
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�nancial analysts or data managers. After keeping only such observations for employers that in

a given month have a non-zero stock of at least one of the three labor types, the total number

of employer-month observations is: 33,610. This is the number of observations used for our

estimation.

In our initial �lter (1), we use the jobs' NAICS, O*NET and proprietary Burning Glass

codes to restrict the Burning Glass data set to candidate jobs in the �nancial industry. More

speci�cally, we �rst drop all job postings that do not belong to one of the following 2-digit NAICS

codes: 'Professional, Scienti�c, and Technical Services', 'Finance and Insurance', 'Information'

and 'Management of Companies and Enterprises'. We also keep all jobs for which the NAICS

code is not available. Next we compile lists of O*NET codes and Burning Glass proprietary

codes (BGT Occupation Group, BGT Career Area) of job categories that should clearly not be

contained in our sample3. After eliminating all jobs belonging to those categories, we are left

with a �rst sample of candidate �ncance jobs.

With our second �lter (2) we identify investment management jobs in our sample of candidate

�nance jobs. For each job we consider the list of required skills as identi�ed by Burning Glass.

These are standardized skills extracted from the full text of the job postings. If the skill is

mentioned at least once in the job posting then Burning Glass includes it in the list of skills

required by the job. We �rst construct a list of all standardized skills required by any of the

jobs in our sample. From that list we select all investment management related skills (a full

list of the shortlisted skills can be found in Appendix A). If a job requires one or more of these

skills, we categorized it as belonging to the 'Investment Management' category.

Out third step (3) is to assign all jobs to unique employer identi�ers, which we develop

through fuzzy matching of the provided employer names. We exclude jobs for which the employer

is a recruiting company. Combining steps (2) and (3), in step (4) we keep all jobs for employers

that posted at least one job requiring investment management skills between Jan 2010 and Dec

2018.

For all jobs in this sample, we then use the full text of the selected job postings in order to

identify analysis jobs and data management jobs. We de�ne 'data management' jobs as those

requiring skills related to the cleaning, purchasing, structuring, storage and retrieval of data.

What de�ne as �analysis jobs" those jobs that combine structured data with skilled labor. We

call these analysts because they analyze data in di�erent ways. They are not necessarily what

the �nancial industry calls analysts. Within the analysis jobs we further distinguish between

those that mostly require old (Old Technology - OT ) or new (Arti�cial Intelligence - AI) skills.

This classi�cation is obtained by developing a dictionary of words and short phrases that

3Examples of excluded 6-digit O*NET codes that were still present in the sample: 'Bookkeeping', 'Accounting,
and Auditing Clerks', 'Customer Service Representatives', 'Cashiers', 'Retail Salespersons' ...
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indicate 'data management' or 'data analysis', and then counting the relative frequency of these

words or expressions in each pre-processed job text.4 Among the 'data analysis' keywords we

further identify those clearly indicative of the old and new technologies and we assign jobs to

'Old Tech - OT' or 'Arti�cial Intelligence - AI' depending on the relative frequency of words of

the two types present in the posting. The full dictionaries used are available in Appendix B.

While this last step is similar in nature to the decompositions by Acemoglu and Restrepo

(2018) or Babina et al. (2020), working with one type of job in a single industry allows us to

partition the data more precisely. The approach of these authors is to de�ne a dictionary of big

data related words in all industries. They then identify job postings that contain those words

in the standardized skills list provided by Burning Glass. Those are categorized as AI jobs;

everything else is non-AI. This approach does not work for our exercise: Burning Glass' skills

list is not detailed enough to distinguish between di�erent types of data analysis in �nance.

Misclassi�cation that might wash out in a job counting exercise is more serious for us. We need

to match data and labor stocks �rm-by-�rm. This is why we analyze the full text of the job

posting. Analyzing the full text, rather than using the Burning Glass skills list, greatly improves

our classi�cation by allowing us to account for the frequency of mentions of each type of skill.5

Finally, we further restrict the sample to employers that posted at least 5 'Old Technology'

or 'Machine Learning' jobs throughout the entire sample and employers for which at least 25% of

all identi�ed 'data analysis' jobs also belong to the investment management subset. Other types

of analysis jobs include procurement, operations, marketing and sales analysts. This �nal �lter

is needed in order to identify employers for which investment management is a large fraction

of their business. The reason we do this is because data may be collected and used for many

purposes. We want to measure data collection that will primarily be used in combination with

the labor we measure. Of course, we also do robustness checks on less restricted samples.

There is lots of entry in our data set. 58% of �rms are in our data set in 2015. The remaining

42% appear for the �rst time in 2016-2018. That does not mean these 42% are all new �rms.

Instead, many of them are existing �rms that enter our data set when they hire data workers

for the �rst time.

Figure 2 illustrates the frequency of all keywords in the job postings categorized as belonging

to each type. Note that even if all 'data analysis' and 'data management' keywords are included

in all three word clouds, the keywords speci�c to the assigned category have a signi�cantly

4We pre-process the text of each job posting by �rst removing symbols, numbers and stop-words (e.g. is, the,
and, etc.) and then stemming each word to its root using the Porter stemmer algorithm (thus, e.g. 'mathematic',
'mathematics', ... = 'mathemat' ).

5For instance a job that mentions 'Machine Learning' 10 times withing the job text and then also states
"Masters in Statistics also accepted", in our approach would be clearly classi�ed in the 'AI' category. Looking
at the skills lists, instead, the categorization of the job would be ambiguous as it would appear to require both
old and new technology skills in the same proportion: 'Statistics' and 'Machine Learning'.
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Figure 2: Keywords in the full text of the categorized machine learning, old technology and data
management jobs. Larger fonts indicate a higher word frequency. Burning glass job postings,
2010-2018.

higher relevance. The word overlap illustrates why counting word frequency is important. At

the same time, the signi�cat di�erences between the word clouds validates our approach. If a

clear distinction between the three types of job postings did not exist we would observe that

the most frequently mentioned words in each category would be less distinct.

