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Simultaneous Multilateral Search

Abstract

This paper studies simultaneous multilateral search (SMS) in over-the-counter (OTC) markets:
when searching, a customer contacts several dealers and then trades with the one offering the best
quote. Search intensity (how frequently one can search) and search capacity (how many potential
counterparties one can contact) affect market qualities differently. Contrasting SMS to bilateral
bargaining (BB), the model shows that customers might favor BB over SMS when in distress.
Such preference for BB might be inefficient for welfare and suggests an intrinsic hindrance in the
adoption of request-for-quote type of electronic trading in OTC markets.

Keywords: request-for-quote, over-the-counter market, search, bargaining
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1 Introduction

Search is a key feature in over-the-counter (OTC) markets. Duffie, Gârleanu, and Pedersen (2005,

hereafter DGP) pioneered the theoretical study of OTC markets in a framework of random matching

and bilateral bargaining (BB): Investors search for counterparties and are randomly matched over

time. Upon successful matching between a buyer and a seller, the pair engage in Nash bargaining

and split the trading gain according to their endowed bargaining power.

However, investors’ interaction is not always bilateral. For example, in recent years, there is a

rise of electronic trading in OTC markets, mainly in the form of Request-for-Quote (RFQ). In such

marketplaces, where many corporate bonds and derivatives are traded, customers contact multiple

dealers for quotes and then trade with the one offering the best price. Hendershott and Madhavan

(2015) report that more than 10% of trades in the $8tn corporate bond market is completed via

RFQ. O’Hara and Zhou (2020) document a continued growth of RFQ-based trading of corporate

bonds, but the growth has been sluggish, with the highest trading volume share below 14% in their

sample. See also Bessembinder, Spatt, and Venkataraman (2020) for an extensive review on OTC

market structure.

This paper develops a theoretical model, tailoring to the above one-to-many searching. Specifi-

cally, a customer is allowed to query multiple dealers at the same time, hence the name “Simultane-

ous Multilateral Search” (SMS). The objective is two-fold. First, the model aims at understanding

the equilibrium features of SMS: How do dealers quote when contacted? How does the quality

of the SMS technology affect welfare? Second, contrasting SMS to BB, the paper studies how

customers choose to search: Do they favor SMS over BB? Which is more efficient in terms of

welfare? How to understand the sluggish growth of SMS-type of electronic trading (O’Hara and

Zhou, 2020)? What are the policy and market design implications?

Section 2 sets up the model following Hugonnier, Lester, and Weill (2020, hereafter HLW). A

continuum of customers trade an asset through a continuum of dealers. All agents have inventory
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constraints and can hold either zero or one unit of asset. The customers are subject to stochastic

valuation shocks. Those who hold the asset but have low valuation want to sell, while those

without the asset but with high valuation want to buy. They actively search for dealers according

to independent Poisson processes with intensity ρ. Upon searching, each customer randomly

contacts n dealers, who make take-it-or-leave-it offers to the searching customer. In addition, with

probability q, the customer can commit to a reserve price, i.e., indicating a worst price she is

willing to accept from the dealers. Effectively, a searching customer runs a first-price auction,

probabilistically with a reserve price, among n randomly selected dealers.1

Importantly, the n randomly contacted dealers might not be the right counterparty for the

searching customer, and they may be unable to quote. For example, for a searching buyer, not

all n contacted dealers will have the asset to sell—their inventories might be empty. Section 3

characterizes the equilibrium, where the (expected) response rate to a searching buyer (high-

valuation non-owner) is the proportion of dealers who have inventory; and vice versa. Such

an endogenous response rate is a unique feature and yields novel results in the random matching

framework à la DGP and HLW. For example, if the equilibrium response rate is high (in expectation),

competition among the contacted dealers becomes fierce, allowing the customers to acquire a larger

share of the trading gain. In this sense, SMS endogenizes the bargaining powers, which are by and

large exogenous in existing search models.

The search and matching of SMS is characterized by two parameters, the intensity ρ (how

frequently one can search) and the capacity n (how many potential counterparties one can contact).

Perhaps surprisingly, Section 3.4 finds that the two have contrasting implications for various

1 The purpose of introducing the parameter q is two-fold. First, it allows the model to capture various forms
of SMS in terms of how likely customers can “negotiate” trading prices with dealers. When q = 0, the platform
represents a typical RFQ platform like MarketAxess, where customers can only receive quotes from dealers but not
set prices (O’Hara and Zhou, 2020). Instead, when trading is less formally organized, q can be larger. For example,
a bid-wanted-in-competition (BWIC) auction to sell collateralized loan obligations (CLOs) is conducted by emails,
through which the selling customers might communicate their indicative reserve prices with dealers (Hendershott et al.,
2020). Second, it allows SMS to nest BB as a special case of n = 1, under which the customers effectively have Nash
bargaining power q and the dealers (1 − q). See Section 3.2 for details.
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equilibrium objects. For example, a higher ρ always pushes the equilibrium asset allocation toward

the Walrasian level, reducing the sizes of both the buyer- and the seller-customers, thus improving

welfare. In contrast, larger n can drive up the size of the short-side customers, i.e., away from the

efficient Walrasian level, possibly reducing welfare.

The key mechanism is a “bottleneck” effect, which arises from how the search capacity n

asymmetrically affects the matching on the two sides of the market. To see this, suppose 90% of

the dealers have inventory and the other 10% do not. Let us examine what happens when the

capacity increases fromn = 2 ton = 3: For a customer-seller, the matching rate with a no-inventory

dealer increases from 1 − 0.92 = 19% to 1 − 0.93 = 27.1%. Such an improvement in matching

significantly adds to the asset inflow to dealers from customer-sellers. However, the matching rate

for customer-buyers and dealers with inventories only improves by 0.9%, from 1 − 0.12 = 99%

to 1 − 0.13 = 99.9%. The negligible increase of the outflow is not at all enough to balance the

significant rise in the inflow. That is, the asset flow is “stuck” at the dealers, creating a bottleneck,

and more buyers are left unmatched.2 Such an increase in customer-buyers leads to a surge in

unrealized trading gains and may reduce welfare. To emphasize, this bottleneck effect is unique

to the search capacity n. It always arises except in the knife-edge case where the proportions of

dealers with and without inventory are exactly equal. In contrast, the search intensity ρ does not

create any asymmetry in matching and always improves welfare.

Section 4 studies how customers choose between BB and SMS. Given that SMS offers faster

(electronic) connection and more connection with dealers, one might wonder whether customers

still use BB at all. The analysis reveals a downside of SMS when customers have low chance

to commit to their reserve prices, i.e., when q is low in SMS. On MarketAxess for example, a

customer always receive take-it-or-leave-it offers from dealers, effectively q = 0. In this case, the

2 It is the increase of the unmatched customer-buyers that balances the inflow and the outflow in equilibrium. More
precisely, the asset inflow to (outflow from) the dealer sector is the product of (i) the population size of customer-sellers
(-buyers) and (ii) the dealer-seller (-buyer) matching rate. Whereas the inflow increases via the significantly higher
matching rate (the intensive margin), the outflow increases via the increment in the larger customer-buyer population
size (the extensive margin). This echoes the asymmetric effect of the search capacity n.
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customer’s expected trading gain is completely determined by the price competition among the

contacted dealers. If such competition is insufficient, little trading gain is left for the customer,

because any matched counterparty dealer will charge a monopoly price, knowing that she is likely

the only counterparty that the customer finds (out of the n). In contrast, in BB, a customer always

has some chances to secure the full trading gain, as long as q in BB is positive.

In equilibrium, the customers do not always use SMS. In particular, when the asset is very

imbalanced in supply, one side of the market strictly prefers BB over SMS. Consider the case of

excess supply for example. The large number of customer-sellers flood the dealer sector with the

asset, making most of the dealers full in inventory. Consequently, the remaining customer-sellers

find it very difficult to find dealer counterparty and, even if they do use SMS, any matched dealer

will knowingly charge a monopoly price. Instead, resorting to BB, a customer-seller can still

negotiate a reasonable price with the dealer. This prediction echos the empirical finding in O’Hara

and Zhou (2020) that when corporate bonds are under fire sell (i.e., in excess supply), the electronic

trading volume share drops. Arguably, such an intrinsic tradeoff between SMS and BB could have

hindered the adoption of electronic OTC trading in corporate bond markets.

The customers’ endogenous choices between BB and SMS also have welfare and market design

implications. The analysis shows that when the search intensity ρ is high, a social planner strictly

prefers SMS over BB, simply because SMS offers better matching, which creates large trading

gains. Unlike the planner, who does not care about the split of trading gains, the customers might

shy away from SMS because the trading gain split there is inferior, compared to that in BB. Such

inefficiency in technology adoption can be reduced by policies and market designs that incentivizes

customers to use SMS. In the model, this can be achieved by setting a large enough q in SMS, e.g.,

by allowing customers to commit to their reserve prices in RFQ platforms.

The analysis, however, caveats that such policy and design fixes might not always work,

depending on the intrinsic characteristics of the asset traded. For example, when the search

intensity ρ is low, having all investors using SMS is not efficient, because of the bottleneck effect—
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the dealer sector might be inefficiently holding too many assets. Such a distinction between “fast”

and “slow” moving assets is realistic. While corporate bonds on SMS trade in a few minutes

(Hendershott and Madhavan, 2015), auctions of collateralized loan obligations (CLOs) can take a

day or two (Hendershott et al., 2020). Asset-specific design and policies should be considered, as

opposed to market-wide, blanket recommendations.

Contribution and related literature

The paper contributes to four strands of the literature. First, adding to the search models of

OTC markets, this paper introduces the possibility for investors to search for multiple potential

counterparties at the same time. In contrast, previous search models focus on BB as in, for example

Duffie, Gârleanu, and Pedersen (2005, 2007), Weill (2007), Vayanos and Weill (2008), Lagos and

Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), Üslü (2019), Hugonnier, Lester, and Weill

(2020). A noteworthy consequence is that in SMS, the competition among uncertain number of

quoting investors generates price dispersion. Several other works also feature price dispersion

but with different underlying mechanisms. In Hugonnier, Lester, and Weill (2020) and Shen,

Wei, and Yan (2018), investors’ heterogeneous valuations drives price dispersion. Vayanos and

Wang (2007) show that investors with different horizons form a “clientele” equilibrium, where

assets of the same fundamentals are priced differently. Dealers of different inventory levels may

quote prices differently as in Yang and Zeng (2018), who show that dealers’ coordination leads to

multiple equilibria with high and low liquidity. In Zhang (2018), dealers offer different price menus,

contingent on customers’ history, to screen customers of unobservable but persistent types. Arefeva

(2017) studies a housing market in which each seller runs an auction among potential buyers, similar

to SMS but with an exogenous influx of buyers.3 The nature of the price dispersion in the current

3 Price dispersion has also been often associated with the structure of dealer networks. Li and Schurhoff (2019)
show that central dealers charge much higher markups than do peripheral ones in the municipal bond market; see also
Maggio, Kermani, and Song (2017). Hollifield, Neklyudov, and Spatt (2017) turn to the pricing of securitizations
and, in contrast, find a centrality discount for core dealers. On the theory side, Colliard, Foucault, and Hoffmann
(2020) study the distribution of inter-dealer prices on an exogenous network and generate predictions regarding the
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model is different. It is due to the strategic behavior of quoters, not to the heterogeneity among them,

and such strategic behavior is endogenously affected by search frictions. A unique consequence is

that the search friction shapes both the response rate dispersion and the price dispersion.

Second, this paper contributes to the theory literature on electronic OTC markets. Vogel

(2019) studies a hybrid OTC market where investors can trade in both the traditional voice market

(modeled after Duffie, Dworczak, and Zhu, 2017) and the electronic RFQ platform. Liu, Vogel,

and Zhang (2017) compare the the electronic RFQ protocol in an OTC market with a centralized

exchange market. Both papers model the RFQ trading similarly to the current paper, in which

the searching agent reaches out to a finite number of potential counterparties who respond with

uncertainty. The key difference is that in these two papers the RFQ response rates are exogenous,

whereas they are endogenous in this paper and depend on both search intensity and search capacity.

Importantly, such an endogenous response rate drives the results of asset allocation and efficiency,

as well as the comparison between SMS and BB. Riggs et al. (2019) study the RFQ trading in

Swap Exchange Facilitites. Their model share with this paper a same prediction that RFQ response

rate decreases in n, the number of potential counterparties (i.e., dealers in their model). They

explain this phenomenon through winner’s curse: winning the RFQ from customer against more

competitor dealers implies a worse interdealer price later on. This adverse inference reduces the

dealers incentive to bid in the RFQ. The mechanism in this paper is different: a larger n makes

matching more efficient, reducing the number of traders who will respond to RFQ, i.e., those

unmatched traders with opposite trading needs. In a different line, Saar et al. (2019) compare

dealers’ market making (directly liquidity provision) and matchmaking (searching on customers’

behalf for counterparties) and study the effects of bank dealers’ balancesheet costs.

Third, there is a growing literature comparing centralized versus decentralized trading (Pagano,

connectedness of core and peripheral dealers. Neklyudov (2019) shows that dealers’ heterogeneous search technology
creates a centrality discount but inter-dealer trades might result in a centrality discount. Zhong (2014) analyzes the
endogenous network formation of dealers and find that order sizes are, in addition to the network structure, important
in determining prices. Compared to the above, a key message of this paper is that even when agents are homogeneous
and in the absence of a specific (dealer) network, search frictions alone can generate price dispersion.
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1989; Chowdhry and Nanda, 1991) in various aspects. Babus and Parlatore (2017) study the

endogenous formation of fragmented markets due to investors’ strategic behavior. Glode and

Opp (2019) compare the efficiency of OTC and limit-order markets in a setting where investors

endogenously acquire expertise. Lee and Wang (2019) study uninformed and informed investors’

venue choice through an adverse selection channel. Dugast, Üslü, and Weill (2019) examine banks’

choice among centralized trading, OTC trading, or both, in a setting where the banks differ in their

risky asset endowment and in their capacity of OTC trading. This paper instead compares the

conventional voice trading versus the relatively new electronic trading within the OTC setting.

Finally, this paper contributes to the auctions literature with uncertain number of bidders (see,

e.g., the survey by Klemperer, 1999) and to the literature on pricing with heterogeneously informed

consumers (e.g., Butters, 1977; Varian, 1980; and Burdett and Judd, 1983). Apart from the above

literature speaking to OTC markets, applications of such “random pricing” mechanisms are also

seen recently in exchange trading, such as Jovanovic and Menkveld (2015) and Yueshen (2017).

The main insight from this paper is that such uncertainty about the number of quoters (bidders) can

arise endogenously from the search process.

2 Model setup

Time is continuous. All random variables and stochastic processes are defined on a fixed probability

space. We consider the trading of an asset that produces a constant flow of a consumption good.

The asset is in fixed supply s.

Customers and dealers. There is a continuum of customers with mass mc and a continuum of

dealers with massmd . Both groups of agents are risk-neutral, discount the future utility at the same

rate r , and can each hold either zero or one unit of the asset. An owner of the asset will be denoted

by o and a non-owner n.

The two groups of agents differ in their preferences for the consumption good produced by the
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asset. Specifically, a customer owner derives instantaneous utility y(t) ∈ {yh,yl } (high or low),

which evolves stochastically according to a continuous time Markov chain:

P(y(t + dt) = yh |y(t) = yl ) = λudt and P(y(t + dt) = yl |y(t) = yh ) = λddt,

where λd and λu are the switching intensities. A dealer owner instead receives instantaneous utility

yd , where yd is constant—dealers are not subject to preference shocks.

In summary, there are four types of customers, {ho,hn, lo, ln}, and two types of dealers, {do,dn}.

Their population measures at any time t are denoted by mσ (t) for σ ∈ {ho,hn, lo, ln,do,dn}, with

mho(t) +mhn(t) +mlo(t) +mln(t) =mc andmdo(t) +mdn(t) =md .

Search and trading. The setup above follows Hugonnier, Lester, and Weill (2020) but with

all dealers having the same preference. We generalize how customers interact with dealers by

introducing a trading technology characterized by three parameters, {n, ρ,q}: At a Poisson process

with intensity ρ, a customer can contact n dealers, selected from the whole dealer population at

random. The Poisson processes for different customers are independent from one another.4 Upon

contacting the dealers:

• With probability q, the customer moves first, making a take-it-or-leave-it offer (TIOLIO) to

all the contacted dealers, who then choose to accept the offer or walk away. If more than one

dealer accepts, the customer randomly chooses one to trade with.

• With probability 1−q, then dealers move first, simultaneously making independent TIOLIOs

to the customer, who then chooses the best quote or walk away.

A contacted dealer may be unable to accommodate the contacting customer due to the inventory

constraint. For example, the customer might want to sell, while the contacted dealer might already

hold one unit of the asset. Importantly, each dealer makes his decision independently, not knowing

the types of the other (n − 1) contacted dealers.
4 Customers can choose how many, possibly fewer than n, dealers to contact. Since there is no cost of contacting

more, in equilibrium, customers will always choose to contact n dealers. With contact cost, investors in Riggs et al.
(2019) choose an interior number of contacts. Such cost does not bring novel insights in the current model setting and,
hence, is set to zero.
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Parameter values and supports. We normalize the customer mass to mc = 1 and require the

dealer mass md > 0. We also require s ∈ (0, 1 +md) so as to study asset allocation meaningfully.

The customers’ preference switching intensities are strictly positive, i.e., λu > 0 and λd > 0. We

set yh > yl so that some customers are “high” type and some “low.” An additional constraint on yd

will be introduced later in Proposition 2 to ensure there is always positive gains from trade. The

technology parameters have supports n ∈ N (the natural numbers), ρ ∈ (0,∞), and q ∈ [0, 1].

Remarks. Several remarks about the model are in order.

