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use this insight to construct a stochastic discount factor (SDF) that prices the cross
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1 Introduction

A major challenge in asset pricing is to explain the cross section of asset returns. To

achieve this goal, the literature has searched for alternative systematic risk factors, leading

to a factor zoo (Cochrane, 2011). However, virtually all examined factor models featuring

different factors from this zoo imply sizable pricing errors in asset returns, called alpha. In

our work, we develop a methodology that resolves the factor zoo by demonstrating that the

alpha is compensation not just for sources of systematic risk that are missing in a candidate

factor model but also for asset-specific risk. This insight allows us to price the cross-section

of stock returns exactly.

The foundation for our analysis is the Arbitrage Pricing Theory (APT) of Ross (1976,

1977), with a more formal treatment in Chamberlain (1983) and Chamberlain and Roth-

schild (1983). The APT postulates a linear factor model for the deviations of asset returns

from their means and allows for asset-specific components in expected returns. These asset-

specific components are unrelated to common factors, also known as sources of systematic

risk, and satisfy a no-arbitrage restriction. We exploit the APT to evaluate and correct mis-

specification in popular candidate linear factor models that are used by financial economists

to price the cross-section of assets.

A candidate factor model may be misspecified for at least two reasons: it may omit

(i) systematic sources of risk and (ii) asset-specific components in expected returns that

should be present, in line, for example, with the argument of Daniel and Titman (1997).

To identify what is missing in a candidate asset-pricing factor model, we evaluate misspeci-

fication in this model through the lens of the SDF. Our methodology shows how to address

both sources of misspecification to construct an admissible SDF, namely an SDF that prices

correctly a given set of assets.

The first main insight of our analysis is that the asset-specific components of expected

returns should be interpreted not as pricing errors but as compensation for asset-specific

risk represented by shocks to asset returns that are orthogonal to common risk factors.

This insight is a major departure from the conventional wisdom that financial markets

compensate investors only for exposure to systematic sources of risk. The standard view in

finance, that one should diversify away all asset-specific risk, holds only because the return

for bearing asset-specific risk is zero in popular factor models. However, if asset-specific
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risk earns a non-zero reward then instead of diversifying this risk, an investor will optimally

adjust her portfolio to reap this compensation.

To demonstrate empirical support for our insight, we examine what is missing in popular

candidate factor models. To set the stage, we start our analysis with a model without any

observed risk factors, so that the candidate SDF is just the inverse of the risk-free rate.

Then, we consider (i) a model with the market factor, as suggested by the capital asset

pricing model (CAPM) of Sharpe (1964), (ii) a model with the consumption-mimicking

portfolio, as implied by the consumption capital asset pricing model (C-CAPM) of Breeden

(1979), and (iii) the three-factor model (FF3) of Fama and French (1993). Using data for

202 portfolios of monthly stock returns, for each of these models we identify and characterize

the required correction term to move from the candidate to admissible SDF.

The correction term consists of two terms: a measure of systematic risk and an aggregate

measure of asset-specific risk. The measure of systematic risk is a function of risk factors

that are common in asset returns but missing in the candidate factor model. The aggregate

measure of asset-specific risk is a portfolio of asset returns orthogonal to all common risk

factors, including those missing in the candidate model. Despite starting from different

candidate factor models, once we include the correction term for each of the candidate

models listed above, we obtain admissible SDFs that are almost perfectly correlated.

A key finding that emerges from our empirical analysis is that the asset-specific com-

ponents in expected returns are non-zero and represent reward for asset-specific risk. This

risk plays a major role in pricing the cross-section of asset returns, despite the risk premia

associated with each individual asset-specific shock being small on average. Specifically,

the aggregate measure of asset-specific risk explains more than half of the variation in the

admissible SDF. The quantitative role of the aggregate measure of asset-specific risk sug-

gests that candidate factor models with different proxies for only common risk factors will

never imply an admissible SDF. Instead, the only way to obtain an admissible SDF is to

recognize that asset-specific risk is priced and we show how to do this. This insight resolves

the factor zoo.

We explore the nature of the aggregate measure of asset-specific risk by examining the

composition of the portfolio that represents it. We find that small stocks contribute substan-

tially to the aggregate measure of asset-specific risk, followed by stocks with extremely low

or high values of net issuances. We also measure the correlations of the aggregate measure

of asset-specific risk with the returns on 472 trading strategies examined in the literature.
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The strategies related to behavioral biases and financial frictions exhibit the largest corre-

lations: the R2 in the regressions of these strategies’ returns on the aggregate measure of

asset-specific risk exceeds 30 percent. The most prominent examples of these strategies are

those based on 5-year analyst growth forecast (La Porta, 1996), betting-against-beta factor

(Frazzini and Pedersen, 2014), long-term behavioral mispricing factor (Daniel, Hirshleifer,

and Sun, 2020), the ratio of book debt to market equity (Bhandari, 1988), and implied

equity duration (Dechow, Sloan, and Soliman, 2004).

These high correlations imply that the large expected excess returns on these trading

strategies reflect sizable compensation for asset-specific risk. We find, for instance, that

the risk premium for asset-specific risk associated with the strategy of La Porta (1996)

is 8.20% per annum. There are also 27 other strategies with an absolute value of risk

premium earned for exposure to asset-specific risk greater than 5% per annum. Thus, one

can construct trading strategies with high expected excess returns but zero exposure to

systematic risk.

When traditional asset pricing models, such as the CAPM, fail to explain a cross-section

of stock returns, the response has typically been to search for additional systematic factors.

For instance, Value (Fama and French, 2015), Investment (Hou, Xue, and Zhang, 2015),

and Momentum (Jegadeesh and Titman, 1993) have attracted attention as successful ex-

planatory factors. We find that such factors are successful, at least partly, because they

correlate more highly with the aggregate measure of asset-specific risk than with the sys-

tematic component of the SDF. These factors appear to be weak (Lettau and Pelger, 2020;

Giglio, Xiu, and Zhang, 2021); that is, they affect only a small number of asset returns out

of the cross-section of stock returns considered.

The implicit account for asset-specific risk in factor models via factors such as Value, In-

vestment, or Momentum, suggests that perhaps adding an arbitrary combination of tradable

factors to the candidate factor model can capture the aggregate-measure of asset specific

risk. However, it is not the case. The aggregate measure of asset-specific risk is a weak

factor in the cross-section of asset returns. Recovering this weak factor and its associated

risk premia through the lens of a candidate factor model is not feasible statistically. We

formally prove this result that constitutes the second main insight of our analysis.

Turning next to the analysis of the systematic component of the SDF, we find that 95%

of its variation is explained by the market factor. At first glance, this finding may seem

surprising in light of the extensive literature documenting the poor performance of the
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market factor in explaining the cross-sectional differences in stock returns.1 However, even

though the market factor does not explain the cross-section of expected stock returns, we

find, similar to Clarke (2020), among others, that it plays an important role in determining

the level of stock returns. In fact, the systematic component of the SDF accounts for

only 44% of the variation in the admissible SDF, so that the overall contribution of the

market factor to the total variation in the admissible SDF is only 42% (= 95%× 44%). We

also find that the cross-sectional differences in expected stock returns are spanned by their

exposures to nineteen traded factors, in addition to the aggregate measure of asset-specific

risk. Among these traded factors, the Size factor of Fama and French (1993) is the most

prominent, explaining 89% of the residual systematic variation in the SDF after adjusting

for the market factor.

Our work is related to several strands of the literature. First, because we correct a

given candidate factor model through the lens of a misspecified SDF, we contribute to the

literature that studies the misspecification of the SDF and develops methods to estimate

the minimum-variance SDF, that is, the projection of the SDF on asset returns. The idea of

misspecification of the SDF motivates the work of Hansen and Jagannathan (1991), in which

they provide the minimum-variance bound that must be satisfied by any admissible SDF.

Luttmer (1996) extends their analysis to economies with proportional transaction costs,

short-sale constraints, and margin requirements. Korsaye, Quaini, and Trojani (2021) ad-

vance this literature substantially by allowing for more general convex pricing constraints,

which then allows them to nest in a single unifying framework several asset-pricing ap-

proaches not covered by the SDF literature. In contrast to these papers, our objective is

not to identify a bound on the SDF; instead, we provide the exact correction required for a

proposed SDF to become admissible and we highlight the role of asset-specific risk in this

correction.

A number of papers develop a non-parametric approach to correct misspecified SDF

models. Hansen and Jagannathan (1997) provide the pricing factor that is the smallest

additive nonparametric adjustment (in a least-squares sense) required to make a given

SDF admissible. Almeida and Garcia (2012) provide an additive correction term that is

based on minimum-discrepancy projections. Ghosh, Julliard, and Taylor (2017) provide a

multiplicative correction using a Kullback-Leibler entropy-minimization approach. In order

to get as close as possible to the true SDF, ideally one would like to estimate a projection of

1See Fama and French (2004) for a review of this literature.
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the SDF on a large number of assets. However, it is challenging to use these non-parametric

approaches when the number of basis assets is large relative to the number of observations.

Furthermore, these methodologies are silent about the role of common versus idiosyncratic

shocks in the admissible SDF. In contrast, our approach, because it is founded on the APT,

is designed to handle a large number of assets and to explicitly allow for asset-specific risk

to matter in pricing asset returns.

To handle a large number of assets, Kozak, Nagel, and Santosh (2020), Lettau and Pelger

(2020), and Giglio and Xiu (2021) develop methods based on Principal Component Analysis

(PCA) for estimating the SDF, identifying factors that price the cross-section of expected

returns, and estimating risk premia in the presence of model misspecification, respectively.

We complement this literature by developing a methodology that allows us to study the

importance of asset-specific risk when correcting a candidate SDF for misspecification.

From the perspective of financial economics, our work is related to the literature on the

role of idiosyncratic risk in asset pricing. Early contributions include Douglas (1969), Fama

and MacBeth (1973), Levy (1978), and Lehmann (1990), with more recent work by, among

others, Goyal and Santa-Clara (2003), Herskovic, Kelly, Lustig, and Van Nieuwerburgh

(2016), and Mehra, Wahal, and Xie (2021). These papers study the effect on risk premia

of the volatilities of asset residuals that are obtained after risk-adjusting asset returns

for the market or other commonly used risk factors. We complement this literature by

establishing, through the lens of the SDF, a formal risk-return relation between asset-

specific risk, represented by direct shocks to systematic risk-adjusted returns rather than

their volatilities, and expected asset-specific returns. Our factorization of the SDF into

systematic and asset-specific components is in line with a body of theoretical work, including

Levy (1978), Merton (1987), and Malkiel and Xu (2006).

Our findings also emphasize the arguments of MacKinlay (1995) and Daniel and Titman

(1997) about the importance of characteristics for understanding risk premia and inability of

a factor model to explain a cross section of stock returns, but with two important differences.

First, our model ensures asymptotic no-arbitrage. Second, we demonstrate that in our

framework the asset-specific components in expected returns represent compensation for

asset-specific risk.

The rest of the paper is organized as follows. Section 2 contains our main theoretical

results underpinning the methodology that we develop to construct an admissible SDF in the

presence of model misspecification. Section 3 provides details of how to estimate a correction
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term for a candidate SDF in order to obtain the admissible SDF. Section 4 describes the

data that we use to illustrate our methodology. Section 5 presents the empirical findings

from applying our methodology to this data. We collect our conclusions in Section 6. Proofs

for all the propositions along with additional results are collected in appendices.

2 From a Candidate to an Admissible SDF

The starting point for our analysis is a candidate asset pricing linear factor model, repre-

sented by a vector of Kcan observable risk factors f can
t+1. Potentially, any candidate model suf-

fers from misspecification. We evaluate misspecification by reviewing the candidate model’s

pricing performance measured by the covariance of the stochastic discount factor and asset

returns. Because asset returns are given, effectively we evaluate misspecification in the SDF

implied by the candidate factor model.

Our work is founded on the classical APT (Ross, 1976) to correct candidate misspecified

SDFs.2 Effectively, the APT is our working assumption about the true data-generating

process for asset returns. There are several advantages of using the APT. First, the APT is

a flexible model that does not take a stand on what constitutes a pricing factor. Second, the

APT is a no-arbitrage model. The absence of arbitrage opportunities implies the existence

of an SDF.

In this section, we first review the classical APT. Next, we explain how through the

lens of the APT we correct a misspecified SDF. We derive the closed-form expression for

an admissible SDF and identify what the candidate SDF is missing in order to be an

admissible SDF. Finally, we address three empirical challenges that we face when estimating

the admissible SDF: (i) nonnegativity of the SDF, (ii) econometric feasibility of the SDF,

and (iii) weak factors (e.g., Lettau and Pelger (2020)) in the candidate factor model.

2.1 The Arbitrage Pricing Theory (APT)

Let the N -dimensional vector Rt+1 = (R1,t+1, R2,t+1, . . . , RN,t+1)′ denotes the vector of

gross returns on the N risky assets. Let Rft be the gross return on the risk-free asset. If

a risk-free asset does not exist, one can use instead the return on the minimum-variance

2Chamberlain (1983), and Chamberlain and Rothschild (1983) provide a formal analysis of the APT.
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portfolio or the return on the zero-beta portfolio. Let ft+1 be theK×1 vector of common risk

factors, with K < N and a K ×K positive definite covariance matrix Vf = var(ft+1) > 0.

The classical APT builds on two assumptions.

Assumption 1 (Linear Factor Model). The vector Rt+1 of gross asset returns satisfies

Rt+1 = E(Rt+1) + β
(
ft+1 − E(ft+1)

)
+ et+1,

where β = (β1, β2, . . . , βN )′ is the N × K full-rank matrix of loadings of asset returns on

the common factors, the vector of asset-specific errors et+1 has zero mean and the N ×N

positive definite covariance matrix Ve = var(et+1) > 0 with uniformly bounded eigenvalues.

The asset-specific shocks et+1 are uncorrelated with the K common factors ft+1, implying

that the covariance matrix of returns is VR = var(Rt+1) = βVfβ
′ + Ve.

Assumption 2 (Asymptotic No Arbitrage). There are no arbitrage opportunities for a

sufficiently large number of assets N ; that is, there is no sequence of portfolios containing

a large number of risky assets with the weights w = (w1, w2, . . . , wN )′, for which:

var(R′t+1w)→ 0 and (E(Rt+1)−Rft1N )′w ≥ δ > 0 as N →∞,

where δ denotes an arbitrary positive scalar and 1N denotes the N × 1 vector of ones.3

Assumptions 1 and 2 imply that a model of asset excess returns is

Rt+1 −Rft1N = a+ βλ+ β(ft+1 − E(ft+1)) + et+1, (1)

where the expected excess returns E(Rt+1 − Rft1N ) = a + βλ contain two components: a

and βλ. The K × 1 vector of risk premia λ represents the compensations for one unit of

asset exposures to the factors ft+1. Ingersoll (1984) derives the precise condition for λ to

exist and shows that λ = limN→∞
(
β′V −1

e β
)−1

β′V −1
e (E(Rt+1)−Rf1N ). The N × 1 vector

a = (E(Rt+1) − Rft1N ) − βλ, which is typically referred to as the vector of pricing errors,

satisfies the following no-arbitrage restriction

a′V −1
e a ≤ δ∗apt <∞, (2)

as shown in Ross (1976), Huberman (1982), Chamberlain and Rothschild (1983), and In-

gersoll (1984), where δ∗apt is some arbitrary positive scalar. The main insight of our method-

ology, which we will describe shortly, is a different interpretation of the vector a. We show

3Throughout the paper, we use δ to denote an arbitrary positive scalar, not always taking the same value.
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that through the lens of an SDF the vector a should be interpreted as compensation for

asset-specific risk et+1, rather than the vector of pricing errors.

