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Abstract
We describe a novel collaboration between academia and industry, an in-house data science 
and artificial intelligence challenge held by Novartis to develop machine learning models for 
predicting drug development outcomes, building upon research at MIT using data from 
Informa® as the starting point. Over 50 cross-functional teams from 25 Novartis offices 
around the world participated in the challenge. The domain expertise of these Novartis 
researchers was leveraged to create predictive models with greater sophistication, two 
teams developed models that outperformed the baseline MIT model through state-of-the-art 
machine learning algorithms and the use of newly incorporated features and data. In 
addition to validating the variables shown to be associated with drug approval in the earlier 
MIT study, the challenge also provided new insights into the drivers of drug development 
success and failure.
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1 Introduction
The rising cost of clinical trials and a shift to utilizing more complex biological pathways with 
greater therapeutic potential—but also greater chances of failure—have in the past decade 
caused drug development to become an increasingly lengthy, costly, and risky endeavor. The 
average drug now requires at least a decade of translational research involving multiple 
iterations of lead optimization and several phases of clinical studies costing hundreds of 
millions of dollars before it can be approved by drug regulatory authorities, such as the U.S. 
Food and Drug Administration (FDA).

Due to the capital-intensive nature of the drug development process, biotech and pharma 
companies are only able to afford to invest in a limited number of projects. When managing 
their portfolios of investigational drugs, these developers typically use historical estimates 
of regulatory approval rates, based on the therapeutic class and phase of development of the 
drug, combined with subjective adjustments, determined through unstructured discussions 
of project-specific risk factors, to make their investment decisions. Recently, however, there 
has been an increased interest in combining machine learning predictions with human 
judgments on project specific information in a more structured manner.1

In a recent large-scale study involving over 6,000 unique drugs and close to 20,000 clinical 
trials, Lo et al.2 proposed using a range of drug and clinical trial features in machine-learning 
techniques to more accurately estimate the probabilities of success of pipeline candidates. 
Using two proprietary pharmaceutical pipeline database snapshots (2015Q4) provided by 
Informa® (Pharmaprojects and Trialtrove), Lo et al.2 developed models that achieved 
promising predictive accuracy, measured at 0.78 and 0.81 AUC for predicting transitions 
from phase 2 to regulatory approval and phase 3 to regulatory approval, respectively. (The 
AUC, also known as the area under the receiver operating characteristic curve, is the 
estimated probability that a classifier will rank a positive outcome higher than a negative 
outcome.) Its models also identified the most useful features for predicting drug 
development outcomes: trial outcome, trial status, trial accrual, trial duration, prior approval 
for another indication, and sponsor track record.

With more accurate forecasts of the likelihood of clinical trial success and a better 
understanding of the drivers of drug approval, biopharma companies and investors should 
be better able to assess the risks of different drug development projects, and thus allocate 
their capital more efficiently.

As an extension of the previous study, the MIT team collaborated with Novartis, one of the 
largest multinational pharmaceutical companies in the world, to implement an in-house Data 
Science and Artificial Intelligence (DSAI) challenge based on updated snapshots (2019Q1) of 
the same Informa® databases. This challenge was designed to leverage the domain expertise 
of Novartis data scientists, statisticians, portfolio managers, and researchers to develop 
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more powerful models for predicting the probability of success of pipeline drug candidates 
and uncover deeper insights into the drivers of drug approval. Success in this context was 
defined as regulatory approval. Over 50 teams participated in the challenge, consisting of 
more than 300 individuals from 25 Novartis offices around the world, submitting 
approximately 3,000 models for evaluation in a head-to-head competition. In addition to 
their predictive performance, the teams were evaluated on the innovativeness and 
robustness of their models, and the potential business value of their findings.

In this paper, we summarize the findings of the top-performing teams. By examining their 
models, we validate the variables previously found to be associated with drug approval, and 
identify new features that contain useful signals about drug development outcomes.

2 Methods

a Data
For the DSAI challenge, we use two pharmaceutical pipeline databases from the commercial 
data vendor Informa® for the core dataset: Pharmaprojects, which specializes in drug 
information, and Trialtrove, which specializes in clinical trial intelligence.3 These two 
databases aggregate drug and trial information from over 40,000 data sources in the public 
domain, including company press releases, government drug and trial databases (e.g., 
Drugs@FDA and Clinicaltrials.gov), and scientific conferences and publications. The 
database snapshots used in this paper are updated versions of that used in Lo et al.2 (2019Q1 
versus 2015Q4).

