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An optimal transport problem with backward

martingale constraints motivated by insider trading.
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Abstract

We study a single-period optimal transport problem on R
2 with

a covariance-type cost function c(x, y) = (x1 − y1)(x2 − y2) and a
backward martingale constraint. We show that a transport plan γ is
optimal if and only if there is a maximal monotone set G that sup-
ports the x-marginal of γ and such that c(x, y) = minz∈G c(z, y) for
every (x, y) ∈ supp γ. We obtain sharp regularity conditions for the
uniqueness of an optimal plan and for its representation in terms of a
map. Our study is motivated by a variant of the classical Kyle model
of insider trading from Rochet and Vila (1994).

Keywords: martingale optimal transport, Kyle equilibrium.

AMS Subject Classification (2010): 60G42, 91B24, 91B52.

1 Introduction

Let (Ω,F ,P) be a probability space and Y = (Y1, Y2) be a 2-dimensional
random variable with finite second moment: Y ∈ L2(Ω,F ,P). Our goal is
to

minimize E (c(X,Y )) over X ∈ X (Y ), (1)

for the cost function c(x, y) = (x1 − y1)(x2 − y2), x, y ∈ R
2, and the do-

main X (Y ) that consists of Y -measurable random variables X = (X1,X2)
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such that (X,Y ) is a martingale: E (Y |X) = X. A relaxation of the Y -
measurability constraint on X leads to the optimal transport problem:

minimize

∫
c(x, y)dγ over γ ∈ Γ(ν), (2)

where ν = Law(Y ) and Γ(ν) is the family of probability measures γ =
γ(dx, dy) on R

2 × R
2 that have ν as their y-marginal: γ(R2, dy) = ν(dy),

and make a martingale out of the canonical process: γ(y|x) = x. In view of
the martingale constraint, problem (2) admits an equivalent formulation:

maximize

∫
x1x2dγ over γ ∈ Γ(ν),

and thus, has a natural connection to the classical Fréchet-Hoeffding in-
equality and the Wasserstein 2-distance.

Problem (2) exhibits a backward structure in the sense that the ini-
tial marginal µ(dx) = γ(dx,R2) is part of the solution. In this regard, it
differs from the “standard” single-period martingale transport problem in
Beiglböck and Juillet (2016), Beiglböck et al. (2017), Henry-Labordère and Touzi
(2016), and Ghoussoub et al. (2019), among others, where both the initial
and terminal marginals are fixed. We point out that for our cost function
c(x, y) = (x1−y1)(x2−y2), the standard problem is trivial, as every martin-
gale measure γ = γ(dx, dy) with given marginals µ = µ(dx) and ν = ν(dy)
produces the same average cost:

∫
c(x, y)dγ =

∫
y1y2dν −

∫
x1x2dµ.

Our work is motivated by the classical Kyle (1985) equilibrium with
insider from financial economics. More precisely, we consider the model
from Rochet and Vila (1994), where the insider observes both the terminal
value V of the risky asset and the order flow U of the noise traders; see
Section 6 for details. Setting Y = (U, V ) we establish in Theorem 6.3 the
equivalence between the existence of equilibrium and that of an optimal map
X for (1) such that γ = Law (X,Y ) is an optimal plan for (2). Moreover,
the components of X = (R,S) are naturally identified as equilibrium’s total
order R and price S. To the best of our knowledge, the connection between
the Kyle equilibrium and a martingale optimal transport is new.

The main results of the paper are Theorems 2.2 and 4.6. In Theorem 2.2
we prove the existence of an optimal plan for (2) and characterize its support.
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We show that γ ∈ Γ(ν) is optimal if and only if there is a maximal monotone
set G in R

2 that supports the x-marginal of γ and such that

c(x, y) = φG(y) , inf
z∈G

c(z, y), (x, y) ∈ supp γ. (3)

Geometrically, the support of γ has the hyperbolic tangent property : it con-
nects y 6∈ G to those x ∈ G, that are touched by the hyperbola

H =
{
z ∈ R

2 : c(y, z) = φG(y)
}
=

{
z ∈ R

2 : z2 = y2 +
φG(y)

z1 − y1

}
;

see Figure 1. Surprisingly, as a consequence of (3), the optimal plan γ
possesses properties of solutions to classical unconstrained problems. By
Corollary 2.3, the x-marginal of γ is a Fréchet-Hoeffding coupling between
its first and second coordinates, while, by Corollary 2.5, γ is a classical
optimal coupling between its x- and y-marginals.

In Theorem 3.2 we show that the set G from (3) is a solution of the dual
problem:

maximize

∫
φGdν over G ∈ M, (4)

where M is the family of all maximal monotone sets in R
2, and that primal

and dual problems (2) and (4) have identical values. The dual problem
appears in (Rochet and Vila, 1994, Eq. (2.3)), where G stands for the graph
of a pricing rule. When ν = Law(Y ) has a Gaussian or, more generally,
elliptically contoured distribution, G becomes a line with strictly positive
slope; see Example 5.1.

In Theorem 4.1, we show that optimal map and plan problems (1) and (2)
have identical values, provided that ν is atomless. The result is similar to
that of Pratelli (2007) for the classical unconstrained case. The existence
of an optimal map X for (1) that induces an optimal plan γ = Law(X,Y )
for (2) is obtained in Theorem 4.5 under the condition that ν gives zero mass
to the graphs of strictly decreasing Lipschitz functions. This assumption
is weaker than the standard regularity condition of the Brenier theorem,
see (Ambrosio and Gigli, 2013, Theorem 1.26), that requires ν to assign
zero mass to rotations of the graphs of Lipschitz functions. Our second main
result, Theorem 4.6, establishes the uniqueness of solutions to (1) and (2)
if, in addition, the (one-dimensional) distribution functions of Y1 and Y2 are
continuous. Examples 5.2 and 5.3 show that the conditions of Theorems 4.1
and 4.5 are sharp.

Being applied to the model of Rochet and Vila (1994), Theorems 4.5
and 4.6 yield sufficient conditions for the existence and uniqueness of equi-
libria, which are stated in Theorem 6.7. These assumptions generalize those

3



in Rochet and Vila (1994), where Y = (U, V ) is required to have a continu-
ous compactly supported density in R

2. Rochet and Vila (1994) work with
dual problem (4) and rely on the properties of the space of closed graph
correspondences endowed with the Hausdorff topology.

Finally, Appendix A contains a density result for the Wasserstein spaces,
for which we could not find a ready reference, while Appendix B collects the
properties of the function φG from (3).

2 A backward martingale optimal transport prob-

lem

We denote by P2(R
d) the family of Borel probability measures with finite

second moments and by B(Rd) the Borel σ-algebra on R
d. For a Borel

probability measure µ on R
d, a µ-integrable m-dimensional Borel function

f = (f1, . . . , fm), and an n-dimensional Borel function g = (g1, . . . , gn), the
notation µ(f |g) stands for the m-dimensional vector of conditional expecta-
tions of fi given g under µ:

µ(f |g) = (µ(f1|g1, . . . , gn), . . . , µ(fm|g1, . . . , gn)).

Similarly,
∫
fdµ = (

∫
f1dµ, . . . ,

∫
fmdµ). We write a point in R

4 = R
2 ×R

2

as (x, y), where x = (x1, x2) and y = (y1, y2) belong to R
2, and think about

x and y as the initial and terminal values of the canonical two-dimensional
process.

Let ν = ν(dy) ∈ P2(R
2). We denote by Γ(ν) the family of probability

measures γ = γ(dx, dy) ∈ P2(R
2 × R

2) that have ν as their y-marginal and
make a martingale out of the canonical process:

Γ(ν) ,
{
γ ∈ P2(R

2 × R
2) : γ(R2, dy) = ν(dy) and γ(y|x) = x

}
.

Our goal is to

minimize

∫
c(x, y)dγ over γ ∈ Γ(ν) (5)

for the covariance-type cost function

c(x, y) = (x1 − y1)(x2 − y2), x, y ∈ R
2.

Problem (5) belongs to the class of optimal transport problems with back-
ward martingale constraints, in the sense that the initial x-marginal is part
of the solution. As we shall see in Section 6, such problem naturally arises
in the study of the Kyle-type equilibrium with insider.
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Remark 2.1. Problem (5) admits several equivalent formulations. For in-
stance, it has same solutions as the one, where we

maximize

∫
x1x2dγ over γ ∈ Γ(ν). (6)

The justification comes from the identity

∫
c(x, y)dγ =

∫
(x1 − y1)(x2 − y2)dγ =

∫
(y1y2 − x1x2)dγ

=

∫
y1y2dν −

∫
x1x2dγ,

where the second equality holds by the martingale property of γ ∈ Γ(ν).

For a Borel probability measure γ on R
d we denote by suppγ its support,

that is, the smallest closed set with full measure. We recall that a set G ⊂ R
2

is monotone if

c(r, s) = (r1 − s1)(r2 − s2) ≥ 0, r, s ∈ G.

A monotone set G is maximal if it is not a proper (or strict) subset of a
monotone set. We denote by M the family of maximal monotone sets in
R
2. It is well-known that G ∈ M if and only if G is the graph of the

subdifferential of a proper closed convex function on R.
For G ∈ M we define a function

φG(y) , inf
x∈G

c(x, y) = inf
x∈G

(x1 − y1)(x2 − y2), y ∈ R
2.

Such functions φG will play a key role in our study. Their properties are
collected in Appendix B. In particular, Lemma B.1 states that φG takes
values in [−∞, 0] and G =

{
x ∈ R

2 : φG(x) = 0
}
.

The main results of the paper are Theorems 2.2 and 4.6. Theorem 2.2
establishes the existence of an optimal plan γ for (5) and shows the structure
of its support. Theorem 4.6 contains a uniqueness result.

Theorem 2.2. Let ν ∈ P2(R
2). An optimal plan for (5) exists. For a

probability measure γ ∈ Γ(ν) the following conditions are equivalent:

(a) γ is an optimal plan for (5).

(b) If points (x0, y0) and (x1, y1) belong to suppγ, then

(1− t)c(x0, y0) + tc(x1, y1) ≤ t(1− t)c(y0, y1), t ∈ [0, 1]. (7)
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G

Figure 1: Hyperbolic non-crossing and tangent properties of the support of
optimal plan.

(c) There is G ∈ M such that

c(x, y) ≤ φG(y), (x, y) ∈ suppγ. (8)

Moreover, if G is a maximal monotone set satisfying (8) and µ is the x-
marginal of γ, then G contains suppµ and

c(x, y) = φG(y) = min
z∈G

c(z, y), (x, y) ∈ supp γ.

Figure 1 illustrates the properties of the support of an optimal plan γ
stated in Theorem 2.2. Let (x0, y0) and (x1, y1) belong to suppγ and be such
that x0 6= x1 and the points y0 and y1 lie, respectively, strictly above and
strictly below the maximal monotone set G from item (c). As Lemma 2.11
shows, item (b) means that the hyperbolas

H0 =
{
z ∈ R

2 : c(z, y0) = c(x0, y0), z1 > y01
}
,

H1 =
{
z ∈ R

2 : c(z, y1) = c(x1, y1), z1 < y11
}
,

do not cross. The geometric interpretation of item (c) is that these hyper-
bolas are tangent to G.