Sample job postings To provide a clear idea of how this methdology classi�es jobs, we list

three sample job postings here, one each of old technology, AI or big data-related skills, and

data warehousing. In this example, all three jobs are posted by the �rm Two Sigma. The text

of the �rst job reads:

�We are looking for world-class quantitative modelers to join our highly motivated

team. Quant candidates will have exceptional quantitative skills as well as

programming skills, and will write production quality, high reliability, highly-tuned

numerical code. Candidates should have: a bachelor's degree in mathematics

and/or computer science from a top university; an advanced degree in hard science,

computer science, or the equivalent (a �eld where strong math and statistics skills

are necessary); 2 or more years of professional programming experience in Java and

C, preferably in the �nancial sector; strong numerical programming skills; strong

knowledge of computational numerical algorithms, linear algebra and statistical

methods; and experience working with large data sets. (...) �

This job is classi�ed as old tech because it uses words such as �mathemat� (x1), �math� (x1),
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�statist� (x2), �algebra� (x1), and does not contain words related to AI or data management

skills.

This �rst posting contrasts with the text of the second job, which reads:

�As machine learning and data-driven business intelligence have permeated

industries, an abundance of new datasets and techniques have created

opportunities for granular measurement of increasingly varied aspects of our

economy. Two Sigma is looking to hire a highly creative & motivated Lead Data

Scientist to further scale our long-standing e�orts to leverage these advancements

to measure and predict the world's �nancial outcomes.

Two Sigma's data engineering platform enables us to harness some of the world's

most complex & challenging content, as we structure and integrate new datasets

into a diverse ecosystem of syndicated �nancial and industry-speci�c data

products. Two Sigma's data scientists are focused on joining, enriching, and

transforming datasets into novel creative measures of economic activity. (...) �

This job is harder to classify. It contains the word �statist� (x2), indicative of old tech. It

also contains data-management-related vocabulary, �data engin� (x1), �data sourc� (x1), and

�support data� (x1). But what ultimately gets this job classi�ed as AI is the higher frequency

of AI-related words: �data scienc� (x4), �data scientist� (x5), �machin learn� (x1). An algorithm

that just looked for the presence of skills or words, without measuring their frequency, would

likely misclassify this job, and many others like it.

Finally, the text of the third job reads:

� (...) Technology drives our business it's our main competitive advantage and as a

result, software engineers play a pivotal role. They tackle the hardest problems

through analysis, experimentation, design, and elegant implementation. Software

engineers at Two Sigma build what the organization needs to explore data's

possibilities and act on our �ndings to mine the past and attempt to predict the

future. We create the tools at scale to enable vast data analysis; the technology we

build enables us to engage in conversation with the data, and search for knowledge

and insight. (...) You will be responsible for the following: Capturing and

processing massive amounts of data for thousands of di�erent tradable instruments,

including stocks, bonds, futures, contracts, commodities, and more; (...) �

This job is classi�ed as data management because of the words, �explor data possibl,� �enabl

vast data analysis,� �data specialist,� and �data team.�

13



Wages Many, but not all jobs in Burning Glass list a salary range. We do not believe the

listed salaries are representative of all jobs in this area. They are a starting point. We assume

that they are biased for all types of jobs, in proportion to the listed salary. We typically use the

median of the salary range listed as the salary for that job. We have robustness checks using

the maximum and minimum of the salary range instead.

Figure 3: Distribution of wages for data managers, old technology analysts and machine learning
analysts. Burning glass job postings, 2010-2018.

Figure 3 shows a distribution of wages (medians if the job lists a salary range) for data

managers, old technology analysts and machine learning analysts. The key insight is that

AI jobs clearly pay more than traditional analyst jobs. This suggests that AI workers make

more productive use of their data. This di�erence in wages is a key input that determines the

di�erence in production function estimates.

Cumulating hiring to get labor. The data series we need in order to estimate production

is the labor force working in a given month, for both knowledge and data processing workers.

We do not observe the stock of labor. Therefore, we use the following procedure to estimate

labor from observed job postings by �rm. The number of observed job postings for the three

categories of interest is displayed in Figure 4, together with the number of employers hiring in

each category.

Job postings are not the same as net hiring. One might be concerned that AI workers, in

particular, are so scarce that many postings go un�lled and/or that workers jump from job-

to-job. There are two key di�erences between postings and net hiring: the probability that

a vacancy is �lled and the probability that an employed worker separates from their job. We

adjust for both of these using data on vacancy �ll rates and job separation rates from the Bureau
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Figure 4: Job postings: Panel 1 show the fraction of employers hiring in each category. Panel
2 shows the numbers of job postings in each skill category. This sample includes only �rms for
which 25% or more of their analysis job postings required investment management skills.

of Labor Statistics (BLS).

Each month, the BLS reports the job posting, job �lling and separation rate for each

occupation. The three occupation brackets present in the �nal sample are: 'Finance and

Insurance', 'Professional, Scienti�c and Technical Services' and 'Information'. Since we want

to map our job postings into expected hires, we multiply each job posting number by the

fraction of job postings that results in a new hire (h).

Of course, machine learning jobs are not an occupation. We need a way to map our

technology-based job classi�cation into the BLS occupation classi�cation. Fortunately, each

Burning Glass job posting has a listed occupation. Of course, di�erent postings have di�erent

classi�cations, even within machine learning, old technology or data management jobs. Thus,

we measure the proportion of jobs in each of our samples that belongs to each occupation.