Remark 1. The trading technology is general enough to encompass some most common protocols in

OTC trading. For example, the case ofn = 1 can be thought of customers reaching dealers by phone

or email and determining the terms of trade via bilateral bargaining (BB), a setup frequently seen in

the literature. The case of n > 1 captures technologies that allow a customer reach multiple dealers

in one “click,” hence the name simultaneous multilateral search (SMS). For example, this is the case

for the RFQ protocol on electronic platforms (like MarketAxess and Swap Execution Facilities,

SEFs); for auctions like bid/offer-wanted-in-competition (B/OWIC); and in housing markets where

a seller can be in touch with possibly many buyers at the same time.

Remark 2. In practice, customers can choose how to get in touch with dealers. They can always dial

up to call dealers (BB) but they can also click buttons on electronic platforms like RFQs (SMS).

After exploring the equilibrium properties of one general technology in Section 3, we study how

customers choose between “call” and “click” by introducing both technologies in Section 4.

Remark 3. The general trading technology is governed by three parameters:

• The search intensity ρ, inherited from DGP and HLW, implies that the technology connects a

customer with dealers at exponential waiting times with expectation 1/ρ. For example, auctions

on MarketAxess vary in length from 5 to 20 minutes (Hendershott and Madhavan, 2015). Trad-

ing of collateralized loan obligations (CLOs) is typically organized through B/OWIC by email

(Hendershott et al., 2020) and can take considerably longer time.
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• The search capacity n, new to this paper, flexibly nests bilateral bargaining (n = 1) with SMS-like

protocols that allow customers to contact multiple dealers. For example, on the MD2C platform

operated by Bloomberg Fixed Income Trading, clients can select up to n = 6 quotes (Fermanian,

Guéant, and Pu, 2017). On Bloomberg Swap Execution Facility (SEF), this upper bound is set

to n = 5 (Riggs et al., 2019).

• The probability q reflects the customer’s intrinsic “bargaining power,” relative to the dealer(s),

when using the trading technology. When n = 1, q is the Nash bargaining power parameter as in

DGP and HLW. When n > 1, q can reflect the customers’ ability to communicate, and commit

to, their reserve prices.5 On a typical RFQ platform such as MrketAxess, q is effectively zero as

customers can only solicit quotes from dealers but cannot set reserve prices (O’Hara and Zhou,

2020). Instead, when trading is less formally organized, q can be larger. The BWIC to sell CLOs

is conducted by email and it is possible that customers communicate through such emails their

indicative reserve price. In housing markets, sellers often post indicative asks that are negotiable.

Remark 4. In reality, not only customers can search for dealers. Dealers can also take initiatives

to reach customers. In this paper, we shut down such dealer-to-customer searches for two reasons.

First, to our knowledge, most SMS-like trading protocols occur between a single customer and

multiple dealers, not the other way. Hence, to study SMS, it is realistic to just focus on customer-

to-dealer searches, like RFQs and B/OWICs. Second, allowing dealers to also search for customers

essentially adds some baseline matching and trading to the economy. This will not affect the core,

novel results about SMS (n > 1) of this paper.

5 In our setting, a customer will always set reserve price equal to the reservation value of her counterparty, an
outcome equivalent to the customer making a TIOLIO to the n dealers. Thus, q can equivalently be thought of as the
customer’s probability to set reserve price.
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3 Stationary equilibrium

There are three sets of equilibrium objects: 1) the demographics {mσ }; 2) the agents’ pricing

strategies (detailed below); and 3) their value functions {Vσ }. These objects in general can depend

on time. This section looks for a stationary Markov perfect equilibrium, under which the objects

are time-invariant constants. We also focus on symmetric pricing strategies; that is, agents of the

same type use the same strategy when making TIOLIOs.

3.1 Demographics

There are in total six demographic variables, {mho,mln,mhn,mlo,mdo,mdn}, one for each type of

the agents. The following three conditions must hold in equilibrium by definition:

market clearing: mho +mlo +mdo = s;(1)

total customer mass: mho +mln +mhn +mlo = 1;(2)

total dealer mass: mdo +mdn =md .(3)

In a stationary equilibrium, the total measure of high type customers must be time-invariant; i.e.,

the net flow during any instance dt must be zero:

net flow of high type customers: (mlo +mln)λu��dt − (mho +mhn)λd��dt = 0,(4)

which also ensures that the net flow of low type customers is zero.

Two more equations are needed in order to pin down the six demographic variables. These two

last conditions arise from trading. In equilibrium, only two types of customers want to trade with

dealers: The lo-type wants to sell to dn-buyer, and the hn-type wants to buy from do-seller. The

other two types, ho and ln, stand by and do not trade (which is a conjecture for now and we will

later verify it after Proposition 2).

Consider the inflows to and the outflows from the the lo-sellers. In a short period of dt , a
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measure ofmloρdt of sellers will be searching, each having probability

νlo := 1 −
(
1 − mdn

md

)n
to find at least one dn-buyer (out of n) to trade.6 Hence, there is an outflow of νlomloρdt due to

the searching lo-sellers. In addition, due to preference shocks, there is an inflow ofmhoλddt and an

outflow ofmloλudt . In a stationary equilibrium, the sum of the in/outflows above must be zero:

net flow of lo-sellers: −νlomloρ −mloλu +mhoλd = 0.(5)

Analogously, define

νhn := 1 −
(
1 − mdo

md

)n
as the probability for a searching hn-buyer to find at least one do-seller. Then the zero net flow

condition for hn-buyers becomes:

net flow of hn-buyers: −νhnmhnρ −mhnλd +mlnλu = 0,(6)

which is the last equation needed to pin down the stationary demographics.

Lemma 1 (Stationary demographics). The demographics equations (1)-(6) uniquely pin down

the population sizes {mho,mln,mhn,mlo} ∈ (0, 1)4 and {mdo,mdn} ∈ (0,md)2.

Note that the stationary equilibrium population sizes depend on both the search intensity ρ and the

capacity n. In particular, the parameter n appears in the matching probabilities νhn and νlo, which

is new compared to the the bilateral bargaining protocol often seen in the literature. We will see

shortly that n has novel implications on various equilibrium objects.

A few additional observations are worth highlighting. First, in this economy, the hn-buyer-

initiated trading volume amounts to νhnmhnρ, while the lo-seller-initiated volume is νlomloρ. They

are also, respectively, the asset outflow from and into the dealer sector. Therefore, in a steady state

6 The exact law of large numbers in Duffie, Qiao, and Sun (2019) is applied so that the fractions of the populations
of each type are their expected values. See also Sun (2006) and Duffie and Sun (2007, 2012).
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equilibrium, the trading volume t must satisfy:

t := νhnmhnρ = νlomloρ,(7)

for otherwise the dealer-owner mass,mdo, will not be stable. Indeed, Equation (7) is guaranteed by

the system (1)-(6); in particular, by (5) − (6) + (4).

Second, while the system (1)-(6) has only two zero-flow conditions (Equations 5 and 6), the

stationarity of all other types of agents is also implied. Apart from the dealer stationarity (7) above,

−(4)− (5) gives νlomloρ −mlnλu +mhnλd = 0, ensuring that the net flow in and out of ln-bystanders

is zero. Likewise, (4) − (6) gives νhnmhnρ −mhoλd +mloλu = 0, ensuring that the net flow of

ho-bystanders is zero.

Finally, we derive some useful expressions for the customer masses. Equations (1), (2), and (4)

together imply the stable fractions of the high-type and the low-type customers:

mho +mhn =
λu

λd + λu
=: η and mlo +mln =

λu
λd + λu

= 1 − η.(8)

Then combining the market clearing condition (1) and the lo-seller net flow (5), we obtain

mlo = (1 − η)(s −mdo) −
t

λu + λd
,(9)

which intuitively says that the stationary mass of lo-sellers is a fraction (1 − η) of the residual

asset supply (s −mdo) available to customers, less a term t/(λu + λd) due to their active trading.

Combining (1) and (5) gives

mhn = η · (1 +mdo − s) − t

λu + λd
.(10)

Note that 1+mdo − s, which is the total mass of non-owner customers in this economy. That is, the

stationary mass of hn-buyers is the high-type fraction η of all non-owner customers, less the same

term due to trading. The above expressions are in fact generic in the search literature. For example,

if, as in DGP, customers find each other at intensity ρ without dealers, then the equations (9)

and (10) still hold withmdo = 0 and t = 2ρmhnmlo.
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3.2 Pricing strategies

This subsection studies the agents’ pricing strategies. We first take the agents’ value functions {Vσ }

as given to derive the potential gains from trade. (The value functions will be solved in the next

subsection.) Specifically, an agent’s reservation value R for the asset is her/his value function with

the asset less without:

Rl := Vlo −Vln, Rh := Vho −Vhn, and Rd := Vdo −Vdn .

Therefore, for a trade between an lo-seller and a dn-buyer to happen, the transaction price p must

fall between

Rl ≤ p ≤ Rd ;(11)

and likewise, for a trade between an hn-buyer and a do-seller, the price must fall between

Rd ≤ p ≤ Rh .(12)

For notation simplicity, denote the trading gains for the two kinds of trades respectively by

∆dl := Rd − Rl and ∆hd := Rh − Rd .(13)

For now, we make the conjecture that there are positive trading gains: 0 ≤ Rl ≤ Rd ≤ Rh, which

will be guaranteed by a condition on yd (see Proposition 2).7

Consider now a customer contacts n dealers using the trading technology. First, there is

probability q that the searching customer makes a TIOLIO to the dealers. In this case, it is optimal

for the customer to quote a price at the dealers’ reservation value, i.e., p = Rd .

Second, there is probability 1 − q that the n dealers independently quote to the customer. For

concreteness, suppose the customer is anhn-buyer (the case of a lo-seller is symmetric and omitted).

7 When this condition on yd is not met, there might be no trade in this economy. For example, suppose Rd > Rh .
Then there is no trade between do-dealers and hn-buyers and by the stationarity condition (7), there must be no trade
between dn-dealers and lo-sellers, either. We therefore focus on the more interesting and empirically relevant case with
trades.
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In this case, a quoting dealer must be a do-seller and would love to capture the full surplus by setting

p ↑ Rh. However, he faces potential competition from the other (n−1) dealers, as their asking quotes

might be lower than his. Yet not all of the other (n − 1) dealers are necessarily also do-sellers. The

quoting do-seller therefore engages in a price competition with unknown number of competitors.

Such price competition differs from the standard Bertrand price competition, in which every

dealer-seller quotes his reservation price of Rd and the customer-buyer gets the full surplus ∆hd .

Instead, every dealer-seller has an incentive to charge a higher price, Rd +α∆hd for some α ∈ [0, 1].

(When α = 1, Rd + α∆hd = Rh which is the customer-buyer’s reservation value.) This is because

he might actually be the only do-seller among the n contacted dealers, in which case his quote is

the only price available to the contacting hn-buyer. As long as α ≤ 1, the buyer will accept it8

and the dealer can pocket the difference α∆hd as his profit. In a Nash equilibrium, however, the

fraction α cannot be deterministic, as the undercutting argument of Bertrand competition will lead

to α ↓ 0. Yet, it would be strictly better off to quote some α > 0 as all the potential competitors

were to quote α ↓ 0. The heuristic discussion above is formalized in the proof and summarized by

the following proposition.

Proposition 1 (Dealers’ equilibrium quoting). Suppose a customer contacts n (≥ 1) dealer(s).

With probability 1−q, each dealer independently makes a TIOLIO. Within symmetric strategies,

there is a unique mixed-strategy equilibrium for the dealers. Define

F (x ; µ,n) :=
1
µ
−
(
1
µ
− 1

)
x−

1
n−1 , with support (1 − µ)n−1 ≤ x ≤ 1,

for some µ ∈ (0, 1) and n ∈ N. Then,

• a do-seller asks at Rl + α∆hd , where α is random with c.d.f. F (α ;mdo/md,n); and

• a dn-buyer bids at Rh − β∆dl , where β is random with c.d.f. F (β ;mdn/md,n).

Note that when n = 1, F (·) becomes a degenerate c.d.f. with a single probability mass at the

8 To see this, note that by accepting an offer p = Rd + α∆hd , the customer-buyer becomes ho-bystander and gets a
continuation value ofVho −p. If instead he rejects the offer, his value remains asVhn . This customer-buyer will accept
the offer as long as Vho − p ≥ Vhn , a condition equivalent to α ≤ 1.
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maximum support x = 1.

The proposition above implies that a quoting do-seller expects a trading price of Rl + ᾱ∆hd and a

quoting dn-buyer expects Rh − β̄∆dl , where

ᾱ := E[α] =
(
1 − mdo

md

)n−1
and β̄ := E[β] =

(
1 − mdn

md

)n−1
.(14)

To see this, consider a quoting do-seller and note that under the mixed-strategy equilibrium, he

must be indifferent across all possible α ∈ [0, 1]. In particular, the only situation for quoting α = 1

to “win” is that there are no other competing do-sellers; that is, with probability (1 −mdn/md)n−1.

Therefore, when contacted, a quoting do-seller expects a profit of ᾱ∆, where ᾱ can be interpreted

as his expected trading gain share. Likewise, a quoting dn-buyer expects β̄∆.

Proposition 1 characterizes a contacted dealer’s quoting strategy. From a contacting customer’s

perspective, however, the expected trading price has a different distribution, because she can pick

the best quote and because there might not be a quote if none of the contacted dealers are of the

matching type. Consider a contactinghn-buyer for example. He contactsn dealers knowing that the

number of counterparties he will actually find, Ndo, is random and follows a binomial distribution

with n draws and success rate mdo
md

, which is the expected response rate. Each of these Ndo dealers

then quotes a random price according to F
(
α ; mdo

md
,n
)
, following Proposition 1. (The hn-buyer can

safely ignore the other n − Ndo dealers’ quotes, as they both want to buy.) The contacting hn-buyer

then picks the lowest ask among the Ndo available quotes. Conditional on the realization Ndo ≥ 1,

the c.d.f. of this minimum ask is 1 − (1 − F (α ; ·))Ndo−1. (When Ndo = 0, the hn-buyer finds no ask

quote and there is no trade.) Averaging across all possible Ndo ∈ {1, ...,n}, the corollary below

gives the expectation of this minimum ask quote.

Corollary 1 (Trading prices). DefineG(µ,n) := nµ·(1−µ)n−1

1−(1−µ)n for some µ ∈ (0, 1) and n ∈ N. Then,

with probability q, a searching customer sets the price equal to the dealers’ reservation value Rd;

and with probability 1 − q,

• an hn-buyer expects ask quotes from do-dealer(s) with probability
(
1 −

(
1 − mdo

md

)n)
and
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the expected best ask, is Rd + Ā∆hd , where Ā = G
(
mdo
md
,n
)
; and

• an lo-seller expects bid quotes from dn-dealer(s) with probability
(
1 −

(
1 − mdn

md

)n)
and

the expected best bid, is Rd − B̄∆dl , where B̄ = G
(
mdn
md
,n
)
.

The above expected quotes, Rd + Ā∆hd and Rd − B̄∆dl , are also the average trading prices in

buyer- and seller-initiated trades, respectively. The average trading price across all trades is

p̄ = Rd +
1 − q

2
(
Ā∆hd − B̄∆dl

)
.(15)

Note that when n = 1, Ā = B̄ = 1 for all µ ∈ (0, 1).

Several features of the equilibrium pricing above are worth highlighting.

Splitting the surplus. Corollary 1 shows how the trading gains are split between one contacting

customer and n potential counterparty dealers. Recall that with probability q, the customer is able

to capture the full trading gain. Therefore, conditional on finding at least one dealer of her matching

type, an hn-buyer expects a profit of

q∆hd + (1 − q)(Rh − (Rd + Ā∆hd)) = (q + (1 − q)(1 − Ā))∆hd,(16)

while an lo-seller expects

q∆dl + (1 − q)((Rd − Ā∆hd) − Rd) = (q + (1 − q)(1 − B̄))∆dl .(17)

Thus, a contacting hn-buyer expects a fraction of (q + (1 − q)(1 − Ā)), and the rest (1 − q)Ā is

expected by the Ndo contacted do-sellers. The split of the trading gains depends on the search

capacity n varies. When n = 1, the do-seller becomes a monopolist who sets Ā = 1, effectively

extracting all the surplus ∆hd . When n ↑ ∞, the do-seller is effectively price-competing with

infinitely many others and all the surplus is attributed to the contacting buyer, as in a Bertrand

competition with Ā = 0. That is, a larger search capacity n “adjusts” the split of the trading gains

from dealers to customers (Ā is decreasing in n, takingmdo as given).9

9 Proposition 1 offers another way to decompose the trading gains, between a pair of matched customer and dealer.
For example, between a contacting hn-buyer and a matched quoting do-seller, the former gets (1 − ᾱ)∆hd and the
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Endogenous bargaining power. In the example above, the fractions (q+(1−q)(1−Ā)) vs. (1−q)Ā

are reminiscent of the bargaining power parameters in a Nash bargaining game like in DGP and in

HLW. There are three key differences. First, these fractions are endogenous in the current model,

depending on the equilibrium population sizes of counterparties, reflected in the endogenous Ā. As

a special case, when n = 1, Ā = 0 and the split of trading gain defaults to the Nash bargaining case

where the customer has the exogenous bargaining power q and the dealer has 1 − q. On the other

hand, under the RFQ-like protocols, customers only solicit quotes (q = 0) and they only rely on

the n (> 1) dealers’ price competition to extract trading gains. Second, when n > 1, a customer’s

bargaining power is one-to-many, as she contacts multiple potential counterparties. In DGP and

HLW for example, the bargaining power parameters are always one-to-one (bilateral). Third, not

only the agent type (customer vs. dealer), but also the direction of the trade (buying vs. selling),

matters. For example, ado-seller gets a fraction of (1−q)(1−Ā), while adn-seller gets (1−q)(1−B̄).

In contrast, the exogenous bargaining power parameters, like q, are typically not directional.