Before proceeding with the proof of Theorem 2.2, we establish rather
surprising connections between an optimal martingale plan for (5) and the
solutions of classical unconstrained optimal transport problems. If µ and ν
are Borel probability measures on R

d, then Π(µ, ν) denotes the family of all
couplings of µ and ν, that is, the family of Borel probability measures π on
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R
d × R

d =
{
(x, y) : x, y ∈ R

d
}

with x-marginal µ and y-marginal ν. For
µ, ν ∈ P2(R

d), the Wasserstein 2-metric is given by

W2(µ, ν) , inf
π∈Π(µ,ν)

√∫
|x− y|2 dπ. (9)

Corollary 2.3. Let ν ∈ P2(R
2), µ be the x-marginal of an optimal plan γ

for (5), and µi be the xi-marginal of µ, i = 1, 2. Then µ is a solution of the
optimal transport problem:

maximize

∫
x1x2dπ over π ∈ Π(µ1, µ2), (10)

or, equivalently,

W2(µ1, µ2) =

√∫
|x1 − x2|

2 dµ.

Proof. It is well-known that problems (9) and (10) have same solutions and
that an element of Π(µ1, µ2) is such a solution if and only if its support
belongs to a cyclically monotone set. By Theorem 2.2, there is a monotone
set G that contains the support of µ. Since every monotone set in R

2 is also
cyclically monotone, the result follows.

Remark 2.4. Let G be a maximal monotone set from Theorem 2.2 and P1

be its projection on x1-coordinate. If µ1 is atomless, then the increasing
function

f(x1) = inf {x2 ∈ R : (x1, x2) ∈ G} , x1 ∈ P1,

taking values in R ∪ {−∞}, defines an optimal map solution to (10):

µ(B) = µ1 {t ∈ R : (t, f(t)) ∈ B} , B ∈ B(R2).

The function f is a pricing rule in a version of the Kyle equilibrium with
insider studied in Section 6.

Corollary 2.5. Let ν ∈ P2(R
2), γ be an optimal plan for (5), and µ be the

x-marginal of γ. Then γ is a solution of the optimal transport problem:

minimize

∫
c(x, y)dπ over π ∈ Π(µ, ν). (11)
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Proof. By Theorem 2.2, there is G ∈ M such that

∫
φdν =

∫
c(x, y)dγ,

where φ = φG. Lemma B.1 shows that the c-conjugate function

φc(x) , inf
y∈R2

(c(x, y) − φ(y)), x ∈ R
2,

takes values in [−∞, 0] and G =
{
x ∈ R

2 : φc(x) = 0
}
. By Theorem 2.2,

suppµ ⊂ G and thus, ∫
φcdµ = 0.

Since φc(x) + φ(y) ≤ c(x, y), we deduce that

∫
c(x, y)dγ =

∫
φdν +

∫
φcdµ ≤

∫
c(x, y)dπ, π ∈ Π(µ, ν),

and the optimality of γ for (11) follows.

Remark 2.6. We point out that the assertions of the corollaries are not
sufficient for the optimality of γ ∈ Γ(ν). Indeed, let γ be the simplest
martingale measure, whose x-marginal µ is the Dirac measure concentrated
at the mean

∫
ydν ∈ R

2. In this case, the families Π(µ1, µ2) and Π(µ, ν)
are singletons and hence, µ and γ are trivial solutions to (10) and (11). An
elementary analysis of (8) shows that such γ is optimal for (5) if and only
if the support of ν belongs to a line with negative or infinite slope.

The rest of the section is devoted to the proof of Theorem 2.2, which
we divide into lemmas. We start with the existence part and recall some
basic facts on the Wasserstein distance W2; see (Ambrosio and Gigli, 2013,
Theorem 2.7 and Proposition 2.4). If (µn) and µ are in P2(R

d), then
W2(µn, µ) → 0 if and only if

∫
f(x)dµn →

∫
f(x)dµ for every continuous

function f = f(x) on R
d with quadratic growth:

|f(x)| ≤ K(1 + |x|2), x ∈ R
d,

where K = K(f) > 0 is a constant. A set A ⊂ P2(R
d) is pre-compact under

W2 if and only if

sup
µ∈A

∫

|x|≥K
|x|2 dµ→ 0, K → ∞.
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Lemma 2.7. The family Γ(ν) is a convex compact set in P2(R
2×R

2) under
the Wasserstein metric W2.

Proof. The martingale property γ(y|x) = x of γ ∈ Γ(ν) is equivalent to the
identity ∫

f(x)(y − x)dγ = 0

for every bounded and continuous function f = f(x) on R
2. The convexity

and the closedness of Γ(ν) under W2 readily follow. It only remains to be
shown that Γ(ν) is pre-compact under W2 or, equivalently, that

sup
γ∈Γ(ν)

∫
(|x|2 + |y|2)1{|x|+|y|≥K}dγ → 0, K → ∞.

For γ ∈ Γ(ν) we have that

1

2

∫
(|x|2 + |y|2)1{|x|+|y|≥2K}dγ ≤

∫ (
|x|2 1{|x|≥K} + |y|2 1{|y|≥K}

)
dγ

=

∫
|γ(y|x)|2 1{|x|≥K}dγ +

∫
|y|2 1{|y|≥K}dν

≤

∫
|y|2 1{|x|≥K}dγ +

∫
|y|2 1{|y|≥K}dν

and then that
∫

|y|2 1{|x|≥K}dγ ≤

∫
|y|2 1{|x|≥K>|y|2}dγ +

∫
|y|2 1{|y|2≥K}dν

≤ Kγ(|x| ≥ K) +

∫
|y|2 1{|y|≥

√
K}dν.

Finally, we obtain that

Kγ(|x| ≥ K) ≤
1

K

∫
|x|2 dγ =

1

K

∫
|γ(y|x)|2 dγ ≤

1

K

∫
|y|2 dν,

and the result follows.

Lemma 2.8. An optimal plan γ for (5) exists.

Proof. Let (γn) be a sequence in Γ(ν) such that

lim
n→∞

∫
c(x, y)dγn = inf

ζ∈Γ(ν)

∫
c(x, y)dζ.

9



By Lemma 2.7, Γ(ν) is compact under W2. Hence, there is a subsequence
(γnk

) ⊂ (γn) that converges to γ ∈ Γ(ν) under W2. Since the cost function
c = c(x, y) is continuous and has quadratic growth, we deduce that

∫
c(x, y)dγ = lim

k→∞

∫
c(x, y)dγnk

= inf
ζ∈Γ

∫
c(x, y)dζ.

Thus, γ is an optimal plan.

The implication (a) =⇒ (b) of Theorem 2.2 is proved in Lemma 2.10
and relies on the following first-order optimality condition.

Lemma 2.9. Let γ be an optimal plan for (5). Then

∫
c(x, y)dη ≤

∫
y1y2dη −

∫
y1dη

∫
y2dη, (12)

for every η ∈ P2(R
2 × R

2) such that supp η ⊂ supp γ.

Proof. We first establish (12) for a Borel probability measure η on R
2 ×R

2

that has a bounded density with respect to γ:

V (x, y) =
dη

dγ
∈ L∞(R2 × R

2).

We choose a non-atom q ∈ R
2 of µ(dx) = γ(dx,R2) and define the proba-

bility measure
ζ(dx, dy) = δq(dx)η(R

2, dy),

where δq is the Dirac measure concentrated at q. For sufficiently small ε > 0
the probability measure

γ̃ = γ + ε(ζ − η)

is well-defined and has the same y-marginal ν as γ. We define the conditional
expectation X̃(x) = γ̃(y|x) and observe that the law of (X̃, y) under γ̃
belongs to Γ(ν). The optimality of γ for (5) or, equivalently, for (6) implies
that ∫

X̃1X̃2dγ̃ ≤

∫
x1x2dγ. (13)

Standard computations based on Bayes formula show that

X̃(x) = 1{x 6=q}
x− εR(x)

1− εU(x)
+ 1{x=q}m,
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where U(x) = γ(V |x), R(x) = γ(V y|x), and m =
∫
ydη. Since |V | ≤ K for

some constant K > 0, we deduce that |U | ≤ K and |R| ≤ Kγ(|y| |x). It
follows that
∫
X̃1X̃2dγ̃ =

∫
(x1 − εR1)(x2 − εR2)

(1− εU)2
(1− εV )dγ + εm1m2

=

∫
(x1 − εR1)(x2 − εR2)

1− εU
dγ + εm1m2

=

∫
x1x2dγ + ε

(
m1m2 +

∫
(x1x2U − x1R2 − x2R1)dγ

)
+O(ε2).

In view of (13), the first-order term is negative. It can be written as

0 ≥ m1m2 +

∫
(x1x2U − x1R2 − x2R1)dγ

=

∫
y1dη

∫
y2dη +

∫
(x1x2 − x1y2 − x2y1)V dγ

=

∫
y1dη

∫
y2dη +

∫
(x1x2 − x1y2 − x2y1)dη

=

∫
y1dη

∫
y2dη +

∫
(c(x, y) − y1y2)dη

and the result follows.
In the general case, where η ∈ P2(R

2 × R
2) and supp η ⊂ supp γ, we

use the approximation result from Appendix A. By Theorem A.1, there are
Borel probability measures (ηn) on R

2 × R
2 that have bounded densities

with respect to γ and converge to η under W2. By what we have already
proved,

∫
c(x, y)dηn ≤

∫
y1y2dηn −

∫
y1dηn

∫
y2dηn, n ≥ 1.

Since the integrands are continuous functions with quadratic growth, we can
pass to the limit as n→ ∞ and obtain (12).

Lemma 2.10. Let γ be an optimal plan for (5). Then condition (b) of
Theorem 2.2 holds.

Proof. Lemma 2.9 yields inequality (12) for the probability measure

η(dx, dy) = (1− t)δ(x0,y0)(dx, dy) + tδ(x1,y1)(dx, dy),

where t ∈ [0, 1], (xi, yi) ∈ supp γ, and δ(xi,yi) is the Dirac measure concen-

trated at (xi, yi), i = 0, 1. Elementary computations show that for such η
(12) becomes (7).
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The equivalence of assertions (b) and (c) of Theorem 2.2 is a special case
of Lemma 2.12, whose proof relies on the following geometric interpretation
of (7). Figure 1 visualizes the arguments.

Lemma 2.11. Let xi and yi, i = 0, 1, be points in R
2 such that y01 < y11.

Then (7) holds if and only if for all ai < c(xi, yi), i = 0, 1, the graphs of the
hyperbolas

h0(s) = y02 +
a0

s− y01
, s > y01,

h1(s) = y12 +
a1

s− y11
, s < y11,

do not intersect:
h0(s) < h1(s), s ∈ (y01, y

1
1).

Proof. The result follows from the identity:

(h1(s)− h0(s))(s − y01)(y
1
1 − s)

= (y12 − y02)(s − y01)(y
1
1 − s)− a0(y

1
1 − s)− a1(s− y01)

= (y11 − y01)
(
t(1− t)c(y0, y1)− (1− t)a0 − ta1

)
,

where s ∈ (y01 , y
1
1) and t = (s− y01)/(y

1
1 − y01).

Lemma 2.12. For a set A ⊂ R
2×R

2 the following conditions are equivalent:

(i) If points (x0, y0) and (x1, y1) belong to A, then (7) holds.

(ii) There is G ∈ M such that

c(x, y) ≤ φG(y), (x, y) ∈ A.

Proof. We observe first that under either (i) or (ii),

c(x, y) ≤ 0, (x, y) ∈ A.

Indeed, under (i) this inequality follows from (7), while under (ii) it holds
because φG ≤ 0. We define the open sets

Bi = ∪(x,y)∈AB
i(x, y), i = 0, 1,

12



where, for (x, y) ∈ A,

B0(x, y) =
{
z ∈ R

2 : c(z, y) < c(x, y), z1 > y1
}

=

{
z ∈ R

2 : z2 < y2 +
c(x, y)

z1 − y1
, z1 > y1

}
,

B1(x, y) =
{
z ∈ R

2 : c(z, y) < c(x, y), z1 < y1
}

=

{
z ∈ R

2 : z2 > y2 +
c(x, y)

z1 − y1
, z1 < y1

}
.