As in Lo et al.2, we construct a dataset of drug-indication pairs, focused on phase 2 trial data 
that have known outcomes (“P2APP”), either successful registration or program termination. 
We extract a range of drug compound attributes and clinical trial characteristics as potential 
features for prediction, including three binary features, one date, seven numerical features, 
two multi-class features, sixteen multi-label features, and five unstructured free texts. These 
are summarized in Table 1. For the purpose of our analysis, we define the development 
status of suspension, termination, and lack of development as “failures,” and registration and 
launch in at least one country as “successes” or approvals. (See Supplementary Materials A 
for further details.)

This dataset consists of 6,901 drug-indication pairs and 12,680 unique phase 2 clinical trials, 
with end dates spanning 1999 to early 2019, containing about two decades of data (Table 2). 
In our dataset, 796 drug-indication pairs (11.5%) were successes, and 6,105 drug-indication 
pairs (88.5%) ended in failure. The data covers fifteen indication groups: alimentary, anti-
infective, anti-parasitic, blood and clotting, cardiovascular, dermatological, genitourinary, 
hormonal, immunological, musculoskeletal, neurological, anti-cancer, rare diseases, 
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respiratory, and sensory products. Drugs for cancer, rare diseases, and neurological diseases 
make up the largest subgroups. As expected, the majority of the trials in the dataset are 
sponsored by industry, rather than investigator-initiated academic trials.

Table 1. Features extracted from Pharmaprojects and Trialtrove. See Supplementary Materials A for examples of 
each feature.

Description
Drug-indication Pair
Biological target Protein on which the drug acts.
Country Country in which the drug is being developed.
Drug-indication development 
status

Current phase of development of the drug-indication pair.

Indication Indication for which the drug is under development.
Mechanism of action Mechanism through which the drug produces its pharmacological effect.
Medium Physical composition of the material in which the drug is contained.
Name Name of the drug.
Origin Origin of the active ingredient in the drug.
Prior approval of drug for 
another indication

Approval of the drug for another indication prior to the indication under consideration.

Route Route by which the drug is administered.
Therapeutic class Therapy area for which the drug is in development.
Trial

Attribute
Distinguishing attribute or feature of the trial, e.g., registration trials, biomarkers, immuno-
oncology.

Actual accrual Number of patients enrolled in the trial.
Disease type Disease, disorder, or syndrome studied in the trial.
Duration Duration of the trial.
Exclusion criteria Criteria for excluding a patient from trial consideration.
Gender Gender of the enrolled patients.

Investigator experience
Primary investigator’s success in developing other drugs prior to the drug-indication pair under 
consideration. 

Location Country in which the trial is conducted.
Number of identified sites Number of sites where the trial is conducted.
Outcome Outcome of the trial.
Patient age Minimum and maximum age of the enrolled patients.
Patient population General information about the disease condition of the enrolled patients.
Patient segment Disease segmentation by patient subtypes, therapeutic objectives, or disease progression/staging.
Phase 2 end date Year phase 2 ended (end date of the last observed phase 2 trial).

Primary endpoint
Detailed description of primary objective, endpoint or outcome of the trial. Endpoints are classified 
into four main groups: efficacy, safety/toxicity, health economics and outcomes research, and 
pharmacokinetics/pharmacodynamics.

Sponsor Financial sponsor of the trial.
Sponsor track record Sponsor’s success in developing other drugs prior to the drug-indication pair under consideration.
Sponsor type Sponsor grouped by type.
Status Recruitment status of the trial.
Design Investigative methods used in the trial.
Design keywords Keywords relating to investigative methods used in the trial.
Target accrual Number of patients sought for the trial.
Therapeutic area Therapeutic area of the disease studied in the trial.
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Table 2. Sample sizes of the P2APP dataset, and the training and testing data used for the challenge.

Drug-indication 
Pairs

Clinical Trials Unique Drugs
Unique 

Indications
Unique Clinical 

Trials
P2APP
Success 796 2,435 614 182 2,209
Failure 6,105 13,203 3,313 283 10,722
Total 6,901 15,638 3,726 291 12,680
Training Data
Success 610 1,852 468 169 1,666
Failure 4,293 6,839 2,537 264 5,845
Total 4,903 8,691 2,872 272 7,451
Testing Data
Success 186 583 160 93 557
Failure 1,812 6,364 1,096 218 5,065
Total 1,998 6,947 1,229 229 5,561

b Challenge Setup
The DSAI challenge was hosted on an Aridhia Digital Research Environment (Aridhia DRE), 
a cloud-based platform designed for collaborative data analytics on healthcare data.4 Each 
team was provided a remote workspace for accessing the data, computing resources for 
developing their models, and a Git repository hosted by AIcrowd5 for managing their source 
code. AIcrowd was also used to host a leaderboard and discussion forum for teams to interact 
and answer questions. See Figure 1 for an illustration of the setup.