Price dispersion. Proposition 1 and Corollary 1 imply that there is price dispersion in equilibrium,

in the form of random markups or markdowns. Such dispersion is due to the unknown number

of competitors, an intrinsic feature in SMS: The contacted dealers’ types are unknown to each

other. In the current stylized model, such types boil down to the dealers’ inventory holdings (do

vs. dn). In real-world trading, agents’ other characteristics (like risk-aversion, patience, wealth,

relationship with customers, etc.) can enrich their possible types. As long as such a friction

remains, price dispersion will be a robust feature in equilibrium. Empirical evidence supports

this equilibrium result. For example, Hendershott and Madhavan (2015) document a significant

dispersion in dealers’ responding quotes.

latter gets ᾱ∆hd . Recall that Ndo is a Binomial random variable of n draws and success rate mdo/md . Then indeed,
Ā = E[Ndo | Ndo ≥ 1 ]ᾱ , where E[Ndo | Ndo ≥ 1 ] = (nmdo/md )/(1 − (1 −mdo/md )n).
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3.3 Value functions

We study the stationary equilibrium value functions {Vσ } in this subsection. Consider first an ho-

bystander (a customer not trading). Over a short period dt , the ho-bystander gets a flow utility yhdt

from holding the asset; plus, with intensity λddt , she switches to lo-type and her value changes by

Vlo−Vho, minus the depreciation of rVhodt due to discounting. Hence, the Hamilton-Jacobi-Bellman

(HJB) equation is

0 = yh + λd · (Vlo −Vho) − rVho .(18)

Similarly, an ln-bystander has HJB equation

0 = λu · (Vhn −Vln) − rVln .(19)

Consider next an lo-seller. Just like before, over dt units of time, her value increases byyldt due

to the asset holding. It may also change by Vho −Vlo with intensity λudt due to a preference shock.

The value also reduces by rVlodt due to discounting. Apart from these three, there is trading, from

which she expects an instantaneous trading gain of ζlo∆dldt , with coefficient

ζlo :=ρνlo · (q + (1 − q)(1 − B̄))

representing an lo-seller’s “expected trading gain intensity:” She searches at intensity ρ, finds at

least one counterparty dealer (dn-type) with probability νlo, and, by Equation (16), expects a gain

of (q + (1 − q)(1 − B̄))∆dl in such a case. Therefore, the HJB equation for an lo-seller is

0 = yl + λu · (Vho −Vlo) − rVlo + ζlo∆dl .(20)

Similarly, an hn-buyer has

0 = λd · (Vln −Vhn) − rVhn + ζhn∆hd,(21)
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where the expected trading gain intensity is

ζhn :=ρνhn · (q + (1 − q)(1 − Ā)).

Finally, consider the dealers. A do-seller’s HJB equation has the similar structure as before:

0 = yd − rVdo + ζdo∆hd .(22)

Note that there is no type-switching term because dealers do not receive preference shocks. To find

a do-seller’s trading gain intensity ζdo, note that the total trading gain from all hn-buyer initiated

trades amounts to mhnρνhn∆hd . Since each hn-buyer expects ζhn∆hd , a do-seller gets the per capita

remainder; that is,

ζdo :=
mhnρνhn −mhnζhn

mdo
=
mhnρνhn
mdo

(1 − q)Ā.

Similarly, a dn-buyer has

0 = −rVdn + ζdn∆dl(23)

with trading gain intensity

ζdn :=
mloρνlo −mloζlo

mdn
=
mloρνlo
mdn

(1 − q)B̄.

Recall from Equation (13) that both trading gains ∆hd and ∆dl are linear combinations of the

value functions {Vσ }. Thus, the equations (18)-(23) constitute a linear system with six equations

and six unknowns. The proposition below solves the system in terms of the total trading gain and

the reservation prices.

Proposition 2 (Equilibrium value functions). Define the thresholds yd and y
d

as

yd := yh − (yh − yl )
λd

λd + λu + r
and y

d
:= yl + (yh − yl )

λu
λd + λu + r

.

When y
d
≤ yd ≤ yd , the reservation values satisfy Rl < Rd < Rh and there exists a unique

stationary equilibrium, where the value functions are the solution to the linear equation systems
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(18)-(23).

The proposition highlights that an assumption is needed that yd ∈ (yd,yd), which effectively

guarantees positive trading gains, i.e., ∆hd = Rh−Rd > 0 and ∆dl = Rd−Rl > 0. (Similar conditions

are also seen in the literature; e.g., Proposition 3 of HLW.) When yd < (yd,yd), intuitively, the

dealers are no longer “intermediaries” between buyers and sellers and might be unwilling to trade

with the buyers or the sellers and the economy enters a steady state without trading. To rule out

such an uninteresting scenario, in the rest of the analysis, we focus on the case of strictly positive

trading gains by assuming that yd ∈ (yd,yd) always holds.

Finally, we verify the earlier conjecture that indeed ho- and ln-customers are bystanders:

Lemma 2 (Bystanders do stand by). When ∆hd > 0 and ∆dl > 0, both ho- and ln-customers

stay out of trading.

Proof. If one did switch to trading, her expected trading price p would fall between the reservation

values. For example, if an ho-customer were to sell, she would get a price between Rl = Vlo −Vln ≤

p ≤ Vdo − Vdn = Rd and continue with Vhn. Given the strictly positive trading gains, we have

Rd < Rh = Vho −Vhn, implying Vho > Vhn + p, and the ho-customer never wants to sell. The same

holds for an lo-customer. They are really bystanders. □

3.4 Equilibrium properties

In this subsection, we study the equilibrium properties of SMS. We are particularly interested in

the contrast of the two search parameters, the intensity ρ and the capacity n—how fast customers

can find dealers vs. how many dealers can be reached in one “click.”

We focus on the case where the asset is in excess supply, formally defined below:
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Lemma 3 (The long and the short sides.). The hn-buyers are on the short-side of the market,

i.e.,mhn < mlo, if and only if

s > η +
1
2
md, where η :=

λu
λu + λd

.(24)

Intuitively, the threshold on the right-hand side of (24) is the “intrinsic demand” for the asset: The

fraction η is the population size of the steady-state high-type customers, who are natural holders

of the asset. In addition, since the dealers are homogeneous, half of them are also natural holders

of the asset. When the asset supply s is in excess of such intrinsic demand, the hn-buyers are on

the short-side and the lo-sellers on the long-side. (The case of excess demand, s ≤ η + 1
2md , is

symmetric and is omitted for brevity.)

3.4.1 Dealer sizes and matching rates

Figure 1 illustrates how the dealer sector is affected by the two search parameters. The contour

graphs have the search intensity ρ on the vertical axis and the capacity n on the horizontal axis, both

in log scale. Panel (a) and (b) focus on the population sizes of the dealers. It can be seen that as

either ρ or n increases, the size of do-sellers increases, while that of dn-buyers reduces. Note that

the isoquants in the two panels complement to mdo +mdn = md , which we choose to be md = 0.1

for the numerical illustration.

Note that when either n or ρ is sufficiently large, the dealer masses converge tomdo → 0.1 and

mdn → 0, which turn out to be the values in the Walrasian equilibrium: Under the chosen parameter

values, there are η = λu/(λu + λd) = 0.5 units of h-type of customers. Given the supply of s = 0.6,

the Walrasian allocation is that all h-type customers hold the asset and the rest s − η = 0.1 units of

the asset go to the dealer sector (because yh > yd > yl ), i.e., mdo → 0.1 and mdn → 0. That is,

both ρ and n share the same effect of pushing the dealer masses towards the Walrasian equilibrium.

Panel (c) and (d) illustrate the effects on the matching rates, νhn = 1 −
(
1 − mdo

md

)n
and νlo =

1−
(
mdn
md

)n
, which are the respective probabilities for a searching hn-buyer and a searching lo-seller
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(c) Matching rate for an hn-buyer, νhn
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(d) Matching rate for an lo-seller, νlo

100 101 102

Search capacity, n

10−2

10−1

100

101

S
ea

rc
h

in
te

n
si

ty
,

ρ

0.
30

0.40

0.50

0.60

0.70

0.8
0

0.
90

0.
95

0
.9

8

Figure 1: Dealer sizes and matching rates. This figure plots how the search intensity ρ and the search
capacity n affect the dealer sizes and the customers’ matching rates with dealers. Panel (a) and (b) plot the
sizes of dealers. Panel (c) and (d) plot the probability for a customer to find a matching dealer. Other than ρ

and n, the parameters are set at s = 0.6, md = λd = λu = r = 0.1, yh = 10.0, yd = 3.5, and yl = 0.0. (The
customers’ intrinsic bargaining power q is irrelevant here as the equilibrium demographics do not depend on
it; see Equations 1-6 and Lemma 1.)

23



to find at least one counterparty dealer. As seen in Panels (a) and (b), a higher search intensity ρ

increases mdo and decreases mdn, which makes it easier for hn-buyers (the short side) to find a

counterparty dealer, but more difficult for lo-sellers (the long side). That is, along any vertical cut,

a higher ρ increases νhn in Panel (c) but decreases in νlo in Panel (d).

This effect, however, is not shared by the search capacityn: Along any horizontal cut in Panel (c)

or (d), both νhn and νlo increase with n. This is because a higher n allows the searching customer to

reach more potential counterparties, as reflected in the exponent n in the expressions of νhn and νlo

above. This effect of n dominates the decreasing mdn in νlo, resulting in the increasing trend seen

in Panel (d). The follow proposition formally summarizes the patterns seen in the figure.

Proposition 3 (Search technology and the customer-dealer matching). When there is excess

supply, both the search intensity ρ and the capacity n increase mdo and reduce mdn, but their

effects on customers’ matching rates are different: a higher ρ increases νhn but decreases νlo,

while a larger n increases both νhn and νlo.

This contrast between ρ and n is the key to understand the effect on asset allocation and welfare,

which we examine below.

3.4.2 Customer sizes, trading volume, and welfare

Figure 2(a) shows that the trading volume t (Equation 7) increases with both the search intensity ρ

and the capacity n. This is intuitive: both search technology parameters improve the matching

efficiency between customers and dealers.

Instead, Figure 2(b) and (c) shows there is stark contrast between how ρ andn affect the customer

population sizes. While a higher intensity ρ always decreases the mass of the unmatched, trading

customers—helping the efficient allocation, the effect of a larger capacity n differs for the short and

the long side of the market. Specifically, while n monotonically reducesmlo (the long side), it can

increase mhn (the short side) when sufficiently large. For example, a horizontal cut of ρ ≈ 0.02 in
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Panel (b) shows that a sufficiently large n increases mhn. That is, a larger search capacity n might

exacerbate inefficient allocation.

Proposition 4 (Search technology and customer sizes). The trading volume t = ρmloνlo =

ρmhnνhn increases in both n and ρ. The search intensity ρ always reduces both mhn and mlo.

The search capacity n always reduces the long-side customer mass but has ambiguous effect on

the short-side customer mass. In particular, when n is sufficiently large, the short-side customer

mass increases with n.

The bottleneck effect. Intuitively, a larger search capacity n helps matching: As seen in Fig-

ure 1(c) and (d), both the probabilities of νlo and νhn of finding at least one dealer counterparty

increase with n. However, the magnitudes of the increases are far from equal: along any horizontal

cut, the increment in νlo is much more substantial than that in νhn. That is, all else equal, an increase

in n matches many more lo-dn pairs than hn-do pairs. This is because the hn-buyers are on the

short-side of the market and there are many more do-dealers to be easily found (than dn-dealers for

the long-side lo-sellers); see Figure 1(a) and (b).

Note that the lo-dn trades let the asset flow into the dealer sector from lo-sellers, while the

hn-do trades let the asset flow out of the dealers to hn-buyers. Such asymmetric effects of n—the

substantially larger increment in the inflow and than in the outflow—clog the asset flow at the

dealers, creating a “bottleneck.”

In other words, the bottleneck effectively takes in the asset from lo-sellers but not giving it out

to hn-buyers. Therefore, the size of hn-buyers, mhn, increases, while the size of lo-sellers, mlo,

reduces. Hence, there are two pairs of asymmetric effects: In terms of matching probability, νlo

increases much faster than νhn. In terms of population sizes,mlo shrinks whereasmhn surges. These

two pairs together ensure the stationarity of dealers in the new equilibrium, with ρνlomlo = ρνhnmhn

(Equation 7). Two comments regarding this bottleneck are worth emphasizing.

• The bottleneck effect arises only with the search capacity n, but not with the intensity ρ. This

is because ρ scales up the inflow ρνlomlo and the outflow ρνhnmhn together and there is no
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(d) Welfare, w = 1
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100 101 102

Search capacity, n

10−2

10−1

100

101

S
ea

rc
h

in
te

n
si

ty
,

ρ

30 30

31

33

36

41

46

50

52

Figure 2: Customer sizes, trading volume, and welfare. This figure plots how the search intensity ρ and
the search capacity n affect customer sizes and welfare. Panel (a) plots the trading volume. Panel (b) and (c)
plot the sizes of hn-buyers and of lo-sellers, respectively. Panel (c) plots welfare. Other than ρ and n, the
parameters are set at s = 0.6, md = λd = λu = r = 0.1, yh = 10.0, yd = 3.5, and yl = 0.0. (The customers’
intrinsic bargaining power q is irrelevant here as the equilibrium demographics do not depend on it; see
Equations 1-6 and Lemma 1. Neither is q relevant for welfare, as it only affects the split of the trading gain
but not the total size of it.) 26



asymmetry.

• The short-side customer mass—mhn in Figure 2(b)—increases with n only when n is sufficiently

large. This is because the matching probability νhn is strongly concave in n. When n is still

small, its incremental effect on νhn is still substantial. For example, in Figure 1(c), it can be seen

that the incremental effect of a small n easily pushes νhn up by 10% (from 0.6 to 0.7) but quickly

diminishes as n becomes large. That is, when n is small, its increase in the asset outflow from

dealers to hn-buyers is still significant, thus preventing the bottleneck.

Welfare implications. The inefficient allocation due to the bottleneck can hurt welfare, which is

the present value of all asset-owners’ utility flows:

w :=
1
r
(yhmho + ydmdo + ylmlo).

Note that welfare is only determined by the demographics (Section 3.1). Unsurprisingly, this is

because the pricing strategies (Section 3.2) only affect the and the split of trading gains (Section 3.3),

but not the size of the total “pie.” Using Equations (9) and (10), recalling also thatmho +mhn = η,

one can rewrite the above as

w =

(
yd
r
mdo +

ŷ

r
(s −mdo)

)
+
(yh − yl )

r

t

λu + λd
,(25)

where

ŷ := ηyh + (1 − η)yl

can be interpreted as an average customer’s instantaneous utility flow for the asset, because in a

steady state there is always η fraction of h-type and 1 − η fraction of l-type customers.

Expression (25) highlights that welfare is composed of: (i) the steady-state asset allocation—

mdo units to the dealers and the rest (s −mdo) to the customers; and (ii) the gains from trade yh−yl
r ,

passing the asset from l-type to h-type. Effect (ii) is always positive and it scales with the trading

volume t , which is increasing in the search capacity n (Figure 1c). Effect (i) is ambiguous: As n

increases, a “swelling” bottleneck of mdo captures the asset from the customers, who on average
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value the asset at ŷ, at the dealers, who value the asset at yd . A welfare loss occurs whenever

yd < ŷ; and when such loss dominates the trading benefit (ii), the bottleneck destroys welfare.

Proposition 5 (Search technology and welfare). A higher search intensity ρ always improves

welfare. A larger search capacity n improves welfare only when ρ is sufficiently high. In

particular, when ρ is low enough and when yd < ŷ ∈ (y
d
,yd), a larger n reduces welfare.

Figure 2(d) illustrates such welfare losses. For example, along a horizontal cut at ρ ≈ 0.02,

welfare decreases with n. As the proposition suggests, the loss is particularly salient when the

trading is sparse; e.g., comparing ρ ≈ 0.02 with ρ ≈ 0.01. This is because when trading intensity ρ

is very low, the trading benefit (ii) above is effectively shut down with t = ρmhnνhn = ρmloνlo ↓ 0.

Note that unlike the search capacity n, the intensity ρ always improves welfare. The reason is

precisely because, as discussed earlier, there is no bottleneck effect from ρ.

3.4.3 The asset price

Figure 3(a) plots the contour graph of the asset’s average trading price, p̄, as given in Corollary 1.

When the search intensity ρ increases, p̄ monotonically reduces, eventually converges to the Wal-

rasian equilibrium level (which is yl/r = 0 under the current parametrization, as the hn-buyers are

on the short side). Intuitively, this is due to “the matching effect” of ρ: As customers can initiate

trades more frequently, the asset is allocated more efficiently and its price approaches the efficient

level. This monotonic convergence to Walrasian price is inherited from, e.g., DGP and HLW.

Yet, a larger search capacity n can push the asset price in the inefficient direction. For example,

along a horizontal cut at ρ ≈ 8, the price p̄ is initially decreasing but eventually increasing, away

from the Walrasian level. To understand why, note that the trading price p̄ is largely driven by the

dealers’ reservation value Rd , as shown in Panel (d), which has almost the same pattern as seen

in (c). So the key is to understand how n affects Rd .

A larger search capacity n has a novel “competition effect:” Competing with more potential

competitors, dealers’ trading gains are lower and so are their value functions. This competition
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(b) Dealers’ reservation value, Rd

100 101 102

Search capacity, n

10−2

10−1

100

101

S
ea

rc
h

in
te

n
si

ty
,

ρ

3
4
.0

28.0

20.0

14.0

10.0

8.0
6.0

Figure 3: The asset price and reservation values. This figure plots how the search intensity ρ and the
search capacity n affect the asset price and agents’ reservation values. Panel (a) plots the average trading
price of the asset. Panel (b) plots the dealers’ reservation value. Other than ρ and n, the parameters are set
at s = 0.6,md = λd = λu = r = 0.1, yh = 10.0, yd = 3.5, and yl = 0.0. The customers’ chance to commit to
their reserve prices, q, is set to 0.0 to reflect a realistic RFQ setting.

effect, however, has different magnitudes of impact ondo-sellers and ondn-buyers. From Figure 1(a)

and (b), it can be seen that for a moderately large n, there are many more do-sellers, who face the

short-side customers, than dn-buyers, who face the long-side. That is, the competition for do-

sellers is already close to perfect competition. The marginal increase in the competition thus

hurts Vdn much more than Vdo. Since Rd := Vdo − Vdn, a larger n therefore tends to raise the

dealer’s reservation value, which in turn pushes up the average trading price of the asset, against

the Walrasian equilibrium price.10

10 This competition effect of n on the asset price is always against the Walrasian level. In the case of excess demand,
i.e., when the hn-buyers are on the long side, a larger n hurtsVdo more thanVdn . The dealers’ reservation value Rd will
therefore decrease, again moving away from the Walrasian equilibrium price.
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4 SMS versus BB: How to search

In real-world trading, investors can choose their trading technologies. For example, while bilateral

bargaining is still the dominant form of trading in corporate bonds, electronic platforms with RFQ

protocols have been on the rise (O’Hara and Zhou, 2020). We consider investors’ choice of “Click

or Call” (Hendershott and Madhavan, 2015) in this section.