The boundaries of Bi, i = 0, 1, are, respectively, upper and lower envelopes
of the graphs of increasing hyperbolas and thus, are maximal monotone sets.

By Lemma 2.11, item (i) holds if and only if the sets B0 and B1 are
disjoint:

B0 ∩B1 = ∅. (14)

On the other hand, item (ii) holds if and only if the closed set

C = ∩(x,y)∈A
{
z ∈ R

2 : c(x, y) ≤ c(z, y)
}

contains a maximal monotone set G. As

C = R
2 \

(
B0 ∪B1

)
,

every such set G separates B0 and B1. Hence, its existence yields (14)
and then (i). Conversely, if the sets B0 and B1 are disjoint, then their
boundaries belong to C. As the boundaries are maximal monotone sets, we
obtain (ii).

The remaining assertions of the theorem follow from Lemma 2.14. A key
role is played by inequality (15).

Lemma 2.13. Let γ ∈ Γ(ν) and µ be its x-marginal. For every G ∈ M we
have that

γ(φG(y)− c(x, y)|x) ≤ φG(x) ≤ 0, γ-a.s.,

and then that
∫
φG(y)dν −

∫
c(x, y)dγ ≤

∫
φG(x)dµ ≤ 0. (15)

Proof. We only need to prove the inequality with conditional expectations.
From Lemma B.1 we know that φG ≤ 0. As x = γ(y|x), we deduce that for
every r ∈ R

2:
γ(c(y, r) − c(x, y)|x) = c(x, r), γ-a.s.,

and taking inf over a dense countable set of r ∈ G obtain the result.
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The following lemma completes the proof of the theorem.

Lemma 2.14. Let γ ∈ Γ(ν), µ be its x-marginal, and G ∈ M be such that

∫
c(x, y)dγ ≤

∫
φG(y)dν. (16)

Then in (16) we actually have the equality, γ is an optimal plan for (5), the
set G contains suppµ, and

c(x, y) = φG(y) = min
r∈G

c(r, y), (x, y) ∈ supp γ. (17)

Proof. We shall write φ for φG. From (15) and (16) we deduce that γ is a
solution to (5), that in (16) we have an equality, and that

∫
φ(x)dµ = 0.

Lemma B.1 states that φ ≤ 0 and G =
{
x ∈ R

2 : φ(x) = 0
}
. It follows

that µ(G) = 1. Being a closed set, G contains suppµ. In particular, if
(x, y) ∈ supp γ, then x ∈ G. It follows that

c(x, y) ≥ inf
r∈G

c(r, y) = φ(y), (x, y) ∈ supp γ.

Accounting for (16), we deduce that

c(x, y) = φ(y), γ-a.s..

Hence, for every (x, y) ∈ suppγ we can find a sequence {(xn, yn)} ⊂ supp γ
that converges to (x, y) and such that c(xn, yn) = φ(yn), n ≥ 1. Being
a pointwise infinum of continuous functions, the function φ is upper semi-
continuous. It follows that

c(x, y) = lim
n→∞

c(xn, yn) = lim
n→∞

φ(yn) ≤ φ(y),

and we obtain (17).

3 Dual problem

In view of Theorem 2.2 and Lemma 2.13, a natural dual problem to (5) is
to

maximize

∫
φGdν over G ∈ M. (18)

14



Such problem appears in Rochet and Vila (1994) in connection to their study
of Kyle-type equilibrium with insider; see Section 6. They use a direct
method based on the properties of the space of closed graph correspondences
and assume that ν has a compactly supported density.

We recall that G =
{
x ∈ R

2 : φG(x) = 0
}
, G ∈ M, and thus the family

M of all maximal monotone sets in R
2 is in one-to-one correspondence with

the family of functions
Φ , {φG : G ∈ M} .

Hence, (18) is equivalent to the problem, where we

maximize

∫
φdν over φ ∈ Φ.

A technical inconvenience of the set Φ is the absence of convexity. It turns
out that the set of functions dominated by the elements of Φ is not only
convex, but also admits a self-contained description related to item (b) of
Theorem 2.2.

Lemma 3.1. Let φ : R
2 → [−∞, 0] be a Borel function. Then φ ≤ φG for

some G ∈ M if and only if

(1− t)φ(y0) + tφ(y1) ≤ t(1− t)c(y0, y1), y0, y1 ∈ R
2, t ∈ [0, 1]. (19)

The set of such functions φ is convex.

Proof. The result follows directly from Lemma 2.12, where we take

A =
{
(x, y) ∈ R

2 × R
2 : c(x, y) = φ(y)

}
.

Clearly, the family of functions φ satisfying (19) is convex.

Theorem 3.2. Let ν ∈ P2(R
2). We have that

min
γ∈Γ(ν)

∫
c(x, y)dγ = max

G∈M

∫
φGdν,

where the lower and upper bounds are attained at respective solutions to (5)
and (18). A probability measure γ ∈ Γ(ν) and a maximal monotone set G
are such solutions if and only if

c(x, y) = φG(y), (x, y) ∈ supp γ. (20)

15



In this case, G contains the support of the x-marginal of γ. Moreover, φG
and G are uniquely defined on supp ν, that is,

φG(y) = φG̃(y), y ∈ supp ν,

G ∩ supp ν = G̃ ∩ supp ν,

for any other solution G̃ to (18). In particular, φG and G are unique if
supp ν = R

2.

Proof. With an exception of the uniqueness part, all other assertions follow
directly from Theorem 2.2 and Lemmas 2.13 and 2.14.

Let γ be a solution to (5), G and G̃ be solutions to (18) and denote
φ = φG and φ̃ = φ

G̃
. From (20) we deduce that the functions φ and

φ̃ coincide on Py, the projection of suppγ on y-coordinates. Since every
y ∈ supp ν is the limit of a sequence (yn) ⊂ Py, Lemma B.3 yields that

φ(y) = lim
n→∞

φ(yn) = lim
n→∞

φ̃(yn) = φ̃(y).

We have proved the uniqueness of φG on supp ν. The uniqueness of G on
supp ν holds as G =

{
x ∈ R

2 : φG(x) = 0
}
.

4 Optimal maps

For simplicity of notations, we slightly modify the setup. We start with a
2-dimensional random variable Y = (Y1, Y2) having a finite second moment:
Y ∈ L2 = L2(Ω,F ,P). As usual, we identify random variables that differ
only on a set of measure zero. Our goal is to

minimize E (c(X,Y )) over X ∈ X (Y ) (21)

for the same cost function c(x, y) = (x1 − y1)(x2 − y2) and the domain

X (Y ) ,
{
X = (X1,X2) ∈ L2 : X is Y -measurable and E (Y |X) = X

}
.

We denote ν = Law(Y ) and observe that Law(X,Y ) ∈ Γ(ν) for every X ∈
X (Y ). Thus, optimal plan problem (5) may be viewed as a Kantorovich-type
relaxation of optimal map problem (21). In general,

min
γ∈Γ(ν)

∫
c(x, y)dγ ≤ inf

X∈X (Y )
E (c(X,Y )) , (22)
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and the inequality may be strict and an optimal map may not exist as
Examples 5.2 and 5.3 show.

The main results of this sections are Theorems 4.1, 4.5, and 4.6. The-
orem 4.1 yields the equality in (22) provided that ν = Law(Y ) is atomless.
Theorem 4.5 shows the existence of an optimal map if ν is D-regular in
the sense of Definition 4.4. Theorem 4.6 establishes the uniqueness of op-
timal plan and map if, in addition, every component Yi has a continuous
distribution function. The last two theorems play a key role in the study of
equilibrium in Section 6.

We shall use the notations from Appendix B related to the function φ =
φG, where G ∈ M. In particular, Dc = (Dc

1,D
c
2) stands for the differential

operator associated with the cost function c = c(x, y):

Dc
1φ(y) = y1 −

∂φ

∂y2
(y), Dc

2φ(y) = y2 −
∂φ

∂y1
(y), y ∈ dom∇φ,

where dom∇φ is the set of points where φ is differentiable. We denote by
EG = EG

1 ∪EG
2 the union of the vertical and horizontal line segments of G:

EG
i (t) = {x = (x1, x2) ∈ G : xi = t} , t ∈ R,

T G
i =

{
t ∈ R : EG

i (t) has more than one point
}
,

EG
i = ∪t∈T G

i
EG

i (t), i = 1, 2.

(23)

Clearly, the sets (T G
i ) are countable. Finally, we define

ArgG(y) = arg min
x∈G

c(x, y) = {x ∈ G : φG(y) = c(x, y)} ,

domArgG =
{
y ∈ R

2 : ArgG(y) 6= ∅
}
.

The following result is similar to that of Pratelli (2007) obtained for the
classical unconstrained optimal transport problem.

Theorem 4.1. Let Y = (Y1, Y2) ∈ L2 and suppose that ν = Law(Y ) is
atomless. Then plan and map problems (5) and (21) have identical values:

min
γ∈Γ(ν)

∫
c(x, y)dγ = inf

X∈X (Y )
E (c(X,Y )) .

The proof of the theorem relies on some lemmas.

Lemma 4.2. Let ν ∈ P2(R
2), γ ∈ Γ(ν) be an optimal plan for (5), and

G ∈ M be a maximizer for (18). If ν(G) > 0, then the probability measure

η(dx, dy) =
1

ν(G)
1{y∈G}γ(dx, dy)

has the martingale property: η(y|x) = x.
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Proof. We write φ for φG. We shall show that η(y1|x) = x1, that is, that
∫
f(x)(y1 − x1)dη =

1

ν(G)

∫
f(x)(y1 − x1)1{y∈G}dγ = 0, (24)

for every bounded Borel function f on R
2. The martingale property for the

second coordinate has a similar proof.
Let E2 = EG

2 = ∪t∈T2E2(t) be the union of the horizontal line segments of
G. If (x, y) ∈ suppγ, then Theorem 3.2 yields that x ∈ G and c(x, y) = φ(y).
If, in addition, y ∈ G \ E2, then c(x, y) = φ(y) = 0 and, subsequently,
x1 = y1. Hence, (24) holds if

∫
f(x)(y1 − x1)1{y∈E2(t)}dγ = 0, t ∈ T2. (25)

Hereafter, we fix t ∈ T2. Let (x, y) ∈ supp γ. If y ∈ E2(t), then c(x, y) =
φ(y) = 0 and thus, x ∈ E2(t). Conversely, if x ∈ riE2(t), the relative interior
of E2(t), then Lemma B.4 yields that y ∈ G and then, as c(x, y) = φ(y) = 0,
that y ∈ E2(t). Hence,

1{y∈E2(t)} = 1{x,y∈E2(t)}

= 1{x∈riE2(t)} + 1{x=a(t),y∈E2(t)} + 1{x=b(t),y∈E2(t)},

where a(t) and b(t) are the boundary points of E2(t) such that a1(t) < b1(t).
Accounting for the martingale property of γ, we obtain that

∫
f(x)(y1 − x1)1{x∈riE2(t)}dγ = 0.

Let y ∈ R
2 be such that φ(y) = c(b(t), y). If y 6∈ G, then Lemma B.4

yields that b1(t) > y1. If y ∈ G \ E2(t), then c(b(t), y) = φ(y) = 0 and thus,
b1(t) = y1. Finally, if y ∈ E2(t), then b1(t) ≥ y1. It follows that

∫
|x1 − y1| 1{x=b(t),y∈E2(t)}dγ ≤

∫
(x1 − y1)1{x=b(t)}dγ = 0,

where at the last step we used the martingale property of γ. The case of
the left boundary a(t) is similar. We have proved (25).