Each month we compute a vector of occupation weights for machine learning jobs, one for old

tech jobs and one for data management jobs that is the fraction of jobs in each category that

belongs to each occupation. We multiply this weight vector by each of the �ll and separation

rates that month, to get the imputed �ll and separation rates for machine-learning �nancial

analysis jobs (hAIt and sAIt ), the imputed �ll and separation rates for old technology �nancial

analysis jobs (hOTt and sOTt ) and those for data management jobs (hDMt and sDMt ). See

Appendix C for more detail on how BLS data is mapped into our job categories and how h

and s are derived from BLS reported rates.

For type = [AI,OT,DM ], if stypet are separation rates by type-month, and htypet are the
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fraction of posted vacancies �lled by type-month and jtypet are Burning Glass job postings rates

by type-month, we cumulate labor �ows into stocks as follows:

Lit = (1− sAIt )Li(t−1) + jAIit h
AI
t , (12)

lit = (1− sOTt )li(t−1) + jOTit hOTt , (13)

λit = (1− sDMt )λi(t−1) + jDMit hDMt . (14)

To use this cumulative approach, we need to know the initial number of workers of each

type (Li0, li0 and λi0). That information is unfortunately not available, but we know that the

initial number of workers becomes less relevant the further we are from initialization. For this

reason we start the initialization from zero for all job types and we use the �rst 5 years of data

[2010− 2014] as a burn-in period. We then use the last 4 years [2015− 2018] for the structural

estimation of the model's parameters.

Figure 5: Labor stocks. Panel 1 shows the labor stock in each category, measured as a number
of job postings, cumulated, adjusting for �lling and separation rates as in (12). This is estimated
on 33, 610 relevant job posting observations. Panel 2 shows the same plot for AI jobs jobs only.

Figure 5 shows the imputed labor stocks for each job type. After an initial increasing

phase, notice that by 2015, the e�ect of the initial distortion due to the accumulation period

has disappeared. AI workers in �nance are still a small fraction of the overall labor supply,

suggesting that the transition to a new model of knowledge production is just in its beginnings.

Table 1 reports the summary statistics for the stock of each type of labor. What is salient in

all three categories is the large disperion. This is helpful because the cross-�rm heterogeneity

will allow us to estimate the technology parameters.
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Table 1: Labor Summary Statistics.

Data Management λit AI analysts LAIit Traditional analysts LOTit
mean 22.25 0.84 14.95
stdev 97.26 8.45 56.78

minimum 0 0 0
median 4.27 0 2.89

maximum 1986 594 945
Observations 33,610 33,610 33,610

Cumulating data management to get structured data stocks We measure each �rm's

stock of data in each period by adding the data management inputs to the depreciated stock of

yesterday's data:

Dit = (1− δ)tDi0 +
t∑

s=0

(1− δ)t−sADMλ1−φis . (15)

We �x the depreciation rate of data at δ = 0.0.25, which is a 2.5% depreciation rate per month.

We also report results for 1% and 10% deprecation. This represents some high-frequency data,

whose value lasts for fractions of a second, as well as longer term data used to value companies.

In future iterations, we will experiment with other values for depreciation.

To use this approach, we need information about �rms' initial data stocks. We estimate this

initial stock, by �nding the initial stock that makes all subsequent data levels closest to the

�rm's optimal level. Speci�cally, the initial data stock of each �rm is the Di0 that best �ts the

sequence of the �rm's data optimality condition (11).

If we estimate this recursive system of data stocks, production parameters and data inputs

for every �rm in our sample, the problem quickly becomes unmanageable. At the same time,

we do not want to lose the interesting cross-�rm heterogeneity. Therefore, instead of estimating

Dit for each �rm in our sample, we compute it for the average �rm and use a rule to map the

average into a �rm's initial data. We use the initial data stocks to estimate the production

function parameters. Then, given the parameters, we can recover the best-�t initial data and

cumulate up a data stock for each �rm easily.

Speci�cally we express the Di0 of each �rm as a function of a unique average data stock by

setting each �rm's initial data proportional to the average data stock and to their cumulative

hiring in data management from 2010-2015. In other words, we take the estimated data

management labor stock in 2015, λ2015,i, multiply it by the data management productivity

parameter and raise it to the production function exponent to turn it into an amount of data

produced: ADMλ1−φ2015,i, and then choose a constant ι so that the average initial data stock is

the estimated average stock: (1/N)
∑

i ιA
DMλ1−φ2015,i = D̄0.
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Then we can express equation 15 as follows:

Dit = (1− δ)tιADMλ1−φ2015,i +
t∑

s=0

(1− δ)t−sADMλ1−φis . (16)

where ι is a function of D̄0. For each �rm we then cumulate up the data management �ows

to construct a stock of data.

The initial data stock that best explains the sequence of data management hiring is the D̄0

that minimizes the sum of squared errors or the right hand side of (11), for each �rm i.

Estimating production functions The key variables of interest are the two production

function exponents, α and γ from (1) and (2). There are four variables we need to estimate:

α, γ, the exponent φ on data management in the structured data production function (3), and

�nally, we need the initial average data stock D̄0. For three of our moment conditions, we use

the �rst order conditions for each of the three types of labor (6), (7) and (10), for the fourth,

we use the optimal data stock condition, (11).

When we estimate the machine learning labor �rst order condition, we use only �rms that

employ some machine learning workers and some data management workers. Requiring that the

�rm currently employs a type of worker does not imply they hired someone that month. Rather,

it means that some worker was hired at some time in the past. If we do not exclude these �rms,

our production exponent estimate would be heavily in�uenced by the many observations with

zero labor and abundant data, or vice-versa. Similarly, when we estimate the traditional labor

�rst order condition, we use only observations from �rms that have, at some point, hired a data

manager and a traditional analyst.