Specifically, in the framework set up in Section 2, we introduce two trading technologies, BB

and SMS, which differ in their parameters {nk, ρk,qk}, k ∈ {BB, SMS}. (Some realistic parameter

restrictions are imposed below.) Each customer can choose, at any point of time, which technology

to use to contact dealers and to trade, if she wants to. All dealers can be reached either by BB and

by SMS. The other model ingredients remain the same as in Section 2.

The objective is threefold. First, Section 4.1 analyzes how customers choose between the two

technologies. Second, we ask, can SMS-like electronic trading (e.g., RFQ) completely replace

traditional bilateral bargaining? The answer is no. Section 4.2 shows that in stress periods (e.g.,

after a fire sale), BB is used more often than SMS. Third, Section 4.3 draws implications on welfare,

policy, and market design.

Parameter constraints: Motivated by “calls” (BB) and “clicks” (SMS), we assume

nBB = 1, nSMS > 2, and ρBB ≤ ρSMS.(26)

In a bilateral call, a customer bargains with one dealer, hence nBB = 1. By clicking, a typical

real-world RFQ protocol connects the customer to multiple dealers, at least three in most of the

applications (see Remark 3), hencenSMS > 2.11 Earlier research has shown that electronic platforms

like MarketAxess can “provide considerable time savings relative to ... bilateral negotiations”

(Hendershott and Madhavan, 2015); and can “improve the speed of execution” (O’Hara and Zhou,

2020), motivating that ρBB ≤ ρSMS.

11 Excluding the special case of n = 2 allows us to reduce the number of cases to consider when characterising the
equilibrium in Proposition 6 and helps to streamline the exposition.
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The probabilities to set prices in respective technology, qBB and qSMS, also play an important

role. In most of the applications (e.g., MarketAxess), a customer using RFQ is always on the

receiving end of dealers’ TIOLIOs, suggesting qSMS = 0. On the other hand, in bilateral calls,

there is always room for negotiation and it is natural to expect qBB > 0. We do not impose such

constraints here but proceed to study how general values of qSMS and qBB affect the customers’

technology choices.

4.1 Choosing between SMS and BB

As in Section 3, the analysis focuses on a stationary equilibrium. We proceed in four steps: (i) We

first examine customers’ optimal technology choices taking their value functions as given. We then

take the technology choices as given and study (ii) the demographics and (iii) the value functions.

Finally, (iv) we establish the equilibrium by finding technology choices, demographics, and value

functions consistent with each other.

4.1.1 Technology choices

Recall from Section 2 that depending on her inventory holding and her preference, a customer

can be categorized into four types, σ ∈ {ho, ln,hn, lo}. Now the type-σ customers can be further

split into subtypes σ -BB and σ -SMS. We distinguish these two subtypes by superscripting the

relevant variables with their chosen technology k ∈ {BB, SMS}. For example, their masses satisfy

mBB
σ +m

SMS
σ =mσ and they have possibly different value functions V BB

σ and V SMS
σ , respectively.

The analysis can be simplified in two ways. First, note that in a stationary equilibrium, the

value functions are time-invariant. That is, if a type-σ customer prefers one technology over the

other at some point of time t , her technology choice will persist until her type changes (due either

to a preference shock or to trading). Hence, without loss of generality, we can focus on a type-σ

customer’s technology choice at the moment she just becomes type-σ . Second, both ho and ln

customers will be bystanders in equilibrium and do not trade—a result following positive trading

31



gains (Lemma 2). Therefore, there is no need to distinguish lnSMS vs. lnBB or hoSMS vs. hoBB and

we can focus only on the technology choices of the trading customers, hn and lo.

Denote by θσ ∈ [0, 1] the probability of a newborn type-σ customer choosing SMS (hence

choosing BB with probability 1 − θσ ), where σ ∈ {hn, lo}. Then

θσ


= 1{V SMS

σ >V BB
σ }, if V SMS

σ , V BB
σ ;

∈ [0, 1], if V SMS
σ = V BB

σ .

(27)

We shall focus on symmetric equilibria, where all customers of type σ choose the same θσ . Where

convenient, we will also occasionally write θSMS
σ = 1 − θBB

σ := θσ .

4.1.2 Demographics

There are six customer population sizes: {mho,mln,m
SMS
hn
,mBB

hn
,mSMS

lo
,mBB

lo
}; and in addition, there

are two types of dealers, {mdo,mdn}. For notation simplicity, write

mhn =m
SMS
hn +mBB

hn ; and mlo =m
SMS
lo +mBB

lo .

Then the four (aggregate) customer masses, {mho,mln,mhn,mlo}, must satisfy the conditions (1)-(4)

in Section 3.1. The other four conditions are analogous to the stationarity conditions (5) and (6):

net flow of lo-sellers using SMS: − νSMS
lo mSMS

lo ρSMS − λum
SMS
lo + θloλdmho = 0(28)

net flow of lo-sellers using BB: − νBB
lo mBB

lo ρBB − λum
BB
lo + (1 − θlo)λdmho = 0(29)

net flow of hn-buyers using SMS: − νSMS
hn mSMS

hn ρSMS − λdm
SMS
hn + θhnλumln = 0(30)

net flow of hn-buyers using BB: − νBB
hn m

BB
hn ρ

BB − λdm
BB
hn + (1 − θhn)λumln = 0(31)

where νk
lo
= 1 −

(
1 − mdn

md

)nk
and νk

hn
= 1 −

(
1 − mdo

md

)nk
are the probabilities for a customer to find

at least one counterparty dealer using technology k ∈ {BB, SMS}. Compared to Equations (5)

and (6) in Section 3.1, the key differences are (i) that every variable here is technology-dependent

and superscripted withk ∈ {BB, SMS}; and (ii) that only a fraction ofθσ of the newbornσ -customer
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use SMS, while the rest (1 − θσ ) use BB, where σ ∈ {hn, lo}.

The conditions (1)-(4) and (28)-(31) exactly pin down the eight demographic variables:

Lemma 4 (Stationary demographics with technology choice). Given the customers’ tech-

nology choices {θlo, θhn} ∈ [0, 1]2, Equations (1)-(4) and (28)-(31) uniquely pin down the

demographics {mho,mln,m
SMS
hn
,mBB

hn
,mSMS

lo
,mBB

lo
} ∈ [0, 1]6 and {mdo,mdn} ∈ (0,md)2.

The resulting expressions are similar to those implied by Lemma 1. In particular, (28) + (29) −

(30) − (31) + (4) gives the trading volume expression

t :=
∑
k

νklom
k
loρ

k =
∑
k

νkhnm
k
hnρ

k,(32)

an analogue to Equation (7) in Section 3, ensuring the stationarity of both dealer types.12 The h-

and l-type customer stationarity (8) also holds the same, and so do the expressions for the total size

of trading customersmlo =
∑

km
k
lo

andmhn =
∑

km
k
hn

as in Equations (9) and (10), respectively.

4.1.3 Value functions

Given the technology choices {θσ }, hence also the demographics, the value functions for all six

agent types can be derived analogously to those in Equations (18)-(23). For example, the value

functions of an ho-bystander and an ln-bystander must satisfy the HJB equations

yh + λd ·
(
max

[
V SMS
lo ,V BB

lo

]
−Vho

)
− rVho = 0;(33)

λu ·
(
max

[
V SMS
ho ,V

BB
ho

]
−Vln

)
− rVln = 0.(34)

Compared with Equations (18) and (19), the only difference is that upon a preference shock, a

newborn trading customer can choose which technology to use, hence the term of max
[
V SMS
σ ,V BB

σ

]
in the above HJBs (σ ∈ {lo,hn}).

12 The stationarity of all other types of agents are also ensured: For example, −(4) − (28) − (29) gives −λumln +∑
k

(
νklom

k
loρ

k + λdm
k
hn

)
= 0, which ensures the stationarity of ln-bystanders. Likewise, (4) − (30) − (31) gives

−λdmho +
∑

k

(
νkhnm

k
hnρ

k + λum
k
ln

)
= 0, which ensures the stationarity of ho-bystanders.
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The HJB equations for the trading agents are also similar to before:

HJB of lo-sellers using technology k: yl + λu · (Vho −V k
lo) − rV k

lo + ζ
k
lo∆

k
dl = 0;(35)

HJB of hn-buyers using technology k: λd · (Vln −V k
hn) − rV k

hn + ζ
k
hn∆

k
hd = 0;(36)

HJB of do-dealers: yd − rVdo +
∑
k

ζ kdo∆
k
hd = 0;(37)

HJB of dn-dealers: − rVdn +
∑
k

ζ kdn∆
k
dl = 0.(38)

Compared to Equations (20)-(23), the only difference is that the trading gains {∆hd,∆dl } and the trad-

ing gain intensities {ζlo, ζhn, ζdo, ζdn} are technology specific, superscripted with k ∈ {BB, SMS}.

For completeness, we derive these expressions below.

Using technology k, an lo-seller’s reservation value is Rk
l

:= V k
lo
−Vln, and that for an hn-buyer

is Rk
h

:= Vho − V k
hn

. A dealer’s reservation value is the same Rd := Vdo − Vdn as before. Then,

depending the customer’s technology k , the trading gain between an hn-buyer and a do-seller is

∆k
hd

:= Rk
h
− Rd and that between a dn-buyer and an lo-seller is ∆k

dl
:= Rd − Rk

l
. By Corollary 1, the

dealers’ respective average ask and bid are:

Āk =
nk mdo

md

(
1 − mdo

md

)nk−1

1 −
(
1 − mdo

md

)nk and B̄k =
nk mdn

md

(
1 − mdn

md

)nk−1

1 −
(
1 − mdn

md

)nk .

Thus, an hn-buyer expects ζ k
hn
∆k
hd

, while a do-dealer expects ζ k
do
∆k
hd

, where the respective trading

gain intensities are

ζ khn = ρkνkhn ·
(
qk + (1 − qk)(1 − Āk)

)
and ζ kdo =

mk
hn
ρkνk

hn

mdo
(1 − qk)Āk .

Analogously, an lo-seller expects ζ k
lo
∆k
dl

, while a dn-dealer expects ζdn∆k
dl

, with intensities

ζ klo = ρkνklo ·
(
qk + (1 − qk)(1 − B̄k)

)
and ζ kdn =

mk
hn
ρkνk

lo

mdn
(1 − qk)B̄k .
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Corollary 2 (Positive trading gains). When yd ≥ yd ≥ y
d

as defined in Proposition (2), there is

strictly positive gains from trade, i.e., Rd ∈ (Rk
l
,Rk

h
), for both k ∈ {BB, SMS}.

The corollary ensures that the same condition for yd as before is sufficient to guarantee positive

trading gains regardless of the equilibrium technology choices {θσ }. Note that the positive trading

gains also ensures that both the ho− and ln-customers do stay out of trading, following Lemma 2.

4.1.4 Equilibrium

A steady-state equilibrium is characterized by the following four sets of objects:

(i) trading customers’ technology choices {θlo, θhn};

(ii) agent demographics {mho,mln,m
SMS
hn
,mBB

hn
,mSMS

lo
,mBB

lo
,mdo,mdn};

(iii) dealers’ pricing {ĀBB, B̄BB, ĀSMS, B̄SMS}; and

(iv) agents’ value functions {Vho,Vln,V SMS
hn
,V BB

hn
,V SMS

lo
,V BB

lo
,Vdo,Vdn}.

As a quick recap, we started by fixing the technology choices at the end of Section 4.1.1 and then

solved the demographics in Section 4.1.2. The dealers’ pricing strategies remain the same as in

Proposition 1. The value functions are pinned down by Equations (33)-(38) in Section 4.1.3.

To establish an equilibrium, we now need to examine when the technology choices {θhn, θlo}

are consistent with the value functions {Vσ } according to Equation (27)—a fixed-point problem.

This is a seemingly daunting task, because the value functions {Vσ } are chained to the technology

choices {θσ } via many layers of endogenous variables: the trading gain intensities ζ s, the dealers’

pricing Ā and B̄, and the many demographic variables {mσ }. Below we walk through these layers

and show that solving for the equilibrium {θhn, θlo} ultimately boils down to comparing the sizes

of dealers,mdo (andmdn =md −mdo) with some threshold:

Lemma 5 (Three key endogenous variables: {θlo, θhn,mdo}). If the technologies satisfy

ρSMSqSMSnSMS < ρBBqBBnBB,(39)

35



then Equation (27) can be equivalently written as

θhn


= 1{mdo>md µ∗}, ifmdo ,mdµ

∗

∈ [0, 1], ifmdo =mdµ
∗

and θlo


= 1{mdn>md µ∗}, ifmdn ,mdµ

∗

∈ [0, 1], ifmdn =mdµ
∗
,(40)

where µ∗ ∈
(
0, 1

2

)
uniquely solves zSMS(µ) = zBB(µ), with zk(·) defined in (42) below for

k ∈ {SMS,BB}. If instead ρSMSqSMSnSMS ≥ ρBBqBBnBB, then θhn = θlo = 1.

Below we show the key steps behind the Lemma. We begin by comparing a trading customer’s

value functions under the two technologies, V SMS
σ and V BB

σ . Consider, for example, an lo-seller.

Substitute ∆k
dl
= Rd − Rk

l
= Rd − (V k

lo
−Vln) in her value function (35) to get

yl + λu · (Vho −V k
lo) − rV k

lo +
(
Rd − (V k

lo −Vln)
)
ζ klo = 0 =⇒ V k

lo =
yl + λuVho + (Rd +Vln)ζ klo

r + λu + ζ
k
lo

.

The above highlights that the only difference between V SMS
lo

and V BB
lo

is the respective trading gain

intensities ζ k
lo

. Clearly, V k
lo

is strictly increasing in ζ k
lo

. Likewise, V k
hn

is also strictly increasing in

ζ k
hn

. Hence, the technology choice (27) can be equivalently written as, for σ ∈ {lo,hn}:

θσ


= 1{ζ SMS

σ >ζ BB
σ }, if ζ SMS

σ , ζ BB
σ ;

∈ [0, 1], if ζ SMS
σ = ζ BB

σ .

(41)

To ease the notations, define on the support of µ ∈ (0, 1)

zk(µ) :=
(
1 − (1 − µ)nk−1

(
1 − µ + (1 − qk)nkµ

))
ρk .(42)

Then the trading gain intensities of using technology k can be written as ζ k
hn
= zk

(
mdo
md

)
and ζ k

lo
=

zk
(
mdn
md

)
. Note that zk(·) is parametrized only by the exogenous technology parameters {ρk,nk,qk}.

Hence, the technology choices {θσ } boil down to whether and how the functions zSMS(µ) and zBB(µ)

cross each other.

Lemma 5 has characterized such crossing: Under the condition (39), zSMS(µ) crosses zBB(µ)

from below once at µ∗ ∈
(
0, 1

2

)
. That is, a customer prefers BB over SMS when µ < µ∗. This might

come as a surprise, given that the condition (26) guarantees that SMS not only helps reach dealers
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faster but also induces more competitive quotes. Why would a customer still prefer BB?

To see the potential advantage of BB, consider for example an hn-buyer looking for do-sellers

but mdo is very low. In this case, if we write µ = mdo/md , then, using technology-k, the hn-buyer

customer finds one counterparty dealer with probability approximately nkµ—one and only one

success from nk Bernoulli draws at rate µ. (As µ is small, the event of finding multiple dealers is

negligibly unlikely.) It follows that a successfully contacted dealer in this case knows that she is

almost surely a monopolist and will always quote an ask as high as possible, i.e., Ā ↑ 1, leaving

no trading gains to the hn-buyer. Hence, the customer gets non-zero trading gains only if she can

make a TIOLIO, i.e., with probability qk . Taken together, for small µ, the customers’ trading gain

intensity is zk(µ) ≈ ρk · (nkµ) · qk . Comparing BB with SMS in this case yields:

lim
µ↓0

zBB(µ)
zSMS(µ)

=
ρBBnBBqBB

ρSMSnSMSqSMS .

The condition (39), therefore, ensures that for sufficiently small µ, i.e., for relatively few counterparty

dealers, BB has an advantage over SMS. In real-world trading, the condition (39) seems to hold

because customers using SMS, like RFQ protocols, do not have many opportunities, if at all, to set

reserve prices. That is, qSMS is observed to be sufficiently low in the real world.13

We are now ready to state the equilibrium.

Proposition 6 (Steady state equilibrium with technology choices). A unique stationary equi-

librium exists depending on the asset supply s: There exist thresholds 0 < shn,0 < shn,1 ≤ slo,1 <

slo,0 < 1 +md so that

13 Complementing the condition (39), the condition (26) in turn ensures that SMS is preferred when there are
sufficiently many dealer counterparties.That is, limµ↑1

(
zBB(µ)/zSMS(µ)

)
= ρBBqBB/ρSMS ≤ 1. It is interesting to note

that only qBB appears but not qSMS in the limit of µ ↑ 1. With nSMS > 1 and µ ↑ 1, the multiple counterparty dealers
in SMS almost always engage in Bertrand competition, and the customer always gets the full trading gain, regardless
of qSMS. On the contrary, with nBB = 1, a customer using BB meets only one counterparty dealer, who will always set
the monopolist price, leaving surplus to the customer only with probability qBB.
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Figure 4: Equilibrium technology choice plotted against asset supply. This figure plots customers’
technology choices against the asset supply s in equilibrium. The hn-buyers’ choice θhn is plotted in the solid
line, while the lo-sellers’ choice θlo is plotted in the dashed line (the left axis). The dot-dashed line plots the
population size of do-seller dealers (the right axis). The technology parameters are set at (ρBB,nBB,qBB) =
(3.0, 1, 0.5) and (ρSMS,nSMS,qSMS) = (3.0, 5, 0.0). The other parameters are λd = λu = 0.1, r = 0.1,
md = 0.1, yh = 10.0, yd = 3.5, and yl = 0.0.