Lemma 4.3. Let G ∈ M and X = (X1,X2) and Y = (Y1, Y2) be ran-
dom variables such that X takes values in G, X1{Y ∈G} = Y 1{Y ∈G}, and
c(X,Y ) = φG(Y ). If the law of Y is atomless, then for every ǫ > 0 there is
a random variable Z = Z(ǫ) such that Law(Z) = Law(Y ), |Z − Y | ≤ ǫ, and
X is Z-measurable.
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Proof. We fix ǫ > 0 and denote φ = φG, Arg = ArgG, and

D = domArg \ (dom∇φ ∪G).

Theorems B.6 and B.12 show that D = ∪nDn, where Dn is either a point
or the graph of a strictly decreasing function. Of course, we can choose the
sets (Dn) so that

diamDn , sup
x,y∈Dn

|x− y| ≤ ǫ, n ≥ 1.

For every n ≥ 1 we shall construct a two-dimensional random variable Zn =
(Zn

1 , Z
n
2 ) and a Borel function fn : Dn → G such that

Law(Zn1{Y ∈Dn}) = Law(Y 1{Y ∈Dn}),

X1{Y ∈Dn} = fn(Zn)1{Y ∈Dn}.
(26)

Given the sequence of such pairs (Zn, fn), n ≥ 1, we define

Z = Y 1{Y ∈dom∇φ∪G} +
∑

n

Zn1{Y ∈Fn},

f(y) = y1{y∈G} +Dcφ(y)1{y∈dom∇φ\G} +
∑

n

fn(y)1{y∈Fn}.

where Fn = Dn \ ∪k<nDk. We have that Law(Z) = Law(Y ) = ν and
|Z − Y | ≤ ǫ. Moreover, in view of Theorem B.6, X = f(Z). Hence, (26) is
all we need to obtain.

Using the conditional probabilities with respect to events {Y ∈ Dn}, we
can reduce the general case to the situation where

Y ∈ D = {(t, h(t)) : t ∈ [t0, t1]} ,

for some strictly decreasing function h = h(t). Since ν is atomless, every
component Yi has a continuous distribution function ai(t) = P (Yi ≤ t), i =
1, 2. It follows that U = a1(Y1) has the uniform distribution on [0, 1] and
Y1 = a−1

1 (U), where a−1
1 is the pseudo-inverse function to a1:

a−1
1 (t) = inf {s ∈ [t0, t1] : a1(s) ≥ t} , t ∈ [0, 1].

In particular, Y = (Y1, h(Y1)) is U -measurable.
Lemma B.16 yields Borel functions gi : D → G, i = 1, 2, such that

either X = g1(Y ) or X = g2(Y ). As the functions

bi(t) = P (U ≤ t,X = gi(Y )) , t ∈ [0, 1], i = 1, 2,
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are continuous and increasing, the random variable

V = b1(U)1{X=g1(Y )} + (b1(1) + b2(U))1{X=g2(Y )}

has the uniform distribution on [0, 1]. Clearly, U and the indicators (1{X=gi(Y )})
are V -measurable. It follows that Y and X are also V -measurable. Setting

Z1 = a−1
1 (V ), Z2 = h(Z1),

we obtain that Z = (Z1, Z2) has the same law as Y , that V = a1(Z1), and
that X is Z-measurable.

Proof of Theorem 4.1. Let γ be an optimal plan for (5). By extending,
if necessary, the underlying probability space we can assume that γ =
Law(X,Y ) for some random variable X. As γ(y|x) = x, we have that
X = E (Y |X). Theorem 2.2 yields G ∈ M such that X ∈ G and c(X,Y ) =
φG(Y ).

We denote X̃ = X1{Y 6∈G} + Y 1{Y ∈G} and observe that γ̃ = Law(X̃, Y )
is another optimal plan. Indeed, by Lemma 4.2,

E
(
(Y −X)1{Y ∈G}

∣∣X
)
= 0

and therefore, for a bounded Borel function g = g(x) on R
2,

E

(
(Y − X̃)g(X̃)

)
= E

(
(Y −X)g(X)1{Y 6∈G}

)
= E ((Y −X)g(X)) = 0.

It follows that E

(
Y | X̃

)
= X̃ and thus, γ̃ ∈ Γ(ν). By the construction of

X̃ , we have that c(X,Y ) = c(X̃, Y ) and the optimality of γ̃ follows. This
fact allows us to assume from the start that X1{Y ∈G} = Y 1{Y ∈G}. Then, X
and Y satisfy the assumptions of Lemma 4.3.

Let ǫ > 0 and Z = Z(ǫ) be the random variable yielded by Lemma 4.3.
As X is Z-measurable, the conditional expectation V , E (Z|X) is also
Z-measurable. Thus, there is a Borel function f : R

2 → R
2 such that

V = f(Z). Since Y and Z have identical laws, U , f(Y ) = E (Y |U). As

|Vi −Xi| = |E (Zi − Yi|X)| ≤ E ( |Z − Y ||X) ≤ ǫ, i = 1, 2,

we deduce that

E (c(U, Y )) = E (c(V,Z)) = E (Z1Z2)− E (V1V2)

≤ E (Y1Y2)− E (X1X2) + ǫE (|X1|+ |V2|)

≤ E (c(X,Y )) + ǫE (|Y1|+ |Y2|) .

The result follows, because ǫ is any positive number.
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Let D be the family of graphs of strictly decreasing functions f = f(t)
defined on closed intervals of R such that both f and its inverse f−1 are
Lipschitz functions:

1

K
(t− s) ≤ f(s)− f(t) ≤ K(t− s), s < t,

for some constant K = K(f) > 0. To make statements shorter we allow for
a degenerate case where the domain of f is just a point. Thus, R2 ⊂ D.

Definition 4.4. A Borel probability measure µ on R
2 is D-regular if µ(D) =

0, D ∈ D.

The following theorem establishes the existence of optimal maps that
induce optimal plans.

Theorem 4.5. Let Y = (Y1, Y2) ∈ L2 and suppose that ν = Law(Y ) is
D-regular. Let G ∈ M be a maximizer for (18) and denote φ = φG and
E = EG. Then

X = Y 1{Y ∈E} +Dcφ(Y )1{Y 6∈E}

is an optimal map for (21), γ = Law(X,Y ) is an optimal plan for (5), and
the law of X is D-regular. Moreover, if X̃ is an optimal map and γ̃ is an
optimal plan, then

X1{Y 6∈E} = X̃1{Y 6∈E}, (27)

1{y 6∈E}γ(dx, dy) = 1{y 6∈E}γ̃(dx, dy). (28)

Proof. Let γ̃ ∈ Γ(ν) be an optimal plan. From Theorem 3.2 we deduce
that if (x, y) ∈ supp γ̃, then y ∈ domArg = domArgG. In particular,
ν(domArg) = 1. By Theorem B.12, the exception set domArg \ dom∇φ
belongs to the union of E = EG and of a countable family of sets from D.
Since ν = Law(Y ) is D-regular, we have that

ν(dom∇φ \ E) = ν(domArg \ E) = 1− ν(E). (29)

It follows that the random variable X = (X1,X2) is well-defined.
Theorem B.6 shows that if y ∈ dom∇φ \ E, then Dcφ(y) is the only

element of Arg(y). It follows that X ∈ G and φ(Y ) = c(X,Y ). In view
of Theorem 3.2, γ , Law(X,Y ) is an optimal plan if it has the martingale
property: γ(y|x) = x.

If (x, y) ∈ supp γ̃ and y ∈ dom∇φ \E, then Theorems 3.2 and B.6 yield
that x = Dcφ(y). Since γ and γ̃ have common y-marginal ν satisfying (29),
they coincide outside of R2 × E, that is, (28) holds.
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Let f = f(x) be a bounded Borel function on R
2. As (Y −X)1{Y ∈G} = 0,

we deduce that
∫

(y − x)f(x)dγ =

∫
(y − x)f(x)1{y 6∈G}dγ =

∫
(y − x)f(x)1{y 6∈G}dγ̃

= −

∫
(y − x)f(x)1{y∈G}dγ̃ = 0,

where the last two equalities follow from the martingale property of γ̃ and
Lemma 4.2, respectively. Thus, γ(y|x) = x. We have proved that γ is an
optimal plan and, in particular, that X is an optimal map. The unique-
ness property (27) for optimal maps follows directly from the corresponding
property (28) for optimal plans.

It only remains to be shown that µ , Law(X) is D-regular. As suppµ ⊂
G and the intersection of G with any set from D is a point, µ is D-regular if
and only if it is atomless. Assume to the contrary, that µ({r}) > 0 for some
r ∈ G and define the Borel probability measure

η(dy) =
1

µ({r})
γ({r} , dy).

Being D-regular, the measure ν is atomless. Hence,

µ({r})η(G) = γ({r} ×G) = P (X = r, Y ∈ G)

= P (Y = r) = ν({r}) = 0.

From the optimality of γ we deduce that

supp η ⊂ D(r) ,
{
y ∈ R

2 : φ(y) = c(r, y)
}

and then that η(D(r) \ G) = 1 > 0. The martingale property of γ yields
that

∫
ydη = r. The last two properties of η and the fact that φ < 0 outside

of G imply the existence of y0, y1 ∈ D(r) \G such that

y01 < r1 < y11, y12 < r2 < y02.

By Lemma B.5, D(r) belongs to the graph of a strictly decreasing linear
function and thus, belongs to D. As ν is D-regular, we arrive to a contra-
diction: µ({r}) = γ({r} ×D(r)) ≤ ν(D(r)) = 0.

We now state the main uniqueness result of the paper, which can be
viewed as an adaptation of the classical Brenier theorem to our setting. We
point out that our regularity assumption on ν is weaker than the standard
condition of the Brenier theorem, which requires ν to assign zero mass to
rotations of the graphs of Lipschitz functions.
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Theorem 4.6. Let Y = (Y1, Y2) ∈ L2 and suppose that ν = Law(Y ) is
D-regular and the (one-dimensional) laws of Y1 and Y2 are atomless. Let
G ∈ M be a maximizer for (18) and denote φ = φG. Then X = Dcφ(Y ) or,
in more detail,

X1 = Dc
1φ(Y ) = Y1 −

∂φ

∂y2
(Y ),

X2 = Dc
2φ(Y ) = Y2 −

∂φ

∂y1
(Y ),

is the unique optimal map for (21) and the law of (X,Y ) is the unique
optimal plan for (5). Moreover, the law of X is D-regular and the laws of
X1 and X2 are atomless.

Proof. We omit G from the notations (23) related to its vertical and hori-
zontal line segments. As the law of Yi is atomless and the set Ti is countable,
we deduce that

ν(E) = P (Y ∈ E) ≤
2∑

i=1

P (Y ∈ Ei) =

2∑

i=1

P (Yi ∈ Ti) = 0.

Except the continuity of the distribution functions for X1 and X2, all other
assertions follow directly from Theorem 4.5.

We shall prove that the law of X2 is atomless. If t 6∈ T2, then the set
E2(t) is a singleton: E2(t) = {z}. By Theorem 4.5, the law of X is D-regular
and, in particular, atomless. It follows that P (X2 = t) = P (X = z) = 0.

Let t ∈ T2. Lemma B.4 shows that if x ∈ riE2(t) and φ(y) = c(x, y),
then c(x, y) = 0 and subsequently, y ∈ E2(t). As X ∈ G, φ(Y ) = c(X,Y ),
and the law of X is atomless, we obtain that

P (X2 = t) = P (X ∈ E2(t)) = P (X ∈ riE2(t))

≤ P (Y ∈ E2(t)) = P (Y2 = t) = 0,

where the last step holds by the continuity of the law of Y2.