Relative to the APT, any standard candidate factor model with Kcan observable risk

factors f can
t+1 potentially suffers from two sources of misspecification. First, the candidate

model may omit systematic risk factors, that is, Kcan < K. Second, the candidate model

does not allow for the asset-specific components of expected excess returns represented by

the vector a in equation (1). In the data, some components of this vector a may be non-

zero, and therefore the candidate factor model that assumes that a = 0N , where 0N denotes

the N × 1 vector of zeros, is misspecified. A popular example of a candidate model is the

market model, in which acan = 0N and the vector f can
t+1 includes only the market factor, with

Kcan = 1.

To understand the implications of model misspecification, consider a candidate model

with acan = 0N and Kcan < K. Let βcan denote the N × Kcan matrix of loadings of

asset returns on the candidate factors and λcan the Kcan × 1 vector of risk premia for unit

exposures to these factors. The candidate factor model implies

Rt+1 −Rft = α+ βcanλcan + βcan(f can
t+1 − E[f can

t+1]) + εt+1, (3)

where α = (E(Rt+1) − Rft1N ) − βcanλcan captures the residual variation in the expected

excess returns left unexplained by compensation for asset exposures to common risk factors,

and εt+1 with covariance matrix Vε captures the residual variation in asset returns that is

not explained by the set of candidate factors f can
t+1.

The proposition below shows that, just as the vector a in the classical APT satisfies

the no-arbitrage restriction given in expression (2), the vector of pricing errors α in the

candidate model satisfies a similar no-arbitrage restriction even if the candidate model

omits some systematic risk factors.

Proposition 1 (APT in the presence of model misspecification). Suppose that the vector

of asset returns Rt+1 satisfies Assumptions 1 and 2. Given a candidate factor model with

Kcan factors, suppose the first Kmis = K − Kcan eigenvalues of the covariance matrix Vε

are unbounded when N → ∞, the remaining eigenvalues are uniformly bounded, and the

smallest eigenvalue is strictly positive. Then, the pricing error α in the misspecified can-

didate model satisfies the following no-arbitrage restriction, for some constant δ̃apt possibly

different from δ∗apt,

α′Vε
−1α ≤ δ̃apt, (4)
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where, by no arbitrage, there exist an N×1 vector a, a Kmis×1 vector λmis, and an N×Kmis

matrix βmis such that

α = βmisλmis + a and Vε = var(εt+1) = βmisβmis′ + Ve. (5)

We see from (5) that α is the sum of the vector a and the compensation for the missing

systematic risk, βmisλmis, with βmis being the matrix of loadings of asset returns on the

missing systematic risk factors and λmis being the vector representing the prices of the

missing systematic risk factors. The covariance matrix Vε is the variance of asset returns

due to their exposure to the systematic risk factors fmis
t+1 that are missing in the candidate

model and the asset-specific shocks et+1.

Without loss of generality, given that fmis
t+1 are latent factors, and therefore we can rotate

them freely and normalize in an arbitrary way, we assume that the factors fmis
t+1 are mutually

orthogonal to the factors f can
t+1, and fmis

t+1 has a Kmis × Kmis identity covariance matrix

Vfmis = var(fmis
t+1) = IKmis×Kmis . Therefore, the covariance matrix of asset returns can be

represented as VR = var(Rt+1) = βcanVfcanβ
can′ + βmisβmis′ + Ve, where V can

f = var(f can
t+1).

Because it is difficult to empirically distinguish an exact from approximate factor structure

of asset returns, we assume that the covariance matrix of shocks et+1, Ve = var(et+1), is

diagonal.

2.2 The SDF in the Presence of Misspecification

Below, we derive the closed-form expression for the SDF in the presence of misspecification.

This result complements Chamberlain (1983), who shows existence and continuity of the

“cost functional” (i.e., the SDF) under the classical APT, without providing its closed-form

representation. More importantly, we establish a class of admissible SDFs in the presence

of misspecification in a candidate factor model for asset returns. To this end, we identify

and construct the correction terms that transform the misspecified SDF implied by the

candidate model to an admissible SDF.

2.2.1 A Candidate Model that is Correctly Specified

To set the stage for our analysis, we start by considering the case in which the true APT

model given in expression (1) has K factors and a = 0N with the APT restriction (2)

guaranteed to hold. Suppose the candidate model coincides with the true APT model, that
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is, Kcan = K and thus there is no misspecification. Denote Mβ,can
t+1 the SDF implied by the

candidate model

Mβ,can
t+1 =

1

Rft
− 1

Rft
λ′V −1

f (ft+1 − λ).

In the absence of misspecification, Mβ,can
t+1 prices all the risky assets and the risk-free asset

exactly:

E[Mβ,can
t+1 (Rit+1 −Rft)] = 0 for each asset i and E[Mβ,can

t+1 Rft] = 1,

that is, Mβ,can
t+1 coincides with the linear admissible SDF Mt+1 under the APT

Mβ,can
t+1 = Mt+1.

Because the admissible SDF Mt+1 is spanned by the K-dimensional vector ft+1, the asset-

specific shocks eit+1 are not priced:

cov[Mt+1eit+1] = 0 for each asset i.

2.2.2 A Candidate Model with Omitted Factors

Consider again the case, in which the true APT model given in expression (1) has K factors

and a = 0N . However, the candidate model now has Kcan < K factors, that is, there are

Kmis = K−Kcan omitted systematic risk factors in the candidate model. In this case, under

the APT the admissible linear SDF Mt+1 can be written as the sum of two components:

Mt+1 = Mβ,can
t+1 +Mβ,mis

t+1 .

The component Mβ,can
t+1 , which is based on the candidate factor model, is

Mβ,can
t+1 =

1

Rft
− 1

Rft
λcan′V −1

fcan(f can
t+1 − λcan),

and the correction term Mβ,mis
t+1 , which accounts for the missing systematic risk factors, is

Mβ,mis
t+1 = − 1

Rft
λmis′V −1

fmis(f
mis
t+1 − λmis]),

where, as discussed earlier, we normalize Vfmis = IKmis×Kmis .4

From the perspective of the candidate model, the vector α from equation (3) is the

vector of pricing errors

E[Mβ,can
t+1 (Rt+1 −Rft)]×Rf = α.

4Our normalization assumption about mutual orthogonality of the candidate risk factors fcan
t+1 with the

missing risk factors fmis
t+1 has no bearing for the admissible SDF.
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However, from the point of view of the true model given in expression (1), the vector α

represents the compensation for assets’ exposures to fmis
t+1, because it satisfies

− cov(Mβ,mis
t+1 , (Rt+1 −Rft))×Rf = α = βmisλmis.

The admissible SDF, just as in the previous case of the correctly specified candidate model,

is fully spanned by the K risk factors ft+1, and therefore, asset-specific shocks are not

priced:

cov[Mt+1eit+1] = 0 for each asset i.

2.2.3 A Candidate Model with Omitted Factors and Asset-Specific Compo-

nents in Expected Excess Returns

We now consider the general case, in which the true APT model given in expression (1)

has K factors and a non-zero vector a 6= 0N that satisfies the no-arbitrage restriction (2),

while the candidate model features two sources of misspecification. First, the candidate

model includes Kcan < K risk factors thereby omitting Kmis = K − Kcan risk factors.

Second, the candidate model omits the non-zero vector a by assuming that acan = 0N . The

admissible linear SDF is now the sum of Mβ,can
t+1 , which is the SDF based on the candidate

factor model, and a correction term labeled the alpha-SDF Mα
t+1. The correction term

has two components: Mβ,mis
t+1 and Ma

t+1. The first component accounts for the omitted

systematic risk factors fmis
t+1, whereas the second component accounts for omitted asset-

specific components a in expected returns.

Proposition 2 (SDF: Linear Case). Under Assumptions 1 and 2, there exists an admissible

SDF Mt+1,

Mt+1 = Mβ,can
t+1 +Mα

t+1 = Mβ,can
t+1 + (Ma

t+1 +Mβ,mis
t+1 )︸ ︷︷ ︸

=Mα
t+1

, where

Mβ,can
t+1 =

1

Rft
−

(λcan)′V −1
fcan

Rft
(f can
t+1 − λcan)),

Mβ,mis
t+1 = −

(λmis)′V −1
fmis

Rft
(fmis
t+1 − λmis)),

Ma
t+1 = −a

′V −1
e

Rft
et+1,

with cov(Mβ,can
t+1 ,Ma

t+1) = 0, cov(Ma
t+1,M

β,mis
t+1 ) = 0, and cov(Mβ,can

t+1 ,Mβ,mis
t+1 ) = 0, and

where, without loss of generality, as indicated earlier, Vfmis = IKmis×Kmis.
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The SDF component Ma
t+1 is a linear function (scaled by the risk-free rate) of asset-

specific shocks et+1. As Ma
t+1 constitutes part of the admissible SDF, we refer to it as an

aggregate measure of asset-specific risk to emphasize that it represents an aggregate source

of risk even though it consists of asset-specific shocks.

The correction components Ma
t+1 and Mβ,mis

t+1 are latent quantities, and therefore, the

issue of econometric identification arises. At the estimation stage, we resolve this identifi-

cation challenge by imposing the no-arbitrage restriction given in expression (4) that gives

us precisely the condition required to identify Ma
t+1 and Mβ,mis

t+1 .

A central insight from the above proposition is that the interpretation of α is different

in the candidate and corrected models. From the perspective of the candidate model, α

represents the vector of pricing errors

α = E[Mβ,can
t+1 (Rt+1 −Rft)]×Rf ,

whereas in the corrected model α represents the compensation for assets’ exposures to the

risk factors fmis
t+1 and asset-specific risk et+1:

α = − cov(Mα
t+1, (Rt+1 −Rft))×Rf .

In particular, in the corrected model the elements of the vector a represent the compensation

for exposure to the asset-specific shocks et+1:

a = − cov(Mt+1, et+1)×Rf = − cov(Ma
t+1, et+1)×Rf .

This result paves the way towards a quantitative assessment of asset-specific risk in financial

markets that we will explore in our empirical analysis.

The dependence of Ma
t+1 on et+1 implies that expanding a candidate model to include an

increasing number of observable variables proxying for common risk factors is not a fruitful

avenue to build an admissible SDF. In Appendix A, we show that Ma
t+1 is a weak factor in

the cross-section of asset returns, and therefore, even if it were possible to add a perfectly

correlated with Ma
t+1 observable variable as a factor to a candidate factor model, it would

not have led to the admissible SDF. The risk premia associated with any weak factor can

not be estimated accurately (Anatolyev and Mikusheva, 2021). We show below how to

account for asset-specific risk and construct an accurate estimator of Ma
t+1, and thus, of an

admissible SDF.

13



2.3 Nonnegative Feasible SDF

There are three problems in constructing an admissible SDF in practice. First, the linear

SDF characterized in the previous section may not always be strictly positive, thus possibly

leading to negative asset prices. Second, the components Mβ,mis
t+1 and Ma

t+1 depend on

unobservable quantities, such as, fmis
t+1 and et+1, respectively. Finally, a candidate factor

model may omit not only strong but also weak factors. We explain below how to address

these three challenges.

2.3.1 Exponential SDF

There are at least two approaches for ensuring that the SDF is positive. The first approach

is to express the SDF as the payoff to an option (Hansen and Jagannathan, 1997, Eq.

(24)). The second approach is to specify the SDF as an exponential function of the payoffs

(Ghosh, Julliard, and Taylor, 2017; Gourieroux and Monfort, 2007). For obtaining closed-

form solutions, we assume that asset returns are Gaussian and follow the second approach.

Proposition 3 (SDF: Exponential Case). Under Assumptions 1 and 2 and the assumption

that returns Rt+1 are Gaussian, there exists an admissible SDF Mexp,t+1

Mexp,t+1 = Mβ,can
exp,t+1 ×M

a
exp,t+1 ×M

β,mis
exp,t+1, where

Mβ,can
exp,t+1 =

1

Rft
exp

[
− (λcan)′V −1

fcan(f can
t+1 − λcan))− 1

2
(λcan)′V −1

fcanλ
can
]
,

Mβ,mis
exp,t+1 = exp

[
− (λmis)′V −1

fmis(f
mis
t+1 − λmis)− 1

2
(λmis)′V −1

fmisλ
mis
]
,

Ma
exp,t+1 = exp

[
− a′V −1

e et+1 −
1

2
a′V −1

e a
]
,

where cov(Ma
exp,t+1,M

β,can
exp,t+1) = 0, cov(Mβ,mis

exp,t+1,M
β,can
exp,t+1) = 0, and Vfmis = IKmis×Kmis.

2.3.2 Projection SDF

Even if the values of the parameters of the data-generating process (3) are known, the

admissible SDF Mt+1 depends on the unobservable quantities fmis
t+1 and et+1. As a result,

Mt+1 is not feasible empirically. To overcome this challenge, we rely on a projection version

of the SDF, M̂t+1, with .̂ used to indicate that it is the projection. In particular, we take the

exponential function of the linear projections of Ma
t+1 and Mβ,mis

t+1 on the set of the risk-free
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and risky assets and obtain5

M̂a
exp,t+1 = exp

[
− a′V −1

R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a
]
, (6)

M̂β,mis
exp,t+1 = exp

[
− (βmisλmis)′V −1

R (Rt+1 − E[Rt+1])− 1

2
(βmisλmis)′V −1

R βmisλmis
]
, (7)

where

E[Rt+1]−Rft = a+ βmisλmis + βcanλcan,

VR = βcanVfcanβ
can′ + βmis′βmis + Ve.

The component Mβ,can
exp,t+1 depends on the observable quantities, so that the projection non-

negative admissible SDF takes the form

M̂exp,t+1 = Mβ,can
exp,t+1 × M̂

β,mis
exp,t+1 × M̂

a
exp,t+1.

The next proposition shows that, as N → ∞, the SDF components, Mβ,mis
exp,t+1 and

Ma
exp,t+1, and their corresponding projection versions, M̂β,mis

exp,t+1, and M̂a
exp,t+1, have the

same limits. We denote the matrix of the loadings of returns on the candidate and missing

factors by β = (βcan βmis), an arbitrary K ×K positive-definite matrix by A > 0, and use

p−→ to denote convergence in probability.6

Proposition 4 (Limiting properties of SDF projections). Under Assumptions 1 and 2 and

the conditions N−1β′Vε
−1β

p−→ A and β′Vε
−1a = o(N

1
2 ), as N →∞,

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0, M̂β,mis

exp,t+1 −M
β,mis
exp,t+1

p−→ 0,

cov(Mβ,can
exp,t+1, M̂

β,mis
exp,t+1)→ 0, cov(Mβ,can

exp,t+1, M̂
a
exp,t+1)→ 0, cov(M̂β,mis

exp,t+1, M̂
a
exp,t+1)→ 0.

The above proposition implies that to construct the admissible SDF we do not need to

pre-estimate the missing factors omitted in the candidate factor model and asset-specific

risk omitted in the candidate SDF model.

5The formulae (6) and (7) indicate that the assumption that asset returns are Gaussian is mild in
practice. By the arguments of the central limit theorem, the projection version of our feasible SDF, being an
exponential function of the sum of an N asset returns that are non-Gaussian, is approximately log-normal
as N →∞.

6Strictly speaking, the matrix of loadings β from the data-generating process given in expression (1) can
be different from the matrix β = (βcan βmis) because missing factors are identified only up to a rotation.
This difference, however, does not have any economic bearing.

15



2.4 Weak Factors

Finally, we consider the case, in which the candidate model includes all strong systematic

risk factors but omits weak factors collected in a vector fmis
t+1. Following Lettau and Pelger

(2020), we define weak factors as factors that affect only a subset of the underlying assets

or affect all assets only marginally. Mathematically, the loadings of asset returns on weak

factors satisfy

βmis′βmis p−→ A,

whereA > 0 is some arbitrary positive-definite matrix. This property implies that βmis′βmis/N
p−→

0Kmis×Kmis , where 0Kmis×Kmis is a Kmis×Kmis matrix of zeros. The proposition below shows

that also in this case we can correct the candidate SDF to obtain the admissible SDF, even

though it is not possible to estimate consistently missing weak factors (Lettau and Pelger

(2020, proposition 2)).