We also need to solve for the productivity parameters AAIt , AOTt and ADM . Given a set of

guessed parameters (α, γ, φ and D̄0), we solve for A
DM from equation 11 computed on cross-

sectional and time-series averages. We solve for AAIt , AOTt using the �rst order conditions 6 and

7 computed on cross-sectional averages. In other words, the A parameters reconcile the average

magnitudes of knowledge with average wages, while the production exponents are identi�ed o�

of the cross-�rm heterogeneity.

We then substitute the computed productivity parameters into the four conditions and

compute a vector of residual using the full time-series and cross-sectional variation. The residual

vector contains (33, 610× 4) observations.

Finally we use non-linear least squares to iterate over di�erent combinations of α, γ, φ

and D̄0. The algorithm converges when it �nds the combination of parameters that yields the

smallest sum of squared errors.

As a check on convergence, we also re-estimate the parameters using a grid search method.
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This is viable because many of our parameters, like the production exponents are bounded

between zero and one. While it takes longer to run, our grid search does identify the same

solution.

3 Results

Figure 6: Firms with more structured data hire more AI analysts (left panel) and more
traditional analysts (right panel). The left panel excludes Goldman Sachs simply because their
hiring is an order of magnitude larger than others. Excluding them makes the rest of the data
set more visible. Source: Burning Glass, 2015-2018.

The �rst question we ask of our data is whether a very basic premise is satis�ed: Do �rms

that hire more data management workers, and thus presumably have larger structured data

sets, also hire more analysis workers? Figure 6 shows that the answer is clearly yes. That tells

us that at least, our data makes sense.

Table 2: Main Results: Production Function Exponents on Data. The estimates are for
the exponents on data in the knowledge production functions in (1) and (2) and the production
of structured data in (3). Standard errors in parentheses.

δ = 1% δ = 2.5% δ = 10%
Data Management φ 0.172 0.190 0.144

(0.0025) (0.0019) (0.0022)
AI Analysis α 0.806 0.734 0.613

(0.0013) (0.0026) (0.0038)
Old Technology Analysis γ 0.458 0.560 0.567

(0.0024) (0.0017) (0.0006)
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The other parameter we estimate is the average initial data stock, which is

(0.015, 0.00021, 0.000555) for δ = (0.01, 0.025, 0.1). From here on, we present results for the

medium depreciation case of δ = 2.5% and report results for the other two cases in the

appendix.

Our main question is: What are the production function exponents from each technology?

Table 2 reports these main results. The exponents α and γ represent the diminishing returns to

data in the old and new technologies. The fact that α > γ means that the rate of diminishing

returns to data is less with the new AI technology. In other words, new data technology has

signi�cantly raised the productivity of analyzing larger data sets. That is not surprising. The

fact that the exponent rose by 31% of its previous value suggests that the improvement is not

trivial.

What features of our data most inform this estimate? The exponent (1 − α or 1 − φ)

governs the rate of diminishing returns to labor in AI (or OT) knowledge production. The rate

of diminishing returns relates the stock of existing labor to the value of an additional unit of

labor. That value of an additional marginal labor unit is the wage. Thus, a rate of diminishing

returns predicts the slope of the relationship between the stock of a given type of labor and

its wage compensation, conditional on an amount of data. Thus, it is the heterogeneity in the

�rms' cross-section of labor stocks, data stocks and wage rates that identi�es the production

parameters. Aggregate trends matter as well. However, much of the changes in aggregates are

absorbed by the time-varying productivity estimates, the At's.

How can we gauge the size of this change in knowledge production? Since this paper is

pursuing an analogy between knowledge production with big data technologies and the change

in physical production in the industrial revolution, a historical comparison seems most relevant.

Klein and Kosobud (1961) estimate that between 1900 and 1920, the labor share of income fell

from 0.909 to 0.787. Since the labor share of income corresponds to one minus the exponent

on capital in the production function, this estimate suggests that the capital exponent in the

production function rose by 0.122. Our rise of 0.174 is even higher than the industrial revolution

value. That simple comparisons suggests that the magnitude of the technological change in the

big data revolution is at least comparable to that of the industrial revolution. Even when

assuming a very high depreciation rate of data (10% monthly) we still obtain a sizable decrease

of 0.046, which represents a third and a half of the industrial revolution value.

The labor �rst order conditions (6) and (7) tell us that these exponents also govern the

distribution of income to factor owners. Our results imply that owners of data have gained

enormously from this technological change. While they used to be paid 56% of the value of the

knowledge output, they can now extract 73.4% of that value. In addition, since more knowledge

is being produced, this is 73.4% of a larger number. This �nding is consistent with the overall
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economic trend of a decrease in the labor share of income (Karabarbounis and Neiman, 2017).

Of course, owners of data stock had to pay data managers to build these data sets, just like

owners of capital had to pay for the investment in their capital stocks. But once they own these

data stocks, they get the income associated with their factor.

3.1 Data Stocks and Labor Stocks

One of the main concerns people have with new data technologies like AI is that they might be

labor replacing. Our results do not support that concern.

Figure 7: Data Stocks and Labor Stocks. The left panel displays the aggregate stock of analysis
labor, including both old and new technology skills. The right panel is the sum of all data stocks,
estimated for each �rm in our sample. Data depreciation is 2.5% per month (δ = 0.025).Source:
Burning Glass and authors' estimates, 2015-2018.

Figure 7 illustrates the aggregate stock of analysis labor and the aggregate stock of data.

Both grow rapidly, with data slightly outpacing the growth in analyst labor. Analysis labor

here includes both old tech and AI-skilled analysts.

What is most striking about these estimates is that data is not replacing labor. To the

contrary, this technological progress in data processing is accompanied by a hiring boom of

workers to work with the increasing stock of information. The growing labor force is not an

artifact of our parameter estimates. Growing labor is also a feature of the results with 1% or

10% data depreciation. It is also not dependent on model assumotions. The growing labor

result comes from simply counting up the new hires and adjusting for BLS-reported departures.