For the leaderboard challenge, teams were required to predict the probability of regulatory 
approval (i.e., the drug-indication development status) given phase 2 trial data and drug 
compound characteristics (see Table 1). This corresponds to a real world decision-making 
scenario whereby a pharmaceutical company must decide whether to invest in a phase 3 
program based on phase 2 results. We split the P2APP dataset chronologically, with drug-
indication pairs that failed or succeeded before 2016 provided to the participants as training 
data, while those pairs that failed or succeeded in 2016 or later were held out as testing data 
for leaderboard evaluation. Table 2 shows the sample sizes of the training data and the 
testing data. Teams were encouraged to create new features in the core dataset in addition 
to those provided by linking new datasets (e.g., compound data) and through feature 
engineering.

The challenge spanned five months, from October 2019 to March 2020: one month for team 
registration and onboarding, two months for model development and submission, and two 
months for final evaluation. During the model development segment, teams built their 
models using the training data, and were able to receive real-time feedback on the 
performance of their models on a subset of the testing data (50%) and how this compared 
with other teams ("open-testing round”). This happened via a public leaderboard, which was 
updated with every submission. This gave participants the opportunity to refine and 
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calibrate their algorithms. Additionally, all submissions made by each team were evaluated 
on the complete testing set (100%) in the final evaluation round. This information was not 
shown to participants during the competition, defining the private leaderboard to assess 
performance. We used the binary cross entropy log loss function as the primary scoring 
metric.

We also trained a baseline model based on the algorithm described in Lo et al.2 using the 
same training data provided to the participants. To obtain the confidence interval of the 
performance of each model, we bootstrapped the testing set 1,000 times and evaluated the 
models on the same bootstrapped datasets.

As part of the final evaluation process, teams were required to upload the code used to train 
their models, and a write-up describing their methods and results. A committee screened 
and ranked teams by the technical, data science, and business aspects of their submissions. 
Along the technical dimension, each team’s source code repository was examined to ensure 
that the results reported were robust and reproducible. The submission history of the top-
performing teams was also reviewed to ensure that they did not gain an unfair advantage by 
making frequent submissions. For data science, the novelty of the solutions was evaluated in 
terms of its data wrangling and adopted methodology. Finally, since the potential business 
value of the findings would be to inform portfolio and risk management decisions, the focus 
for the business evaluation was on the interpretability of the models, i.e., the ease of insight 
regarding the risk factors and key drivers of approval. Teams were ranked based on their 
leaderboard performance and the three dimensions above.

Subsequent to this evaluation, the two top-performing teams were selected to present their 
findings to a final committee consisting of Novartis leaders from its portfolio strategy and 
biostatistics divisions and its Digital Office, and MIT researchers Andrew W. Lo and Kien Wei 
Siah. Other teams with innovative approaches were also invited as part of a panel discussion 
to share their experience with the broader Novartis community.
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Figure 1. DSAI challenge setup. The challenge was hosted on Aridhia DRE and AIcrowd. It consists of an open-
testing round for teams to refine and calibrate their models, and a final evaluation round.

3 Results
We received approximately 3,000 model submissions in the open-testing round of the 
leaderboard challenge. The teams explored a wide range of machine-learning models, 
ranging from traditional logistic regression, support vector machines, decision trees, and 
neural networks to ensemble methods such as random forests6, gradient boosting machines, 
XGBoost7, and combinations of multiple types of models. Figure 2 and Figure 3 show the 
public leaderboard scores of participating teams over time and their corresponding rankings, 
respectively.

Recognizing the dangers of overfitting that arise from the reuse of testing set data8, we 
created a scatterplot of public and private leaderboard scores to assess the extent of adaptive 
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overfitting (see Figure 4). The public scores were evaluated on a subset of the testing set 
provided to the participants during the open-testing round, while the private scores were 
evaluated on the complete testing set in the final evaluation round. In the ideal case, the 
points would lay close to the diagonal, since the public and private performance of the 
models would be almost identical. In contrast, deviations from the diagonal suggest possible 
overfitting. We observe that our scores approximated the ideal case in Figure 4, indicating 
that there was little evidence of competitors overfitting to the public leaderboard score in 
the DSAI challenge.