Proposition 5 (Properties of M̂α
exp,t+1, when missing factors are weak and N → ∞).

Under Assumptions 1 and 2 and conditions N−1β′Vε
−1β

p−→ A, βmis′Ve
−1βmis = O(1),

βmis′Vε
−1β = o(N

1
2 ), β′Ve

−1a = o(N
1
2 ), βmis′Vε

−1a = O(1), and βmis and β are not asymp-

totically collinear, then as N →∞,

M̂α
exp,t+1 −Mα

exp,t+1
p−→ 0 with Mα

exp,t+1 = exp
[
− α′V −1

ε εt+1 −
1

2
α′V −1

ε α
]
.

This proposition highlights that weak factors and pure asset-specific risk (shocks uncor-

related across asset returns) cannot be identified separately. The presence of weak factors

is compatible with the approximate factor structure in the APT of Chamberlain and Roth-

schild (1983). The approximate factor structure requires that the covariance matrix of

returns adjusted for strong factors has uniformly bounded eigenvalues, limiting the degree

of cross-sectional dependence. Proposition 5 clarifies that, although latent weak factors

cannot be estimated, let alone their corresponding risk premia, we can still estimate the

component Ma
t+1, which is a function of the priced weak factors and pure asset-specific risk.

3 Estimation Details

In this section, we describe our approach for estimating the admissible SDF, explain the

role of the no-arbitrage restriction (4), and discuss how to identify the number of missing
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factors in a candidate factor model and how to choose the no-arbitrage bound δ′apt. Also,

we provide a diagnostic tool for detecting missing factors in the candidate factor model.

We recover the admissible SDF in two steps. In the first step, we use a (pseudo) Gaussian

maximum-likelihood estimator (MLE) subject to the no-arbitrage restriction formulated

in expression (4) to estimate the model of asset returns given in expression (3).7 We

consider the case of a factor model for asset returns that includes only tradable factors

represented by either factor returns in excess of the risk-free rate (for example, market

factor) or long-minus-short strategies. In the second step, we use the results in Proposition 3

and Proposition 4 to recover the nonnegative feasible admissible SDF. The Online Appendix

contains a more general case, in which (i) the candidate model for asset returns includes

both tradable and non-tradable factors and (ii) the risk factors in the candidate model are

allowed to be correlated with the missing systematic risk factors.

3.1 Formulating the Likelihood

For a generic vector Θ that collects all the elements of the matrices βcan, βmis, Ve, Vfcan ,

and vectors λcan, λmis, and a, the (up to a constant) Gaussian joint log-likelihood of the

vectors of asset returns in excess of the risk-free rate, Rt+1 − Rft, and observable factors

f can
t+1 is

log(L(Θ)) = −T
2

log(|Vε|)−
T

2
log(|V can

f |)

− 1

2

T−1∑
t=0

ε′t+1V
−1
ε εt+1 −

1

2

T−1∑
t=0

(f can
t+1 − λcan)′V −1

fcan(f can
t+1 − λcan),

where εt+1 = (Rt+1 −Rft)− a− βmisλmis − βcanf can
t+1.

We maximize this log-likelihood function subject to the no-arbitrage restriction. We

substitute the no-arbitrage restriction given in expression (4) with the one that is compu-

tationally simpler to handle

a′V −1
ε a ≤ δapt (8)

and that ensures the no-arbitrage restriction (4), when N →∞.

We use the Lagrange multiplier method to solve the resulting constrained optimization

problem:

Θ̂ = argmax
Θ
{log(L(Θ))− κ(a′V −1

ε a− δapt)}.

7For the asymptotic analysis of the MLE for large dimensional latent factor models see Bai and Li (2012).
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In the above expression, the parameter κ is the Lagrange multiplier on the APT restriction

and δapt is obtained using a cross-validation procedure that is explained below in Section

3.3. Appendix B1 provides the solution of the optimization problem.

3.2 The Role of the No-Arbitrage Restriction

The no-arbitrage restriction on the vector a serves several purposes. Economically, it rules

out asymptotic arbitrage. For example, if the elements of the vector a are left unconstrained,

the Hansen and Jagannathan (1997) (HJ) distance explodes, as we demonstrate in Section 5.

Moreover, the APT restriction constrains the Sharpe ratio of the so-called alpha portfolio

of Raponi, Uppal, and Zaffaroni (2021). This alpha portfolio is an inefficient portfolio

that, when combined with a portfolio invested in the candidate factors (the so-called beta

portfolio), delivers a portfolio on the efficient frontier. In the same spirit, Kozak, Nagel, and

Santosh (2020) rules out near-arbitrage opportunities by restricting the maximum squared

Sharpe ratio implied by the entire SDF.

Statistically, the APT restriction (when binding) leads to identification of the vectors a

and λmis. Specifically, at the estimation stage the APT restriction provides N conditions

that allow one to split the estimate of α into the estimates of a and βmisλmis. Identification

of a and λmis is a necessary step for constructing the missing systematic and asset-specific

components of the admissible SDF, Mβ,mis
t+1 and Ma

t+1, respectively. Even in population, the

no-arbitrage restriction binds and is further influenced by the presence of financial frictions

(Korsaye, Quaini, and Trojani (2019, section 2)).

The estimator of a under the APT restriction has the form of a ridge estimator, as can

be seen from Proposition B1. The ridge estimator has the appealing property of mitigating

the estimation noise that in our case affects the estimates of the asset-specific risk premia.

The estimation noise can be significant because the vector a is an N -dimensional object.

3.3 Identifying the Number of Missing Systematic Risk Factors

Given that the candidate factor model for asset returns may feature Kcan < K risk factors,

we need to determine the number Kmis of missing systematic risk factors fmis
t+1. We estimate

Kmis together with the bound δapt on the no-arbitrage restriction (8), using cross-validation

with the HJ distance as a selection metric. The choice of the HJ distance is natural, given
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our objective of identifying the correction required to obtain an admissible SDF from the

candidate factor model.

Our cross-validation procedure uses 20 folds. We split the entire sample into 20 folds

and estimate the model on all but one fold. We repeat this procedure 20 times and compute

the HJ distance on the validation folds. We fix a grid of δapt from 0 to 0.1 that corresponds

to Sharpe ratios ranging from 0 to 0.32 per month for the portfolio associated with purely

asset-specific risk.8 We vary the number of systematic factors missing in the candidate

model, Kmis, from 0 to 10. We pick Kmis and the value of δapt that deliver the smallest

HJ distance in the validation step. Our procedure never selects the binding values of Kmis

and δapt. Finally, using the optimal Kmis and δapt, we reestimate the model on the entire

sample.

In the literature, other methods have been used for selecting the number of systematic

risk factors in SDF models. For example, Giglio and Xiu (2021) use an information criterion

similar to Bai and Ng (2002). Alternatively, Lettau and Pelger (2020) and Kozak, Nagel,

and Santosh (2020) use economic restrictions relating expected returns to the covariance

of returns with factors in addition to time series information on variation of asset returns.9

Because none of these approaches directly applies to a model with asset-specific components

in expected returns, we face a choice: either use a two-stage estimation that pins down Kmis

in the first step and δapt in the second step or design our own method. We choose the latter

and optimize the objective function that explicitly incorporates a no-arbitrage restriction

and simultaneously select Kmis and δapt that deliver the minimal value of the HJ-distance.

3.4 Detecting the Missing Factors

Propositions 3 and 4 imply that, as N → ∞, log(M̂β,mis
exp,t+1) converges to a linear function

of the missing factors. As a result, a simple time-series regression approach applied to

log(M̂β,mis
exp,t+1) provides a diagnostic tool for detecting the missing factors in the candidate

factor model for asset returns. The advantage of our approach is the absence of a cross-

8Ross (1977) suggests using a bound that is a multiple of the Sharpe ratio for the market portfolio, which
is about 0.4 per annum.

9Even though our objective function reminds that of Lettau and Pelger (2020), there are several principal
differences in our approaches. First and foremost, our goal is not to compress α as much as possible, but
rather ensure that the no-arbitrage restriction holds. From the perspective of the corrected model, α is
not a pricing error, and therefore does not need to be the null vector. Relatedly, our objective function, in
contrast to that of Lettau and Pelger (2020), does not explicitly include a pricing metric measuring goodness
of fit. If we were to include such a pricing metric into the objective function, we would have to augment our
log-likelihood function with an additional penalty term represented by the HJ distance.
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sectional step, which is present in the standard two-pass procedure. The statistical inference

in the cross-sectional step is fragile if a candidate factor is weak or spurious or in the presence

of multiple risk factors with highly correlated asset exposures to them.

Define gt as the vector of some observable variables that may represent missing factors in

the candidate model and collect its values for each t in a matrix G = (g1 · · · gT )′. Similarly

for each t collect the values of the systematic component log(M̂β,mis
exp,t+1) of the admissible

SDF in a vector log(M̂β,mis
exp ) = (log(M̂β,mis

exp,1 ) · · · log(M̂β,mis
exp,T ))′. The R2 of the regression of

log(M̂β,mis
exp,t+1) on an intercept and the vector gt+1,

M̂β,mis
t+1 = γ0 + γ′1gt+1 + ut+1,

is

R2
g =

γ̂′1G
′(IT − 1T 1

′
T /T )Gγ̂1

(M̂β,mis)′(IT − 1T 1
′
T /T )M̂β,mis

,

where γ̂1 = (G′(IT − 1T 1
′
T /T )G)−1G′(IT − 1T 1

′
T /T ) log(M̂β,mis

exp ).

The following proposition confirms that a simple time-series regression approach reveals

if a set of observable variables explains the variation in asset returns that is left unexplained

by a candidate factor model, and if so, delivers the prices of risk associated with these

missing factors.

Proposition 6 (Detecting the missing factors). Under the assumptions of Proposition 4

and if gt+1 = Qfmis
t+1 for some non-singular Q, as N →∞, we have

γ̂1
p−→ −(Q′)−1λmis

Rf
, and R2

g
p−→ 1.

If gt+1 is orthogonal to fmis
t+1, that is G′(IT − 1T 1′T /T )Fmis = 0Kmis×Kmis then

γ̂1
p−→ 0Kmis and R2

g
p−→ 0.

Proposition 6 does not require large T but only large N , that is R2
g

p−→ 1 as long as T

exceeds the number of factors in the vector gt.
10

4 Data

In this section, we describe the data that we use in our empirical analysis. In the first

subsection, we describe the set of basis assets that we use to estimate the SDF. In the

10In practice, one uses the estimated M̂β,mis
t+1 , which depends on the estimated parameters, and the result

of Proposition 6 can be interpreted as holding for a sufficiently large T .
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second subsection, we describe the set of factors that could potentially be related to the

estimated SDF and its components.

4.1 Basis Assets

We construct a projection of the stochastic discount factor on a large set of standard

characteristics-based portfolios of U.S. stocks. We collect monthly data on 202 portfolios

from July 1963 to August 2019 from Kenneth French’s website. The dataset includes 25

portfolios sorted by size and book-to-market ratio (ME & BM), 17 industry portfolios (Ind),

25 portfolios sorted by operating profitability and investment (OP & INV), 25 portfolios

sorted by size and variance (ME & VAR), 35 portfolios sorted by size and net issuance (ME

& NetISS), 25 portfolios sorted by size and accruals (ME & ACCR), 25 portfolios sorted

by size and beta (ME & BETA), and 25 portfolios sorted by size and momentum (ME &

MOM).

We use portfolios instead of individual assets because we posit a data generating process

for asset returns with constant exposures to factors and prices of risk. Giglio and Xiu (2021)

and Lettau and Pelger (2020) argue that constant factor loadings is a reasonable modeling

assumption in the case of portfolio returns. We view the case of a model with constant

factor loadings and prices of risk as a natural setting to illustrate how our methodology

works in practice.

4.2 Factors Potentially Spanning the SDF

To examine which economic variables may explain variation in the SDF, we collect a compre-

hensive set of factors available at monthly frequency. We include factors used in Chen and

Zimmermann (2021), Jensen, Kelly, and Pedersen (2021), and Kozak, Nagel, and Santosh

(2020). We also include factors from Bryzgalova, Huang, and Julliard (2020); the Online

Appendix of Bryzgalova, Huang, and Julliard (2020) lists the sources of these factors.

We augment the dataset of factors with vector-autoregressive (VAR) residuals of the

first 3 principal components of 279 macro variables from Jurado, Ludvigson, and Ng (2015).

We also include VAR residuals of the first 8 principal components of 128 macro variables
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(McCracken and Ng, 2015) and log differences in consumer sentiment.11 We use the data

vintage from February 2021.

We collect real per capita consumption data on nondurables and services and the cor-

responding price index from the Bureau of Economic Analysis (BEA). We use a one-month

and 3-year log consumption growth and an AR(1) residual in log inflation as factors. Our

dataset also includes the U.S. business confidence index, U.S. consumer confidence index

and U.S. composite leading indicator from the OECD library, confidence economic activity

index, NBER recession index, TED spread, effective federal funds rate, real federal funds

rate, and Chicago Fed National Financial Condition Index from FRED, and credit spread

index of Gilchrist and Zakraǰsek (2012).

We add the market-dislocations index of Pasquariello (2014), and the disagreement in-

dex of Huang, Li, and Wang (2021). We include industry-adjusted value, momentum, and

profitability factors (Novy-Marx, 2013), intra-industry value, momentum, and profitability

factors, and basic profitable-minus-unprofitable factor. We complement our dataset with

the expected growth factor of Hou, Mo, Xue, and Zhang (2021) and the momentum Up mi-

nus Down (UMD) factor. Finally, we include the Chicago Board Options Exchange (CBOE)

volatility index (VIX) available on the website of the CBOE, the U.S. economic policy un-

certainty index (EPU) of Baker, Bloom, and Davis (2016), and the equity market volatility

(EMV) tracker of Baker, Bloom, Davis, and Kost (2019) (with the last two available on

www.policyuncertainty.com). For highly persistent variables, e.g., the disagreement index

of Huang, Li, and Wang (2021), VIX, etc., we define factors as the first-order log differences

and residuals from the corresponding univariate autoregressive processes of order 1.

5 Empirical Analysis

In this section, we demonstrate how our methodology can be used to correct popular can-

didate factor models with the purpose of constructing an admissible SDF. To set the stage,

we start by studying a candidate model with zero risk factors so that Mβ,can
exp,t+1 is just the

inverse of the risk-free rate. We use this model to establish the relative quantitative im-

portance of systematic versus asset-specific risk. This exercise is a clean experiment that is

free of concerns that candidate factors may include unpriced sources of common variation

11We download macroeconomic variables from https://research.stlouisfed.org/econ/mccracken/

fred-databases. We exclude four variables, ACOGNO, ANDENOx, TWEXAFEGSMTHx, UMCSENT,
which have missing observations at the start of the sample.
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in asset returns (Daniel, Mota, Rottke, and Santos, 2020) or spurious factors (Kan and

Zhang, 1999; Kleibergen, 2009). Furthermore, we use this experiment to examine which

popular factors correlate with the systematic component of the estimated admissible SDF

and which trading strategies correlate with the aggregate measure of asset-specific risk.

After our analysis of a candidate model with zero risk factors, we examine commonly

used candidate factor models of asset returns, such as the market model, the model with a

consumption-mimicking portfolio, and the model of Fama and French (1993) and charac-

terize the missing systematic and asset-specific components in each of the candidate SDFs.

5.1 A Candidate Model with Zero Risk Factors

We start our analysis of a candidate model with zero risk factors (Kcan = 0) by identifying

how many systematic factors explain the cross-section of asset returns. That is, we define

Kmis given that the candidate model does not include any risk factors and determine the

no-arbitrage bound δapt. Figure 1 illustrates how the HJ distance changes as we vary Kmis

and δapt. The top two panels show the estimation results based on cross validation, while

the bottom two panels show the in-sample results.