It is true that some of this increase comes from there being more �rms in our sample. But

the growth of �rms working with �nancial data is hardly a sign of low labor demand. To the

contrary, this technology seems to be increasing not decreasing labor demand. Although it is

true that AI jobs grew at a faster rate (from about 0 to 2000), they account for only about half
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of the increase. The other half comes from more hiring of old technology analysts who are also

made more productive by the abundance of structured data.

Data in the Cross-Section of Firms Figure 8 illustrates the evolution of the data stock of

�rms in each percentile of the cross-�rm distribution. One thing the results make clear is that

the distribution of data is quite skewed. A few �rms have enormous troves of data and many

have very little.

Figure 8: Estimated Stock of Data, Across Firms (δ = 2.5%), 2015-2018.

Notice in Figure 8 what is not happening. It is not increasing. What is going on here is

two-fold. First, the sample of �rms is growing over time. Many �rms are starting to hire data

workers, and thus entering our sample. As a result, the top decile of �rms has a lot more �rms

in it at the end and the �rm at the 90th percentile is much lower in the rankings. Second, much

of the data accumulation is happening at the top of the distribution.6 The top 1% of �rms is

not re�ected. The 90th percentile is not an average of the top 10% of �rms. It is the stock of

the single �rm at the 90th percentile. The take-away is that, while the aggregate stock of data

is growing rapidly, for many �rms, their stock of data is quite stable.

3.2 Estimating the Value of Data

One of the big questions in economics and �nance today is how to value �rms' data stocks. Four

of the �ve largest �rms in the U.S. economy, by market capitalization, have valuations that are

6Our data allows us to put names on the �rms with these enormous data stockpiles. We hope to be able to
report those in the future.
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well beyond the value that their physical assets might plausibly justify. These �rms have future

expected revenues based on their accumulated stocks of data. Our structural estimation o�ers

a straightforward way to compute this value.

Figure 9: Estimated Value of the Aggregate Stock of Data, in billions of current U.S. dollars,
2015-2018.

Once we have estimated production parameters and data stocks, we can put them back into

our value function, and approximate the value of each �rm's stock of data in each month. This

value is in nominal dollar units, since those are the units of the wages we use. Figure 9 plots

this aggregate value. This is our estimate of the value function in (4) for the aggregate stock of

data. These results are presented with an important caveat: The wage data we have is sparse.

Therefore, it is incredibly volatile. Since the value of data depends very much on the wages of

the workers who work with it, results might change once we repeat the estimation using better

wages data, which we are in the process of acquiring.

The units of Figure 9 are tens of billions of U.S. dollars. Over the time period, 2015-2018,

we see a rise in the value of this data stock from about $ 18 billion to about $ 24 billion, a 33%

increase in value.

Where does this increase in value come from? The �rst source is simply the accumulation

of data. The right panel of Figure 7 reveals that the aggregate stock of data rose just over

50%. More than half of the increase in the value of data comes from this rise in the size of the

structured data stock. A second contributor to the increase in the value of data is the increase in

�nancial analysts that work with data. The more workers there are, the higher is the marginal

value of data and the more valuable the stock of data is. The left panel of Figure 7 reveals that

the �nancial analyst labor force grew enormously, almost as much as the data stock did.
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Finally, �rms are becoming more productive at using data. More productivity also

contributes to the rise in the value of data. Figure 10 reports our estimates of the analysis

productivity parameters, AAI and AOT , for each month. While productivity with the old

technology show no trend over time, the productivity of working with the new (AI) data

technologies displays a clear jump in 2017. This productivity jump is additional evidence of

the transformative power of new big data technologies.

Figure 10: Productivity of Financial Data Analysis, reported for old tech and AI technologies,
2015-2018.

4 Conclusion

Modern discourse describes new big data technologies as the next industrial revolution, or

more speci�cally, as the industrialization of knowledge production. What does that mean?

Industrialization was the adoption of new production technologies that involved less human

input and less diminishing returns to capital. In other words, the key feature of industrialization

is that factor shares changed. Thus if big data technologies are the industrialization of knowledge

production, they should o�er less diminishing returns to data.

We explored this hypothesis by modeling the production of knowledge, in the same why

economists model industrial production. Instead of mixing capital and labor with a Cobb-

Douglas production function to produce goods, we described how labor and data can be mixed

with a Cobb-Douglas production function to produce knowledge. Then, just as 20th-century

economists estimated the exponents of the industrial production function using labor income

shares, we similarly measure the exponents of the knowledge production function using wages

and labor �ows in a particular type of knowledge production, �nancial analysis. We �nd a

substantial change in the production function, of magnitude larger than the change due to
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industrialization. Thus, describing this change as a new industrialization seems to be a fair

comparison.

Adoption of AI and big data technologies, as well as the accumulation of stocks of data vary

widely by �rm. The �rms with more data are more prone to hire more big-data or AI workers.

This supports the idea that this is a technology that is changing the factor mix of production.

This �nding has important implications for the future of the income distribution: It changes

the future labor share of income. In a model that did not have constant returns to scale, such

a change would alter the optimal size of a �rm: Firms with less diminishing returns to data

may well take on a larger optimal size. It also tells us that knowledge will be signi�cantly more

abundant going forward.

Two extensions of the model would be useful next steps. One would be to relax the

assumption of constant returns to scale in knowledge production. It is possible that doubling

data and doubling data workers more than increases the production of knowledge. It is also

possible that there is a form of knowledge crowd-out, where it gets harder and harder to

produce new knowledge (Bernard and Jones, 1996). We use constant returns because it

facilitates a comparison with industrialization, which typically used such production functions.

Constant returns also yields a clear mapping from labor shares to production function

exponents. In the absence of constant returns, there is considerable dispute about the best

way to determine market wages or factor shares. Getting caught up in that debate would

distract from the simple main message of this paper.