(a) hn-buyers’ proba
-bility to use SMS

(b) lo-sellers’ proba
-bility to use SMS

(c) asset holding
by dealers

(1) 0 < s ≤ shn,0 θhn = 0 θlo = 1 д(0, 1,mdo) = 0

(2) shn,0 ≤ s ≤ shn,1 д(θhn, 1, µ∗md) = 0 θlo = 1 mdo = µ∗md

(3) shn,1 < s < slo,1 θhn = 1 θlo = 1 д(1, 1,mdo) = 0

(4) slo,1 ≤ s ≤ slo,0 θhn = 1 д(1, θlo, (1 − µ∗)md) = 0 mdo = (1 − µ∗)md

(5) slo,0 < s < 1 +md θhn = 1 θlo = 0 д(1, 0,mdo) = 0

where д(x1, x2, x3) = s uniquely solves θhn, θlo, andmdo in column (a), (b), and (c), respectively.

The function д(·) and the the thresholds {shn,0, shn,1, slo,1, slo,0} are given in the proof.

Figure 4 illustrates the equilibrium by plotting the technology choices θhn (solid) and θlo
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(dashed) on the left-axis and the dealer-owner population size mdo (dotted) on the right-axis. The

four thresholds of {shn,0, shn,1, slo,1, slo,0} cut the support of s ∈ (0, 1 +md) into five regions in the

horizontal axis. Consider the blue solid line, i.e., θhn, for example. When the asset supply s is

extremely low, SMS is very unattractive for the hn-buyers, because they know it is very difficult

to find a counterparty do-dealer (the green dot-dashed line), and even if they do, they are going

to be charged with a monopoly price of Ā ↑ 1. When s is sufficiently high, there are sufficiently

many do-dealers, whose price competition makes SMS sufficiently attractive with high trading

gain intensity ζ SMS
hn

for hn-buyers. As such, the blue solid line flattens at θhn = 1 for s > shn,1.

In between, we see θhn monotonically increases for shn,0 ≤ s ≤ shn,1. Such a mixed-strategy is

supported by the constant mdo = µ∗md in the region—the hn-buyers are indifferent between BB

and SMS. The pattern for the red dashed line, i.e., θlo, is exactly the opposite, as lo-sellers seek

dn-dealers, whose mass ismdn =md −mdo.

4.2 Stress periods

O’Hara and Zhou (2020) show that after downgrade, a corporate bond’s electronic (SMS) volume

share falls relative to voice trading (BB). The analysis developed above provides a theoretical

framework to study investors’ endogenous technology choice when under such stress.

One consequence of a corporate bond downgrade is that many previously buy-and-hold long-

term investors now no longer wish to hold such bonds. Ambrose, Cai, and Helwege (2008) and

Ellul, Jotikasthria, and Lundblad (2011) document such fire sales by insurance companies. In the

context of our model, we interpret such fire selling in two different ways, (i) an exogenous increase

in the total supply s of the asset and / or (ii) an exogenous increase in the customers’ intensity of

drawing low preference λd . Effectively, (i) is a supply shock and (ii) is a demand shock.14 To fit the

fire-selling interpretation, we also assume that the asset is in excess supply as defined in Lemma 3.

14 As we will show shortly, such a supply shock and a demand shock are essentially equivalent. A third alternative,
reducing λu , is also equivalent and omitted for brevity.
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Figure 5: Usage of SMS in a stationary equilibrium after surges in supply. This figure plots the usage of
SMS (in a stationary equilibrium)—SMS volume relative to total volume—when the asset supply s surges in
Panel (a) and when the customers’ low-valuation preference shock intensity λd increases in Panel (b). The
technology parameters are set at (ρBB,nBB,qBB) = (3.0, 1, 0.5) and (ρSMS,nSMS,qSMS) = (3.0, 5, 0.0). The
other parameters are λd = 0.1 (for Panel a), λu = 0.1, r = 0.1, md = 0.1, s = 0.6 (for Panel b), yh = 10.0,
yd = 3.5, and yl = 0.0.

Figure 5(a) and (b) below illustrate how the SMS volume share responds to shocks in s and λd ,

respectively. The SMS volume share is defined as:

ρSMSmSMS
lo

νSMS
lo
+ ρSMSmSMS

hn
νSMS
hn(

ρSMSmSMS
lo

νSMS
lo
+ ρSMSmSMS

hn
νSMS
hn

)
+
(
ρBBmBB

lo
νBB
lo
+ ρBBmBB

hn
νBB
hn

) .(43)

In Panel (a), the volume ratio is initially flat at 100% because both lo-sellers and hn-buyers always

use SMS (θhn = θlo = 1.0). As the supply s rises higher (between slo,1 and slo,0), lo-sellers start

to use less SMS, resulting in the decreasing segment. As s increases further, there are no more

lo-sellers using SMS—all of them use BB, while all hn-buyers use SMS. That is,mSMS
lo
=mBB

hn
= 0.
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In this case, the SMS volume ratio above reduces to

ρSMSmSMS
hn

νSMS
hn

ρSMSmSMS
hn

νSMS
hn
+ ρBBmBB

lo
νBB
lo

=
t

2t
= 50%,

where the second equality follows the trading volume expressions (32). Overall, the SMS volume

ratio drops with the decline of the SMS usage θlo, as seen before in Figure 4. The same pattern is

observed from Panel (b), where we increase the customers’ negative preference shock intensity λd ,

effectively reducing the demand for the asset. The proposition below summarizes the result formally.

Proposition 7 (SMS usage under stress). In a steady state equilibrium, the usage of SMS

decreases as either the asset’s excess supply (demand) surges. That is, all else equal, for

s > shn,1 (s < slo,0), the ratio defined in (43) weakly decreases when s increases (decreases) or

when λd increases (decreases).

The proposition also gives the mirroring result: When the asset’s excess demand exacerbates

(s < η + md
2 ), SMS usage also drops.

The key intuition for the decrease of the SMS volume share can be understood from the

worsening pricing for the lo-sellers. As the asset supply s increases after the fire sell, there are

fewer and fewer dn-dealers (see the dot-dashed line in Figure 4 and note that mdn = md −mdo).

Facing less competition, therefore, the dn-buyers will charge worse and worse prices to the lo-

sellers in SMS. Expecting such worsening prices from SMS, the lo-sellers then avoid using SMS

and switch to BB. In particular, our model yields an additional prediction regarding prices in SMS

and in BB under a fire sell:

Corollary 3 (Prices in SMS vs. in BB under fire sell). When there is excess supply, an lo-seller’s

expected trading price using SMS worsens relative to using BB. That is, the ratio (B̄SMS/B̄BB)

is weakly increasing in s and in λd , where B̄k reduces the lo-seller’s expected selling price

Rd − B̄k∆dl as in Equation (17).

Therefore, one way to empirically test our theory is to compare the trading prices in BB and in
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SMS when the asset is under fire sell and examine if the price in SMS is worse than that in BB.

It is worth emphasizing that only the stationary equilibrium is studied. Hence, the above results

should be read as comparisons of steady states before and after corporate bond downgrades.

4.3 Efficiency and welfare

In this subsection, we ask whether the market’s equilibrium technology choices are socially optimal:

Given the technologies {nk, ρk,qk}, k ∈ {BB, SMS}, how will a social planner assign BB and SMS

to the customers? When, if at all, will the market’s equilibrium choices {θlo, θhn} coincide with the

planner’s {θ ∗
lo
, θ ∗

hn
}? What are the implications for policies and market design?

It turns out that the answers critically depend on the characteristics of the asset. Among others,

how quickly can customers find dealers, i.e., {ρBB, ρSMS}, matters a lot. We discuss the high-ρ and

the low-ρ cases separately below.

4.3.1 The case of high search intensity

Proposition 8 (A social planner’s technology choices). When the search intensity ρ :=

min[ρSMS, ρBB] is sufficiently high, welfare w is monotone increasing in SMS usages by both

types of customers and the social planner chooses θ ∗
lo
= θ ∗

hn
= 1.

The intuition largely follows Proposition 5. When the search intensity is high, Proposition 5 shows

that welfare is monotone increasing in n. As such, by assigning both θ ∗
lo
= θ ∗

hn
= 1, the planner

essentially chooses nSMS over nBB to maximize welfare.

However, the market’s technology choices do not always coincide with the planner’s. This is

because a searching customer cares not only about the probability of finding a counterparty dealer

but also about the endogenous split of the trading gain with the dealer. Figure 6 sketches such

possible discrepancies. The solid line and the dashed line plot, respectively, the market’s choices

of θhn and θlo against the asset supply s. Note that the patterns for the θs are qualitatively the same
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(a) Low probability qSMS for customers to make TIOLIO on SMS

(b) High probability qSMS for customers to make TIOLIO on SMS

Figure 6: Market’s technology choices vs. a social planner’s under high search intensity. This figure
sketches the inefficiency due to the difference between the market’s equilibrium technology choices and a
social planner’s when the search intensity ρ := min[ρBB, ρSMS] is high. The solid (blue) line and the dashed
(orange) line are θhn and θlo , respectively, the hn-buyers’ and the lo-sellers’ equilibrium probabilities of
using SMS. The “//”(blue) and “\\” (orange) shaded areas indicate, respectively, where θhn and θlo differ
from the planner’s corresponding choices θ ∗hn and θ ∗lo . Panel (a) shows the patterns for low qSMS, while
Panel (b) shows for a higher qSMS.

as seen in Figure 4. The shaded areas indicate that there is inefficiency in the market’s technology

choices. For example, when the excess supply s is relatively extreme s > slo,1, as in the case of fire

sell in Section 4.2, the dealer sector becomes overloaded (mdo too large), giving lo-sellers a hard

time finding dn-dealers. They then become unwilling to use SMS (θlo decreases with s) because in
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SMS their trading gains is too low. The same holds when the excess demand is relatively extreme,

i.e., when s < shn,1.

Since the planner wants to encourage SMS usage, a simple, welfare-improving market design

mandate seems to readily follow: Let customers indicate their reservation values, i.e., make

TIOLIOs when searching dealers via SMS. In our model, such a design translates to an increase in

qSMS and by Lemma ??, this raises the customers’ trading gain intensities ζ SMS
σ and therefore induces

higher θSMS
hn

and θSMS
lo

(by Equation 41). Indeed, this is what we find by contrasting Figure 6(a) with

6(b), low qSMS vs. high qSMS. The shaded area of the market’s inefficient technology adoption is

reduced. (Note that a change in qk does not affect welfare as only the split of trading gain between

customers and dealers is affected, not the size of the pie.)

In practice, however, customers are almost always on the receiving end of TIOLIOs on electronic

platforms; i.e., qSMS tends to be zero. We argue that one reason behind such an inefficient design

is the dealers’ incentive to participate. Recall from Section 4.1.3 that

ζ SMS
do ∝ (1 − qSMS) and ζ SMS

dn ∝ (1 − qSMS).

That is, a higher qSMS tilts the split of trading gains away from dealers to customers. Therefore,

to the extent that the dealers have certain influence on the design of trading protocols on the

electronic platforms, they would avoid choosing a high qSMS, or perhaps not at all let customers

make TIOLIOS.15

4.3.2 The case of low search intensity

The case of low search intensity ρ = max[ρSMS, ρBB] is more nuanced. The planner’s choices

in addition depend on the comparison between dealers’ instantaneous utility yd and an average

customer’s ŷ := ηyh + (1 − η)yl :

15 Even if the dealers are independent of the trading protocol design, the platform operator will have to incentivize
dealers’ endogenous participation, without which the platform will not run. The dealers’ endogenous participation in
SMS is not modeled in the current paper.
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Proposition 9 (A social planner’s technology choices). When the search intensity ρ :=

max[ρSMS, ρBB] is sufficiently low, the social planner chooses θ ∗
lo
= 1−θ ∗

hn
= 1{yd>ŷ} to maximize

welfare.

To see why, recall from Equation (25) that there are two components in welfare w , (i) the steady

state allocation among agents and (ii) the trading gains. The latter component is proportional to the

trading volume t , which diminishes when ρ = max[ρBB, ρSMS] is sufficiently low. That is, trading

is no longer the top priority for the planner—the asset allocation is. Effectively, only component (i)

remains:

w ≈ ŷ

r
(s −mdo) +

yd
r
mdo .

The planner, therefore, wants to maximize (minimize) mdo, i.e., to shift as much asset holding

as possible to dealers (customers), if and only if yd > ŷ (yd < ŷ). To do so, the planner will

polarize {θ ∗
lo
, θ ∗

hn
} because they affect mdo in opposite directions: If more lo-sellers use SMS,

dn-dealers get to buy more often and become do-dealers; but if more hn-sellers use SMS, more

do-dealers get to sell their assets and becomedn-dealers. As a result, θ ∗
lo
= 1{yd>ŷ} and θ ∗

hn
= 1−θ ∗

lo
.

Figure 7(a) sketches the case of yd < ŷ. In this case, the planner wants to allocate the asset

to the customers as much as possible, thus assigning θ ∗
hn
= 1 and θ ∗

lo
= 0. This is clearly against

the lo-sellers’ incentive, as they want to sell the asset to the dealers. As a result, the market’s

technology choices are efficient (coinciding with the planner’s) only when the asset is in extreme

supply, i.e., when s > slo,0. Panel (a) flips Panel (b) with yd > ŷ.

The patterns shown in Figure 7 warns that the intuition regarding welfare and market design

obtained from the high-ρ case does not carry through when the matching of the asset is intrinsically

slow. For example, compared to corporate bonds, whose matching on MarketAxess take only

a few minutes (Hendershott and Madhavan, 2015), collateralized loan obligations (CLOs) trade

much more slowly, taking days as the B/OWIC run through emails require considerably longer

time to organize (Hendershott et al. (2020)). For such “slow” assets, the planner always wants
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(a) yd < ŷ: θ ∗hn = 1 and θlo = 0

(b) yd > ŷ: θ ∗hn = 0 and θlo = 1

Figure 7: Market’s technology choices vs. a social planner’s under low search intensity. This figure
sketches the inefficiency due to the difference between the market’s equilibrium technology choices and a
social planner’s when the search intensity ρ := min[ρBB, ρSMS] is low. The solid (blue) line and the dashed
(orange) line are θhn and θlo , respectively, hn-buyers’ and lo-sellers’ equilibrium probabilities of using SMS.
The “//”(blue) and “\\” (orange) shaded areas indicate, respectively, where θhn and θlo deviate from the
planner’s corresponding choices θ ∗hn and θ ∗lo . Panel (a) shows the pattern for the case of yd < ŷ, in which
case θ ∗hn = 1 and θ ∗lo = 0, and Panel (b) the opposite, in which case θ ∗hn = 0 and θ ∗lo = 1.

some customers to use BB to prevent the asset from being held inefficiently in the wrong hands.

In particular, allowing customers to make TIOLIOs on SMS (high qSMS) no longer induces the

socially optimal technology choices.

Along the same line, our analysis also cautions of regulations that might affect the search
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intensity ρ. With the increasing scrutiny from regulators after Dodd-Frank, dealers’ compliance

burden arguably has slowed down their responses to RFQs in SMS. Such changes in search intensity

might hurt welfare, as the previously efficient market technology choices under high ρ might no

longer be so under a low ρ.

5 Conclusion

This paper studies “simultaneous multilateral searching” (SMS), which has been popularized in

practice recently through trading protocols like “Request-for-Quote” (RFQ) in OTC markets. The

idea is that a searching customer can reach out to multiple dealers simultaneously, solicit quotes

from them, and then trade with the one offering the best quote. This search mechanism differs

from the conventional “bilateral bargaining” (BB), in which a searching customer spends effort

negotiating terms with a single dealer.

A steady state equilibrium is characterized in a standard framework of the search literature

(Hugonnier, Lester, and Weill, 2020). The key insight revealed is that the split of the trading gain

between a searching and a quoting investor is an endogenous equilibrium outcome, as opposed to

the exogenous split (à la Nash) in the literature assuming BB. In addition, two search parameters,

the intensity and the capacity, are analyzed in terms of their, sometimes contrasting, implications

for market quality. A novel bottleneck effect arises from, and only from, the search capacity is

shown to hinder the efficient asset allocation and might possibly hurt welfare.

Allowing customers to endogenously choose between SMS and BB, the model finds an intrinsic

hindrance in the adoption of SMS and further suggests potential inefficiency in terms of asset

allocation. The model suggests channels through which both regulation (e.g., complexity of

compliance) and market design (RFQ protocols) can affect customers’ search preferences and,

ultimately, the asset allocation efficiency.