In Figure 5, we compare the performance of the top ten ranking teams to the baseline model 
described in Lo et al.2, using the private leaderboard log loss and the AUC as our metrics. 
While the baseline model had a worse log loss compared to the top ten best performing 
teams, its AUC (0.78 with 95% CI [0.75, 0.82]) was only lower than the top two teams in the 
challenge. This may be in part because the teams in the competition attempted to optimize 
log-loss. 

We focus on the approaches of the two teams that outperformed the baseline model on all 
metrics. These teams had different strategies and backgrounds of expertise, but were aligned 
in the way they harnessed human insight into their model predictions:

 The team with the top-ranked model was primarily composed of biostatisticians with 
significant domain expertise in clinical trial data analysis. It relied on handcrafted 
features that incorporated their insights into drug development timelines and which 
data entries should be discarded. A team member with portfolio management 
experience also provided a different perspective.

 The runner-up team was primarily composed of data scientists with domain expertise 
in bioinformatics and cheminformatics. It relied on extensive data exploration and 
feature engineering, in particular developing a novel method to understand the 
interaction of these features, but also augmented them with clinical trial knowledge.

a Approach of the Top-Performing Team
The top-performing model was developed by a collaborative team (team “Insight-Out”) from 
Novartis offices in the U.S. and Switzerland whose members had backgrounds in biostatistics, 
data science and portfolio management. Its model achieved an AUC of 0.88 (95% CI [0.85, 
0.90]), corresponding to an improvement of approximately 0.10 over the baseline model. In 
addition to using the core features provided in the dataset, the team created several new 
features to capture information about orphan drug indications, to improve the granularity 
of therapeutic areas, to compare the relative size of phase 2 trials to the average by 
therapeutic area and disease, to classify the drug candidate as a novel compound, a Lifecycle 
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Management (LCM) project, or a generic, and to determine whether an international 
nonproprietary name (INN) has been registered for the drug.

The final model of the top-performing team was an ensemble consisting of two XGBoost 
models and one Bayesian logistic regression9,10 (BLR) model. The XGBoost models, known 
to be highly effective for tabular data, were trained using 263 raw and derived features, using 
time-series cross validation with different levels of hyperparameter tuning (i.e., using simple 
heuristics and a more sophisticated approach involving differential evolution 
optimization11). Subsequently, logistic regression with a ridge penalty was used to combine 
the trial-level predictions of the XGBoost models into predictions at the drug-indication level.

The BLR model was trained using case weights based on covariate balancing propensity 
scores12, with greater weights given to cases that had a greater propensity of appearing in 
the test set. The BLR model allowed the team to incorporate its judgment on the likely effects 
of a smaller set of features. These included granular therapeutic areas as a random effect, 
novelty (e.g., that a drug was non-generic, and not an insulin or a flu vaccine), the relative 
phase 2 accrual versus the disease average, the success rates of drugs with the same 
mechanism of action, INN assignment, and trial outcomes, as well as interactions between 
these features. Its parameters were estimated via Markov chain Monte Carlo sampling.

Ensembles of diverse models can generally outperform any individual model.13 The 
ensemble predictions were obtained as a weighted average of the predictions from the 
XGBoost and the BLR models. Afterwards, the predictions were post-processed using 
heuristics derived from the team's domain expertise. For example, the predictions for trials 
after 2018 were rescaled between 0.001 and 0.1 because the team believed that obtaining 
approval within two years of completing phase 2 was unlikely. These limits were determined 
based on prior elicitation using the roulette method.14 In addition, the team introduced 
upper and lower bounds for their predictions to reduce the impact of overconfident and 
over-pessimistic predictions on the log loss, since extreme predictions that are incorrect are 
heavily penalized under the log loss metric.