5 Examples

Example 5.1 (Linear optimal map). Let Y = (Y1, Y2) be a random variable
in L2 such that E (Yi) = 0, E

(
Y 2
i

)
= σ2i > 0, and

E (Yi|Z) =
E (YiZ)

E (Z2)
Z for all Z = a1Y1 + a2Y2, aj ∈ R.
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The latter property holds if the distribution of Y is Gaussian or, more gen-
erally, elliptically contoured.

We denote λ = σ2

σ1
> 0 and define G =

{
x ∈ R

2 : x2 = λx1
}
and

X1 =
1

2
Y1 +

1

2λ
Y2, X2 = λX1 =

λ

2
Y1 +

1

2
Y2.

Elementary computations show that E (Y |X) = X = (X1,X2) and

φG(Y ) = inf
x∈G

c(x, Y ) = inf
x1∈R

(Y1 − x1)(Y2 − λx1) = c(X,Y ).

Being the graph of an increasing linear function, G ∈ M. Setting ν =
Law(Y ), we deduce from Theorem 3.2 that G and γ = Law(X,Y ) are re-
spective solutions to (18) and (5). Moreover, as X is the only element of
G such that φG(Y ) = c(X,Y ), the characteristic property (20) yields that
γ is the unique optimal plan. In particular, X is the unique optimal map
for (21).

Example 5.2 (Optimal map may not yield optimal plan). Let Y be a
random variable taking values in y0 = (−1, 1), y1 = (0,−1), and y2 = (1, 0)
with probability 1

3 . Direct computations show that the points

zi =
1

3
y0 +

2

3
yi = (−1)i

(1
3
,
1

3

)
, i = 1, 2,

belong to the set G =
{
x ∈ R

2 : c(x, y0) = −8
9 , x1 > y01

}
, that

φG(y
i) = min

x∈G
c(yi, x) = c(yi, zi), i = 1, 2,

and that the probability measure

γ =

2∑

i=1

(
1

3
δ(zi,yi) +

1

6
δ(zi,y0)

)

belongs to Γ(ν), where ν = Law(Y ). Being the graph of an increasing
hyperbola, G ∈ M. By Theorem 2.2, γ is an optimal plan for (5). The value
of this problem is

∫
c(x, y)dγ =

2∑

i=1

(
1

3
c(zi, yi) +

1

6
c(zi, y0)

)
= −

4

9
.

On the other hand, let X ∈ X (Y ), that is, X is Y -measurable and
X = E (Y |X). We write xi = X(yi), i = 1, 2, 3. If all (xi) are distinct, then
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X = Y and c(X,Y ) = 0. If they are the same point, then X = E (Y ) = 0
and

E (c(X,Y )) =
1

3

2∑

i=0

c(0, yi) =
1

3

2∑

i=0

yi1y
i
2 = −

1

3
.

Finally, if precisely two of the elements of (xi) coincide: xk = xl 6= xm, where
(k, l,m) is a permutation of (0, 1, 2), then xk = xl = 1

2 (y
k + yl), xm = ym,

and

E (c(X,Y )) =
1

3

(
c(yk,

1

2
(yk + yl)) + c(yl,

1

2
(yk + yl))

)
=

1

6
c(yk, yl).

As c(y0, y1) = c(y0, y2) = −2 and c(y1, y2) = 1, the value function of the
optimal map problem (21) is given by −1

3 , which is strictly less than −4
9 ,

the value of the optimal plan problem (5).

Example 5.3 (Optimal map may not exist). Let U and V be independent
symmetric random variables in L2 with U having a continuous distribution
function and V taking values in {−1, 1}. We define a 2-dimensional random
variable

Y =
(U
3
(1 − 2V ), U(1 + 2V )

)
1{U<0} +

(
U(1 + 2V ),

U

3
(1− 2V )

)
1{U≥0}.

The components Y1 and Y2 have continuous distribution functions and, in
particular, ν = Law(Y ) is atomless. By Theorem 4.1, the plan and map
problems (5) and (21) have identical values. We shall prove that there is a
unique optimal plan, which is not induced by a (Y -measurable martingale)
map, and hence, shall show that an optimal map does not exist.

To this end, we define a 2-dimensional random variable

X = (
1

3
U,U)1{U<0} + (U,

1

3
U)1{U≥0}.

We observe that X takes values in the set

G = {x2 = 3x1, x1 < 0} ∪

{
x2 =

1

3
x1, x1 ≥ 0

}

consisting of two upward-slopping lines and thus, belonging to M. Direct
computations show that E (Y |X) = X and

c(X,Y ) = φG(Y ) , inf
x∈G

c(x, Y ).
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By Theorem 2.2, the law of (X,Y ) is an optimal plan and G is a dual
maximizer. We shall proceed to show that this is the only optimal plan and
that it is not induced by a map from X (Y ).

From the construction of Y we deduce the equality of the sets:

{V = −1} = {Y1 = −Y2} = {Y = (− |U | , |U |)} .

It follows that

E (X|Y ) 1{Y1=−Y2} = E (X| |U |) 1{Y1=−Y2} =
1

3
(|U | ,− |U |)1{Y1=−Y2}

= −
1

3
Y 1{Y1=−Y2} 6= X1{Y1=−Y2}.

Hence, X is not Y -measurable.
Let γ ∈ Γ(ν) be an optimal plan and µ be its x-marginal. By Theo-

rem 3.2, suppµ ⊂ G and

c(x, y) = φ(y), (x, y) ∈ suppγ.

The random variable Y takes values in F = F1 ∪ F2, where

F1 = {y2 = −y1, y1 < 0} ,

F2 =

{
y2 = −9y1 or y2 = −

1

9
y1, y1 ≥ 0

}
.

Elementary computations show that for x ∈ G the set of y ∈ F such that
c(x, y) = φG(y) consists of two points g(x) and f(x) such that

f(x) = (−x1, 9x1)1{x1<0} + (3x1,−
1

3
x1)1{x1≥0},

g(x) = (3x1,−3x1)1{x1<0} + (−x1, x1)1{x1≥0}.

For x 6= 0, x ∈ G, the three points {g(x), x, f(x)} are distinct and

x =
1

2
(g(x) + f(x)).

On the other hand, by the martingale property of γ and the fact that
ν({0}) = 0, we have that

x = γ(y|x) = f(x)γ(y = f(x)|x) + g(x)γ(y = g(x)|x), γ-a.s.,

and therefore, the conditional probabilities

γ(y = f(x)|x) = γ(y = g(x)|x) =
1

2
, γ-a.s..

26



For a bounded Borel function h = h(x, y) on R
2 × R

2 we then obtain that
∫
h(x, y)dγ =

∫
(h(x, g(x))1{y=g(x)} + h(x, f(x))1{y=f(x)})dγ

=
1

2

∫
(h(x, g(x)) + h(x, f(x)))dµ.

Hence, γ is unique if and only if µ is unique. We observe now that the map
f : G→ F2 is one-to-one. Thus, for a Borel set B ∈ R

2,

1

2
µ(B) =

∫
1{x∈B}1{y=f(x)}dγ =

∫
1{y∈f(B)}dγ = ν(f(B)),

and the uniqueness of µ follows.

6 Equilibrium with insider

We consider a single-period financial market. There are a bank account
with zero interest rate and a stock. The stock value at maturity t = 1 is
represented by a random variable V . The stock price S at initial time t = 0
is the result of the interaction between noise traders, an insider, and market
makers, where

1. The noise traders place an order for U stocks; U is a random variable.

2. The insider knows the value of both U and V and places an order
for Q stocks. The trading strategy Q is a (U, V )-measurable random
variable.

3. The market makers observe only the total order R = Q + U . They
quote the price S = f(R) according to a pricing rule f = f(r), which
is a Borel function f : R → R , R ∪ {−∞} ∪ {∞}.

Definition 6.1. An equilibrium (Q, f) is defined by a trading strategy Q
and a pricing rule f = f(r) such that

1. Given the total order R = Q + U , the price S = f(R) is efficient in
the sense that

S = E (V |R) .

2. Given the pricing rule f = f(r), the orderQmaximizes insider’s profit:

Q(V − f(Q+ U)) = max
q∈R

q(V − f(q + U)),

with the convention 0×∞ = 0.
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Remark 6.2. Up to minor technical differences, our notion of equilibrium
coincides with the one in Rochet and Vila (1994). It differs from the classical
equilibrium from Kyle (1985) in the ability of the insider to observe noise
traders’ order flow U . In the model of Kyle (1985), the insider maximizes
E (Q(V − f(Q+ U)|V ) over all V -measurable random variable Q.

The following result links the existence of equilibrium with the existence
of an optimal map for (21) that induces an optimal plan for (5).

Theorem 6.3. Let Y = (U, V ) ∈ L2 and denote ν = Law(Y ). An equilib-
rium (Q, f) exists if and only if there is an optimal map X for (21) such
that the law of (X,Y ) is an optimal plan for (5). Insider’s profit is unique
and given by

Q(V − f(Q+ U)) = −c(X,Y ) = −φG(U, V ),

where G ∈ M is a maximizer for (18).
Moreover, there are equilibrium (Q, f) and optimal map X = (R,S) such

that the pricing rule f : R → R is an increasing function, the total order
Q+ U = R, and the price f(Q+ U) = S.

We divide the proof of the theorem into lemmas.

Lemma 6.4. Let Y = (U, V ) ∈ L2, ν = Law(Y ), and X = (R,S) be an
optimal map for (21) such that S is R-measurable and the law of (X,Y ) is
an optimal plan for (5). Then there is an increasing function f : R → R

such that S = f(R) and (Q, f) is an equilibrium with Q = R− U .

Proof. By construction, S = E (V |R). Hence, we only need to verify the
profit maximization condition for the order Q = R−U . Theorem 2.2 yields
G ∈ M such that (R,S) ∈ G and

(U −R)(V − S) = min
(r,s)∈G

(U − r)(V − s) = φG(U, V ).

Let P1 be the projection of G on the first or r-coordinate. Clearly, P1 is an
interval. As S is R-measurable, there is an increasing function f = f(r) on
P1 such that S = f(R) and (r, f(r)) ∈ G for r ∈ P1. By construction,

(U −R)(V − S) = min
r∈P1

(U − r)(V − f(r)).

We now extend f to an increasing function from R to R by setting its values
to −∞ on the left and to +∞ on the right of P1. As φG(U, V ) > −∞,
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Lemma B.2 yields that U takes values in the closure of P1. Under the
standing convention: 0×∞ = 0, we obtain that

φG(U, V ) = (U −R)(V − S) = min
r∈R

(U − r)(V − f(r)).

Hence, (Q, f) is an equilibrium with Q = R− U .

Lemma 6.5. Let f : R → R be a Borel function and

φ(y) = inf
r∈R

(y1 − r)(y2 − f(r)) ∈ [−∞, 0], y ∈ R
2,

with the convention: 0×∞ = 0. Then there is G ∈ M such that φ ≤ φG.

Proof. Given y0, y1 ∈ R
2 and t ∈ [0, 1], we denote r = y01 + t(y11 − y01) and

deduce that

(1− t)φ(y0) + tφ(y1) ≤ (1− t)min((y01 − r)(y02 − f(r)), 0)

+ tmin((y11 − r)(y12 − f(r)), 0)

≤ t(1− t)(y11 − y01)(y
1
2 − y02),

where in the middle we used the negative parts to account for the possibility
that |f(r)| = ∞. The result now follows from Lemma 3.1.