Another extension would be to consider market power. Owners of data extract rents

because data is not perfectly substitutable. Knowledge producing �rms also produce

di�erentiated products that allow them to pro�t. Market power does interact with equilibrium

wages. Correcting for it would complicate the mathematics of the model, but could also

sharpen the production function estimates.

Of course, this estimation was for workers doing one type of work in one sector. In other

sectors, big data might be more or less of a change to output. It may also be too early to tell

since machine learning is not widely adopted in most other sectors. Much work in this area

remains to be done to understand the magnitude and consequences of the technological changes

in data processing that we are currently experiencing.
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A Appendix: Identifying Investment Management Jobs

We identify Investment management jobs as those that require at least one skill belonging to

the following Burning Glass skill clusters: 'Asset Management Industry Knowledge', 'Electronic

Trading Systems', 'Investment Management', 'Financial Trading', 'Financial Trading Industry

Knowledge', 'Investment Services Industry Knowledge', 'Financial Advisement'.

This list of skill clusters was compiled by tabulating all skill clusters required by any of the

jobs in our sample and selecting those most related to investment management.

Since sometimes skills clusters are missing, we compile a list of all skills ever present in the

list of relevant skill clusters and also classify as 'investment management' those jobs that require

at least one of those underlying skills.

We �nally check the full list of skills required by the selected jobs and exclude those jobs

which require the following skills, as we believe these jobs are not likely to be actual

investment management jobs: 'Marketing Strategy', 'General Marketing', 'Urban Planning',

'Technical Support', 'Telemarketing', 'Business-to-Business (B2B) Sales', 'Marketing

Automation', 'Litigation', 'Retail Sales', 'Billing and Invoicing', 'General Administrative and

Clerical Tasks', 'Journalism', 'Claims Processing', 'Merchandising', 'Carpentry', 'Animation

and Game Design', 'Basic Customer Service', 'Cash Register Operation', 'Real Estate and

Rental', 'Marketing Software', 'Online Marketing', 'Accounts Payable and Receivable',

'Packaging and Labeling', 'Inventory Management', 'Advanced Customer Service', 'Payroll',

'Underwriting', 'Marketing Management', 'Supply Chain Planning'.

B Categorizing Jobs

Jobs are �rst categorized into 'data management' (DM) and 'data analysis' by looking at the

relative frequency of the 'data management' vs. 'data analysis' keywords listed below in the full

text of the underlying job postings. Jobs identi�ed as 'data analysis' are further categorized

(where possible) as AI or old technology (OT), by looking at the relative frequency of the AI

and OT keywords listed below - these are subsets of the 'data analysis' keywords.

All keywords lists are obtained by �rst tabulating all Burning Glass skills present in the

selected sample and identifying skills that best map to the types of jobs described by the model.

We then also inspected the text of selected job postings requiring most of the selected skills

in order to re�ne the keywords and phrases to best re�ect the format in which they are most

frequently present in the text.

Before computing relative frequencies both the keywords lists and the underlying text are

pre-processed and stemmed to their root using the Porter stemmer.
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Data Management keywords : 'Apache Hive', 'Information Retrieval', 'Data

Management Platform (DMP)', 'Data Collection', 'Data Warehousing', 'SQL Server', 'Data

Visualization', 'Database Management', 'Data Governance', 'Data Transformation',

'Extensible Markup Language (XML)', 'Data Validation', 'Data Architecture', 'Data

Mapping', 'Oracle PL/SQL', 'Database Design', 'Data Integration', 'Teradata', 'Database

Administration', 'BigTable', 'Data Security', 'Database Software', 'Data Integrity', 'File

Management', 'Splunk', 'Relational DataBase Management System', 'Teradata DBA', 'Data

Migration', 'Information Assurance', 'Enterprise Data Management', 'SSIS', 'Sybase',

'jQuery', 'Data Conversion', 'Data Acquisition', 'Master Data Management', 'Data Capture',

'Data Veri�cation', 'MongoDB', 'Data Warehouse Processing', 'SAP HANA', 'Data Loss

Prevention', 'Data Engineering', 'Database Schemas', 'Database Architecture', 'Data

Documentation', 'Data Operations', 'Oracle Big Data', 'Domo', 'Data Manipulation', 'Data

Management Platform', 'DMP', 'HyperText Markup Language', 'Data Access Object (DAO)',

'Structured Query Reporter', 'SQR', 'Data Dictionary System', 'Data Entry', 'Data Quality',

'Data Collection', 'Information Systems', 'Information Security', 'Change data capture', 'Data

Management', 'Data Governance', 'Data Encryption', 'Data Cleaning', 'Semi-Structured

Data', 'Data Evaluation', 'Data Privacy', 'Dimensional and Relational Modeling', 'Data Loss

Prevention', 'Data Operations', 'Relational Database Design', 'Database Programming',

'Information Systems Management', 'Database Tuning', 'Object Relational Mapping',

'Columnar Databases', 'Datastage', 'Data Taxonomy', 'Informatica Data Quality', 'Data

Munging', 'Data Archiving', 'Warehouse Operations', 'Solaris', 'Data Modeling', 'data feed

management', 'data discovery', 'exporting large datasets', 'exporting datasets', 'database

performance', 'disigning relational databases', 'implementing relational databases', 'designing

and implementing relational databases', 'database development', 'data production process',

'normalize large datasets', 'normalize datasets', 'create database', 'Develop database', 'data

onboarding', 'Data Sourcing', 'data purchase', 'data inventory', 'cloud Security', 'negotiating

data', 'data attorney', 'data and technology attorney', 'reliability engineering', 'reliability

engineer', 'data specialist', 'enable vast data analysis', 'enable data analysis', 'Data team',