The team found that the phase 2 accrual relative to the disease average was one of the 
strongest predictors of approval. The likelihood of success increased for programs with 
above average accrual compared with other programs for the same disease. In contrast, 
programs with below average accrual were more likely to fail. The team also found prior 
approvals for any indication (e.g., LCM programs), past approvals of other drugs for similar 
indications, and well-established modes of action improved the odds of approval, suggesting 
that repositioning an approved drug for a new indication is less challenging than developing 
a first-in-class new chemical entity. On the other hand, it found that drugs that targeted 
difficult-to-treat diseases, such as cancer or Alzheimer’s disease, were more likely to fail. 
Trial termination (whether due to lack of efficacy, safety issues, or pipeline reprioritization), 
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poor patient enrollment versus planned accrual, and the absence of an INN were also strong 
indicators of failure.

b Approach of the Second Place Team 
The second place model was developed by a team of data scientists and researchers from the 
Genomics Institute of the Novartis Research Foundation (team “E2C”). This model achieved 
an AUC of 0.84 (95% CI [0.81, 0.86]), corresponding to an improvement of approximately 
0.06 over the baseline model. The team performed extensive feature engineering, creating 
rank normalized versions of features known to demonstrate temporal coupling (e.g., phase 
2 trial durations, which have shown greater mean and spread over the years). This was done 
because decision tree algorithms tend to be inefficient at incorporating heteroskedasticity. 
In addition to the core features in the dataset such as prior approval, the team created new 
variables to capture the impact of development history on future approvals. For example, it 
computed the number of past trials in which each drug had been involved, by phase, by 
outcome, and in aggregate, regardless of indication. It additionally made a similar 
computation for indications and indication groups, aggregating them over all drugs. The 
team also used natural language processing techniques, such as the term frequency-inverse 
document frequency (TFIDF) algorithm, to convert text data for trials into feature vectors. 
Because the set of features under consideration was large, the team performed stepwise 
feature selection using random forests to identify a parsimonious set of factors.

From the outset, the second-place team focused on the XGBoost model, an algorithm that has 
a strong track record in data science competitions. It explored multiple training-validation 
strategies for hyperparameter selection, eventually settling on the random five-fold cross 
validation approach. Like the top team, it also post-processed trial-level predictions from the 
XGBoost model, based on expert knowledge. For example, it reduced the predictions for 
trials after 2018 because team members believed that approval within two years was 
unlikely. It also clipped overconfident and over-pessimistic predictions to reduce the impact 
of outliers on the log loss scoring metric. Unlike the leading team, however, it obtained 
predictions for each drug-indication pair by using the maximum trial-level prediction across 
all trials associated with the drug-indication pair, as opposed to using penalized logistic 
regression. It hypothesized that the best performing trial would dominate the outcome of 
the drug-indication pair, regardless of any lack of evidence in other trials in support of 
efficacy.

Among the final set of features, the second-place team found that rank-normalized variables 
were generally favored over their raw, unnormalized counterparts, thus verifying the 
importance of normalization. Out of the top 20 most important features, 8 were novel 
features that were created by the team and not provided in the core dataset. It found the top 
features were largely consistent with those reported by Lo et al.2, e.g., trial outcomes, trial 
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accrual, prior approval, and sponsor track records. Moreover, it found that drugs with strong 
development histories, as quantified by the percentage of past trials with positive outcomes, 
were more likely to be successful. Over- and under-enrollment with respect to the target 
accrual were also associated with lower success rates, a not entirely unexpected finding, 
since these signs hint at poor trial operation or a lack of efficacy. Interestingly, the team 
found that trials with a younger age inclusion criterion tended to be more successful. 
However, features created from text data did not seem to contribute meaningful predictive 
value.

In addition to single feature analysis, the second-place team went a step further to identify 
informative feature pairs. It found strong interaction effects between trial outcomes and 
drug development history, e.g., the historical success rate of past trials and the presence or 
absence of prior approval. For example, given a successful trial with its primary endpoints 
met, a drug with prior approval for other indications was almost twice as likely to be 
approved versus a new compound without any prior approval. The team also found that 
drugs with strong track records had higher probabilities of success in indications that had 
been less explored in the development process, as quantified by the cumulative number of 
past trials.

In addition, the team observed there was strong coupling between the success of anticancer 
drugs and their development history. The likelihood of success of an anticancer drug was 
five times greater with a prior approval than without. This effect was less pronounced in 
non-cancer programs, where the ratio in success rates conditional on prior approval was 
only twice as great. The team hypothesized that historical success rates and prior approval 
were especially important for anticancer drugs because it is not uncommon for effective 
cancer therapies to work across multiple cancer subtypes (e.g., chemotherapy), and 
therefore, an approval in one subtype was predictive of potential success in other subtypes.
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Figure 2. Public leaderboard scores of teams over time. Each point corresponds to a submission. We use lines to 
trace each team’s best log loss performance. We truncate the log loss axis at 1.0 for better visualization.
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submission of each team. The points lay very close to the diagonal, which indicates that there is little evidence of 

overfitting in the competition.