47



Appendix

A Collection of proofs

Lemma 1 and 4

Proof. The proof considers the general case of Lemma 4 with arbitrary θhn and θlo. Lemma 1 is
then just a special case of θhn = θlo = 1. The idea is to first express all other unknowns as monotone
functions ofmdo. The existence and the uniqueness then follow as long as the solution tomdo exists
and is unique. To begin with, add up (28) and (29) to get

all lo-seller stationarity: − λumlo + λdmho − ρmloνlo = 0,(A.1)

where mlo :=
∑

km
k
lo

is the total lo-seller mass, ρ := max
[
ρSMS, ρBB] , νlo := 1

ρmlo

∑
k ρ

kmk
lo
νk
lo

is
the (weighted) average matching rate for an lo-seller, and mho :=

∑
km

k
ho

is the total ho-bystander
mass. Similarly, adding up (30) and (31) yields

all hn-buyer stationarity: − λdmhn + λumln − ρmhnνhn = 0,(A.2)

wheremhn :=
∑

km
k
hn

, νhn := 1
ρmhn

∑
k ρ

kmk
hn
νk
hn

, andmln :=
∑

km
k
ln

. Taking {νlo,νhn} as given, the
equations (8), (A.1), and (A.2) form a linear system of the four masses {mho,mln,mhn,mlo}, which
have the unique solution of

mho = η
λuνhn + ρνloνhn

λuνhn + λdνlo + ρνhnνlo
; mln = (1 − η) λdνlo + ρνloνhn

λuνhn + λdνlo + ρνhnνlo
;

mhn = (1 − η) λuνlo
λuνhn + λdνlo + ρνhnνlo

; mlo = η
λdνhn

λuνhn + λdνlo + ρνhnνlo
.(A.3)

Plug in the expressions ofmho andmlo =
∑

km
k
lo

into the market clearing condition (1) to get

η
(λu + λd)νhn + ρνloνhn
λuνhn + λdνlo + ρνloνhn

+mdo − s = 0.(A.4)

This is an equation with unknowns {mdo,νhn,νlo}. It remains to express νhn and νlo as (monotone)
functions ofmdo.

Consider νlo for example. Note that (28) and (29) imply that

mk
lo =

λdmhoθ
k
lo

λu + ρkν
k
lo

(A.5)

48



where θBB
lo

:= 1 − θlo and θSMS
lo

:= θlo. Hence, from the earlier definition,

νlo =

∑
k ρ

kmk
lo
νk
lo

ρmlo
=

∑
k ρ

kmk
lo
νk
lo

ρ
∑

km
k
lo

=

∑
k

ρkθkloν
k
lo

λu+ρkν
k
lo

ρ
∑

k
θklo

λu+ρkν
k
lo

,(A.6)

which is monotone increasing in both νk
lo

for k ∈ {BB, SMS}. Recall from the definition νk
lo

:=

ρk ·
(
1 −

(
1 − mdn

md

)nk )
= ρk ·

(
1 −

(
mdo
md

)nk )
that both νk

lo
are monotone decreasing inmdo. Therefore,

so is νlo. In the same way, both νk
hn

are monotone increasing inmdo and so is νhn.
Now return to Equation (A.4). Since both νlo and νhn can be expressed as a unique function in

mdo, (A.4) is an equation of a single unknownmdo. To prove the existence of the solution, consider
the limits of the support of mdo ∈ [0,md]. As mdo ↓ 0, both νk

lo
↑ 1 while both νk

hn
↓ 0, and as a

result, νlo ↑ 1 and νhn ↓ 0. The left-hand side of (A.4), therefore, reaches −s < 0. Reversely, as
mdo ↑md , νlo ↓ 0 and νhn ↑ 1, the left-hand side of (A.4) reaches 1 +md − s > 0 (as it is assumed
that 0 < s < 1 +md). Therefore, by continuity, the solution tomdo always exists.

To prove uniqueness, examine the derivative of the left-hand side of (A.4) with respect tomdo:

−ηλd
(λu + λd + ρνhn)νhn

(λuνhn + λdνlo + ρνhnνlo)2
∂νlo
∂mdo

+ ηλd
(λu + λd + ρνlo)νlo

(λuνhn + λdνlo + ρνhnνlo)2
∂νhn
∂mdo

+ 1 > 0,(A.7)

where the inequality holds because νlo decreases, while νhn increases, inmdo. That is, the left-hand
side of (A.4) is strictly monotone increasing inmdo. Hence, there exists one and only onemdo that
solves (A.4). Therefore, the demographics equation system always has a unique solution. □

Lemma 2

Proof. See the proof on p. 21, immediately after the lemma. □

Lemma 3

Proof. Calculate the difference betweenmhn andmlo using the expressions (10) and (9) to get

mhn −mlo = η +mdo − s = ηλd ·
νlo − νhn

λuνhn + λdνlo + ρνhnνlo
,(A.8)

where the last equality follows Equation (A.4). Therefore, sign[mhn −mlo] = sign[νlo −νhn]. Recall
that νlo = 1−(1−mdn/md)n and νhn = 1−(1−mdo/md)n, from which it follows that νlo > νhn if and
only if mdn > mdo. Given that mdn +mdo = md , therefore, mhn > mlo if and only if mdo < md/2.
Use againmhn −mlo = η +mdo − s, which is negative if and only if s > η +mdo > η +md/2. □
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Lemma 5

Proof. Consider first the case of ρSMSqSMSnSMS < ρBBqBBnBB. The proof first establishes the
single-crossing of zSMS(µ) and zBB(µ) at some µ∗ ∈ (0, 1). The general idea is to characterize
the shapes of zBB(µ) and zSMS(µ). In particular, it will be shown that zBB is linearly increasing
in µ, while zSMS is sigmoid-shaped in µ, starting below zBB for sufficiently small µ; and the two
satisfy zBB(0) = zSMS(0) = 0 and zBB(1) < zSMS(1). Therefore, there is always one and only one
intersection point µ∗ ∈ (0, 1).

Consider zBB first. With nBB = 1, zBB = qBBρBBµ, which is linearly increasing from 0
at µ = 0 to qBBρBB at µ = 1. Next, consider zSMS. For notation simplicity, the superscripts
SMS on n, ρ, and q are omitted when there is no confusion. With n = nSMS > 1 , zSMS =(
1 − (1 − µ)n−1(1 − µ + (1 − q)nµ)

)
ρ, whose first-order derivative with respect to µ is ∂zSMS

∂µ =

−nρ(1 − µ)n−2(µ(1 − n) + q(µn − 1)), which is positive. To see why, note that the bracketed term,
µ(1 − n) + q(µn − 1) is linear in µ and is negative for both µ = 0 and µ = 1 and so it is negative
for all µ. Thus, zSMS(µ) is strictly monotone increasing on µ ∈ (0, 1). Its second-order derivative
with respect to µ is ∂2zSMS

∂µ2 = (n − 1)nρ(1 − µ)n−3(µ + µ(−n) + q(µn − 2) + 1), which is positive

if and only if µ < 1−2q
n−1−nq . Note that 1−2q

n−1−nq > 0, because ρSMSqSMSnSMS < ρBBqBBnBB implies
q = qSMS < 1/nSMS ≤ 1/2. Summarizing the above, zSMS(·) is sigmoid-shaped on µ ∈ (0, 1): it is
monotone increasing, initially convex, but eventually concave.

Now note that in the lower end, zSMS |µ↓0 = zBB |µ↓0 = 0. Further, the slope of z(·) satisfies
limµ↓0

dz
dµ = nρq. Therefore, the assumption ρSMSqSMSnSMS < ρBBqBBnBB ensures that for µ

sufficiently small, zSMS < zBB. On the upper end of µ ↑ 1, zSMS → ρSMS ≥ ρBB ≥ qBBρBB, where
the first inequality follows (26) and the second follows qBB ∈ [0, 1]. That is, the sigmoid-shaped
zSMS exceeds zBB eventually. Therefore, there exists a unique µ∗ ∈ (0, 1) at which zSMS(µ∗) =
zBB(µ∗).

To establish that µ∗ < 1
2 , note that zSMS(µ) is monotone increasing in nSMS and in qSMS.

Therefore, fixing zBB(µ) = qBBρBBµ, the intersection µ∗ must be higher as nSMS and qSMS reduce.
Likewise, fixing zSMS(µ), µ∗ must be higher when the product of qBBρBB increases. Since qBB ∈
[0, 1] and ρBB ≤ ρSMS, the maximum of this product is qBBρBB ≤ ρSMS. Therefore, the maximum
µ∗ is the solution to zSMS(µ;nSMS = 3,qSMS = 0) − ρSMSµ = 0. Solving this equation gives the
unique interior solution of µ∗ = 1

2 .
Next, following the discussion right after the lemma, it is clear that V k

σ is monotone increasing
in ζ kσ , where k ∈ {BB, SMS} and σ ∈ {lo,hn}. Hence, comparing the value functions is equivalent
to comparing the trading gain intensities {ζ kσ }; i.e., the technology choice (27) is equivalent to (41).
With the single-crossing property established above, it then follows that the comparison of the {ζ kσ }

50



is equivalent to (40).
Finally, consider the case of ρSMSqSMSnSMS ≥ ρBBqBBnBB. The only change is that the slope of

zk(µ) at the lower end now is higher for SMS than for BB. Thus, the only intersection possible is at
µ = 0, i.e., zSMS > zBB for all µ ∈ (0, 1), i.e., SMS is always preferred and, hence, θhn = θlo = 1. □

Lemma 6

Lemma 6. Write the left-hand side of Equation (A.4) as a function of f (θlo, θhn,mdo, s). Then
(1) ∂ f

∂mdo
> 0, (2) ∂ f∂θlo < 0, (3) ∂ f

∂θhn
> 0, and (4) ∂ f∂s < 0. In particular, (5) mdo ↓ 0 when s ↓ 0

andmdo ↑ 1 +md when s ↑ 1 +md regardless of θlo and θhn.

Proof. (1) ∂ f
∂mdo

has been evaluated in (A.7) in the proof of Lemma 4. (2) Note that θlo affects f (·)
only through νlo, which is given by (A.6). Carefully simplifying, it can be found that

∂νlo
∂θlo
=

(νSMS
lo

− νBB
lo

)(λu + νSMS
lo

)(λu + νBB
lo

)
(λu + (1 − θlo)νSMS

lo
+ θloν

BB
lo

)2
> 0

where the inequality holds because νSMS
lo
> νBB

lo
always holds (with ρSMS ≥ ρBB and nSMS > nBB =

1). The partial derivative of f (·) with respect to νlo is ∂ f∂νlo = − (λd+λu+νhn)λdνhn
(λuνhn+(λd+νhn)νlo )2

< 0. Therefore, by

chain rule, ∂ f∂θlo < 0. (3) can be proved similarly by showing that ∂νhn∂θhn
> 0 and that ∂ f∂νhn > 0. The

details are omitted for brevity. (4) is straightforward as ∂ f∂s = −1. (5) By implicit function theorem,
f (·) = 0 implies that mdo strictly increases in s; see (1) and (4) above. The limit values as s ↓ 0 or
s ↑ 1 can then be easily verified, regardless of θlo and θhn. □

Proposition 1

Proof. The proof only focuses on a contacted do-seller’s symmetric quoting strategy. The same
analysis applies to dn-buyers and is omitted. Consider first the trivial case of n = 1. A contacted
do-seller then knows that he is the only one quoting. It is then trivial that with probability (1 − q),
he will quote the highest possible ask price, i.e., the hn-buyer’s reservation value Rh = Rd + ∆hd .
This can be viewed as a degenerate mixed strategy with c.d.f. F (α) converging to a unity probability
mass at α = 1 as stated in the proposition.

Next consider n ≥ 2. Given the reservation values, it suffices to restrict the ask quote within
[Rd,Rh]. Without loss of generality, a do-seller’s strategy can be written as Rd + α∆hd by choosing
α ∈ [0, 1]. Suppose α has a c.d.f. F (α) with possible realizations [0, 1] (some of which might
have zero probability mass). The following four steps pin down the specific form of F (·) so that it
sustains a symmetric equilibrium.
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Step 1: There are no probability masses in the support of F (·). If at α∗ ∈ (0, 1] there is some
non-zero probability mass, any do-seller has an incentive to deviate to quoting with the same
probability mass but at a markup level infinitesimally smaller than α∗. This way, he converts
the strictly positive probability of tying with others at α∗ to winning over others. (The undercut
costs no expected revenue as it is infinitesimally small.) If at α∗ = 0 there is non-zero probability
mass, again, any do-seller will deviate, this time to a markup slightly above zero. This is because
allocating probability mass at zero markup brings zero expected profit. Deviating to a slightly
positive markup, therefore, brings strictly positive expected profit. Taken together, there cannot be
any probability mass in α ∈ [0, 1]. Note that any symmetric-strategy equilibria are ruled out.
Step 2: The support of F (·) is connected. The support is not connected if there is (α1,α2) ⊂ [0, 1]
on which there is zero probability assigned and there is probability density on α1. If this is the case,
then any do-seller will deviate by moving the probability density on α1 to any α ∈ (α1,α2). Such a
deviation is strictly more profitable because doing so does not affect the probability of winning (if
one wins at bidding α1, he also wins at any α > α1) and because α > α1 is selling at a higher price.
Step 3: The upper bound of the support of F (·) is 1. The logic follows Step 2. Suppose the upper
bound is α∗ < 1. Then, allocating the probability density at α∗ to 1 is a profitable deviation: It does
not affect the probability of winning and upon winning sells at a higher price.
Step 4: Deriving the c.d.f. F (·). Suppose all other do-sellers, when contacted, quote according to
some same distribution F (·). Consider a specific seller called i. Quoting Rd + α∆hd , i gets to trade
with the searching buyer if, and only if, such a quote is the best that the buyer receives. The buyer
examines all quotes received. For each of the n − 1 contacts, with probability 1 − mdo

md
the dealer

is not a do-seller and in this case i’s quote beats the no-quote. With probability mdo
md

, the contacted
investor is indeed another lo-seller, who quotes with markup α ′. Then, only with probability
P(α < α ′) = 1 − F (α) will i’s quote win. Taken together, for each of the n − 1 potential competitor,
i wins with probability

(
1 − mdo

md

)
+

mdo
md

(1 − F (α)), and he needs to win all these n − 1 times to

capture the trading gain of α∆hd . That is,i expects a profit of
(
1 − mdo

md
F (α)

)n−1
α∆hd . In particular,

at the highest possible markup α = 1, the above expected profit simplifies to
(
1 − mdo

md

)n−1
∆hd,

because F (1) = 1. In a mixed-strategy equilibrium, i must be indifferent of quoting any markup in
the support. Equating the two expressions above and solving for F (·), one obtains the c.d.f. stated
in the proposition. It can then be easily solved that the lower bound of the support must be at(
1 − mdo

md

)n−1
, where F (·) reaches zero. This completes the proof. □
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Proposition 2

Proof. Note that the trading gain is ∆ = Rhn − Rlo = (Vho −Vhn) − (Vlo −Vln), a linear combination
of the four unknown value functions. The four equations (18)-(21), therefore, is a linear equation
system that uniquely pins down the four unknowns.

It only remains to prove that the trading gains are strictly positive wheny
d
≤ yd ≤ yd . Difference

Equation (18) and (21) to get 0 = yh−rRh−ζhn∆hd−λd ·(Rh−Rl ). Similarly, difference Equation (20)
and (19) to get 0 = yl−rRl+ζlo∆dl+λu ·(Rh−Rl ). Finally, difference the two dealers’ HJB equations,
(22) and (23), to getyd−rRd+ζdo∆hd−ζdn∆dl . Note that ∆hd = Rh−Rd and ∆dl = Rd−Rl . Therefore,
taking the {ζ } as given, the above form a 3-equation-3-unknown linear system, from which the
reservation values {Rh,Rd,Rl } can be uniquely solved. The resulting expressions are complicated
and omitted here, but it is straightforward verify that they are all monotone increasing in yd . (Note
that the trading gain intensities {ζ } are independent of yd .) Therefore, one can find the upper and
the lower thresholds by solving y

′

d explicitly from Rh = Rd and y ′

d
from Rd = Rl :

y
′

d := yl + (yh − yl )
ζdn + ζlo + λu + r

ζlo + λd + λu + r
and y

′

d
:= yh − (yh − yl )

ζdo + ζhn + λd + r

ζhn + λd + λu + r
.

The above thresholds are still endogenous of {ζ }. To obtain the thresholds composed of exogenous
parameters, note that y

′

d is increasing in both ζdn and ζlo, that y ′

d
is decreasing in both ζdo and ζhn,

and that {ζ } ≥ 0. Therefore,

y
′

d ≥ yl + (yh − yl )
λu + r

λd + λu + r
= yh − (yh − yl )

λd
λd + λu + r

=: yd ;

y
′

d
≤ yh − (yh − yl )

λd + r

λd + λu + r
= yl + (yh − yl )

λu
λd + λu + r

=: y
d
.

Clearly, yd > y
d
. As such, y

d
≤ yd ≤ yd is sufficient to ensure Rl < Rd < Rh. □

Proposition 3

Proof. The key equation is (A.4) in the proof of Lemma 1. Define the left-hand side as f (mdo, ρ,n).
Recall that Equation (A.7) has shown that ∂ f

∂mdo
> 0. In addition, simple calculus gives sign

[
∂ f
∂ρ

]
=

sign[νlo − νhn]. Since excess supply is assumed, i.e., mhn < mlo, Equation (A.8) gives νlo < νhn.
Hence, dmdo

dρ = − ∂ f∂ρ /
∂ f
∂mdo

> 0, i.e., a higher ρ increases mdo and, because mdn = md − mdo,
decreasesmdn. It then also follows that a higher ρ increases νhn = 1 − (1 −mdo/md)n but decreases
νlo = 1 − (1 −mdn/md)n.