Lemma 6.6. Let Y = (U, V ) ∈ L2, ν = Law(Y ), and (Q, f) be an equi-
librium with the total order R = Q + U and the price S = f(R). Then
X = (R̃, S) with R̃ = E (U |R) is an optimal map for (21), the law of
(X,Y ) is an optimal plan for (5), and

Q(f(Q+ U)− V ) = (R− U)(S − V ) = (R̃− U)(S − V ). (30)

Proof. From the definition of the equilibrium we obtain that

φ(U, V ) = Q(f(Q+ U)− V ) = (R− U)(S − V ),

where φ(u, v) = infr∈R(u− r)(v − f(r)), (u, v) ∈ R
2. We claim that

E (φ(U, V )) = E

(
(U − R̃)(V − S)

)
. (31)

As the integrability properties of R are unknown, we use a localization
argument. For n ≥ 1 from the martingale properties E (V |R) = S and
E (U |R) = R̃ we deduce that

E
(
φ(U, V )1{|R|≤n}

)
= E

(
(U −R)(V − S)1{|R|≤n}

)

= E
(
U(V − S)1{|R|≤n}

)

= E

(
(U − R̃)(V − S)1{|R|≤n}

)
.
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Taking the limit as n → ∞, we obtain (31) by the dominated convergence
theorem.

Lemma 6.5 yields G ∈ M such that φ ≤ φG. From Lemma 2.13 we
deduce that

E (φ(U, V )) ≤ E (φG(U, V )) =

∫
φGdν ≤

∫
c(x, y)dγ, γ ∈ Γ(ν).

In view of (31) and since γ̃ = Law(R̃, S, U, V ) belongs to Γ(ν), we obtain
that

E

(
(U − R̃)(V − S)

)
= E (φ(U, V )) = E (φG(U, V )) =

∫
c(x, y)dγ̃.

It follows that γ̃ is an optimal plan, (R̃, S) is an optimal map, and φ(U, V ) =
φG(U, V ). Finally, Theorem 3.2 yields that

φG(U, V ) = c(X,Y ) = (R̃− U)(S − V ),

and we obtain (30).

Proof of Theorem 6.3. If X = (R,S) is an optimal map, then X̃ = (R, S̃)
with S̃ = E (V |R) = E (S|R) is an optimal map as well and S̃ is R-
measurable. By Theorem 3.2,

c(X,Y ) = c(X̃, Y ) = φG(Y ) = φG(U, V )

for every maximizer G ∈ M to (18). In particular, c(X,Y ) is the same
random variable for every optimal map X. After these observations, the
proof follows from Lemmas 6.4 and 6.6.

We now state sufficient conditions for the existence and uniqueness of
equilibrium. Theorem 6.7 generalizes a result from Rochet and Vila (1994),
where the distribution of (U, V ) has a compact support and a continuous
density.

Theorem 6.7. Let Y = (U, V ) ∈ L2 and suppose that the law of Y is
D-regular. Then an equilibrium (Q, f) exists.

If, in addition, the laws of U and V are atomless, then insider’s order Q,
the total order R = Q + U , and the price S = f(R) are unique. Moreover,
X = (R,S) is the unique optimal map for (21) and γ = Law(X,Y ) is the
unique optimal plan for (5).

For the proof we need a lemma.
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Lemma 6.8. Let f : R → R be a Borel function and

φ(u, v) = inf
r∈R

(u− r)(v − f(r)) ∈ [−∞, 0], (u, v) ∈ R
2,

with the convention: 0 ×∞ = 0. There is a countable set A ⊂ R such that
if u, v /∈ A and φ(u, v) = 0, then

f−1(v) , {r ∈ R : f(r) = v} = {u} .

Proof. If φ(u, v) = infr∈R(u− r)(v − f(r)) = 0, then

g(u) , sup
r<u

f(r) ≤ v ≤ inf
r>u

f(r) , h(u).

Clearly,
inf
r≥u

f(r) ≤ f(u) ≤ sup
r≤u

f(r).

Thus, if the increasing functions g and h are continuous and strictly increas-
ing at u, then f−1(v) = {u}. To conclude the proof we just observe that the
set of arguments, where an increasing function is discontinuous, and the set
of values, where it is not strictly increasing, are countable.

Proof of Theorem 6.7. If ν = Law(Y ) is D-regular, then Theorem 4.5 yields
an optimal map X such that the law of (X,Y ) is an optimal plan. By
Theorem 6.3, there is an equilibrium (Q, f).

If the laws of U = Y1 and V = Y2 are atomless, then, by Theorem 4.6,
the optimal map X = (X1,X2) is unique. Lemma 6.6 shows that S = X2 is
the unique equilibrium price: S = f(R), where R = Q+ U .

Let φ be the function defined in Lemma 6.8 and G ∈ M be a maximizer
for (18). From the definition of the equilibrium and Theorem 6.3 we deduce
that

(U −R)(V − f(R)) = (U −R)(V − S) = φ(U, V ) = φG(U, V ).

If φ(U, V ) < 0, then the total order R is clearly unique. If φ(U, V ) = 0,
then R = U by Lemma 6.8 and the continuity of the distributions of U and
V . Thus, the total order R and insider’s order Q = R − U are unique. By
Theorem 6.3, the uniqueness of R and S implies that (R,S) is an optimal
map. Hence X1 = R.
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A Closure of probability measures with bounded

densities in Wp(R
d)

Let p ≥ 1. We denote by Wp(R
d) the space of Borel probability measures

on R
d with finite p-th moments equipped with the Wasserstein metric:

Wp(µ, ν) =

{
inf

γ∈Π(µ,ν)

∫
|x− y|pdγ

}1/p

,

where Π(µ, ν) is the family of Borel probability measures γ on R
d × R

d ={
(x, y) : x, y ∈ R

d
}

with x-marginal µ and y-marginal ν. We recall that
Wp(R

d) is a complete separable metric space and that µn → µ in Wp(R
d)

if and only if
∫
f(x)dµn →

∫
f(x)dµ for every continuous function f with

polynomial p-th growth:

|f(x)| ≤ K(1 + |x|p), x ∈ R
d.

Let ν ∈ Wp(R
d) and Q∞(ν) be the family of Borel probability measures

on R
d that have bounded densities with respect to ν:

Q∞(ν) ,

{
µ≪ ν :

dµ

dν
∈ L∞(Rd)

}
.

Clearly, Q∞(ν) ⊂ Wp(R
d). The following result, used in the proof of our

main Theorem 2.2, describes the closure of Q∞(ν) under Wp.

Theorem A.1. Let p ≥ 1 and ν ∈ Wp(R
d). Then the closure of Q∞(ν) in

Wp(R
d) has the form:

Sp(ν) =
{
µ ∈ Wp(R

d) : suppµ ⊂ supp ν
}
.

Proof. If µn → µ in Wp(R
d), then µn → µ weakly and thus,

µ(C) ≥ lim sup
n→∞

µn(C),

for every closed set C. In particular, if (µn) ⊂ Sp(ν), then

µ(supp ν) ≥ lim sup
n→∞

µn(supp ν) = 1

and hence, µ ∈ Sp(ν). It follows that Sp(ν) is closed in Wp(R
d). Clearly,

Sp(ν) is convex.
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If supp ν is compact, then restricted to Sp(ν) the convergence under Wp

is equivalent to the weak convergence and thus, the family of probability
measures in Sp(ν) with finite support is dense. Being a closed convex set,
Sp(ν) is then the closure of Q∞(ν) in Wp(R

d) if and only if every Dirac
measure δy = δy(dx) concentrated at y ∈ supp ν is the weak limit of a
sequence (µn) ⊂ Q∞(ν). The sequence (µn) with

dµn
dν

(x) =
1

ν(B1/n(y))
1{x∈B1/n(y)}, n ≥ 1,

where Br(y) is the ball of radius r > 0 centered at y, has the required
properties.

If supp ν is not compact, we approximate µ ∈ Sp(ν) by the sequence
(µn) given by

dµn
dµ

(x) =
1

µ(Bn(y))
1{x∈Bn(y)}, n ≥ 1,

for some y ∈ suppµ. We have that (µn) ⊂ Sp(ν) and µn → µ under Wp. By
what we have already proved, each µn belongs to the closure of Q∞(νn) in
Wp(R

d), where

dνn
dν

(x) =
1

ν(Bn(y))
1{x∈Bn(y)}, n ≥ 1.

As Q∞(νn) ⊂ Q∞(ν), n ≥ 1, we deduce that the sequence (µn) belongs to
the closure of Q∞(ν) in Wp(R

d). Same property holds for its Wp-limit µ
and the result follows.

B Properties of the function φG

Let G be a maximal monotone set: G ∈ M. In this appendix, we collect the
properties of the function

φ = φG(y) , inf
x∈G

c(x, y) = inf
x∈G

(x1 − y1)(x2 − y2), y ∈ R
2,

used throughout the paper.

Lemma B.1. The function φ = φG and its c-conjugate

φc(x) = inf
y∈R2

(c(x, y) − φ(y)), x ∈ R
2,

take values in [−∞, 0], φc ≤ φ, and

G =
{
y ∈ R

2 : φ(y) = 0
}
=

{
x ∈ R

2 : φc(x) = 0
}
.
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Proof. Let y ∈ G. As G ∈ M, we have that c(x, y) ≥ 0, x ∈ G, and thus,
φ(y) = 0. Conversely, if y 6∈ G, then the maximal monotone set G crosses
the interior of either the upper-left or the lower-right quadrants relative to
y. If z ∈ G belongs to such intersection, then

φ(y) ≤ c(z, y) = (z1 − y1)(z2 − y2) < 0.

We have shown that φ < 0 on R
2 \G and φ = 0 on G. It follows that

φc(x) ≤ inf
y∈G

(c(x, y) − φ(y)) = inf
y∈G

c(x, y) = φ(x) ≤ 0.

If φc(x) = 0, then φ(x) = 0 and thus, x ∈ G. Conversely, if x ∈ G, then
c(x, y) − φ(y) ≥ 0, y ∈ R

2, and therefore, φc(x) = 0.

We associate with φ the closed convex function

ψ(y) = ψG(y) = y1y2 − φ(y) = sup
x∈G

(x1y2 + x2y1 − x1x2), y ∈ R
2.

Clearly, φ and ψ have same domains:

domφ =
{
y ∈ R

2 : φ(y) > −∞
}
=

{
y ∈ R

2 : ψ(y) <∞
}
= domψ.

For a convex set A ⊂ R
d we denote by clA, intA, riA, and ∂ A = clA \ riA

its respective closure, interior, relative interior and relative boundary.

Lemma B.2. The domain of φ is convex. If G is either horizontal or
vertical line, then domφ = G. Otherwise, domφ has a non-empty interior:

int domφ = intP1 × intP2, (32)

where Pi is the projection of G on xi-coordinate, i = 1, 2. If y ∈ ∂ domφ ∩
domφ, then the relative interiors of the horizontal and vertical parts of
∂ domφ containing y also belong to domφ.

Proof. Being convex, the function ψ = ψG has convex domain. As domφ =
domψ, the domain of φ is also convex.

We observe that Pi is either a point or an interval. If P1 = {a1}, then
G is a vertical line: G =

{
x ∈ R

2 : x1 = a1
}
. For y 6∈ G we have that

|y1 − a1| > 0 and

φ(y) = inf
x2∈R

(y1 − a1)(y2 − x2) = −∞.
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Thus, domφ = G. The case where P2 is a point and thus, G is a horizontal
line is identical.

We assume now that intPi = (ai, bi), where −∞ ≤ ai < bi ≤ ∞. If
y = (y1, y2) ∈ (a1, b1) × (a2, b2), then the set C , {x ∈ G : c(x, y) ≤ 0} is
bounded and therefore,

φ(y) = inf
x∈G

c(x, y) = inf
x∈C

c(x, y) > −∞.

Conversely, suppose that y does not belong to the closure of P1 × P2, say
y1 < a1; other cases are covered similarly. Then a2 = −∞ and hence,

φ(y) = inf
x∈G

c(x, y) ≤ (a1 − y1)(a2 − y2) = −∞.