'capturing data', 'processing data', 'Supporting data', error free data sets', 'error free

datasets', 'live streams of data', 'data accumulation', 'Kernel level development', 'large scale

systems', 'Hadoop', 'distributed computing', ' multi database web applications', 'connect

software packages to internal and external data', 'explore data possibilities', 'architect complex

systems', 'build scalable infrastructure for data analysis', 'build infrastructure for data

analysis', 'solutions for at scale data exploration', 'solutions for data exploration', 'information

technology security', 'security engineer', 'security architect', 'architect solutions to allow

modelers to process query and visualize higher dimensional data'
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Analysis keywords

• General Analysis: 'Regression Algorithms', 'Regression Analysis', 'Quantitative

Analysis', 'Clustering', 'Time Series Analysis', 'Economic Analysis', 'Model Building',

'Quantitative Research', 'pandas', 'numpy', 'Hedging Strategy', 'Quantitative Data

Analysis', 'Investment Analysis', 'Economic Models', 'Predictive Analytics', 'Market

Trend', 'Portfolio Optimization', 'Portfolio Rebalancing', 'Financial Derivatives Pricing',

'Active Alpha Generation', 'Financial Data Interpretation', 'Alteryx', 'Predictive

Models', 'Exploratory Analysis', 'Sensitivity Analysis', 'News Analysis', 'Asset

Allocation', 'Research Methodology', 'Mathematical Software', 'Portfolio Construction',

'Portfolio Analysis', 'Portfolio Analyst', 'Market Analysis', 'Data Techniques', 'Capital

Allocation', 'Financial Modeling', 'Algorithm Development', 'Securities Trading',

'Trading Strategy', 'Statistical Programming', 'Data Mining', 'Social Network Analysis',

'Dimensionality Reduction', 'Principal Components Analysis (PCA)', 'Statistical

Software', 'Portfolio Management', 'Numerical Analysis', 'Time Series Models', "Asset

Allocation Theory", 'Analytical Skills', 'Financial Analysis', 'Financial Modeling',

'Modern Portfolio Theory', 'MPT', 'Portfolio Valuation', 'strategic portfolio decisions'

• Old Technology: 'Linear Regression', 'Logistic Regression', 'Statistic', 'STATA', 'Emacs',

'Technical Analysis', 'Qualitative Analysis', 'Qualitative Portfolio Management', 'Data

Trending', 'Stochastic Optimization', 'Multivariate Testing', 'Bootstrapping', 'Time

Series Models', 'Factor Analysis', 'Durations analysis', 'Markov', 'HMM', 'Econometrics',

'Stochastic Processes', 'Calculus', 'Statsmodels', 'Linear Algebra', 'Mathematics',

'Maths', 'Monte Carlo Simulation', 'Generalized Linear Model', 'GLM', 'Linear

Programming', 'Bayesian', 'Analysis Of Variance', 'ANOVA', 'Behavioral Modeling',

'Black-Scholes', 'Behavior Analysis', 'Discounted Cash�ow', 'Numerical Analysis',

'Correlation Analysis', 'E-Views', 'Di�erential Equations', 'Algebra', 'Value at Risk',

'Asset Pricing Models', 'Statistician', 'Mathematician', 'Econometrician'

• AI: 'Arti�cial Intelligence', 'Machine Learning', 'Natural Language Processing', 'NLP',

'Speech Recognition', 'Gradient boosting', 'DBSCAN', 'Nearest Neighbor', 'Supervised

Learning', 'Unsupervised Learning', 'Deep Learning', 'Automatic Speech Recognition',

'Torch', 'scikit-learn', 'Conditional Random Field', 'TensorFlow', 'Tensor Flow',

'Platfora', 'Neural Network', 'CNN', 'RNN', 'Neural nets', 'Decision Trees', 'Random

Forest', 'Support Vector Machine', 'SVM', 'Reinforcement Learning', 'Torch', 'Lasso',

'Stochastic Gradient Descent', 'SGD', 'Ridge Regression', 'Elastic-Net', 'Text Mining',

'Classi�cation Algorithms', 'Image Processing', 'Natural Language Toolkit', 'NLTK',

'Pattern Recognition', 'Computer Vision', 'Long Short-Term Memory', 'LSTM',
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'K-Means', 'Geospatial Intelligence', 'Big Data Analytics', 'Latent Dirichlet Allocation',

'LDA', 'Backpropagation', 'Machine Translation', 'Ca�e Deep Learning Framework',

'Word2Vec', 'Genetic Algorithm', 'Evolutionary Algorithm', 'Data Science', 'Sentiment

Analysis / Opinion Mining', 'Maximum Entropy Classi�er', 'Neuroscience',

'Computational Linguistics', 'Semi-Supervised Learning', 'Data Scientist'

C Constructing the Labor In�ows Data

Job openings, �lling and separation data Our data comes from

https://www.bls.gov/news.release/jolts.tn.htm

Job Openings Rate: Job openings information is collected for the last business day of the

reference month. A job opening requires that: 1) a speci�c position exists and there is work

available for that position, 2) work could start within 30 days whether or not the employer found

a suitable candidate, and 3) the employer is actively recruiting from outside the establishment

to �ll the position. The job openings rate is computed by dividing the number of job openings

by the sum of employment and job openings and multiplying that quotient by 100.

Hiring Rate: The hires level is the total number of additions to the payroll occurring at any

time during the reference month, including both new and rehired employees, full-time and part-

time, permanent, short-term and seasonal employees, employees recalled to the location after a

layo� lasting more than 7 days, on-call or intermittent employees who returned to work after

having been formally separated, and transfers from other locations. The hires rate is computed

by dividing the number of hires by employment and multiplying that quotient by 100.

Separations Rate: The separations level is the total number of employment terminations S

occurring at any time during the reference month, and is reported by type of separation - quits,

layo�s and discharges, and other separations. The separations rate is computed by dividing the

number of separations by employment and multiplying that quotient by 100: s = S/E · 100.