Using the HJ distance as the selection criteria, we see from Figure 1 that our estimation

procedure selects Kmis = 2 systematic factors and δapt = 0.0016. The two top panels

demonstrate that this combination of Kmis and δapt achieves the smallest HJ distance,

consistent with the evidence on low-dimensional factor pricing models in Kozak, Nagel,

and Santosh (2018). The two bottom panels show that a naive in-sample analysis would

lead to a choice of Kmis = 10 and δapt = 0.04. The top right-hand panel shows that the

combination of Kmis = 10 and δapt = 0.04 performs poorly in the cross-validation exercise,

with the poor fit in the out-of-sample analysis suggesting evidence of overfitting.

The non-zero value for the optimal δapt indicates that the asset-specific risk is priced.

This result constitutes our first main finding because it challenges the conventional view

in financial economics that only systematic (common) risk factors are compensated in the

market. Below we will shed light on what constitutes the priced asset-specific risk.

Figure 2 illustrates the estimated elements of the vector a and diagonal matrix Ve for

the 202 basis assets. The top panel shows that these assets have different asset-specific

volatilities, so our assumption that Ve is a diagonal rather than spherical matrix is war-
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Figure 1: Model selection using the HJ distance

This figure illustrates how the HJ distance changes with Kmis and δapt. The top two panels show
the estimation results based on cross validation, while the bottom two panels show the in-sample
results. The panels on the left plot the HJ distance for a given choice of Kmis as one varies δapt.
The panels on the right display the δapt (numbers inside the boxes) that minimizes the HJ distance
for a given choice of Kmis.
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ranted. The bottom panel indicates that the compensation for exposures of basis assets to

individual asset-specific shocks is small relative to the premia of conventional risk factors.

To examine the importance of asset-specific risk, we compare the pricing performance of

the model selected by our methodology with a model with two systematic factors but where

the asset-specific components of expected returns represented by the vector a are set equal to

zero. We also compare the results of our approach with those based on principal component

analysis (PCA). We choose a different number of principal components to include, ranging

from one to five (increasing the number of principal components to ten does not lead to

different results).
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Figure 2: Estimated asset-specific risk and its compensation
This figure illustrates the estimated elements of the vector a and diagonal matrix Ve for the 202
basis assets, which we split into eight groups based on characteristics by which stocks are sorted

into portfolios. The top panel shows the asset-specific volatilities diag(V
1/2
e ) and the bottom panel

shows the compensation a for asset-specific risk.
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Four empirical observations stand out from our specification analysis and Table 1. First,

we find that ignoring the compensation for asset-specific risk, that is, setting a = 0N , leads

to a sizable increase in pricing errors, E[M̂exp,t+1(Rt+1 − Rft)], across the different assets.

This increase in pricing errors translates to a statistically significant increase in the HJ

distance by 14.79% relative to the model with a 6= 0N .12 Second, we observe that the

largest benefit in accounting for the compensation for asset-specific risk in reducing the

pricing error is for the portfolios sorted by size and variance.13 Third, we find that the

PCA-based model with two principal components is similar to our model with a = 0N

and Kmis = 2, which is expected because the maximum-likelihood estimator corresponds

to a weighted-PCA estimator (Bai and Li, 2012). Finally, consistent with Lettau and

Pelger (2020) and Kozak, Nagel, and Santosh (2020), we notice that a naive strategy of

including a larger number of principal components leads to inferior pricing performance of

the corresponding model because of overfitting.

A common approach for evaluating asset pricing factor models is to overlay the average

excess returns on the test assets with the model-implied risk premia. We follow this approach

in Figure 3, which shows that, as expected, our model exhibits the perfect fit. This is

a consequence of our main insight, namely to consider the elements of the vector a as

12For statistical inference, we run bootstrap.
13The corresponding results are available upon request.
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Table 1: Relative HJ-distance of various models
This table reports the HJ distances of alternative candidate models and their corrected versions
relative to the corrected version of the model with zero risk factors, (HJY /HJX − 1)× 100%, where
X indicates the corrected version of the candidate model with zero risk factors, highlighted in bold,
and Y indicates any of the other considered models.

Class of models Candidate Model Relative HJ (%)

Traditional CAPM 13.87
C-CAPM 40.62
FF3 13.92

PCA-based PCA1 14.67
PCA2 14.79
PCA3 16.53
PCA4 25.64
PCA5 25.56

Fully Corrected Zero risk factors + correction 0.00
CAPM + correction 0.57
C-CAPM + correction 0.00
FF3 + correction −1.15

Partially corrected Zero risk factors + Kmis = 2 but a = 0 14.79

compensation for exposure to individual asset-specific shocks, as opposed to simply pricing

errors.14

Next, we study the time-series properties of the estimated SDF M̂exp,t+1 and its compo-

nents M̂a
exp,t+1 and M̂β,mis

exp,t+1. Figure 4 shows that both M̂a
exp,t+1 and M̂β,mis

exp,t+1 exhibit sizable

volatility during recessions and also during normal times. We see that different components

of the SDF dominate variation in the SDF in different time periods. For example, in the Fall

of 1987, common systematic shocks in asset returns are responsible for a dramatic increase

in the level and volatility of the SDF. On the other hand, in the beginning of 2000s, it is

the aggregate measure of asset-specific risk that generates a spike in the volatility of the

SDF. Thus both common and asset-specific shocks contribute meaningfully to explaining

asset valuations.

We perform a formal variance decomposition of the SDF and report its results in Table 2.

The standard deviation of log M̂a
t+1 implies that an annual Sharpe ratio for the aggregate

measure of asset-specific risk (that is, the premium for the assets’ exposure per unit of

volatility of the aggregate measure of asset-specific risk), is SR = 0.59. This result is

14Recall that the vector a is a ridge estimator of the asset-specific risk premia (see formula given in
expression (B5) in Appendix B). For this exercise, we undo the shrinkage by multiplying each element of
the vector a by the estimated value of the Lagrange multiplier κ plus 1. The estimated value of κ is 19.16.
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Figure 3: Comparing average excess returns with model-implied risk premia
This figure overlays the average excess returns on the test assets with the model-implied risk premia
after undoing the effect of shrinkage resulting from the ridge estimator for a.
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interesting for two reasons. First, the compensation for one unit of the aggregate measure

of asset-specific risk is sizeable as it is in the same ballpark as the market Sharpe ratio.

Second, given that the elements of the vector a are very small, it becomes immediately clear

that what matters for pricing assets is not individual asset-specific shocks but a specific

combination of these shocks that represent the component M̂a
exp,t+1 of the admissible SDF.

Relatedly, 56% of variation of the SDF can be attributed to the aggregate measure

of asset-specific risk with the rest due to systematic sources of risk. These results are

consistent with Chaieb, Langlois, and Scaillet (2021), among others, who document that

a substantial portion of expected excess returns is left unexplained by factor risk premia.

Our finding also speaks to the puzzling evidence reported in Herskovic, Moreira, and Muir

(2019). The authors document that the portfolios of stock returns that hedge factor risk

exposure exhibit high positive expected returns. These high expected returns could simply

reflect compensation for the aggregate measure of asset-specific risk.
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Figure 4: Time series behavior of the SDF and its components
This figure has three panels. The top, middle, and bottom panels of this figure show the dynam-
ics of the SDF M̂t+1, its asset-specific component M̂a

t+1, and its systematic component Mβ,mis
exp,t+1,

respectively.
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Table 2: Analysis of the SDF if candidate model has zero risk factors
This table reports the moments of the log SDF and its components. The last column gives the
percentage of the variation of the SDF that is explained by each component.

Mean StdDev Var Skewness Kurtosis Variation (%)

log(M̂exp,t+1) -0.08 0.22 0.05 0.37 6.56 100.00

log(M̂a
exp,t+1) -0.06 0.17 0.03 -0.36 8.02 56.21

log(M̂β,can
exp,t+1) -0.00 0.00 0.00 -0.63 3.70 0.05

log(M̂β,mis
exp,t+1) -0.01 0.15 0.02 0.53 5.33 43.74

Furthermore, an unreported but available upon request regression analysis indicates

that M̂a
exp,t+1 is a-cyclical: log(M̂a

exp,t+1) does not significantly correlate with any business-

cycle indicator. In contrast to log(M̂a
exp,t+1), the systematic component log(M̂β,mis

exp,t+1) has a

significant correlation with the NBER recession dummies.15 Given that formulae M̂β,mis
exp,t+1

and M̂a
exp,t+1 reflect the composition of the systematic and asset-specific components of

the SDF, our approach provides a procedure for constructing trading strategies with and

without exposures to systematic risk.

15In regression analysis, we use the log SDF because the log SDF is linear in common risk factors and
asset-specific shocks.
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Table 3: Strategies highly correlated with log(M̂a
exp,t+1)

This table reports trading strategies that are highly correlated with log(M̂a
exp,t+1). The first column

gives the name of the cluster to which the strategy belongs, using the classification scheme in Jensen,
Kelly, and Pedersen (2021). If a strategy is not in the list of Jensen, Kelly, and Pedersen (2021), we
assign it to the cluster Unclassified. The second column gives the source. The third column gives
the name of the variable, as in Chen and Zimmermann (2021) or Jensen, Kelly, and Pedersen (2021).
The last column reports the R2 of the univariate regressions of log(M̂a

exp,t+1) on the return of each
individual strategy. The clusters, and within each cluster the sources, are listed in alphabetical
order.

Cluster name Source Variable name R2 (%)

Investment Fama and French (2015) cma 30.21
Hou, Xue, and Zhang (2015) r ia 30.48
Ortiz-Molina and Phillips (2014) aliq at 32.21
Stambaugh and Yuan (2016) mgmt 33.59
Xing (2008) invcap 39.26

Leverage Fama and French (1992) am 38.42
Fama and French (1992) bookleverage 39.58
Palazzo (2012) cash at 36.66
Penman Richardson and Tuna (2007) netdebt me 34.61

Low risk Ang, Chen and Xing (2006) betadown 252d 32.11
Bradshaw, Richardson, Sloan (2006) netequityfinance 37.50
Bradshaw, Richardson, Sloan (2006) xfin 39.68
Frazzini and Pedersen (2014) bab 46.65
Pontiff and Woodgate (2008) shareiss1y 37.48

Profitability Frankel and Lee (1998) analystvalue 38.00
La Porta (1996) fgr5yrlag 50.71

Unclassified Daniel, Hirshleifer, and Sun (2019) beh fin 44.85
Li (2011) rdcap 33.24
Ritter (1991) indipo 36.42

Value Barbee, Mukherji and Raines (1996) sp 33.09
Basu (1977) ep 32.65
Bhandari (1988) leverage 43.21
Boudoukh et al. (2007) eqnpo me 34.34
Daniel and Titman (2006) eqnpo 12m 30.31
Dechow, Sloan and Soliman (2004) equityduration 40.83
Fama and French (1992) hml 37.32
Litzenberger and Ramaswamy (1979) div12m me 31.50

Having established the quantitative importance of the aggregate measure of asset-specific

risk M̂a
exp,t+1, we examine which trading strategies reflect exposures to this component of the

SDF. As a first step, we run individual regressions of log(M̂a
exp,t+1) on the excess returns

of 457 strategies. We find 27 strategies with an R2 larger than 30%; these are listed in

Table 3. Examining these strategies closely, we find that there is large overlap across

these strategies and that they fall into the following clusters, adopting the classification
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of Jensen, Kelly, and Pedersen (2021): Investment, Leverage, Low Risk, Profitability, and

Value. In the literature, some of these strategies have been interpreted as being behavioral

(for example, the Management factor of Stambaugh and Yuan (2017) and the Long-Horizon

Financial factor of Daniel, Hirshleifer, and Sun (2020)), while others as reflecting market

frictions (for example, the Betting-Against-Beta factor of Frazzini and Pedersen (2014) and

constraints-return relation among high R&D firms in Li (2011)).

Next, we compute the risk premia associated with the exposures of these 457 trading

strategies to the aggregate measure of asset-specific risk as the negative covariance of the

return on the strategy and Ma
exp,t+1:

RPastrategy = − cov(Rstrategy,t+1, M̂
a
exp,t+1)×Rf .

As expected, we find that many of the strategies that are highly correlated with log(Ma
exp,t+1)

are associated with large risk premia. However, there are also some strategies that are not

as highly correlated with log(Ma
exp,t+1) but that still command sizable risk premia; for ex-

ample, momentum strategies. Table 4 provides a list of strategies with the absolute value

of risk premium exceeding 5% per annum. In the literature, the majority of these strategies

are associated with frictions and behavioral biases.

Examining the composition of M̂a
exp,t+1, we identify a substantial contribution of small

stocks. Specifically, of the 34 basis assets with the highest contribution to the variation of

M̂a
exp,t+1, fifteen represent various portfolios of small stocks, such as small stocks with low

and high book-to-market, small stocks with high accruals, and small stocks with high prior

returns. In addition, sixteen basis assets represent a range of portfolios of stocks sorted

by Size and Market Beta or Size and Variance. Finally, seven of these 34 basis assets are

portfolios of stocks with extremely high or low values of net issuances.

The special role of small stocks in the aggregate measure of asset-specific risk is our

estimation result, not an assumption hardwired into the corrected candidate model. Propo-

sition 3 shows that the relative weight of a basis asset in Ma
exp,t+1 depends on the ratio of

the asset’s compensation for asset-specific risk represented by the corresponding element

of the vector a and asset-specific volatility. While it is natural to expect that small stocks

have larger firm-specific components of expected returns, it is also known that small stocks

have higher volatility. Therefore, ex-ante it is not clear if small stocks feature prominently

in the aggregate measure of asset-specific risk.
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Table 4: Strategies with high asset-specific risk premium
This table reports the strategies with high asset-specific risk premium. The first column gives the
name of the cluster to which the strategy belongs, using the classification scheme in Jensen, Kelly,
and Pedersen (2021). If a strategy is not in the list of Jensen, Kelly, and Pedersen (2021), we assign
it to the cluster Unclassified. The second column gives the source. The third column gives the name
of the variable, as in Chen and Zimmermann (2021) or Jensen, Kelly, and Pedersen (2021). The
last column reports the risk premium. The clusters, and within each cluster the sources, are listed
in alphabetical order.

Cluster name Source Variable name RPa(%)

Investment Daniel, Hirshleifer, and Sun (2019) beh fin 5.33%
Ritter (1991) ageipo 5.83%
Xing (2008) invcap 6.06%

Leverage Bhandari (1988) leverage 5.54%
Fama and French (1992) am 5.16%
Palazzo (2012) cash −5.98%

Low Risk Ang, Chen, and Xing (2006) betadown 252d −5.03%
Ang, Hodrick, Xing, and Zhang (2006) ivol 6.14%
Ang, Hodrick, Xing, and Zhang (2006) rvol 21d −5.25%
Ali, Hwang, and Trombley (2003) idiovolaht 5.88%
Bali, Cakici, and Whitelaw (2010) maxret 6.73%
Bradshaw, Richardson, Sloan (2006) xfin 6.54%
Bradshaw, Richardson, Sloan (2006) netequityfinance 5.24%
Fama and MacBeth (1973) beta −6.05%
Frazzini and Pedersen (2014) betafp −6.93%

Momentum Jegadeesh and Titman (1993) mom6m 5.51%
Jegadeesh and Titman (1993) mom12m 5.36%

Profitability Chen, Novy-Marx, Zhang (2011) rome 5.11%
Diether, Malloy and Scherbina (2002) forecastdispersion 5.05%
Frankel and Lee (1998) predictedfe 5.46%
La Porta (1996) fgr5yrlag 8.19%

Unclassified Cen, Wei, and Zhang (2006) feps 6.15%
Cooper et al. (2008) betaarb 6.19%
Datar et al. (1998) shvol 5.88%
Easley, Hvidkjaer and O’Hara (2002) probinformedtrading 6.20%
Elgers, Lo and Pfeiffer (2001) sfe 7.00%

Value Basu (1977) ep 5.33%
Dechow, Sloan and Soliman (2004) equityduration 5.11%

Our finding regarding the role of small stocks in the aggregate measure of asset-specific

risk complements the literature on granular origins of aggregate fluctuations (Gabaix, 2011).