Consider the effect of a larger n next. Given the excess supply, νlo < νhn as established above.
From the definition of νhn and νlo, therefore, mdo > mdn and µ := mdo/md > 1/2. Taking µ as
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given, ∂νhn∂n = − ln(1 − µ)(1 − µ)n > 0 and ∂νlo∂n = − ln µ · µn > 0. Further, ∂νhn∂n / ∂νlo∂n =
ln(1−µ)

ln µ

(
1−µ
µ

)n
,

which is a function monotone decreasing in µ and equals 1 if and only if µ = 1/2, ∀n ≥ 2.
Therefore, ∂νlo∂n >

∂νhn
∂n (> 0). Simple calculus gives ∂ f

∂νhn
νhn = − ∂ f∂νloνlo > 0. Therefore, by

chain rule, ∂ f∂n =
∂ f
∂νhn

∂νhn
∂n +

∂ f
∂νlo

∂νlo
∂n =

∂ f
∂νhn

(
∂νhn
∂n − νhn

νlo

∂νlo
∂n

)
<

∂ f
∂νhn

∂νhn
∂n

(
1 − νhn

νlo

)
< 0. Hence,

dmdo
dn = − ∂ f∂n /

∂ f
∂mdo

> 0, i.e., a higher n increasesmdo and, hence, decreasesmdn.
Finally, dνhn

dn =
∂νhn
∂n +

∂νhn
∂µ

∂µ
∂mdo

∂mdo
∂n > 0 (note that ∂νhn∂µ > 0). Take total derivative on

Equation (A.4) with respect to νlo, νhn, and mdo:
∂ f
∂νlo

dνlo
dn +

∂ f
∂νhn

dνhn
dn +

∂ f
∂mdo

dmdo
dn = 0. Therefore,

dνlo
dn = −

(
∂ f
∂νhn

dνhn
dn +

∂ f
∂mdo

dmdo
dn

)
/ ∂ f∂νlo > 0, noting that ∂ f∂νlo < 0. □

Proposition 4

Proof. The effects of ρ and n are proved separately below. For concreteness, assume that the asset
is in excess supply. (The case of excess demand is symmetric and omitted.)

A higher search intensity ρ: The trading volume can be written as t = ρmhnνhn (Equation 7).
Equation (10) gives another link between t andmhn. Combining the two gives

t =
(1 +mdo − s)λuρ
(λd + λu)ν−1

hn
+ ρ
,

which is increasing in ρ and inmdo (note that νhn is also increasing inmdo). Proposition 3 has shown
that a higher ρ increases mdo (given excess supply). Therefore, the volume increases with ρ. It is
then also clear from (9) that mlo decreases. Finally, mhn =

νlo
νhn

mlo by (7). The ratio νlo
νhn
=

1−µn
1−(1−µ)n

with µ := mdo/md > 1/2 given the excess supply. Simply computing the derivative with respect
to µ can show that the ratio decreases with µ. That is, a higher ρ, increasingmdo and µ, results in a
lowermhn as well.

A larger search capacity n: Proposition 3 has shown that a larger n also increases mdo (given
excess supply). Note that since νhn = 1 − (1 −mdo/md)n, ∂νhn∂mdo

> 0 and ∂νhn∂n > 0. From the same
expression of t above, therefore, n also increases trading volume. Again, from Equation (9), it is
clear thatmlo, the long-side, then decreases with n.

The effect onmhn =
νlo
νhn

mlo, the short-side, is more complicated, because now n also affects the
ratio νlo

νhn
. To prove the statement, instead, it is easier to turn to the following equivalent expression:

mhn(mdo,n) :=
t

ρνhn
=

(1 +mdo − s)λu
λd + λu + ρ

(
1 −

(
1 − mdo

md

)n) ,(A.9)

where the second equality follows Equation (10). It is straightforward to find that limn→∞
∂mhn
∂n =
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0; and limn→∞
∂mhn
∂mdo

=
λu

λd+λu+ρ
> 0. Recall from Proposition 3 that dmdo

dn > 0. Therefore,

limn→∞
dmhn

dn = limn→∞
(
∂mhn
∂n +

∂mhn
∂mdo

dmdo
dn

)
≥ 0. □

Proposition 5

Proof. The proof considers the changes in ρ and in n separately. Only the case of excess supply,
i.e., s > η +md/2, is analyzed (and the case of excess demand is analogous and is omitted).

When ρ increases: Recall welfare is w = (yhmho + ydmdo + ylmlo)/r . By market clearing (1),
substitute mlo = s −mho −mdo in the above welfare expression to get w = (yls + (yh − yl )mho +

(yd − yl )mdo)/r . By Proposition 3, mdo increases with ρ. By Proposition 4, mhn and mlo decrease
with ρ. That is, mho = η −mhn increases with ρ. Note that yd ∈ [y

d
,yd] is assumed to ensure

positive trading gains (Proposition 2) and that yl < y
d
< yd < yh. It then follows that yd ∈ (yl ,yh).

Therefore, welfare is increasing with ρ.

When n increases: Welfare can be written as w = (yls + (yd − yl )mdo + (yh − yl )(η −mhn))/r .
The effect of n goes throughmdo andmhn, which are linked through the trading volume definition of
t = ρmhnνhn. In the proof of Proposition 4, it has been shown thatmhn can be written as a function
ofmdo and n; see Equation (A.9). Applying the chain rule yields

dmhn

dn
=
∂mhn

∂n
+
∂mhn

∂mdo

dmdo

dn
.(A.10)

Combining the above, one can see that

dw
dn
=

1
r

(
(yd − yl )

dmdo

dn
− (yh − yl )

dmhn

dn

)
=

1
r

((
(yd − yl ) − (yh − yl )

∂mhn

∂mdo

)
dmdo

dn
− (yh − yl )

∂mhn

∂n

)
.

Therefore, three derivatives of ∂mhn
∂n , ∂mhn

∂mdo
, and dmdo

dn need to be evaluated under ρ → 0 and
under ρ → ∞.

Consider first the case of ρ → 0. Directly computing the first partial derivative yields

∂mhn

∂n
=
λu(1 +mdo − s)

(
1 − mdo

md

)n
ρ log

(
1 − mdo

md

)
(
λd + λu + ρ

(
1 −

(
1 − mdo

md

)n))2 ,(A.11)

from which it follows that limρ→0
∂mhn
∂n = 0. Also, limρ→0

∂mhn
∂mdo

=
λu

λd+λu
= η. Hence, limρ→0

dmhn
dn =

η limρ→0
dmdo

dn . Therefore, limρ→0
dw
dn =

1
r

(
(yd − yl ) limρ→0

dmdo
dn − (yh − yl )η limρ→0

dmdo
dn

)
= 1

r (yd−
ŷ) limρ→0

dmdo
dn /r , where ŷ := ηyh + (1 − η)yl . Note that limρ→0

dmdo
dn > 0 because (i) from (A.4),

limρ→0mdo ∈ (0,md); and (ii) given the excess supply,mdo increases inn (Proposition 3). Therefore,
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sign
[
limρ→0

dw
dn
]
= sign[yd − ŷ], proving the statement.

It remains to prove that ŷd ∈ (y
d
,yd) for this low ρ case. As ρ → 0, the upper and the lower

bounds foryd ,yd andy
d
, as given in Proposition 2, converge to, respectively,y

′

d = yh−(yh−yl )
λd

λd+λu+r

and y ′

d
= yl + (yh −yl ) λu

λd+λu+r
, because both ζhn and ζlo are proportional to ρ and converge to zero.

It is then easy to verify that y
′

d − ŷ > 0 > y
′

d
− ŷ.

Next, consider the case of ρ → ∞. Note that dmdo
dn > 0 (Proposition 3). Then signing dw

dn in
this case is equivalent to

sign
[

lim
ρ→∞

dw
dn

]
= sign

[
yd − yl
yh − yl

− lim
ρ→∞

∂mhn

∂mdo
− lim

ρ→∞

(
∂mhn

∂n
/dmdo

dn

)]
.

From (A.9) it can be seen that limρ→∞mhn = 0, a constant irrespective of n. Therefore,
limρ→∞

∂mhn
∂mdo

= 0. Further, (A.11) has shown that ∂mhn
∂n ≤ 0 (because of the log(·) term). Thus,

limρ→∞
(
∂mhn
∂n /dmdo

dn

)
< 0. This proves sign

[
limρ→∞

dw
dn
]
> 0.

□

Proposition 6

Proof. To begin with, note that both νlo and νhn are only functions of θk
lo

and θk
hn

, respectively;
see, e.g., Equation (A.6). Equation (A.4) can then be written as д(θlo, θhn,mdo) = s. Define
the four thresholds {shn,0, shn,1, slo,1, slo,0} to be the respective unique solution to д(·) = s for
{θlo, θhn,mdo} ∈ {{1, 0, µ∗md}, {1, 1, µ∗md}, {1, 1, (1 − µ∗)md}, {0, 1, (1 − µ∗)md}}. It is easy to
see the four thresholds indeed exist according to this definition. In particular, the monotonicity
shown in Lemma 6 guarantees the sorting of these thresholds. To complete the proof, for each
region of s, the stated values of {θlo, θhn,mdo} are first verified to indeed sustain an equilibrium and
then shown to be unique in that region.

Region 1: 0 < s < shn,0. With {θlo, θhn} = {1, 0},mdo is uniquely pinned down by Equation (A.4).
Since s < shn,0, Lemma 6 implies that mdo < µ∗md . Hence, by Lemma 5, ζ SMS

hn
< ζ BB

hn
but

ζ SMS
lo
> ζ BB

lo
and, indeed, {θlo, θhn} = {1, 0} sustains an equilibrium.

There are three possible deviations. First, suppose instead {θlo, θhn} ∈ (0, 1) × (0, 1). This
would require both hn-buyers and lo-sellers be indifferent between the two technologies. That is,
mdo/md = mdn/md = µ∗ must hold, implying µ∗ = 1/2 (because mdo +mdn = md), which is ruled
out because Lemma 5 has shown that 0 < µ∗ < 1/2. Second, suppose θlo = θhn = 0. But by
Lemma 6, this reduction in θlo would only reduce mdo (for a fixed s) and increase mdn, making
lo-sellers prefer SMS more, hence inconsistent with the required ζ SMS

lo
< ζ BB

lo
. Third, suppose

θlo = θhn = 1. Likewise, this increase in θhn would decrease mdo, inconsistent with hn-buyers’

56



switch from BB to SMS as a lower mdo would only strengthen ζ SMS
hn

< ζ BB
hn

. Since none of these
alternative values of θlo and θhn can sustain the equilibrium, in this range of s, the only possible
equilibrium is {θlo, θhn} = {1, 0}.

Region 2: shn,0 ≤ s ≤ shn,1. With {θlo,mdo} = {1, µ∗md} in this region, д(·) = s uniquely solves
θhn ∈ [0, 1]. This is indeed an equilibrium because atmdo = µ∗md ,hn-buyers are indifferent between
SMS and BB and, hence, any θhn ∈ [0, 1] is admissible. On the other hand,mdn =md −mdo > µ∗md

because µ∗ < 1/2. Therefore, ζ SMS
lo
> ζ BB

lo
by Lemma 5 and θlo = 1 is sustained.

To rule out other equilibria, consider alternative values. Suppose mdo > µ∗md , implying
θhn = 1. Recall that s = shn,1 is the unique solution to д(·) = s when θlo = θhn = 1 andmdo = µ∗md .
The monotonicity in Lemma 6 would then require s > shn,1, out of this region. Suppose instead
mdo < µ∗md , implying θhn = 0. Then similarly, the monotonicity in Lemma 6 would require
s < shn,0, again out of this region. Finally, suppose mdo = µ∗md but θlo < 1. This immediately
contradicts with ζ SMS

lo
> ζ BB

lo
as implied bymdn =md −mdo > µ∗md .

Region 3: shn,1 < s < slo,1. When θlo = θhn = 1, shn,1 < s < slo,1 ensures that mdo as solved
from д(·) = s satisfies µ∗md < mdo < (1 − µ∗)md ; and, hence, mdn = md −mdo > µ∗md . That is,
ζ SMS > ζ BB for both hn and lo, which indeed guarantee that θlo = θhn = 1 as an equilibrium.

Again, consider other values for {θlo, θhn}. First, {θlo, θhn} ∈ (0, 1)2 cannot be an equilibrium
for the same reason as explained in Region 1. Second, suppose {θlo, θhn} = {1, 0}. By Lemma 6,
this reduction in θhn would result in an increase inmdo, but such an increase would only make SMS
more attractive for hn-buyers, contradicting the reduction of θhn. Third, suppose {θlo, θhn} = {0, 1}.
Then similarly by Lemma 6, this reduction in θlo would result in a decrease in mdo or an increase
inmdn, but such an increase would only make SMS more attractive for lo-sellers, contradicting the
reduction of θlo.

Region 4: slo,1 ≤ s ≤ slo,0. This region mirrors Region 2 and the proof is omitted for brevity.

Region 5: slo,0 < s < 1+md . This region mirrors Region 1 and the proof is omitted for brevity. □

Proposition 7

Proof. We consider the case s > shn,1 and prove that the ratio defined in (43) weakly decreases in
s. The volume ratio in this region can be written as

VS =
ρSMSmSMS

lo
νSMS
lo
+ ρSMSmSMS

hn
νSMS
hn(

ρSMSmSMS
lo

νSMS
lo
+ ρSMSmSMS

hn
νSMS
hn

)
+
(
ρBBmBB

lo
νBB
lo
+ ρBBmBB

hn
νBB
hn

) = 1
2
+

1
2
mSMS

lo
νSMS
lo

mSMS
hn

νSMS
hn

.
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This is because in the considered region, θhn = 1. Then the dealer stationarity (32) reduces to

ρSMSmSMS
lo νSMS

lo + ρBBmBB
lo νBB

lo = ρSMSmSMS
hn νSMS

hn .(A.12)

We consider three cases next:
• s < slo,1. In this case, θlo = 1, which means that the dealer stationarity condition (32) writes as
ρSMSmSMS

lo
νSMS
lo
= ρSMSmSMS

hn
νSMS
hn

implying VS = 1.
• s > slo,0. In this case, θlo = 0, implying VS = 1/2.
• slo,1 ≤ s ≤ slo,0. In this case, mdo is a constant, invariant of s, and so both νBB

lo
and νSMS

lo
are

constants as well. Then signdVS
ds = sign d

ds

(
mSMS

lo
/mSMS

hn

)
. Using again (A.12),

mSMS
lo

mSMS
hn

=
ρSMSmSMS

lo
νSMS
hn

ρSMSmSMS
lo

νSMS
lo
+ ρBBmBB

lo
νBB
lo

=
ρSMSνSMS

hn

ρSMSνSMS
lo
+ ρBBνBB

lo

(
mBB
lo

mSMS
lo

)
Hence, signdVS

ds = sign d
ds

(
mSMS

lo
/mSMS

hn

)
= sign d

ds

(
mSMS

lo
/mBB

lo

)
. Using the stationarity condi-

tions (28) and (29),

mSMS
lo

mBB
lo

=
λu + ρ

BBνBB
lo

λu + ρSMSνSMS
lo

θlo
1 − θlo

,

increasing in θlo, which is the only variable endogenous of s. Proposition 6 has shown that in this
range, θlo decreases with s. Therefore, by chain rule, signdV

ds < 0.
Combining the three cases completes the proof for the claims regarding s. To prove the claims
regarding λd , note that from Equation (A.4), cateris paribus, the left-hand side is monotone increas-
ing in λd (the excess supply implies νhn > νlo; see Equation (A.8)) but decreasing in s. Therefore,
increases in s are equivalent to those in λd . Hence, all results about s above also hold for λd . □

Proposition 8 and 9

Proof. Welfare can be written as w = 1
r (yls + (yd − yl )mdo + (yh − yl )(η −mhn)). Consider a small

change in either θ ∈ {θhn, θlo}. We then have

sign
[
dw
dθ

]
= sign

[
(yd − yl )

dmdo

dθ
− (yh − yl )

dmhn

dθ

]
.

Moreover, followingmho +mhn = η and using the expressions (9) and (10), we have

dmhn

dθ
= −dmhn

dθ
= η

dmdo

dθ
− 1
λu + λd

dt
dθ
.(A.13)
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Combining the above two, we get

sign
[
dw
dθ

]
= sign

[
(yd − ŷ)dmdo

dθ
+

yh − yl
λu + λd

dt
dθ

]
,(A.14)

where ŷ := ηyh + (1 − η)yl . The derivative of dmdo
dθ can be signed by the implicit function theorem

using the results from Lemma 6: dmdo
dθlo > 0 and dmdo

dθhn < 0. To see how volume t changes with respect
to θ , recall from Equations (9) and (10) and use t = ρmloνlo = ρmhnνhn to get

t =
λdρ(s −mdo)

λd+λu
νlo
+ ρ

and t =
ρλu(1 +mdo − s)

λd+λu
νhn
+ ρ

.(A.15)

Note that θhn in the first expression only affects t through mdo. Therefore, t is increasing in θlo.
Likewise, θlo affects t in the second expression only throughmdo. Hence, t is also increasing in θhn.
That is, dt

dθ > 0 for either θ ∈ {θlo, θhn}.

The case of sufficiently high ρ, i.e., ρ := min[ρBB, ρSMS] → ∞: Since dt
dθ > 0,

sign
[

lim
ρ→∞

dw
dθ

]
= sign

[
(yd − ŷ) lim

ρ→∞

(
dmdo

dθ
/ dt
dθ

)
+

yh − yl
λu + λd

]
.

Hence, one needs to find limρ→∞
(

dmdo
dθ / dt

dθ

)
.

Consider first θ = θlo. Then differentiate the second expression of t in (A.15) with respect
to θ = θlo, noting that νhn is not affected by θlo, to get

(
λd+λu
νhn
+ ρ

)
dt
dθ = ρλu

dmdo
dθ . Hence,

limρ→∞
(

dmdo
dθ / dt

dθ

)
= 1

λu
. (Note that νk

hn
= 1 − (1 − mdo/md)n

k is always nonzero, because

mdo > md/2 in the case of excess supply.) Then sign
[
limρ→∞

dw
dθ
]
= sign

[
yd−ŷ
λu
+

yh−yl
λu+λd

]
=

sign[yd − ŷ − (yh − yl )η] = sign[yd − yl ] > 0. (Recall that yd ∈ (y ′

d,y
′

d) ⊂ (yl ,yh) by Corollary 2).
Consider θ = θhn. Then differentiate the first expression of t in (A.15) with respect to θ = θhn,

noting that νlo is not affected by θhn, to get
(
λd+λu
νlo
+ ρ

)
dt
dθ = −ρλd dmdo

dθ . Note that νk
lo
= 1 −

(mdo/md)n
k . As ρ → ∞, the limit of mdo may be binding at md , resulting in νlo → 0. If it is

not binding, i.e., if limρ→∞mdo < md , then νk
lo
> 0 and limρ→∞

(
dmdo

dθ / dt
dθ

)
= − 1

λd
. If it is binding,

i.e., mdo → md and νlo → 0, then limρ→∞
(

dmdo
dθ / dt

dθ

)
= − 1

λd

(
1 + limρ→∞

λd+λu
ρνlo

)
. Note from (A.1)

that ρνlo = λd
mho
mlo

− λu . In this case, since mdo → md , no dealers can intermediate lo-sellers.
The stationarity of lo-seller population size then requires mhoλd = mloλu in this limit. Then,
limρ→∞(ρνlo) = 0 and again the same result of limρ→∞

(
dmdo

dθ /f dtθ
)
= −1

λ holds. Therefore,

sign
[
limρ→∞

dw
dθ
]
= sign

[
−yd−ŷ

λd
+

yh−yl
λu+λd

]
= sign[−yd + ŷ − (yh − yl )(1 − η)] = sign[yh − yd] > 0.