We have proved (32).
For the last assertion of the lemma, we assume that a1 > −∞ and take

y = (a1, y2) and z = (a1, z2) with z2 < b2. Given that φ(y) > −∞, we have
to show that φ(z) > −∞. Indeed, otherwise there is a sequence (xn) ⊂ G
such that

lim
n→∞

(a1 − xn1 )(z2 − xn2 ) = −∞.

Since z2 < b2, the sequence (xn1 ) is bounded and xn2 → a2 = −∞. It follows
that

φ(y) ≤ lim sup
n→∞

(a1 − xn1 )(y2 − z2) + lim
n→∞

(a1 − xn1 )(z2 − xn2 ) = −∞,

and we obtain a contradiction.

The closed convex function ψ = ψG is lower semi-continuous on R
2 and

is continuous on the interior of its domain. The following result shows that
φ and ψ are continuous relative to their full domains.

Lemma B.3. If (yn) ⊂ domψ = domφ and yn → y, then ψ(yn) → ψ(y)
and φ(yn) → φ(y).

Proof. It is sufficient to consider the case of the function ψ and take y ∈
∂ domψ. If ψ(y) = ∞, then the result holds by the lower semi-continuity:

lim inf
n→∞

ψ(yn) ≥ ψ(y) = ∞.

Thus, we assume that ψ(y) <∞ or, equivalently, that y ∈ ∂ domψ∩domψ.
By Lemma B.2, the relative interiors of the horizontal and vertical parts of
∂ domψ containing y belong to domψ. Hence, there is a closed triangle in
domψ that contains (yn)n≥n0

, for sufficiently large n0. Being convex, the
function ψ is continuous on this triangle and the result follows.
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We define a multi-valued function

ArgG(y) , arg min
x∈G

c(x, y) = {x ∈ G : φ(y) = c(x, y)} , y ∈ R
2,

taking values in the closed (possibly empty) subsets of G, and denote

domArgG ,
{
y ∈ R

2 : ArgG(y) 6= ∅
}
.

Let EG
i = ∪t∈T G

i
EG

i (t), i = 1, 2, be the union of vertical and horizontal line

segments of G; see (23). As the set G is fixed, we write simply

Arg = ArgG, Ei = EG
i , Ei(t) = EG

i (t), Ti = T G
i .

The following lemma shows that for y ∈ domArg \ G the set Arg(y) can
intersect Ei(t) only at ∂ Ei(t). We denote 〈x, y〉 ,

∑2
i=1 xiyi, the scalar

product of x, y ∈ R
2.

Lemma B.4. Let i ∈ {1, 2} and t ∈ Ti. If y ∈ domArg \ G and x ∈
Ei(t) ∩Arg(y), then x belongs to the boundary of Ei(t) and

〈z − x, y − x〉 > 0, z ∈ riEi(t).

Proof. Without loss of generality we can assume that i = 2 and that y stays
above G. Then the increasing hyperbola

H =
{
z ∈ R

2 : c(z, y) = φ(y), z1 > y1
}

contains x and lays below G, which is only possible if x is the right boundary
of the horizontal line segment E2(t). In this case,

〈z − x, y − x〉 = (z1 − x1)(y1 − x1) > 0, z ∈ riE2(t),

and the result follows.

For x, y ∈ R
2 we denote by L(x, y) the line segment connecting x and y:

L(x, y) , {tx+ (1− t)y : t ∈ [0, 1]} .

Lemma B.5. Let y0 and y1 belong to domArg\G and stay above and below
G, respectively. If x ∈ Arg(y0)∩Arg(y1), then x belongs to the line segment
L(y0, y1) connecting y0 and y1.
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Proof. The conditions of the lemma imply that the increasing hyperbolas

H0 =
{
z ∈ R

2 : c(y0, z) = φ(y0), z1 > y01
}
,

H1 =
{
z ∈ R

2 : c(y1, z) = φ(y1), z1 < y11
}
,

contain x and stay below and above G, respectively. Hence, they have
identical tangent lines at x. Elementary computations show that the slope
of the tangent line is given by

x2 − y02
y01 − x1

=
x2 − y12
y11 − x1

and the result follows.

For y ∈ int domφ the derivative ∇φ(y) is defined in the classical sense.
For y ∈ ∂ domφ the derivative ∇φ(y) exists if it is the limit: ∇φ(yn) →
∇φ(y), for every sequence (yn) ⊂ int domφ ∩ dom∇φ that converges to y.
We write

dom∇φ , {y ∈ domφ : ∇φ(y) exists} .

By Dc , (Dc
1,D

c
2) we denote the differential operator associated with the

cost function c = c(x, y):

Dc
1φ(y) , y1 −

∂φ

∂y2
(y), Dc

2φ(y) , y2 −
∂φ

∂y1
(y).

Finally, let E = EG = EG
1 ∪EG

2 be the union of the vertical and horizontal
line segments of G and denote

d̂omArg ,
{
y ∈ R

2 : Arg(y) is a singleton
}
.

We observe that
E = G \ d̂omArg. (33)

Theorem B.6. We have that

dom∇φ \ d̂omArg ⊂ ∂ domφ ∩G = ∂ domφ ∩ E. (34)

Conversely, the set difference d̂omArg\dom∇φ has at most two points and
these points belong to different linear parts of ∂ domφ. If y ∈ dom∇φ ∩
d̂omArg, then Dcφ(y) is the only element of Arg(y) and

φ(y) = c(Dcφ(y), y) =
∂φ

∂x1
(y)

∂φ

∂x2
(y). (35)
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We divide the proof of the theorem into lemmas. We write x ≤ y if
xi ≤ yi, i = 1, 2. If x, y ∈ G and x ≤ y, then G(x, y) denotes the segment of
G bounded by x and y:

G(x, y) , {z ∈ G : x ≤ z ≤ y} .

Lemma B.7. Let y ∈ int domφ. Then y ∈ dom∇φ if and only if y ∈
d̂omArg. In this case, Dcφ(y) is the only element of Arg(y).

Proof. From the structure of int domφ in Lemma B.2 we deduce the exis-
tence of x0, x1 ∈ G such that x0 ≤ x1, y ∈ intR(x0, x1), and R(x0, x1) ⊂
int domφ, where R(x0, x1) is the rectangle with the diagonal L(x0, x1). Ev-
ery x ∈ G such that c(x, y) ≤ 0 belongs to G(x0, x1) = R(x0, x1) ∩ G.
Hence,

Arg(y) = arg min
z∈G(x0,x1)

c(z, y) = arg max
z∈G(x0,x1)

(y1z2 + y2z1 − z1z2).

As G(x0, x1) is compact, Arg(y) is non-empty. If x ∈ Arg(y), then

ψ(u) − ψ(y) = sup
z∈G

(u1z2 + u2z1 − z1z2)− (y1x2 + y2x1 − x1x2)

≥ x2(u1 − y1) + x1(u2 − y2), u ∈ R
2.

It follows that (x2, x1) belongs to ∂ψ(y), the subdifferential of ψ = ψG at y.
Differentiability of φ (equivalently, of ψ) at y then implies that Arg(y) is a
singleton and

x1 =
∂ψ

∂y2
(y) = y1 −

∂φ

∂y2
(y) = Dc

1φ(y), x2 = Dc
2φ(y).

Conversely, let x be the only element of Arg(y) and x̃ = (x̃1, x̃2) ∈ R
2

be such that (x̃2, x̃1) ∈ ∂ψ(y). We have to show that x = x̃. We take a unit
vector e = (e1, e2) in R

2 and define a sequence (yn) in R
2 such that

yn1 = y1 +
1

n
e2, y

n
2 = y2 +

1

n
e1, n ≥ 1.

Let n0 be an index such that yn ∈ intR(x0, x1), n ≥ n0. By the first part
of the proof, for n ≥ n0 the set Arg(yn) is non-empty and belongs to the
compact G(x0, x1). Moreover, if xn ∈ Arg(yn) then (xn2 , x

n
1 ) ∈ ∂ψ(yn). It

follows that

xn2 (y
n
1 − y1) + xn1 (y

n
2 − y2) ≥ ψ(yn)− ψ(y)

≥ x̃2(y
n
1 − y1) + x̃1(y

n
2 − y2),
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and then that 〈xn, e〉 ≥ 〈x̃, e〉. As x is the only element of Arg(y) and

ψ(yn) = yn1x
n
2 + yn2x

n
1 − xn1x

n
2 → ψ(y) = y1x2 + y2x1 − x1x2,

every convergent subsequence of (xn) goes to x and then xn → x. Hence,
〈x, e〉 ≥ 〈x̃, e〉 and, as e is an arbitrary unit vector in R

2, we obtain that
x = x̃.

Lemma B.8. Let y ∈ domArg \G and x ∈ Arg(y). Then

riL(x, y) = {ty + (1− t)x : t ∈ (0, 1)} ⊂ dom∇φ

and Dcφ(z) = x, z ∈ riL(x, y). The slope of the line segment L(x, y) is
negative and has the form:

y2 − x2
y1 − x1

=
z2 − x2
z1 − x1

=

(
∂φ
∂y1

(z)
)2

φ(z)
=

φ(z)
(

∂φ
∂y2

(z)
)2 , z ∈ riL(x, y).

Proof. We fix t ∈ (0, 1) and denote y(t) = ty+(1−t)x. From the description
of int domφ in Lemma B.2 we deduce that y(t) ∈ int domφ. Without loss
in generality we can assume that y1 < x1. Then the hyperbola

H =
{
z ∈ R

2 : c(z, y) = φ(y), z1 > y1
}

contains x and stays below G, while the hyperbola

H(t) =
{
z ∈ R

2 : c(z, y(t)) = c(x, y(t)), z1 > y1(t)
}

contains x and stays below H. It follows that x is the only element of
Arg(y(t)). Lemma B.7 yields that Dcφ(y(t)) = x. The last part of the
lemma follows directly from the definition ofDcφ and the fact that φ(y(t)) =
c(x, y(t)) = c(Dcφ(y(t)), y(t)).

The following corollary of Lemma B.8 will also be used in the proof of
Theorem B.12.

Lemma B.9. Let y0 and y1 be distinct points in domArg \ G and xi ∈
Arg(yi), i = 1, 2. Then either x0 = x1 or the line segments L(x0, y0) and
L(x1, y1) do not intersect.

Proof. If L(x0, y0) and L(x1, y1) have common interior point z, then Lemma
B.8 yields that x0 = Dcφ(z) = x1.

39



Lemma B.10. Let y ∈ dom∇φ \ G. Then Dcφ(y) is the only element of
Arg(y).

Proof. In view of Lemma B.7 we can further assume that y ∈ ∂ domφ.
Let (yn) be a sequence in int domφ ∩ dom∇φ that converges to y. By
Lemma B.7, Dcφ(yn) is the only element of Arg(yn). From the construction
of ∇φ on ∂ domφ and Lemma B.3 we deduce that

Dcφ(y) = lim
n→∞

Dcφ(yn) ∈ G,

φ(y) = lim
n→∞

φ(yn) = lim
n→∞

c(Dcφ(yn), yn) = c(Dcφ(y), y).

Hence, Dcφ(y) ∈ Arg(y). On the other hand, if x ∈ Arg(y), then Lemma B.8
allows us to choose the sequence (yn) so that Dcφ(yn) = x. Hence, x =
Dcφ(y).

Lemma B.11. The set difference d̂omArg\dom∇φ has at most two points
and these points belong to different linear parts of ∂ domφ.