In this literature, idiosyncratic shocks to fundamentals of large firms can lead to nontrivial

aggregate effects, that is, these shocks explain a substantial part of variation in aggregate

fundamentals, or equivalently, in M̂β,mis
exp,t+1.16 In contrast, our central result is about the

16Recall that the candidate model has zero risk factors, so that M̂β,mis
exp,t+1 reflects all systematic risk factors.
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importance of idiosyncratic shocks to the returns of small companies that drive the acyclical

component of the stochastic discount factor, M̂a
exp,t+1.

We now turn our attention to M̂β,mis
exp,t+1 the component of the SDF related to systematic

risk factors. We find that the market factor of Sharpe (1964) exhibits the highest explana-

tory power for log(M̂β,mis
exp,t+1) with R2 = 0.95. It is remarkable that, despite all the criticism

of the market model, when we consider only the systematic component of the SDF, the

market factor explains such a large proportion of its variation. Besides the market factor,

we find that there are 23 trading strategies and 3 non-traded factors (shocks in VIX, inter-

mediary capital (He, Kelly, and Manela, 2017), and dividend yield) that each individually

explain more than 30% of variation in log(M̂β,mis
exp,t+1). Because the market factor already ex-

plains a large proportion of the variation in log(M̂β,mis
exp,t+1), other factors explain only a small

proportion of the variation not explained by the market factor. A combination of nineteen

trading strategies is needed to explain 99% of variation in log(M̂β,mis
exp,t+1).17 These results

are in line with findings of Kozak, Nagel, and Santosh (2020) and Bryzgalova, Huang, and

Julliard (2020) about the non-sparsity of the SDF in characteristics and the existence of

several combinations of trading strategies that deliver similar cross-sectional fit.

5.2 Popular Candidate Factor Models

To illustrate how our methodology brings new insights about factor models, we now con-

sider three classic candidate models—those implied by the CAPM of Sharpe (1964), the

Consumption-CAPM (C-CAPM) of Breeden (1979), and the three-factor model of Fama

and French (1993). For the SDF Mβ,can
exp,t+1 implied by each of these three candidate factor

models, we estimate the required correction terms M̂a
exp,t+1 and M̂β,mis

exp,t+1 and characterize

their properties.

17These strategies include: market, size, betting-against-beta, sales-to-market (Barbee Jr, Mukherji, and
Raines, 1996), change in current operating working capital and change in noncurrent operating liabilities
(Richardson, Sloan, Soliman, and Tuna, 2005), Kaplan-Zingales index (Lamont, Polk, and Saa-Requejo,
2001), cash-to-assets (Palazzo, 2012), dollar trading volume Brennan, Chordia, and Subrahmanyam (1998),
highest 5 days of return scaled by volatility (Asness, Frazzini, Gormsen, and Pedersen, 2020), quality minus
junk growth (Asness, Frazzini, Israel, Moskowitz, and Pedersen, 2018), and short interest (Dechow, Hutton,
Meulbroek, and Sloan, 2001).
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Figure 5: Correction of the market model using the HJ distance

This figure illustrates how the HJ distance changes with Kmis and δapt, when the candidate model
includes only the market factor. The top two panels show the estimation results based on cross
validation, while the bottom two panels show the in-sample results. The panels on the left plot the
HJ distance for a given choice of Kmis as one varies δapt (numbers inside the boxes). The panels on
the right display the optimal values of the HJ distance for a given choice of Kmis.
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5.2.1 The Market Model

Figure 5 shows that for the candidate model with the market as a sole factor, the estimation

procedure selects Kmis = 1 and δapt = 0.0016. The obtained number of missing factors to

correct the market model is in line with our earlier finding that two latent factors summarize

the common variation in asset returns, with one factor being a proxy for the market factor.

Furthermore, Table 5 shows that the admissible SDF obtained from correcting the market

model is perfectly correlated with that obtained from correcting the candidate model with

zero risk factors.
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Table 5: Correlation matrix of corrected SDFs
This table reports the correlation matrix of admissible SDFs obtained from correcting different
candidate models: the model with zero risk factors, CAPM, C-CAPM, and FF3.

Zero risk factors CAPM C-CAPM FF3

Zero risk factors 1.00
CAPM 1.00 1.00
C-CAPM 0.98 0.98 1.00
FF3 0.99 0.99 0.98 1.00

Table 1 shows that the pricing errors under the candidate market model are substantially

larger than those under the corrected market model, in which the market factor is augmented

by one latent factor and the vector a of the asset-specific components in expected returns.

Once the candidate model is corrected, the HJ distance drops by almost 14%, with the

drop being statistically significant. The largest improvement in pricing is for the portfolios

formed by sorting stocks by Size and Value, Size and Beta, Size and Net Issuance, and Size

and Variance.

The relative importance of asset-specific risk is evident from Figure 6 and Table 6.

Figure 6 shows that M̂a
exp,t+1 exhibits the higher volatility than M̂β,can

exp,t+1 and M̂β,mis
exp,t+1, and

Table 6 confirms this finding by showing that log(M̂a
exp,t+1) explains 58% of the variation

in the admissible SDF. The high standard deviation of log(M̂a
t+1) translates into an annual

Sharpe ratio for the aggregate measure of asset-specific risk SR = 0.59.

The remaining 42% of the variation in the log SDF is due to the combination of M̂β,can
exp,t+1

and M̂β,mis
exp,t+1, with 32.26/42.25 ≈ 76.36% of this variation attributable to the market factor.

Recall that when starting from the model with zero risk factors as a candidate model, we

find that the market factor explains 95% of the systematic component of the admissible

SDF. The quantitative difference in the role of the observable market factor is because the

market factor is a scaled proxy for the genuine latent risk factor recovered when considering

the case of the candidate model with no observable risk factors.18

In contrast to the case of a candidate model with zero risk factors, we find that the

systematic component, log(M̂β,mis
exp,t+1), of the correction term log(M̂α

exp,t+1) is uncorrelated

with nontraded factors. The reason for this zero correlation is that the candidate SDF

log(Mβ,can
exp,t+1) based on the market model subsumes the explanatory power of innovations

18The ratio of the standard deviations of the systematic component of the SDF explained by the first
systematic component in the case of the candidate model with zero risk factors to that explained by the
market factor in the case of the CAPM candidate model is 1.17.
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Figure 6: Time series of the SDF and its components when the market model
is the candidate factor model
This figure has four panels, which show the dynamics of the SDF Mexp,t+1 and its three components:

the asset-specific component Ma
exp,t+1, the component Mβ,can

exp,t+1 corresponding to the candidate

model with the market factor, and the missing systematic component Mβ,mis
exp,t+1.
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Table 6: Analysis of the SDF if candidate model is the market model
This table reports the moments of the log SDF and its components. The last column gives the
percentage of the variation of the SDF that is explained by each component.

Mean StdDev Var Skewness Kurtosis Variation (%)

log(M̂exp,t+1) -0.07 0.21 0.05 0.36 6.57 100.00

log(M̂a
exp,t+1) -0.06 0.17 0.03 0.16 10.42 57.75

log(M̂β,can
exp,t+1) -0.01 0.12 0.01 0.46 4.92 32.26

log(M̂β,mis
exp,t+1) -0.00 0.08 0.01 -0.53 6.48 9.99

in VIX, intermediary capital, and dividend yield. We find 27 trading strategies that indi-

vidually explain more than 30% of variation in log(M̂β,mis
exp,t+1). The Size factor (Fama and

French, 1993) is one of the most prominent among them with an explanatory power of about

89%. This finding explains the success of the models developed in Fama and French (1993,

2015).

5.2.2 The Model with a Consumption-Mimicking Portfolio

We now consider the case in which the candidate factor model is the model with a consumption-

mimicking portfolio. We follow the standard approach of Breeden, Gibbons, and Litzen-

berger (1989) to construct the consumption-mimicking portfolio.19 Figure 7 shows that if

19As outlined in Giglio and Xiu (2021), construction of factor mimicking portfolios can be sensitive to the
choice of basis assets. However, we do not have an alternative. The three-stage procedure of Giglio and
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Figure 7: Correction of the model with a consumption-mimicking portfolio using
the HJ distance
This figure illustrates how the HJ distance changes with Kmis and δapt, when the candidate model
includes only the consumption-mimicking portfolio of Breeden, Gibbons, and Litzenberger (1989).
The top two panels show the estimation results based on cross validation, while the bottom two
panels show the in-sample results. The panels on the left plot the HJ distance for a given choice
of Kmis as one varies δapt (numbers inside the boxes). The panels on the right display the optimal
values of the HJ distance for a given choice of Kmis.
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one starts from a candidate model with the consumption-mimicking portfolio as a single

factor, then the estimation procedure selects Kmis = 2 and δapt = 0.0012. The consumption-

mimicking portfolio does not highly correlate with either of the latent factors estimated when

correcting the candidate factor model with zero risk factors – the correlations are 0.3 and

0 – and therefore, two additional factors are still required to capture the common variation

in asset returns.

Xiu (2021), which is insensitive to the choice of test assets, assumes no role for asset-specific risk, while we
document that the asset-specific risk plays a big role in the risk-return trade-off.
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Table 7: Analysis of SDF if candidate model is consumption-mimicking portfolio

This table reports the moments of the log SDF and its components when the candidate model
includes only the consumption-mimicking portfolio of Breeden, Gibbons, and Litzenberger (1989).
The last column gives the percentage of variation of the SDF that is explained by each component.

Mean StdDev Var Skewness Kurtosis Variation (%)

log(M̂exp,t+1) -0.08 0.23 0.05 0.28 6.86 100.00

log(M̂a
exp,t+1) -0.05 0.14 0.02 -0.36 7.79 44.87

log(M̂β,can
exp,t+1) -0.03 0.10 0.01 0.18 9.07 34.11

log(M̂β,mis
exp,t+1) -0.00 0.12 0.02 0.30 4.66 21.02

The results reported in Table 1 imply that the pricing errors under the factor model

based on C-CAPM are much larger than those under the corrected factor model, in which

the consumption-mimicking portfolio factor is augmented by two latent factors and the

vector of the asset-specific components in expected returns a. Correcting the C-CAPM for

misspecification leads to a substantial and statistically significant drop in the HJ distance

by 40.62%. The pricing errors in the candidate model are centred around 0.06, whereas

the pricing errors in the corrected model are centred around zero.20 This finding indicates

that the candidate C-CAPM model is missing a level factor. Therefore, it is not surprising

that the observable market factor is the factor with the highest explanatory power for

log(M̂β,mis
exp,t+1) and that log(M̂β,mis

exp,t+1) exhibits cyclicality.

Given the standard deviation of log(M̂a
t+1) reported in Table 7, we find that the annual

Sharpe ratio for the aggregate measure of asset-specific risk is SR = 0.48. Furthermore,

Table 7 shows that there is a higher proportion of missing systematic risk in the C-CAPM

candidate model relative to the market candidate model: in terms of variation in the sys-

tematic components of the admissible SDF, 21.02/55.13 ≈ 38% versus 9.99/42.25 ≈ 24%.

This finding is another manifestation of the special role of the market factor in explaining

common variation in asset returns and systematic variation in the admissible SDF. Overall,

as Table 5 shows, the admissible SDF obtained when correcting the candidate model with

the consumption-mimicking portfolio almost perfectly correlates with those obtained when

correcting the candidate model with zero risk factors and the candidate model with the

market factor.

20To save space, these results are not reported, but they are available upon request.
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5.2.3 The Three-Factor Model of Fama and French (1993)

Figure 8 shows that if we use the three-factor model of Fama and French (1993) as the

candidate model, our methodology selects zero missing sources of systematic risk and opti-

mal δapt = 0.0025. At first glance, it may seem surprising that this candidate factor model

incorporates all systematic variation in asset returns given that about 19 strategies are nec-

essary to capture the systematic SDF, as explained in the case of the candidate model with

zero risk factors in Section 5.1. However, the FF3 model already includes the market and

size factors that jointly explain more than 96% of the variation in the systematic compo-

nent of the SDF. The contribution of each individual remaining factor is so small that it is

indistinguishable from asset-specific risk.

Differentiating between remaining common factors and asset-specific risk is especially

challenging given that observable traded factors are noisy versions of the true risk factors

that span log(M̂β,mis
exp,t+1) obtained in the case of the model with zero risk factors. As a

result, when starting from FF3 as the candidate model, the estimated asset-specific shocks

are mixed with weak latent factors. Moreover, the FF3 model includes the Value factor

that correlates more strongly with the reference aggregate measure of asset-specific risk

(the correlation is −0.61) than with the systematic component of the SDF (the correlation

is 0.14). Thus, FF3 implicitly incorporates some asset-specific risk. Despite these challenges,

the admissible SDF obtained after correcting the FF3 model is almost perfectly correlated

with those obtained after correcting the other candidate factor models.

Table 8 shows that the estimated admissible SDF has higher volatility relative to the

volatility of the SDFs obtained after correcting the other candidate models. This increase

is due to the noise that observable factors implicitly introduce in the candidate factor

model, consistent with Daniel, Mota, Rottke, and Santos (2020). The standard deviation

of log(M̂a
exp,t+1) implies that the Sharpe ratio for the asset-specific risk is 0.48 per annum.

The lower value of this Sharpe ratio relative to those obtained after correcting alternative

candidate models is because the volatility of returns adjusted for the three systematic factors

of FF3 is higher than that of pure asset-specific risk. The pure asset-specific risk is estimated

when starting from a model with zero risk factors.21 Keeping the total compensation

for asset-specific risk fixed but increasing the volatility of asset-specific risk leads to a

deterioration of the corresponding Sharpe ratio.

21The notion pure relates to the fact that the estimation of asset-specific risk is not conditional on assumed
common factors in the cross-section of asset returns.
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Figure 8: Correction of FF3 model using HJ distance

This figure illustrates how the HJ distance changes with Kmis and δapt, when the candidate model
is the three-factor model (Fama and French, 1993). The top two panels show the estimation results
based on cross validation, while the bottom two panels show the in-sample results. The panels on
the left plot the HJ distance for a given choice of Kmis as one varies δapt. The panels on the right
display the optimal values of the HJ distance for a given choice of Kmis.
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From the perspective of pricing, accounting for missing asset-specific risk improves the

pricing performance of the model, especially with respect to Size-Momentum and Size-

Variance portfolios. The HJ distance drops by a significant 14% once we account for com-

pensation for asset-specific risk. Thus, similar to Stambaugh and Yuan (2017), Bryzgalova,

Huang, and Julliard (2020), and Clarke (2020) among others, we document sizable misspec-

ification in the FF3 model.
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Table 8: Analysis of the SDF if candidate model is FF3
This table reports the moments of the log SDF and its components when the candidate model is
the three-factor model of Fama and French (1993). The last column gives the percentage of the
variation of the SDF that is explained by each component.

Mean StdDev Var Skewness Kurtosis Variation (%)

log(M̂exp,t+1) -0.09 0.25 0.06 0.28 6.68 100.00

log(M̂a
exp,t+1) -0.06 0.14 0.02 1.27 11.47 32.94

log(M̂β,can
exp,t+1) -0.03 0.20 0.04 0.13 6.43 67.06

log(M̂β,mis
exp,t+1) 0.00 0.00 0.00 0.00

5.2.4 Discussion

We could repeat our analysis for other candidate factor models. However, our main conclu-

sion is not going to change – the aggregate measure of asset-specific risk accounts for the

lion share of pricing of the cross-section of asset returns. If by chance a candidate factor

model contains a factor that is correlated with the aggregate measure of asset-specific risk,

then one may find that the role of missing asset-specific risk is biased down, as we saw in

the case of the corrected FF3 model. Yet, including more and more factors into a candidate

factor model would not lead to exact pricing of the cross-section. First, the inclusion of any

observable risk factor into the candidate model necessarily adds noise into the admissible

SDF, as we saw when correcting the C-CAPM and FF3 models. Second, and more impor-

tantly, the aggregate measure of asset-specific risk is a weak factor in the cross-section of

asset returns, and therefore, the corresponding risk premia cannot be accurately estimated.