Deriving the probability of �lling an opening. If nO is the total number of posted job openings,

nE is total employment and nH is the number of new hires in this sub-occupation and month,

then the BLS hiring rate is de�ned to be rh = nH/nE, while the job opening rate is ro =

nO/(nE + nO). What we need to adjust the openings data from our model, is the fraction of

openings that result in hires, h = nH/nO.

To solve for h, note that rearranging the de�nition of the opening rate yields ro = (1 −
ro)nO/nE. Dividing rh by this expression yields rh/ro = (nH/nE)/((1− ro)nO/nE) = (nH/nO) ·
1/(1− ro). Therefore, we can express the nH/nO rate we want as h = rh(1− ro)/ro.
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Time to Fill a Job Vacancy In our calculations, we have implicitly equated a job posting

with a one-month job vacancy. We do that because most of our job postings remain up and

un�lled for approximately one month. Below, we report the distribution of the average time that

job postings remain open in our data set. This data is for jobs that have the same occupations

and regions as our sample for the years 2015, 2016 and 2017. The average time to �ll is available

for 86% of all the occupation (SOC) - region (MSA) combinations in our sample. Below is the

distribution of the average time a Burning Glass job posting stayed online for all the SOC-MSA

combinations in our sample for 2015-2017.

Table 3: Time to Fill Posted Vacancies.

mean 35.6857
std 7.1003
min 14.0000
1% 21.0000
5% 24.0000
10% 27.0000
15% 28.0000
20% 30.0000
25% 31.0000
30% 32.0000
35% 33.0000
40% 34.0000
45% 35.0000
50% 35.0000
55% 36.0000
60% 37.0000
65% 38.0000
70% 39.0000
75% 40.0000
80% 41.0000
85% 43.0000
90% 44.4000
95% 48.0000
99% 54.0000
max 75.0000

If we weight each of these �ll times by the number of jobs present in our sample for each the

SOC-MSA combinations, we get an average �ll times of 38.12 days.
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D Model derivations

Firm i faces the following optimizing problem:

v(Dit) = max
λit,Lit,lit

Dα
itL

1−α
it +Dγ

itl
1−γ
it − wL,tLit − wl,tlit − wλ,tλit +

1

r
v(Di(t+1)) (17)

where Di(t+1) = (1− δ)Dit + λ1−φit . (18)

Here the state variable is structured data Dit, and the control variables are data management

labor λit, the machine learning analyst labor Lit and the old technology analysis labor lit.

Plugging (18) into (17), we have

v(Dit) = max
λit,Lit,lit

Dα
itL

1−α
it +Dγ

itl
1−γ
it − wL,tLit − wl,tlit − wλ,tλit +

1

r
v
(

(1− δ)Dit + λ1−φit

)
(19)

Taking partial derivative with respect to Lit, we have

(1− α)Dα
itL
−α
it − wL,t = 0 =⇒ (1− α)KAI

it

Lit
= wL,t. (20)

Taking partial derivative with respect to lit, we have

(1− γ)Dγ
itl
−γ
it − wl,t = 0 =⇒ (1− α)KOT

it

Lit
= wl,t. (21)

Taking partial derivative with respect to λit and rearranging, we have

1

r
v′(Di(t+1))(1− φ)λ−φit = wλ,t. (22)

We then total di�erentiate (19) to get

v′(Dit) =
αKAI

it

Dit

+
γKOT

it

Dit

+
1

r
v′(Di(t+1))(1− δ). (23)

If we further assume that the marginal value of data today and tomorrow are similar, then

v′(Dit) =
(αKAI

it + γKOT
it )

Dit

r

r − (1− δ)
. (24)
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Plugging it back to the �rst order condition (22) and combining it with the structured data

dynamics (18), we arrive at

(αKAI
it + γKOT

it )(1− φ)

r − (1− δ)
Di(t+1) − (1− δ)Dit

Dit

= wλλit. (25)

E Robustness

Figures 11 and 12 illustrate the evolution of the data stock of �rms in each percentile of the

cross-�rm distribution for 1% and 10% monthly rates of data depreciation.

Figure 11: Estimated Stock of Data Processing Workers Per Firm with 1% data depreciation.
Source: Burning Glass, 2015-2018.

Once we have estimated production parameters and data stocks, we can put them back into

our value function, and approximate the value of each �rm's stock of data in each month. This

value is in nominal dollar units, since those are the units of the wages we use. Figures 13 and 14

plot this aggregate value for data depreciation of 1% and 10% per month. This is our estimate

of the value function in (4) for the aggregate stock of data. The units of Figures 13 and 14 are

billions and tens of billions of U.S. dollars respectively. Over the time period, 2015-2018, we see

a rise in the value of this data stock.

Finally, �rms are becoming more productive at using data. More productivity also

contributes to the rise in the value of data. Figures 15 and 16 report our estimates of the

analysis productiity parameters, AAI and AOT , for each month, for data depreciation rates of

1% and 10% per month. While productivity with the old technology show no trend over time,

the productivity of working with the new (AI) data technologies displays a clear jump in 2017.
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Figure 12: Estimated Stock of Data Processing Workers Per Firm with 10% data depreciation.
Source: Burning Glass, 2015-2018.

Figure 13: Estimated Value of the Aggregate Stock of Data with 1% data depreciation, in
billions of current U.S. dollars, 2015-2018.
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Figure 14: Estimated Value of the Aggregate Stock of Data with 10% data depreciation, in
billions of current U.S. dollars, 2015-2018.

Figure 15: Productivity of Financial Data Analysis, reported for old tech and AI technologies
with 1% data depreciation, 2015-2018.
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Figure 16: Productivity of Financial Data Analysis, reported for old tech and AI technologies
with 10% data depreciation, 2015-2018.
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