Figure 5. Private leaderboard log loss and AUC for the top ten ranking teams and the baseline model. The top two 
teams outperformed all other submissions in the leaderboard challenge, including the baseline model.
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4 Discussion
MIT and Novartis researchers collaborated on an in-house DSAI challenge to develop 
machine learning models for predicting clinical development outcomes, building on Lo et al.2, 
whose work used one of the largest pharmaceutical pipeline databases in the world, 
provided by Informa®. To the best of our knowledge, this challenge represents the first 
crowd-sourced collaborative competition to use pharmaceutical data for this purpose, in this 
case, updated snapshots of the same Informa® databases used in the earlier MIT study. In 
total, over 50 cross-functional teams from 25 international Novartis offices participated in 
the challenge. We received approximately 3,000 model submissions over a two-month 
period.

Internal data science competitions are both an opportunity for a company to address 
business problems, as well as a learning opportunity for the company’s data science 
community. From this perspective, the large number of Novartis associates who chose to 
actively participate in the process and had the chance to expand their data science skillset 
was encouraging. 

The probability of success is one of several key parameters, in combination with unmet 
medical need and market opportunity, which clinical researchers, biopharma investors, and 
portfolio managers consider when making scientific and business decisions about drug 
development. Accurate estimates of this parameter are therefore critical for efficient risk 
management and resource allocation. The top performing teams in their winning solutions 
delivered additional heuristics with respect to predicting the probability of success:

 Identification of novel features predictive of probability of success (as outlined above).
 Novel approaches and methodologies for feature extraction, combining domain expertise 

and machine learning.
 Creative ways of introducing additional data types to the problem, such as unstructured 

text and biochemical data. For example, several teams presented ways of connecting new 
data types, although this in itself did not translate into top leaderboard performance.

Additionally, the discussion about the availability of specific information at the time of 
decision-making about the fate of a project was also helpful for assessing the potential for 
target leakage in the solutions of external vendors offering similar predictive solutions.

The DSAI challenge also had several limitations. First, the P2APP dataset was split 
chronologically, using drug-indication pairs that failed or succeeded before 2016 as training 
data, and those that failed or succeeded in 2016 or later were held out as testing data. Due 
to the nature of drug development, however, some boundary effects were inevitably present 
in the last years of the testing data. Because drugs tend to fail much more quickly than those 
that are approved, the majority of the trials completed after 2018 ended in failure. With their 
experience and expertise in drug development, both teams eventually discovered this 
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artifact in the data, and were able to improve their model performance by adjusting their 
predictions for trials after 2018. While such adjustments were useful in the competition, they 
add little practical value for real-life application.

Second, some available features reflected a decision already taken by a company to 
terminate a project. These included trials that were stopped due to pipeline re-prioritization, 
a small-sized phase 2 program due to stopping the program after an initial small trial, and 
the failure to apply for an INN. Not all such information is available at the time of decision-
making in practice. These limitations illustrate that in order to make data science 
competitions directly useful for business problems without substantial modification, it is 
important to align the prediction task in the competition with the real-world business 
problem extremely closely.

We also received feedback from knowledgeable participants that the core dataset lacked key 
information that decision makers typically take into consideration at the time of decision, 
such as the preclinical data, detailed safety and efficacy data, and the biological plausibility 
of the mechanism of action. Unfortunately, investigators do not usually release this 
information to the public domain for strategic reasons. It is therefore unsurprising that such 
data are not available in commercial pharmaceutical databases based on publicly available 
sources of information. Potentially, this limitation may be overcome with recent progress in 
deep learning approaches to natural language processing, which may enable information 
about trial protocols, development programs and drugs to be extracted from unstructured 
text data sources.

5 Conclusion
By tapping the power of crowdsourcing and the domain expertise of Novartis researchers 
working in cross-disciplinary teams, we have shown the potential for data science and 
artificial intelligence challenges to generate predictive models for drug development 
outcomes that outperform existing models from the academic literature. In addition to 
validating features previously associated with drug approval in the MIT study, the DSAI 
challenge has provided new insights into the drivers of drug approval and failure. Ultimately, 
these new predictive models can be used to augment human judgment to make more 
informed decisions in portfolio risk management. Nevertheless, there remains a clear 
opportunity to further improve the models in this competition. We believe that more 
accurate models can be developed with access to better quality and more comprehensive 
data, and a broader pool of challenge participants.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3796530