In other words, one cannot recover the aggregate measure of asset-specific risk by including

any number of tradable factors into the candidate factor model. We show this result explic-

itly in Appendix A1. Our second main finding, that no candidate factor model can capture

the aggregate measure of asset-specific risk, is consistent with the findings in Bryzgalova,

Huang, and Julliard (2020), who undertake a large scale search for a factor model that

prices a cross-section of asset returns but find none.

5.3 Out-of-Sample Analysis

To illustrate the robustness of our approach, we run out-of-sample analyses: we evaluate

how the candidate and corrected models price two additional cross-section of stock returns.

The first dataset, also used in Korsaye, Quaini, and Trojani (2021), includes 100 portfolios

sorted by size and book-to-market, 25 portfolios sorted by size and long-term reversal, 25
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Table 9: Cross-sectional Out-of-Sample Analysis
This table reports the relative improvement in the HJ distance when using the admissible SDF
constructed by correcting a model with zero risk factors relative to the SDFs of the alternative
original and corrected candidate factor models. We analyze the performance of these models on
the set of 202 basis assets (column Benchmark) and on two additional datasets not used at the
estimation. The improvement is tabulated in %.

Class of models Model Benchmark (%) Dataset 1 (%) Dataset2 (%)

Traditional models CAPM 13.87 9.04 8.35
C-CAPM 40.62 38.51 32.68
FF3 13.92 10.80 10.06

PCA-based models PCA1 14.67 9.84 9.07
PCA2 14.79 10.03 9.24
PCA3 16.53 14.57 13.00
PCA4 25.64 24.42 21.56
PCA5 25.56 24.34 21.51

Corrected SDFs Fully-latent corrected 0.00 0.00 0.00
CAPM corrected 0.81 0.47 0.47
C-CAPM corrected 0.14 0.38 0.14
FF3 corrected −0.79 0.48 0.38

portfolios sorted by size and short-term reversal, and 49 industry portfolios.22 The second

dataset includes 100 portfolios sorted by size and book-to-market, 100 portfolios sorted

by size and operating profitability, 100 portfolios sorted by size and investment, and 49

industry portfolios.

Table 9 reports the relative improvement in the HJ distance when using the admissible

SDF constructed by correcting a model with zero risk factors relative to the SDFs of the

various traditional candidate models – both before and after they have been corrected for

misspecification. This table shows that the admissible SDFs constructed by correcting the

three candidate asset-pricing models that we have considered (CAPM, C-CAPM, FF3) have

superior pricing performance compared to the candidate models that are based on just the

observable factors or principal components.

6 Conclusion

A fundamental challenge in finance is to price assets. The main difficulty when pricing assets

is to determine how exactly to adjust their returns for risk. The literature has proposed a

large number of alternative factor models to accomplish this task. Despite the proliferation

22The dataset of Korsaye, Quaini, and Trojani (2021) also includes twenty five momentum portfolios that
we exclude because they are present in our 202 basis assets.
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of systematic risk factors, referred to as the factor zoo (Cochrane, 2011), there is still a

sizable pricing error, called alpha. This leads one to the question posed in the title of this

paper: “What is missing in asset-pricing factor models?”

We challenge the conventional wisdom that only systematic sources of risk receive com-

pensation in financial markets by showing that asset-specific risk is also compensated. That

is, the pricing error alpha implied by factor models includes compensation not only for miss-

ing common risk factors but also for asset-specific risk. Theoretically, we obtain this result

through the lens of the SDF under the assumptions of the APT. We show that an aggregate

measure of asset-specific risk, a component of the admissible SDF represented by a linear

combination of asset-specific shocks, accounts for 56% of the variation in the admissible

SDF.

What is missing in virtually all factor models is compensation for this asset-specific risk.

We show that even though some conventional factors, for example, Value, have sizeable

correlations with the aggregate measure of asset-specific risk, adding an arbitrary number

of factors to a candidate factor model will not lead to an admissible SDF.

The methodology we develop in this paper applies widely—to reduced-form factor mod-

els, but also to partial- and general-equilibrium asset pricing models—without needing to

identify which factors (strong or weak) are missing. In terms of estimation, the methodol-

ogy is designed and feasible for a large number of assets; in fact, its performance improves

with the number of assets considered. Our novel insight, which establishes the importance

of asset-specific risk, is crucial both for empiricists wanting to resolve the factor zoo and

for theorists wishing to develop microfounded models of asset pricing.
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A Appendix: Can one recover Ma
t+1 using observable vari-

ables?

In this appendix, we show that when the asset-specific correction term Ma
t+1 is correlated

with some observed factors, then these factors are necessarily weak (Lettau and Pelger,

2020). Thus even if one could find the complete set of observed factors spanning Ma
t+1, one

could not estimate accurately the corresponding risk premia.23 As a result, the component

Ma
t+1 cannot be estimated the same way as Mβ,can

t+1 and Mβ,mis
t+1 .

Proposition A1. Under Assumptions 1 and 2, assume that there are no missing systematic

risk factors, that is Kmis = 0, implying

Rt+1 −Rft = a+ βcanf can
t+1 + et+1,

where

T−1
T∑
t=1

(et − ē)(et − ē)′ →p Ve,

T−1
T∑
t=1

(f cant − f̄ can)(f cant − f̄ can)′ →p V
can
f > 0,

as T →∞.

If, for an observed factor f idiot+1 , a′V −1
e et+1 = f idio

t+1 − E(f idio
t+1 ), then f idio

t+1 must be a weak

factor.

Proof: Without loss of generality, given that the et is uncorrelated with f can
t by Assump-

tion 1, assume that f can
t and f idio

t are orthogonal in sample, that is
∑T

t=1(f idio
t − f̄ idio)f can

t =

0Kcan . Considering the time-series regression

Rit −Rft = β0 + βcanf can
t + βidiof idio

t + ut,

the OLS estimator of βidio satisfies

β̂idio
i =

∑T
t=1(f idio

t − f̄ idio)(Rit −Rft)∑T
t=1(f idio

t − f̄ idio)2
=

∑T
t=1(f idio

t − f̄ idio)(ai + βcan′i f cant + eit)∑T
t=1(f idio

t − f̄ idio)2

=

∑T
t=1(f idio

t − f̄ idio)ai∑T
t=1(f idio

t − f̄ idio)2
+

∑T
t=1(f idio

t − f̄ idio)eit∑T
t=1(f idio

t − f̄ idio)2

23See Anatolyev and Mikusheva (2021) for the full asymptotic analysis of estimated risk premia associated
with observable weak factors.
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=

∑T
t=1(a′V −1

e (et+1 − ē))ai∑T
t=1(a′V −1

e (et+1 − ē))2
+

∑T
t=1(a′V −1

e (et+1 − ē))eit∑T
t=1(a′V −1

e (et+1 − ē))2

= 0 +

∑T
t=1(a′V −1

e (et+1 − ē))eit∑T
t=1(a′V −1

e (et+1 − ē))2
→p

a′V −1
e Veιi

a′V −1
e VeV

−1
e a

=
ai

a′V −1
e a

=
ai
δapt

,

where we set ιi equal to the ith row/column of IN , and where we assumed, without loss of

generality, that the APT constraint binds, i.e., a′V −1
e a = δapt. �

Proposition A1 implies that f idio
t is a weak factor because its loading satisfies βidio′βidio <

δ < ∞ for any N . This makes estimation of the corresponding risk premium problematic.

In fact, its second-pass estimator satisfies

λ̂idio = 1 +
Op(N

−1T−
1
2 )

O(N−1)
. (A1)

Therefore, λ̂idio is meaningless especially when N is large. For a formal analysis see Ana-

tolyev and Mikusheva (2021). To see how (A1) arises, it is enough to study the behaviour

of the simple case of the two-pass estimator when Kcan = Kidio = 1, satisfying

λ̂ =

[
λ̂can

λ̂idio

]
=

[
βcan

′
βcan βcan

′
βidio

βidio′βcan βidio′βidio

]−1 [
βcan

′
(R̄− R̄f )

βidio′(R̄− R̄f )

]

=

[
βcan

′
βcan βcan

′
a

a′βcan a′a

]−1 [
βcan

′
(R̄− R̄f )

a′(R̄− R̄f )

]

=

[
λcan + f̄ can − Ef cant

1

]
+

[
βcan

′
βcan βcan

′
a

a′βcan a′a

]−1 [
βcan

′
ē

a′ē

]

=

[
λcan + f̄ can − Ef cant

1

]
+

1

a′a
N

βcan′βcan

N − (β
can′a
N )2

[
a′a
N −βcan

′
a

N

−βcan
′
a

N
βcan

′
βcan

N

][
βcan

′
ē

N
a′ē
N

]

=

[
λcan + f̄ can − Ef cant

1

]
+

1

O( 1
N )

[
O( 1

N ) O( 1

N
1
2

)

O( 1

N
1
2

) O(1)

]Op( 1

(NT )
1
2

)

Op(
1

NT
1
2

)



=

[
λcan + f̄ can − Ef cant

1

]
+

Op(N−
3
2 T−

1
2 )

O(N−1)

Op(N−1T−
1
2 )

O(N−1)

 .

where we set δapt = 1 for simplicity.
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Whereas the two-pass estimator for the candidate risk factor is always consistent for

λcan+ f̄ can−Ef cant when either N or T or both diverge, coinciding with λcan when T →∞,

the estimated risk premium λ̂idio of f idio
t+1 has an undefined limit, especially when N becomes

large. Therefore, the traditional two-pass regression approach does not permit to accurately

estimate Ma
t+1. In contrast, the methodology described in this paper explains how to

construct an accurate estimate of Ma
t+1, which does not even rely on the existence and

identification of f idio
t+1 .

Theorem A1 extends to the multivariate case, that is when f idio
t+1 is a vector. It also

extends to the case when f idio
t spans the asset-specific risk imperfectly, that is for

(f idio
t+1 − E(f idio

t+1 ) = γa′V −1
e et+1 + ηt+1

where Eηt+1 = 0, corr(a′V −1
e et+1, ηt+1) = 0, var(ηt+1) = σ2

η = var(f idio
t+1 )(1 − ρ2

f idio,Ma).

Then

β̂idio
i = βidio

i +Op(T
−1/2) =

γai

γ2a′V −1
e a+ σ2

η

+Op(T
−1/2),

implying that f idio
t+1 continues to be a weak factor, given βidio ′βidio < ∞, and estimation of

its risk premia is still problematic, as discussed above.
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B Appendix: Proofs

This appendix contains the proofs for all the propositions in the manuscript. We use the

following notation: Ia denotes the identity matrix of dimension a × a; 0a×b denotes a

matrix of zeros with a rows and b columns and 0a denotes a vector of zeros with a entries ;

A > 0 means that the matrix A is positive definite; ‖ · ‖ denotes the Euclidean norm; E(·)

denotes the expectation operator; aN = O(bN ) and aN = o(bN ) with bN > 0 it means that

|aN |/bN is bounded and |aN |/bN → 0, respectively, as N →∞;
p−→ denotes convergence in

probability; aN = Op(bN ) and aN = o(pbN ) with bN > 0 it means that |aN |/bN is bounded

in probability and |aN |/bN
p−→ 0, respectively, as N →∞.

B.1 Lemmas

We start by providing a set of lemmas needed to prove our results.

Lemma B.1. For a random vector z ∼ N(µz,Σz), and any constant vector d, one gets:

(i)

E(ed
′z) = ed

′µz+ 1
2
d′Σzd.

(ii)

E(zed
′z) = µ∗e

1
2

(µ∗′Σ−1
z µ∗−µ′zΣ−1

z µz),

setting

µ∗ = (µz + Σzd).

An alternative expression is

E(zed
′z) = (µz + Σzd)e( 1

2
d′Σzd+µ′zd).

Proof: (i) is well-known. For (ii), denoting by nz the dimensionality of the vector z,

E(zed
′z) =

1

(
√

2π)nz |Σz|
1
2

∫
zed

′ze−
1
2

(z−µz)′Σ−1
z (z−µz)dz.

Then

ed
′ze−

1
2

(z−µz)′Σ−1
z (z−µz) = ed

′z− 1
2
z′Σ−1

z z− 1
2
µ′zΣ−1

z µz+µ′zΣ−1
z z

= e−
1
2
z′Σ−1

z z− 1
2
µ′zΣ−1

z µz+(Σzd+µz)′Σ−1
z z

= e−
1
2
z′Σ−1

z z− 1
2
µ′zΣ−1

z µz+µ∗′Σ−1
z z
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= e−
1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗e−
1
2
z′Σ−1

z z+µ∗′Σ−1
z z− 1

2
µ∗′Σ−1

z µ∗

= e−
1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗e−
1
2

(z−µ∗)′Σ−1
z (z−µ∗),

implying

E(zed
′z) = e−

1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗

(
1

(
√

2π)nz |Σz|
1
2

∫
ze−

1
2

(z−µ∗z)′Σ−1
z (z−µ∗z)dz

)
.

�

Lemma B.2. Let VR = βVfβ
′ + Vε with N ×N and K ×K matrices Vε > 0 and Vf > 0,

and a full-column rank N ×K matrix β satisfying β′Vε
−1β/N → D > 0 for some matrix

D. Then:

β′V −1
R β → V −1

f .

Proof: By the Sherman Morrison formula,

V −1
R = Vε

−1 − Vε−1β(V −1
f + β′Vε

−1β)−1β′Vε
−1,

pre-multiplying by β′, and re-arranging terms, yields

β′V −1
R = β′Vε

−1 − β′Vε−1β(V −1
f + β′Vε

−1β)−1β′Vε
−1

= (IK − β′Vε−1β(V −1
f + β′Vε

−1β)−1)β′Vε
−1

= ((V −1
f + β′Vε

−1β)− β′Vε−1β)(V −1
f + β′Vε

−1β)−1β′Vε
−1

= V −1
f (V −1

f + β′Vε
−1β)−1β′Vε

−1.

Post-multiplying by β and taking the limit as N →∞ gives

β′V −1
R β → V −1

f ,

because (V −1
f + β′Vε

−1β)−1β′Vε
−1β → IK . �

Lemma B.3. Under the assumptions of Lemma B.2 and for a random vector e with mean

zero and covariance Vε:

β′V −1
R e = Op(N

− 1
2 ).

Proof: Pre-multiplying by β′ and post-multiplying by e one obtains:

β′V −1
R e = V −1

f (V −1
f + β′Vε

−1β)−1β′Vε
−1e.

The result follows noticing that β′Vε
−1e = Op((β

′Vε
−1β)

1
2 ) using the resultX = Op((E(X))

1
2 )

for any random variable X with finite second moment. �
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Lemma B.4. Under the assumptions of Lemma B.2 and letting Vε = βmisβmis′ + Ve

for a column full-rank N × Kmis matrix βmis and a N × N matrix Ve > 0 such that

βmis′Ve
−1βmis/N → E > 0 for some matrix E, then:

βmis′Vε
−1β = O(1).

Proof: Along the same lines of the proof to Lemma B.2

βmis′Vε
−1β = (IKmis+βmis′Ve

−1βmis)−1βmis′Ve
−1β = (

IKmis

N
+
βmis′Ve

−1βmis

N
)−1β

mis′Ve
−1β

N
= O(1),

where, by the Schwartz inequality, ‖ βmis′Ve
−1β ‖≤‖ βmis′Ve

−1βmis ‖
1
2 ‖ β′Ve−1β ‖

1
2 . �

Lemma B.5. Under the assumptions of Lemma B.4:

βmis′Vε
−1βmis → IKmis .