Proof. From Lemma B.2 we deduce that int domφ = (a1, b1)×(a2, b2), where
−∞ ≤ ai < bi ≤ ∞ and (ai, bi) is the interior of the projection of G on the
xi-coordinate. Without loss of generality we can assume that a1 > −∞.
Let y0 and y1 be such that y01 = y11 = a1, y

0
2 < y12 < b2 and y0 ∈ domArg,

y1 ∈ d̂omArg. We are going to show that y1 ∈ dom∇φ. By doing so, we
shall prove that the interior of each linear part of ∂ domφ has at most one
element of d̂omArg/dom∇φ.

Let (zn) be a sequence in int domφ∩dom∇φ that converges to y1. Then
supn z

n
2 < b2 and there is w ∈ G such that supn z

n
2 ≤ w2 < b2. In view of

Lemma B.7, un = Dcφ(zn) is the only element of Arg(zn). If x0 ∈ Arg(y0),
then y1 stays strictly above the line segment L(x0, y0) and, as zn → y1, we
can assume that same property holds for (zn). By Lemmas B.8 and B.10, the
line segment L(zn, un) has negative slope and can intersect L(y0, x0) only
at x0. It follows that un belongs to the compact set G(x0, w). Continuity of
φ = φG from Lemma B.3 yields that any convergent subsequence of (un) goes
to the unique x1 ∈ domArg(y1). Hence, y1 ∈ dom∇φ and x1 = Dcφ(y1),
by the definition of ∇φ on ∂ domφ.

Similar arguments show that if the “corner” point ŷ = (a1, b2) ∈ d̂omArg
and there are z0, z1 ∈ domArg that belong to the interiors of different linear
parts of ∂ domφ, then ŷ ∈ dom∇φ.

Proof of Theorem B.6. From Lemmas B.7 and B.10 we deduce that

dom∇φ \ d̂omArg ⊂ ∂ domφ ∩G.
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Lemma B.2 shows that the boundary of domφ is contained in the union
of two lines and that each of these lines is either vertical or horizontal. It
follows that

∂ domφ ∩G = ∂ domφ ∩E

and we obtain (34). Lemma B.11 states the structure of d̂omArg/dom∇φ.

Let y ∈ dom∇φ ∩ d̂omArg. Accounting for (33) we deduce that

y 6∈ ∂ domφ ∩ E = ∂ domφ ∩G.

Lemmas B.7 and B.10 now yield that Dcφ(y) is the only element of Arg(y).
Finally, identity (35) holds by the definition of Dcφ.

We recall that D denotes the family of graphs of strictly decreasing
functions h = h(t) defined on closed intervals of R such that h and its
inverse h−1 are Lipschitz functions. We allow for a degenerate case where
the domain of h is just a point. Thus, R2 ⊂ D.

Theorem B.12. The exception set

domArg \
(
dom∇φ ∩ d̂omArg

)
= D ∪ E, (36)

where D is a countable union of sets in D and E = EG is the union of
horizontal and vertical line segments of G.

We divide the proof into lemmas. For y ∈ domArg\G and the points r ≤
s in Arg(y), we denote by ∆(y, r, s) the closed curved triangle bounded by
the line segments L(r, y), L(y, s), and the segment G(r, s) of G; see Figure 2.
If r = s, then ∆(y, r, s) = L(r, y) = L(s, y); otherwise int∆(y, r, s) 6= ∅.

Lemma B.13. Let y0, y1 be distinct points in domArg \ G, let ri ≤ si be
in Arg(yi), and denote ∆i , ∆(yi, ri, si), i = 0, 1.

(a) If y0 ∈ ∆1, then ∆0 ⊂ ∆1.

(b) If y0 6∈ ∆1 and y1 6∈ ∆0, then the intersection of ∆0 and ∆1 is at most
one point, which is then either r1 = s0 or s1 = r0.

Proof. If either (a) or (b) fails to hold, then there are line segments Li ∈{
L(ri, yi), L(si, yi)

}
, i = 0, 1, that intersect only at an interior point. We

obtain a contradiction with Lemma B.9.

Lemma B.13 (a) yields a partial order relation on domArg \G: y0 ≺ y1

if y0 ∈ ∆(y1, r1, s1) for some r1 ≤ s1 in Arg(y1).
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r1

y1

s1

r0

y0

s0

G

z1

z0

D

Figure 2: The curve D = D(y0, y1) separates the parts of the c-gradient flow
of φ ending on the segments G(r1, r0) and G(s0, s1).

Lemma B.14. If y0, y1 belong to domArg \G and y0 ≺ y1, then

D(y0, y1) ,
{
y ∈ domArg \G : y0 ≺ y ≺ y1

}
∈ D,

that is, D(y0, y1) is the graph of a strictly decreasing function h = h(t) on
[y01 , y

1
1 ] such that h and its inverse h−1 are Lipschitz functions.

Proof. We illustrate the proof on Figure 2. Without loss of generality we
can assume that y0 and y1 are distinct points that stay above G. Let ri ≤ si

be in Arg(yi). We have that r1 ≤ r0 ≤ s0 ≤ s1. If y0 belongs to the line
segment L(y1, s1), then Lemma B.8 yields that

s1 = r0 = s0 = Dcφ(y0)

and then that D = L(y0, y1). Same lemma shows that the line segment
L(y0, y1) has a negative slope and thus, belongs to D. The case, where
y0 ∈ L(y1, r1) is identical.

Hereafter, we assume that y0 6∈ L(y1, s1)∪L(y1, r1) or, equivalently, that
y0 ∈ int∆(y1, r1, s1). Being a chord of the concave hyperbola

H1 =
{
z ∈ R

2 : c(z, y1) = φ(y1), z1 > y1
}
,

which touches G from below, the line segment L(r1, s1) stays below G. It fol-
lows that y0 belongs to the interior of the triangle with vertices

{
r1, y1, s1

}
.

Hence, there are unique z1 ∈ riL(y1, s1) and z0 ∈ riL(r1, y1) such that the
line segments L(r1, z1) and L(s1, z0) intersect at y0.
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We observe that the convex polygon P with the vertices
{
z1, y1, z0, y0

}

contains every y ∈ domArg\G such that y0 ≺ y ≺ y1 and thus, contains D.
Being convex, ψ is bounded on P . Hence, φ is bounded on P as well. More-
over, as P stays away from G = {x ∈ domφ : φ(x) = 0}, same boundedness
property holds for 1/φ. If y ∈ P ∩dom∇φ, then Lemmas B.9 and B.10 show
that Dcφ(y) belongs to the union of G(r1, r0) and G(s0, s1). In particular,
Dcφ and then also ∇φ are bounded on P ∩ dom∇φ. From Lemma B.8 we
deduce the existence of negative constants a and b such that

−∞ < a ≤
y2 − x2
y1 − x1

≤ b < 0, y ∈ P, x ∈ Arg(y).

Let y, z ∈ D be distinct. Lemma B.13 yields that either y ≺ z or z ≺ y.
Assuming that z ≺ y we deduce the existence of r, s ∈ Arg(y) such that
r ≤ s and z ∈ ∆(y, r, s). The slope of L(y, z) is then bounded from below
by the slope of L(y, r) and from above by the slope of L(y, s), and thus is
bounded in between by a and b:

−∞ < a ≤
y2 − z2
y1 − z1

≤ b < 0.

Hence, the set D has the required Lipschitz properties.
It remains to be shown that the set D is connected or, equivalently, that

for every pair of distinct points w0 ≺ w1 in D there is w ∈ D, which is
different from w0 and w1 and such that w0 ≺ w ≺ w1. Without loss of
generality we can take w0 = y0 and w1 = y1. We shall find the required w
in L(z0, z1).

Let z(t) = (1− t)z0 + tz1, t ∈ [0, 1]. From the non-intersection property
of Lemma B.9 and the continuity of φ on its domain, we deduce that

1. If t ∈ (0, 1) and Arg(z(t)) ∩G(r1, r0) 6= ∅, then Arg(z(s)) ⊂ G(r1, r0),
0 ≤ s < t.

2. If (tn) ∈ [0, 1] is such that tn → t and Arg(z(tn)) ∩ G(r1, r0) 6= ∅,
n ≥ 1, then Arg(z(t)) ∩G(r1, r0) 6= ∅.

Similar properties (with obvious modifications in the first item) hold when
G(r1, r0) is replaced withG(s0, s1). These properties readily yield the unique
t∗ ∈ (0, 1) such that Arg(z(t∗)) intersects with both G(r1, r0) and G(s0, s1).
Clearly, w = z(t∗) is different from both y0 and y1 and y0 ≺ w ≺ y1, thanks
to Lemma B.13.
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Lemma B.15. The set

D , {y ∈ domArg \G : Arg(y) contains at least 2 points} , (37)

if not empty, is a countable union of sets in D. More precisely,

D = ∪n≥1D(un, vn) = ∪n≥1 {y ∈ D : un ≺ y ≺ vn} ,

for some un ≤ vn in D, n ≥ 1.

Proof. Clearly, D = ∪n≥1D( 1n), where

D(ǫ) ,
{
y ∈ D :

∣∣x0 − x1
∣∣ ≥ ǫ for some x0, x1 ∈ Arg(y)

}
, ǫ > 0.

Let ǫ > 0. We denote by D̂(ǫ) the set of minimal elements of D(ǫ) with
respect to the order relation ≺. In other words, ŷ ∈ D̂(ǫ) if any y ∈ D(ǫ)
such that y ≺ ŷ coincides with ŷ. From Lemma B.13 we deduce that D̂(ǫ)
is countable. Let y ∈ D(ǫ). If y is not a minimal element, then there is
y′ ∈ D(ǫ) such that y′ ≺ y, y 6= y′. Being contained in ∆(y, u, v) for some
u ≤ v in Arg (y), the set {z ∈ D(ǫ) : z ≺ y′} is bounded. By the continuity
of φ = φG, this set is closed and hence, contains some ŷ ∈ D̂(ǫ). It follows
that

D(ǫ) = ∪
ŷ∈D̂(ǫ)

{y ∈ D : ŷ ≺ y} .

Finally, for y ∈ D, Lemmas B.13 and B.14 show that {z ∈ D : y ≺ z} is
the graph of a strictly decreasing function h such that h and h−1 are locally
Lipschitz. The result readily follows.

Proof of Theorem B.12. By Theorem B.6 representation (36) holds if we
add to the set D given by (37) at most 2 points. Lemma B.15 yields the
result.

Lemma B.16. Let D be given by (37) and

S = {y ∈ domArg : Arg(y) contains at least 3 points} .

Then S is countable and there are Borel functions gi : D → G, i = 1, 2,
such that

Arg(y) = {g1(y), g2(y)} , g1(y) 6= g2(y), y ∈ D \ S.
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Proof. In view of Lemma B.15, it is sufficient to prove the result for the sets
D′ = D(u, v) and S′ = S ∩ D′, where u ≺ v in D. Let r ≤ s be distinct
elements of Arg(u). The functions

g1(y) = max {x ∈ Arg(y) : x ≤ r} ,

g2(y) = min {x ∈ Arg(y) : x ≥ s} ,

map D′ to G and are monotone with respect to the order relations ≺ on D′

and ≤ on G. Thus, their respective sets (Ri) of discontinuities are countable.
From Lemma B.13 we deduce that S′ ⊂ R1 ∪R2 and from the continuity of
φ that gi(y) ∈ Arg(y), y ∈ D′. The proof readily follows.

References

Luigi Ambrosio and Nicola Gigli. A user’s guide to optimal trans-
port. In Modelling and optimisation of flows on networks, vol-
ume 2062 of Lecture Notes in Math., pages 1–155. Springer,
Heidelberg, 2013. doi: 10.1007/978-3-642-32160-3 1. URL
https://doi.org/10.1007/978-3-642-32160-3_1.
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