The case of sufficiently low ρ, i.e., ρ := max{ρBB, ρSMS} → 0: For either θ ∈ {θlo, θhn}, directly
calculating dt

dθ from (A.15) and taking the limit yield limρ→0
dt
dθ = 0. Yet, limρ→0

dmdo
dθ , 0,
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which follows by taking the limit in the calculations of Lemma 6. Hence, limρ→0
dmdo
dθlo > 0 and

limρ→0
dmdo
dθhn < 0 remain. Therefore, limρ→0 sign

[ dw
dθ
]
= sign

[
(yd − ŷ) limρ→0

dmdo
dθ

]
, proving the

statement made in the proposition. □

Corollary 1

Proof. Consider a searching hn-buyer, for example. He contacts n investors but knows that the
number of counterparties he will actually find, N , is a random variable that follows a binomial
distribution with n draws and success rate µlo. Each of these N counterparties then quotes a random
price according to F (α ; µlo,n), stated in Proposition 1. The searching buyer chooses the lowest
ask (the lowest markup) across the N available quotes. The c.d.f. of this minimum markup is
1 − (1 − F (α ; ·))N−1 for N ≥ 1. Since the probability of N ≥ 1 is (1 − (1 − µlo)n), one obtains the
the conditional c.d.f., as stated in the corollary. The same applies to a searching lo-seller. □

Corollary 2

Proof. In equilibrium, the trading customers either have a strict preference for one of the technology
or are indifferent. Consider lo-sellers, for example. If the preference is strict, then only one of the
two HJBs in (35) is relevant; and if indifference, then the two HJBs reduce to the same one. The
same holds for hn-buyers in their two HJBs (36). Likewise, the max[·] operator in Equations (35)
and (36) can be dropped in equilibrium. Hence, definingVlo = maxk[{V k

lo
}] andVhn = maxk[{V k

hn
}],

the HJB equations (33)-(38) can be reduced to the exactly the same set of (18)-(23) as if there is
only one technology. Therefore, solving the same equation system, Proposition 2 holds. □

Corollary 3

Proof. Since nBB = 1 < nSMS, below the notation n, without the superscript, indicates nSMS.
Corollary 1 gives B̄k . In particular, for BB, B̄BB = 1, and for SMS, B̄SMS =

n·(1−µ)µn−1

1−µk , where
µ := mdo/md . Then B̄SMS/B̄BB = B̄SMS. By Lemma 6, mdo is weakly increasing with s and hence
so does µ, thus proving the claim. To prove the claims regarding λd , note that from Equation (A.4),
cateris paribus, the left-hand side is monotone increasing in λd (the excess supply implies νhn > νlo;
see Equation (A.8)) but decreasing in s. Hence, all results about s hold for λd . □
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Results in Section ??

Proof. 1. Consider the c.d.f. G(x) given in Corollary 1. Fixing any x ∈ [0, 1], it is easy to
verify that ∂G/∂µ ≥ 0; that is, the cumulative density at any x is increasing with µ. Therefore,
G(·; µi) first-order stochastically dominates G(·; µj) when µi < µj . Likewise, one can treat n as if
it has a continuous support n ∈ [1∞) and easily verify ∂G/∂n ≥ 0. Therefore, G(·;ni) first-order
stochastically dominates G(·;nj) when ni > nj .

2. This result immediately follows the first-order stochastic dominance.
3. This result is self-evident.
4. The trading price dispersion (in fractions of total trading gain∆) can be evaluated as

√
var[X ],

where X follows the c.d.f. G(·) in Corollary 1. Evaluating the variance yields

var[X ] =
(1 − µ)n−2 ((1 − (1 − µ)n)2 + (−2 + µ + (1 − µ)n(2 − (n − 1)2µ))µ

)
(1 − (1 − µ)n)2

n

n − 2
.

It is easy to see that var[X ] = 0 for µ ∈ {0, 1}. It can be further verified that ∂var[X ]/∂µ = 0 has
a unique solution in terms of µ ∈ (0, 1). Since var[X ] ≥ 0, therefore, the price dispersion must be
quasi-concave in µ on the support of [0, 1].

5. Consider the nonparametric skewness, i.e., (E[X ] − median[X ])/
√

var[X ]), where X follows
the c.d.f. G(x) given in Corollary 1. The median can be calculated as the solution of G(x) = 0.5.

In particular, median[X ] =
(

1
2 +

1
2(1−µ)n

)−n−1
n
< E[X ] = nµ·(1−µ)n−1

1−(1−µ)n ; that is, the skewness is positive.
Furthermore, the price for a searching hn-buyer is Rlo + A∆ but that for a searching lo-seller is
Rhn − B∆, where A and B are positively skewed. Therefore, the hn-buyer’s trading prices (with
markups) are positively skewed but lo-sellers’ trading prices (with markdowns) are negatively
skewed. □

Following 200716b: proofs

Summary of the environment

We first re-state the endogenous variables and the conditions pinning them down. In 200716b,
the endogenous variables are: the probabilities of choosing SMS technology for new buyers and
sellers,

{θlo, θhn}
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8 demographic variables

{mho,mln,m
BB
hn ,m

SMS
hn ,m

BB
lo ,m

SMS
lo ,mdo,mdn};

and 8 value functions

{Vho,Vln,V BB
hn ,V

SMS
hn ,V

BB
lo ,V

SMS
lo ,Vdo,Vdn}.

Conditions for the demographics. Fixing the tech-choices {θt }, the demographics are deter-
mined by:

SMS lo-seller stationarity: − λum
SMS
lo + λdθlomho − νSMS

lo mSMS
lo = 0(A.16)

BB lo-seller stationarity: − λum
BB
lo + λd(1 − θlo)mho − νBB

lo mBB
lo = 0(A.17)

SMS hn-buyer stationarity: − λdm
SMS
hn + λuθhnmln − νSMS

hn mSMS
hn = 0(A.18)

BB hn-buyer stationarity: − λdm
BB
hn + λu(1 − θhn)mln − νBB

hn m
BB
hn = 0(A.19)

ln-bystander stationarity: − λumln + λd(mSMS
hn +mBB

hn ) + ν
SMS
lo mSMS

lo + νBB
lo mBB

lo = 0(A.20)

The above 6 equations are about flows. The 3 conditions below are about stocks.

market clearing: mho +
∑
k

(
mk

lo

)
+mdo = s(A.21)

total customer mass: mho +mln +
∑
k

(
mk

hn +m
k
lo

)
= 1(A.22)

total dealer mass: mdo +mdn =md(A.23)

The above conditions also ensure all other necessary stationarity of the system. For example,
(A.18) + (A.19) + (A.20) implies

dealer stationarity:
∑
k

(
νklom

k
lo − νkhnm

k
hn

)
= 0.(A.24)

Also, (A.16) +(A.17)+(A.24) gives

ho-bystander stationarity: − λdmho + λu(mSMS
lo +mBB

lo ) + νSMS
hn mSMS

hn + νBB
hn m

BB
hn = 0.(A.25)

Then (A.18) + (A.19) + (A.25) + (A.24) gives −λd
∑

k

(
mk

ho
+mk

hn

)
+ λu

∑
k

(
mk

ln
+mk

lo

)
= 0,
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which, together with (A.22), implies both the high-type and the low-type stationarity:

high type stationarity: mho +
∑
k

(
mk

hn

)
=

λu
λu + λd

= η,(A.26)

low type stationarity: mln +
∑
k

(
mk

lo

)
=

λd
λu + λd

= 1 − η.(A.27)

Condition for the value functions. The HJB equations are:

ho : 1 + λd ·
(
θloV

SMS
lo + (1 − θlo)V BB

lo −Vho

)
− rVho = 0

ln : λu ·
(
θSMS
hn V SMS

hn + (1 − θhn)V BB
hn −Vln

)
− rVln = 0

hn using technology k : λd · (V k
ln −V k

hn) − rV k
hn + ζ

k
hn∆

k
hn = 0

lo using technology k : (1 − δ ) + λu · (V k
ho −V k

lo) − rV k
lo + ζ

k
lo∆

k
lo = 0

do : − rVdo +
∑
k

ζ kdo∆
k
hn = 0

dn : − rVdn +
∑
k

ζ kdn∆
k
lo = 0

The equilibrium requires that the value functions and the technology choices of the two trading
types, hn and lo, solve the following mixed-complementarity problem:

0 < θkt < 1, if V k
t = V

−k
t

θkt = 0, if V k
t < V

−k
t

θkt = 1, if V k
t > V

−k
t

(A.28)

subject to
∑

k θ
k
t = 1, for t ∈ {hn, lo} and k ∈ {BB, SMS}.

Define

ζ (µ; ρ,q,n) :=
(
1 − (1 − µ)n−1(1 − µ + (1 − q)nµ)

)
ρ, with ζ (1; ρ,q,n = 1) := qρ.(A.29)

Then ζ k
hn
= ζ

(
mdo
md

; ρk,qk,nk
)

and ζ k
lo
= ζ

(
mdn
md

; ρk,qk,nk
)
.

Lemma 7. The following is true: ζ (µ; ρ,q,n) = µρqn + o(µ).

Proof. Follows by applying Taylor’s theorem to ζ (µ; ·) at µ = 0. □

Discussion: when choosing techs short side cares about the product of tech parameters. Why
SMS might be preferable? Because q is small.
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Symmetric technology choice equilibrium. The analysis below considers on an equilibrium
where all trading customers of the same type use the same technology choice strategy, hence the
name “symmetric technology choice equilibrium.”

Such an equilibrium is in general characterized by the four technology choices, the ten masses,
and the ten value functions. For simplicity, instead, an equilibrium will be referred to as a tuple
of {mdo, θlo, θhn} ∈ [0,md] × [0, 1]2, pinned down by the three equations of (A.4), (A.28) for
t ∈ {lo,hn} and k = SMS. Once these three variables are fixed, the rest uniquely follow.

Results and proofs

Lemma 8. An hn-buyer (lo-seller) prefers technology-k if and only if ζ k
hn

≥ ζ −k
hn

(ζ k
lo
≥ ζ −k

lo
).

Proof. Consider hn-buyers for example. Recall that ∆k
hn
= Rk

h
− Rd = (V k

ho
−V k

hn
) − Rd . Recall also

that V k
ho
= Vho and V k

ln
= Vln for both k. Hence, the HJB for hn-buyers can be written as:

λd ·
(
Vln −V k

hn

)
− rV k

hn + ζ
k
hn ·

(
Vho − Rd −V k

hn

)
= 0

from which it gives

V k
hn =

λdVln + ζ
k
hn

· (Vho − Rd)
r + λd + ζ

k
hn

.

The deriative of V k
hn

with respect to ζ k
hn

is

(Vho − Rd)r + (Vho −Vln − Rd)λd
(r + λd + ζ khn)2

.

Note that ∆k
hn
= Vho −Rd −V k

hn
> 0, implyingVho −Rd > 0. Also,Vho −Vln −Rd = (Vho −V k

hn
) −Rd +

(V k
hn

−Vln) = Rk
h
− Rd + (V k

hn
−Vln) > 0. Hence, this derivatie is strictly positive; i.e., V k

hn
increases

in ζ k
hn

. Note thatV k
hn

has the same form as a function of ζ k
hn

for both k . Therefore,V k
hn

≥ V −k
hn

if and
only if ζ k

hn
≥ ζ −k

hn
. The same analysis applies to lo-sellers and is omitted here. □

Lemma 9. Suppose the two technologies are characterized by ρSMS ≥ ρBB (> 0), and nSMS >

nBB = 1. there exists a unique µ∗ ∈ (0, 1) such that

sign
(
ζ (µ; ρSMS,qSMS,nSMS) − ζ (µ; ρBB,qBB,nBB)

)
= sign(µ − µ∗).

If ρSMSqSMSnSMS ≥ ρBBqBBnBB, then ζ (µ; ρSMS,qSMS,nSMS) > ζ (µ; ρBB,qBB,nBB) for all µ ∈
(0, 1).
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Proof. Consider the case ρSMSqSMSnSMS < ρBBqBBnBB. The general idea is to characterize the
shapes of ζ BB(µ; ·) and ζ SMS(µ; ·). In particular, it will be shown that ζ BB is linearly increasing
in µ, while ζ SMS is sigmoid-shaped in µ, starts below ζ BB for small µ; and the two satisfy
ζ BB(0) = ζ SMS(0) = 0 and ζ BB(1) < ζ SMS(1). Therefore, there is always one and only one
intersection point µ∗ ∈ (0, 1).

Consider ζ BB first. With n = 1, ζ BB = qρµ, which is linearly increasing from 0 at µ = 0 to qρ

at µ = 1. In particular, ζ BB(0) = 0 and ζ BB(1) = qBBρBB.
Next, consider ζ SMS. With n > 1 , ζ SMS =

(
1 − (1 − µ)n−1(1 − µ + (1 − q)nµ)

)
ρ, whose first-

order derivative with respect to µ is

∂ζ

∂µ
= −nρ(1 − µ)n−2(µ(1 − n) + q(µn − 1)) > 0.

To see that the derivative is indeed positive, note that the bracketed term, µ(1 − n) + q(µn − 1) is
linear in µ and is negative for both µ = 0 and µ = 1 and so it is negative for all µ. Thus, ζ (µ; ·) is
strictly monotone increasing on µ ∈ [0, 1]. Its second-order derivative with respect to µ is

∂2ζ

∂µ2 = (n − 1)nρ(1 − µ)n−3(µ + µ(−n) + q(µn − 2) + 1),

which is positive if and only if µ < 1−2q
n−1−nq .16 Summarizing the above, ζ SMS is sigmoid-shaped on

µ ∈ [0, 1]: it is monotone increasing, initially convex, but eventually concave.
Now note that ζ SMS |µ↓0 = ζ BB |µ↓0 = 0 and that the assumption ρSMSqSMSnSMS < ρBBqBBnBB

and Lemma 7 imply that for small µ ζ SMS is below ζ BB. Finally, note that at µ ↑ 1, ζ SMS → ρSMS ≥
ρBB ≥ qBBρBB. That is, the sigmoid-shaped ζ SMS exceeds ζ BB eventually. Therefore, there exists
a unique µ∗ ∈ (0, 1) at which ζ SMS

t (µ∗) = ζ BB
t (µ∗).

In the case ρSMSqSMSnSMS ≥ ρBBqBBnBB it can be shown that ζ SMS is either sigmoid-shaped
or convex, starts above ζ BB for small µ and also exceeds it at µ = 1. Thus, the only intersection
possible is at µ = 0.

□

Lemma 10. For any integer n > 2 there are no solutions to ρSMS (1 − 0.5n(1 + n(1 − qSMS))
)
−

0.5qBBρBB < 0.

Proof. Denote f (n) = ρSMS (1 − 0.5n(1 + n(1 − qSMS))
)
− 0.5qBBρBB.

16 Note that 1−2q
n−1−nq > 0, since ρSMSqSMSnSMS < ρBBqBBnBB implies qSMS < 1/nSMS ≤ 1/2. It can also be shown

that 1−2q
n−1−nq < 1.
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Step 1. f (n) increases in n. Indeed, computing the derivative yields

f ′(n) = −ρSMS2−n(log(2)(n(qSMS − 1) − 1) − qSMS + 1) > 0.

(To see that the derivative is positive, one can verify it is positive for both qSMS = 0 and
qSMS = 1. Given that f ′(·) is linear in q, we have that f ′(·) < 0 ∀q ∈ [0, 1])

Step 2. f (3) ≥ 0.
We have that

f (3) = −0.5qBBρBB +
(
0.5 + 0.375qSMS

)
ρSMS

≥ −0.5qBBρBB + 0.5ρSMS

≥ 0.

□

Proposition A.1 (Equilibrium characterization). Fix the technology parameters {ρ,q,n} for
both BB and SMS. Suppose the implied threshold µ∗ from Lemma ?? satisfies 0 < µ∗ < 1/2, .
There exist thresholds 0 < s1 < s2 < s′2 < s′1 < 1+md for the asset supply s, so that a symmetric
technology choice equilibrium {mdo, θlo, θhn} is given by

• if 0 < s < s1, then θlo = 1, θhn = 0, andmdo is solved uniquely by Equation (A.4);
• if s1 ≤ s ≤ s2, thenmdo = µ∗md , θlo = 1, and θhn is solved uniquely by Equation (A.4);
• if s2 < s < s′2, then θlo = 1, θhn = 1, andmdo is solved uniquely by Equation (A.4);
• if s′2 ≤ s ≤ s′1, thenmdo = (1−µ∗)md , θhn = 1, and θlo is solved uniquely by Equation (A.4);

and
• if s′1 < s < 1+md , then θlo = 0 and θhn = 1, andmdo is solved uniquely by Equation (A.4).

The thresholds are the respective unique solution to Equation (A.4) for {s, θlo, θhn,mdo} ∈{
{s1, 1, 0, µ∗md}, {s2, 1, 1, µ∗md}, {s′2, 1, 1, (1 − µ∗)md}, {s′1, 0, 1, (1 − µ∗)md}

}
.

Proof. □

B Testable implications about price dispersion
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