Proof: This is a special case of Lemma B.2. �

Lemma B.6. Under the assumptions of Lemma B.4 and for a random vector e with mean

zero and covariance Ve: Then:

βmis′Vε
−1e = Op(N

− 1
2 ).

Proof: This is a special case of Lemma B.3. �

Lemma B.7. Under the assumptions of Lemma B.4, setting VR = βVfβ
′ + Vε, α = a +

βmisλm for an Kcan × 1 vector of constants λm and a′Ve
−1a = O(1), then:

α′V −1
R β = O(N−

1
2 ).

Proof: Given

α′V −1
R β = a′V −1

R β + λ′mβ
mis′V −1

R β

= a′(Vε
−1 − Vε−1β(V −1

f + β′Vε
−1β)−1β′Vε

−1)β

+ λ′mβ
mis′(Vε

−1 − Vε−1β(V −1
f + β′Vε

−1β)−1β′Vε
−1)β

= a′Vε
−1β(V −1

f + β′Vε
−1β)−1V −1

f + λ′mβ
mis′Vε

−1β(V −1
f + β′Vε

−1β)−1V −1
f

= O(N−
1
2 ) +O(N−1),

by Lemma B.4, the bound ‖ a′Vε−1β ‖≤‖ a′Vε−1a ‖
1
2 ‖ β′Vε−1β ‖

1
2 and

|a′Vε−1a| = |a′(Ve−1 − Ve−1βmis(IKcan + βmis′Ve
−1βmis)−1βmis′Ve

−1)a|
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≤ |a′Ve−1a|+ |aVe−1βmis(IKcan + βmis′Ve
−1βmis)−1βmis′Ve

−1a|

≤ |a′Ve−1a|+ |aVe−1a|
1
2 ‖ βmis′Ve

−1βmis ‖
1
2 ‖ (IKcan + βmis′Ve

−1βmis)−1 ‖ |aVe−1a|
1
2 ‖ βmis′Ve

−1βmis ‖
1
2

= |a′Ve−1a|+ |aVe−1a| ‖ βmis′Ve
−1βmis ‖‖ (IKcan + βmis′Ve

−1βmis)−1 ‖= O(1),

together with ‖ β′Vε−1β ‖
1
2 = O(N

1
2 ). �

B.2 Proof of Proposition 1

The idea of the proof is to apply the APT mathematics to Rt+1 − β
(
ft+1 + λ−E(ft+1)

)
=

α + εt+1. By Chamberlain and Rothschild (1983, Theorem 4) the error covariance matrix

has an approximate factor structure, and satisfies

Vε = βmisβmis′ + Ve,

where Ve > 0 with uniformly bounded eigenvalues, and by Chamberlain and Rothschild

(1983, Corollary 2) there exists a vector λmis such that (α − βmisλmis)′V −1
e (α − βmisλmis)

is bounded for any N , where βmis is the N × Kmis matrix made by the Kmis dominant

eigenvectors of Vε (the eigenvectors associated with the largest Kcan eigenvalues), each

multiplied by the square-root of the corresponding eigenvalues. We set a = α− βmisλmis.

By the Sherman-Morrison-Woodbury decomposition,

V −1
ε = V −1

e − V −1
e βmis(IKcan + βmis′V −1

e βmis)−1βmis′V −1
e .

Therefore, by substitution,

α′V −1
ε α = α′V −1

e α− α′V −1
e βmis(IKcan + βmis′V −1

e βmis)−1βmis′V −1
e α

= (βmisλmis + a)′V −1
e (βmisλmis + a)

− (βmisλmis + a)′V −1
e βmis(IKcan + βmis′V −1

e βmis)−1βmis′V −1
e (βmisλmis + a)

= λmis′βmis′V −1
e βmisλmis

− λmis′βmis′V −1
e βmis(IKmis + βmis′V −1

e βmis)−1βmis′V −1
e βmisλmis

+ a′V −1
e a− a′V −1

e βmis(IKcan + βmis′V −1
e βmis)−1βmis′V −1

e a

+ 2a′V −1
e βmisλmis − 2a′V −1

e βmis(IKcan + βmis′V −1
e βmis)−1βmis′V −1

e βmisλmis.

We now show that α′V −1
ε α is bounded for any N . We study each of the terms on the

right-hand side of the last equality sign, one by one. The first and second term satisfy

λmis′βmis′V −1
e βmisλmis − λmis′βmis′V −1

e βmis(IKcan + βmis′V −1
e βmis)−1βmis′V −1

e βmisλmis
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= λmis′(IN − βmis′V −1
e βmis(IKcan + βmis′V −1

e βmis)−1)βmis′V −1
e βmisλmis

= λmis′(IKcan + βmis′V −1
e βmis)−1βmis′V −1

e βmisλmis ≤ λmis′λmis,

because IKcan − (IKcan + βmis′V −1
e βmis)−1βmis′V −1

e βmis is positive semidefinite. Next, for

the third term, denoting by gNN (Ve) the smallest eigenvalue of Ve,

a′V −1
e a ≤ a′a/gNN (Ve) = O(1).

Now, the jth element of a′V −1
e βmis, obtained by considering the jth column of βmis, for

every 1 ≤ j ≤ Kmis, satisfies

|a′V −1
e βmis

j | ≤ (a′V −1
e a)

1
2 (βmis

j
′
V −1
e βmis

j )
1
2 = O(N

1
2 ),

Moreover, the (i, j)th element, for every 1 ≤ i, j ≤ Kcan, of (βmis′V −1
e βmis) is equal to

βmis
j
′
V −1
e βmis

i . Therefore, (IKcan +βmis′V −1
e βmis)−1 decreases at rate O(N−1). On the other

hand, along the same lines, the elements of the vector βmis′V −1
e a diverge at most at rate

O(N
1
2 ). Collecting terms, the fourth term satisfies:

|a′V −1
e βmis(IKcan + βmis′V −1

e βmis)−1βmis′V −1
e a| = O(1).

Concerning the last two terms, it turns out that their difference converges to zero. In fact,∣∣2a′V −1
e βmisλmis − 2a′V −1

e βmis(IKcan + βmis′V −1
e βmis)−1βmis′V −1

e βmisλmis
∣∣

= 2
∣∣a′V −1

e βmis(IKcan + βmis′V −1
e βmis)−1λmis

∣∣
≤ (a′V −1

e βmis(IKcan + βmis′V −1
e βmis)−1βmis′V −1

e a)
1
2 (λmis′(IKcan + βmis′V −1

e βmis)−1λmis)
1
2

= O(N−
1
2 ).

�

Observe that Proposition 1 assumes the presence of at least one omitted systematic risk

factor. The case when there are no missing systematic factors, that is, Kmis = 0, in turn

implied when Vε has all bounded eigenvalues, coincides with the classical APT.

B.3 Proof of Proposition 2

In general, the SDF can always be re-written as linear in payoffs or excess returns. Without

loss of generality we assume that the candidate factors are traded and expressed as excess

returns, or as difference of excess returns (such as highest decile portfolio minus lowest
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decile portfolio) implying Ef can
t+1 = λcan. In fact, if the factors are non traded, by standard

arguments one replaces them with the corresponding (traded) mimicking portfolios.

Therefore, given that in the APT payoffs (excess returns) are linear in f can
t , εN,t, and

1, then the SDF under the APT satisfies:

Mt+1 = E(Mt+1) + b′(f can
t+1 − λcan) + c′εt+1, (B1)

for some given coefficient vector b, which is Kcan × 1, and coefficient vector c, which is

N × 1. We determine b and c below whereas E(Mt+1) = R−1
ft , and given that we assumed

the existence of the risk-free asset, Rft = 1 + rft, it must be that:

0Kcan = E(Mt+1f
can
t+1),

0N = E(Mt+1(Rt+1 −Rft1N )),

leading to a total of Kcan +N constraints. Substituting Mt+1 from (B1) one gets:

0Kcan = E
[(
E(Mt+1) + b′(f can

t+1 − λcan) + c′εt+1

)
f can
t+1

]
= E

[(
R−1
ft + b′(f can

t+1 − λcan) + c′εt+1

)
f can
t+1

]
= R−1

ft E(f can
t+1) + E

(
f can
t+1(f can

t+1 − λcan)′b
)

+ E
(
f can
t+1ε

′
N,t+1

)
c

= R−1
ft λ

can + Vfcanb,

implying that

b = −R−1
ft V

−1
fcanλ

can.

Next,

0N = E
[(
R−1
ft + b′(f can

t+1 − λcan) + c′εt+1

)(
Rt+1 −Rft1N

)]
= E

[ (
R−1
ft + b′(f can

t+1 − λcan) + c′εt+1

)
×(

α+ βcanλcan + βcan(f can
t+1 − λcan) + εt+1

)]
= R−1

ft (α+ βcanλcan) + βcanVfcanb+ Vεc

= R−1
ft (α+ βcanλcan)−R−1

ft β
canVfcanV

−1
fcanλ

can + Vεc

= R−1
ft (α+ βcanλcan)−R−1

ft β
canλcan + Vεc

= R−1
ft α+ Vεc,

implying that

c = −R−1
ft V

−1
ε α.

�
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B.4 Proof of Proposition 3

Assuming, without loss of generality, that the candidate model has only tradable factors

represented by either factor returns in excess of the risk-free rate (for example, market

factor) or long-minus-short strategies, we define the non-negative SDF to be:

Mexp,t+1 = exp(µ+
m + (b+)′(f can

t+1 − λcan) + (c+)′εt+1),

which implies that to identify Mexp,t+1, we need to find: µ+
m, b+, and c+.

Imposing the following 1 +Kcan +N constraints,

R−1
ft = E(Mexp,t+1),

0Kcan = E(Mexp,t+1f
can
t+1),

0N = E(Mexp,t+1(Rt+1 −Rft1N )),

allows one to identify Mexp,t+1, as we show below. Starting with the first restriction, using

Lemma B.1 below, we get:

R−1
ft = E(Mexp,t+1) = E(exp[µ+

m + (b+)′(f can
t+1 − λcan) + c+′εt+1])

= exp[µ+
m] exp[(

1

2
b+′Vfcanb

+ +
1

2
c+′ΣN,tc

+]

implying

exp[µ+
m] = R−1

ft exp[−(
1

2
b+′Vfb

+ +
1

2
c+′Vεc

+)].

Next, considering the Kcan restrictions and using Lemma B.1 again, we obtain:

0Kcan = E(Mexp,t+1f
can
t+1)

= E(Mexp,t+1(f can
t+1 − λcan)) + λcanE(Mexp,t+1)

= λcanE(Mexp,t+1) + eµ
+
mE(ec

+′εt+1)E(eb
+′(fcant+1−λcan))(f can

t+1 − λcan))

= λcanR−1
ft + e(µ+m+ 1

2
c+′Vεc++ 1

2
b+′Vfcanb

+)Vfcanb
+

= λcanR−1
ft +R−1

ft Vfcanb
+

yielding

b+ = −V −1
fcanλ

can.

Finally, imposing the N restrictions and using Lemma B.1 again, we get:

0N = E(Mexp,t+1(Rt+1 −Rft1N ))
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= E
(
Mexp,t+1(α+ βcanλcan + βcan(f can

t+1 − λcan) + εt+1)
)

= (α+ βcanλcan)E(Mexp,t+1) + E(Mexp,t+1β
can(f can

t+1 − λcan)) + E(Mexp,t+1εt+1)

= (α+ βcanλcan)E(Mexp,t+1)− βcanλcanE(Mexp,t+1) +R−1
ft Vεc

+,

implying that

c+ = −Vε−1α,

where we used E(Mexp,t+1εt+1) = e(µ+m+ 1
2
b+′Vfcanb

+)E(ec
+′εt+1εt+1) = R−1

ft Vεc
+. Putting

terms together

Mexp,t+1 = R−1
ft e

−[λcan ′V −1
fcan (fcant+1−λcan)+ 1

2
λcan ′V −1

fcanλ
can]e−[α′Vε−1εt+1+ 1

2
α′Vε−1α].

�

B.5 Proof of Proposition 4

The result follows from Lemmas B.2 and B.3. �

B.6 Proof of Proposition 5

Consider

M̂α
exp,t+1 = exp

[
− α′V −1R (Rt+1 − E[Rt+1])− 1

2
α′V −1R α

]
= exp

[
− α′(V −1ε − V −1ε βcan(V −1fcan + βcan ′V −1ε βcan)−1βcan ′V −1ε )(Rt+1 − E[Rt+1])− 1

2
α′V −1R α

]
,

where the first term of the exponent can be written as the sum of three components:

α′(V −1
ε − V −1

ε βcan(V −1
fcan + βcan ′V −1

ε βcan)−1βcan ′V −1
ε )(Rt+1 − E[Rt+1])

= α′V −1
ε εt+1 − α′V −1

ε βcan(V −1
fcan + βcan ′V −1

ε βcan)−1βcan ′V −1
ε )εt+1

+ α′(V −1
ε − V −1

ε βcan(V −1
fcan + βcan ′V −1

ε βcan)−1βcan ′V −1
ε )βcan(f can

t+1 − λcan).

As N →∞, the second and third components vanish and only the first component remains.

In fact, given εt+1 = βmis(fmis
t+1 − λmis) + et+1 and α = βmisλmis + a, one obtains

α′V −1
ε εt+1 − a′V −1

e εt+1
p−→ 0, and

α′V −1
ε βcan(V −1

fcan + βcan ′V −1
ε βcan)−1βcan ′V −1

ε )εt+1 =

α′V −1
ε βcan(V −1

fcan + βcan ′V −1
ε βcan)−1βcan ′V −1

ε )βmis(fmis
t+1 − λmis)

+ α′V −1
ε βcan(V −1

fcan + βcan ′V −1
ε βcan)−1βcan ′V −1

ε )et+1
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o(N1/2N−1N1/2) + op(N
1/2N−1N1/2) = op(1), and

α′(V −1
ε − V −1

ε βcan(V −1
fcan + βcan ′V −1

ε βcan)−1βcan ′V −1
ε )βcan(f can

t+1 − λcan) =

α′V −1
ε βcan(V −1

fcan + βcan ′V −1
ε βcan)−1V −1

fcan(f can
t+1 − λcan) = op(N

− 1
2 ),

making use of βcan ′Vε
−1et+1 = Op((β

can ′V −1
ε VeV

−1
ε βcan)

1
2 ) = Op(N

1
2 ) and α′V −1

ε βcan =

a′V −1
ε βcan + λmis′βmis ′V −1

ε βcan = o(N
1
2 ) + o(N

1
2 ), recalling Vε = βcanβcan ′ + Ve. �

Proof of Proposition 6

By Proposition 5, M̂β,mis
t+1

p−→ −R−1
ft λ

mis ′(fmis
t+1 − E(fmis

t+1)), setting for simplicity M1T =

IT − 1T 1′T /T , one obtains, given M1T 1T = OT×T ,

γ̂1
p−→ −R−1

ft (G′M1TG)−1G′M1T (Fmis − 1TE(fmis ′
t+1 ))λmis

= −R−1
ft (QFmis ′M1TF

misQ′)−1QFmis ′M1TF
misλmis = −R−1

ft (Q′)−1λmis = γ1.

Thus, regarding the limit of R2
g, its numerator simplifies to

γ′1(G′M1TG)γ1 = (Rft)
−2λmis ′Q−1Q(Fmis ′M1TF

mis)Q′(Q′)−1λmis

= (Rft)
−2λmis ′(Fmis ′M1TF

mis)λmis,

and its denominator becomes

= (Rft)
−2λmis ′(Fmis − 1TE(fmis ′

t+1 ))′M1T (Fmis − 1TE(fmis ′
t+1 ))λmis

= (Rft)
−2λmis ′(Fmis ′M1TF

mis)λmis,

and thus identical to the numerator of the limit of R2
g.