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



17 February 2021 © 2021 by Siah et al. Page 15
All Rights Reserved

Acknowledgments
Research support from the MIT Laboratory for Financial Engineering is gratefully 
acknowledged. We thank Informa for allowing us to use their data for this project, and Jayna 
Cummings for editorial assistance. The views and opinions expressed in this article are those 
of the authors only, and do not necessarily represent the views and opinions of any 
institution or agency, any of their affiliates or employees, or any of the individuals 
acknowledged above.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3796530

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



17 February 2021 © 2021 by Siah et al. Page 16
All Rights Reserved

References
1. Hampson, L. V et al. Improving the assessment of the probability of success in late stage 

drug development. http://arxiv.org/abs/2102.02752 (2021).

2. Lo, A. W., Siah, K. W. & Wong, C. H. Machine Learning with Statistical Imputation for 
Predicting Drug Approval. Harvard Data Sci. Rev. 1, (2019).

3. Informa. Citeline Data Analysis Pharma Intelligence. 
https://pharmaintelligence.informa.com/products-and-services/data-and-
analysis/citeline (2020).

4. Aridhia. Aridhia DRE Trusted Digital Research Environment. 
https://www.aridhia.com/ (2020).

5. AIcrowd. AIcrowd. https://www.aicrowd.com/ (2020).

6. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

7. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. in Proceedings of the 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining vols 
13-17-August-2016 785–794 (Association for Computing Machinery, 2016).

8. Roelofs, R. et al. A meta-analysis of overfitting in machine learning. in Advances in 
Neural Information Processing Systems vol. 32 9179–9189 (2019).

9. Goodrich B, Gabry J, Ali I & Brilleman S. Bayesian Applied Regression Modeling via Stan. 
R package version 2.21.1 https://mc-stan.org/rstanarm/ (2020).

10. Brilleman SL, Crowther MJ, Moreno-Betancur M, Buros Novik J & Wolfe R. Joint 
longitudinal and time-to-event models via Stan. StanCon https://github.com/stan-
dev/stancon_talks/ (2018).

11. Brest, J., Greiner, S., Bošković, B., Mernik, M. & Zumer, V. Self-adapting control 
parameters in differential evolution: A comparative study on numerical benchmark 
problems. in IEEE Transactions on Evolutionary Computation vol. 10 646–657 (2006).

12. Imai, K. & Ratkovic, M. Covariate balancing propensity score. J. R. Stat. Soc. Ser. B Stat. 
Methodol. 76, 243–263 (2014).

13. Thakur, A. Approaching (Almost) Any Machine Learning Problem - Abhishek Thakur - 
Google Books. (Abhishek Thakur, 2020).

14. Gore, S. M. Biostatistics and the medical research council. Med. Res. Counc. News 35, 
19–20 (1987).

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3796530

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



17 February 2021 © 2021 by Siah et al. Page S-1
All Rights Reserved

Supplementary Materials

A Core Dataset
We construct our datasets using two Informa® databases: Pharmaprojects and Trialtrove, 
two separate relational databases organized by largely different ontologies. We extract drug-
specific features and drug-indication development status from Pharmaprojects, and clinical 
trial features from Trialtrove.

First, we identify all drug-indication pairs with known outcomes in Pharmaprojects. Next, we 
drop pairs that do not have any trials captured in Trialtrove. (We note that the disease 
coverage in Pharmaprojects and Trialtrove is slightly different.) Because missingness is 
present in both Pharmaprojects and Trialtrove, we impose several additional filters to make 
sure that all samples collected are usable for analysis.

We summarize the steps in Table 3. It is important to note that the drug, indication, and trial 
relationships in the databases are surjective and non-injective: different drugs may target 
the same indication, and some trials may involve multiple drug-indication pairs. This is to be 
expected, since one drug can be indicated for multiple diseases, a disease can have more than 
one treatment, and it is not uncommon for a trial to involve two or more related primary 
investigational drugs.

We extract drug compound attributes and clinical trial characteristics from Pharmaprojects 
and Trialtrove, respectively (see Table 4). In addition to structured features readily available 
in the databases, we create an augmented set of variables that captures sponsor track record 
and investigator experience: we quantify the track record of sponsors of a specific trial by 
their success in developing other drugs, using the number of prior approved and failed drug-
indication developments; and in past trials for phases 1, 2, and 3 separately, using the total 
number of trials sponsored, the number of trials sponsored with positive and negative 
results, and the number of trials sponsored to completion and termination. We use the end 
date of the last trial of the drug-indication pair under consideration as the cutoff for 
considering prior experience, since the last end date will be the time of prediction. We 
abstract investigator experience in the same manner.

Lastly, we also construct a binary drug-indication pair feature that indicates whether a drug 
has previously been approved for another indication. Similarly, we use the end date of the 
last trial as the cutoff for considering prior approval.
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Table 3. Filters for constructing P2APP.

Rationale
Drug-indication Pairs in Pharmaprojects
Trials observed in Trialtrove We exclude pairs for which we do not observe any trials in 

Trialtrove.
Known approval date (if approved) We define the approval date as the earliest date a drug-

indication pair was approved in any market. We require 
these dates to perform time-series analysis.

Known failure date (if failed) We define failure date as one year after the end-date of the 
last phase 2 or phase 3 trial (if any), whichever is latest.

Clinical Trials in Trialtrove
Phase 2 trials P2APP focuses on phase 2 trial data
Known end date We require these dates to create sponsor track record and 

investigator experience, and to perform time series analysis.
Known sponsors and disease types Trials not tagged with sponsor/disease types are typically 

out of Trialtrove commercial coverage and not maintained.
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Table 4. Features extracted from Pharmaprojects and Trialtrove.

Examples Type
Drug-indication Pair
Biological target Cytokine/Growth factor; Enzyme; Ion channel; Receptor; Transporter Multi-label
Country China; India; Japan; United States Multi-label
Drug-indication 
development 
status

Approved; Failed Binary

Indication Cancer, lung, small cell; Cancer, lung, non-small cell; Cancer, brain Multi-class
Mechanism of 
action

Cell cycle inhibitor; DNA inhibitor; Ion channel antagonist; Protein kinase inhibitor Multi-label

Medium Capsule, hard; Capsule, soft; Powder; Solution; Suspension; Tablet Multi-label
Name Free text String
Origin Biological, protein, antibody; Biological, protein, recombinant; Chemical, synthetic Multi-label
Prior approval of 
drug for another 
indication

True; false Binary

Route Inhaled; Injectable; Oral; Topical Multi-label
Therapeutic class Antiviral, anti-HIV; Anticancer, immunological; Antiepileptic Multi-label
Trial
Attribute Biomarker/Efficacy; Biomarker/Toxicity; Pharmacogenomic - Patient Preselection/Stratification Multi-label
Actual accrual Integer Numerical
Disease type Bladder; colorectal; ovarian Multi-label
Duration Integer Numerical
Exclusion criteria Free text String
Gender Male, female, both Multi-class
Investigator 
experience

Refer to sponsor track record Numerical

Location Canada; Europe; United Kingdom; United States Multi-label
Number of 
identified sites

Integer Numerical

Outcome Completed, Negative outcome/primary endpoint(s) not met; Completed, Outcome indeterminate; 
Completed, Positive outcome/primary endpoint(s) met; Terminated, Safety/adverse effects

Multi-label

Patient age Integer Numerical
Patient 
population

Free text String

Patient segment Stage I; stage III; stage IV; second line; pediatric Multi-label
Phase 2 end date Date Date
Primary endpoint Free text String
Sponsor Duke University Medical Center; National institute of Health; Celgene Multi-label
Sponsor track 
record

Number of prior approved drug-indication pairs; Number of prior failed pairs; Total number of 
phase 1 trials sponsored; Number of phase 1 trials with positive results; Number of phase 1 trials 
with negative results; Number of completed phase 1 trials; Number of terminated phase 1 trials; 
Total number of phase 2 trials sponsored; Number of phase 2 trials with positive results; Number 
of phase 2 trials with negative results; Number of completed phase 2 trials; Number of terminated 
phase 2 trials; Total number of phase 3 trials sponsored; Number of phase 3 trials with positive 
results; Number of phase 3 trials with negative results; Number of completed phase 3 trials; 
Number of terminated phase 3 trials

Numerical

Sponsor type Academic; Industry, all other pharma; Industry, Top 20 Pharma Multi-label
Status Completed; terminated Binary
Design Free text String
Design keywords Cross over; Double blind/blinded; Efficacy; Multiple arm; Open label; Pharmacodynamics; 

Pharmacokinetics; Placebo control; Randomized; Single arm
Multi-label

Target accrual Integer Numerical
Therapeutic area Autoimmune/Inflammation; Cardiovascular; CNS; Infectious Disease Multi-label
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