The case of orthogonal G and Fmis is straightforward and so we omit details. �

B.7 Proposition B1

Proposition B1 (Parameter estimates of APT). Suppose that the vector of asset returns

Rt+1 satisfies the data-generating process given in equations (1) and (2). Assume that the

number of missing factors in the candidate model, Kmis, is known, that the sample covari-

ance matrix of candidate factors V̂fecan is nonsingular, with V̂fcan = M̂fcan − f̄ canf̄ can ′, set-

ting M̂fcan = T−1
∑T

t=1 f
can
t f can ′

t , f̄ can = T−1
∑T

t=1 f
can
t , and setting M̂Rfcan = 1

T

∑T
t=1(Rt−

Rft1N )f can ′
t , R̄ = 1

T

∑T
t=1Rt, and R̄f = 1

T

∑T
t=1Rft.
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(i) If the optimal value of the Karush-Kuhn-Tucker multiplier κ̂ is greater than zero, then

vec(β̂can) =
(
(M̂fcan ⊗ IN )− (f̄ canf̄ can ′ ⊗G)

)−1
vec
(
M̂Rfcan −G(R̄−Rft1N )f̄ can ′),

(B2)

λ̂mis = (β̂mis′ V̂ε
−1
β̂mis)−1β̂mis′ V̂ε

−1
(
R̄− R̄f1N − β̂canf̄ can

)
, (B3)

â =
1

κ̂+ 1

(
R̄− R̄f1N − β̂canf̄ can − β̂misλ̂mis

)
. (B4)

in which

G =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
β̂mis(β̂mis′ V̂ε

−1
β̂mis)−1β̂mis′ V̂ε

−1
,

V̂ε = β̂misβ̂mis′ + V̂e,

where β̂mis and V̂e do not admit a closed-form solution and λ̂can and ˆVfcan coincide

with the sample mean and sample covariance of the factors f can
t .

(ii) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂ = 0 one can

estimate only α = βmisλmis +a but not the two components separately, and one obtains

α̂ = R̄− R̄f1N − β̂can f̄ can e, (B5)

and the expression for vec(β̂can) can be obtained by setting κ̂ = 0 in (B2). The

expressions for λ̂can and ˆVfcan are unchanged, and, as before, the expressions for the

estimators of β̂mis and V̂e do not admit a closed-form solution.

Proof of Proposition B1

Defining by θ̃ the constrained maximum likelihood estimator corresponding to κ̃ = 0, this

is infeasible whenever ã′Ṽε
−1
ã > δapt. Similarly, the case κ̂ > 0 is infeasible whenever, for

every κ̂ > 0,

(
R̄− R̄f1N − β̂can f̄ can − β̂mis λ̂mis

)′
V̂ε
−1
(
R̄− R̄f1N − β̂can f̄ can − β̂mis λ̂mis

)
< δapt,

because

(1 + κ̂)2 =

(
R̄− R̄f1N − β̂can f̄ can − β̂mis λ̂mis

)′
V̂ε
−1
(
R̄− R̄f1N − β̂can f̄ can − β̂mis λ̂mis

)
δapt

.

When both cases are feasible, the optimal value for the Karush-Kuhn-Tucker multiplier κ̃

will be either greater that zero or equal to zero, depending on which case maximizes the
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log-likelihood, namely depending on whether L(θ̂) or L(θ̃) is largest, respectively. Note

that when κ̂ > 0 then â′V̂ε
−1
â = δapt by construction.

We now derive the formulae for the estimators. Assume for now that case κ̂ > 0

holds. Differentiating the penalized log-likelihood with respect to λmis, a, and the Lagrange

multiplier κ, the first Kmis +N equations (after some algebra) are:

(
βmis′V −1

ε

IN

)(
R̄− R̄f1N − βcanf̄ can)

)
=
(
βmis′V −1

ε βmis βmis′V −1
ε

βmis (1 + κ̂)IN

)(
λ̂mis

â

)
,

where recall that Vε = βmisβmis′+Ve. It is straightforward to see that, because of the APT

restriction, λmis and a can now be identified separately, as long as κ̂ > 0. In fact, the above

system of linear equations can be solved because the matrix premultiplying λ̂mis and â is

non-singular for every κ̂ > 0, leading to the closed-form solution (B3) and (B4).

Turning now to the first-order condition with respect to the generic (a, b)th element of

βcan, denoted by B2ab with 1 ≤ a ≤ N, 1 ≤ b ≤ Kcan, one obtains

− 1

T

T∑
t=1

(
Rt −Rft1N − βmisλmis − a− β̂canf can

t

)′
Vε
−1(− ∂β

can

∂B2ab
ft) = 0,

which can be re-arranged as

M̂Rfcan − (a+ βmisλmis)f̄ can ′ − β̂canM̂fcan = 0N×Kcan .

Inserting (B3) and (B4), and G, and re-arranging terms yields

β̂canM̂fcan −Gβ̂canf̄ canf̄ can ′ = M̂Rfcan −G(R̄− R̄f1N )f̄ can ′,

which can be rewritten more succinctly as

1

T

T∑
t=1

f can
t g′t = 0Kcan×N ,

with gt =
(
Rt − Rft1N −G(R̄ − R̄f1N )− β̂canf can

t +Gβ̂canf̄ can
)

. Taking the vec operator

and solving for β̂can gives the desired expression in (B2).

We need to show that a solution for β̂can exists. This requires one to establish that the

matrix
(

(M̂fcan ⊗ IN )− (f̄ can f̄ can ′ ⊗G)
)

is invertible. This matrix can be written as(
(M̂fcan ⊗ IN )− (f̄ can f̄ can ′ ⊗G)

)
=
(

((M̂fcan − f̄ can f̄ can ′)⊗ IN ) + (f̄ can f̄ can ′ ⊗ (IN −G))
)
.
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The first matrix on the right hand side is non-singular by assumption. One then just needs

to show that the second matrix is positive semi-definitive. This follows because (IN −G) is

positive semi-definite.

IN −G = IN −
1

(κ̂+ 1)
IN − (

κ̂

1 + κ̂
)βmis(βmis′V −1

ε βmis)−1βmis′V −1
ε

= (
κ̂

1 + κ̂
)(IN − βmis(βmis′V −1

ε βmis)−1βmis′V −1
ε )

= (
κ̂

1 + κ̂
)Vε(V

−1
ε − V −1

ε βmis(βmis′V −1
ε βmis)−1βmis′V −1

ε )

= (
κ̂

1 + κ̂
)Vε(V

−1
ε )

1
2 (IN − (V −1

ε )
1
2βmis(βmis′V −1

ε βmis)−1βmis′(V −1
ε )

1
2 )(V −1

ε )
1
2 .

The right-hand side is the product of positive-definite matrices, namely Vε and (V −1
ε )

1
2 ,

and of the matrix IN − (V −1
ε )

1
2βmis(βmis′V −1

ε βmis)−1βmis′(V −1
ε )

1
2 , which is the projection

matrix orthogonal to (V −1
ε )

1
2βmis, and therefore, positive semidefinite itself.

Therefore, plugging β̂can into λ̂mis and â , one obtains that

λ̂mis = λ̂mis(βmis, Ve), â = â(βmis, Ve) and κ̂ = κ̂(βmis, Ve).

Substituting them, together with β̂can = β̂can(βmis, Ve),, into L(θ)−κ(a′Vε
−1a− δapt), gives

the concentrated likelihood function, which is a function of only βmis and Ve which will be

maximized numerically, providing β̂mis and V̂e.

Suppose now that κ̂ = 0 holds, and recall that in this case the MLC is indicated by θ̂.

One can clearly obtain a unique solution to the linear system of equations (βmis, IN )
(
λ̂mis

â

)
=

βmisλ̂mis + â. However, to solve for λ̂mis and â separately, one needs to invert the matrix

(
βmis′V −1

ε

IN

)
(βmis, IN ) =

(
βmis′V −1

ε βmis βmis′V −1
ε

βmis IN

)
,

which is not possible because it is of dimension (N + Kmis) × (N + Kmis) but of rank

N , as the left-hand side shows that it is obtained from the product of two matrices of

dimension (N + Kmis) × N . All the other parameters are identified separately, and their

expressions follow from differentiating L(θ) and solving the resulting first-order conditions.

For instance, the formula for β̂can follows by setting G = IN into (B2). �
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C Online Appendix with Additional Results

This appendix contains additional results and generalizations of some of the results reported

in the main text.

C.1 The SDF with Non-Orthogonal Components

All the previous results were derived under the assumption that the candidate risk factors

f can
t and the unobserved idiosyncratic shock εt+1 are (conditionally) orthogonal, as formal-

ized in Assumption 1. However, one can envisage situations where orthogonality does not

necessarily hold, the best example being when there are missing systematic risk factors that

are hidden in the idiosyncratic shock and are correlated with the observed risk factors.24

In this case, note that an observationally equivalent representation of the SDF Mt+1

exists such that the observed risk factors f can
t+1 and the unobserved idiosyncratic shock εt+1

are orthogonal. In particular, recalling that εt+1 = et+1 + βmis(fmis
t+1 − E(fmis

t+1)), as before,

with et+1 and fmis
t+1 being mutually uncorrelated,

Mt+1 = R−1
ft + b′(f can

t+1 − E(f can
t+1)) + c′εt+1, (C1)

= R−1
ft + b̃′(f can

t+1 − Et(f can
t+1)) + c′ε̃t+1, (C2)

setting the Kcan ×Kmis matrix of covariances Q = cov(f can
t+1, f

mis
t+1
′
) with

b̃ = b+ V −1
fcanQβ

mis′c,

ε̃t+1 = et+1 + βmis
(
f̃mis
t+1 − E(f̃mis

t+1)
)
, where

f̃mis
t+1 = (IKmis ,−Q′V −1

fcan)

(
fmis
t+1 − E(fmis

t+1)
f can
t+1 − E(f can

t+1)

)
.

Notice that by contruction cov(f can
t+1, f̃

mis ′
t+1 ) = 0Kcan×Kmis , because f̃mis

t+1 represent the linear-

projection residual from projecting fmis
t+1 − E(fmis

t+1) on f can
t+1 − E(f can

t+1).

Although the two representations (C1) and (C2) are observationally equivalent, the

one based on correlated components, that is (C1), has the advantage of ensuring a cleaner

interpretation of the parameters, such as the ones for loadings and risk premia. For instance,

the loadings associated with f can
t+1 in representation (C2) differ from the (true) loadings of

f can
t+1 in representation (C1), a consequence of the omitted-variable bias. This can be seen

24We report only the results valid for finite N . The large N analysis follow along the steps outlined in
Section 2.3.2.
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by comparing the extended APT in the orthogonal and non-orthogonal representations:

Rt+1 −Rft1N = a+ (βmis, βcan)

(
λmis

λcan

)
+ (βmis, βcan)

(
fmis
t+1 − E(fmis

t+1)
f can
t+1 − E(f can

t+1)

)
+ et+1,

= a+ (β̃mis, β̃can)

(
λ̃mis

λcan

)
+ (β̃mis, β̃can)

(
f̃mis
t+1 − E(f̃mis

t+1)
f can
t+1 − E(f can

t+1)

)
+ et+1,

where

β̃mis = βmis(IKmis −Q′V −1
fcanQ)

1
2 ,

β̃can = βcan + βmisQ′V −1
fcan ,

λ̃mis = (IKmis −Q′V −1
fcanQ)−

1
2 (λmis −Q′V −1

fcanλ
can),

and f̃mis
t+1 has (conditionally) unit covariance matrix and is uncorrelated with f can

t+1.25 Notice

that (βmis, βcan)

(
λmis

λcan

)
= (β̃mis, β̃can)

(
λ̃mis

λcan

)
as the possibility of a non-zero Q does

not affect expected excess returns E(Rt+1 −Rft1N ).

We now show how all our results can be generalized to allow for the case of correlated

observed and missing factors. In particular, we need to generalize Assumption 1 to:

Assumption C1 (Linear factor model: correlated case). Assumption 1 holds with

E(f can
t+1ε

′
t+1) = P,

for some non-zero Kcan × N matrix P such that perfect (conditional) correlation between

f can
t+1 and εt+1 is ruled out:

IN − (V −1
ε )

1
2P ′V −1

fcanP (V −1
ε )

1
2 > 0.

When Vε = βmisβmis ′ + Ve, then

P = Qβmis, (C3)

but we keep the more general notation in terms of P in order to provide the SDF formulae.

However, when constructing estimators for the model’s parameters, we will impose (C3).

25In particular, f̃mis
t+1 is given by:

f̃mis
t+1 = (IKmis −Q′V −1

fcanQ)−
1
2 (IKmis ,−Q′V −1

fcan)

(
fmis
t+1 − E(fmis

t+1)
fcan
t+1 − E(fcan

t+1)

)
.
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Although the expression for expected excess returns is unchanged, the variance for excess

returns becomes:

cov(Rt+1 −Rft1N ) = VR = βcanVfβ
can ′ + Vε + P ′βcan ′ + βcanP.

We show how the expressions for the linear and exponential SDF change in the absence

of orthogonality.

Proposition C1 (SDF: Correlated case). Under Assumptions C1 and 2 of the APT, there

exists an admissible SDF of the form

Mt+1 = R−1
ft + b′(f can

t+1 − E(f can
t+1)) + c′εt+1, with

b = −R−1
ft

(
V −1
fcanλ

can − V −1
fcanPH

−1(α− P ′V −1
fcanλ

can)
)
,

c = −R−1
ft

(
H−1(α− P ′V −1

fcanλ
can)

)
, where

H = Vε − P ′V −1
fcanP.

When expressed in terms of a linear projection on the set of payoffs (1, Rt+1 − Rft1N ),

the SDF is

M̂t+1 = R−1
ft + (b′[Vfcanβ

can ′ + P ] + c′[Vε + P ′βcan ′])V −1
R

(
Rt+1 − E(Rt+1)

)
= R−1

ft − (α+ βcanλcan)′V −1
R

(
Rt+1 − E(Rt+1).

Proof of Proposition C1

We start with the conjecture that the SDF is still linear in the observed factors f can
t+1 and

idiosyncratic risk εt+1, although now these can be cross-correlated. Stating the Kcan + N

pricing equations:

0Kcan = E(Mt+1f
can
t+1)

0N = E(Mt+1(Rt+1 −Rft1N )),

yields,

0N+Kcan =

 E
[(
R−1
ft + b′(f can

t+1 − λcan) + c′εt+1

)
f can
t+1

]
E
[(
R−1
ft + b′(f can

t+1 − λcan) + c′εt+1

)(
Rt+1 −Rft1N

)] 
= R−1

ft

(
λcan

βcanλcan + α

)
+

(
Vfcanb+ Pc

(βcanVfcan + P ′)b+ (Vε + βcanP )c

)
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= R−1
ft

(
λcan

βcanλcan + αcan

)
+

(
Vfcan P

(βcanVfcan + P ′) (Vε + βcanP )

)(
b
c

)
.

Using the blockwise formula for the inverse of a matrix, in view of the lack of perfect

correlation between the f can
t+1 and the εt+1, one obtains the solution:(

b
c

)
= −R−1ft

(
Vfcan P

(βcanVfcan + P ′) (Vε + βcanVfcan)

)−1(
λcan

βcanλcan + α

)

= −R−1ft

(
V −1fcan + V −1fcanPH−1(βcan + P ′V −1fcan) −V −1fcanPH−1

−H−1(βcan + P ′V −1fcan) H−1

)(
λcan

βcanλcan + α

)

= −R−1ft

(
V −1fcanλcan − V −1fcanPH−1(α− P ′V −1fcanλcan)

H−1(α− P ′V −1fcanλcan)

)
.

We now establish the result for the projection SDF M̂t+1. By construction, setting

Xt+1 = (1, R′t+1 −Rft1′N )′ and for simplicity using µ = E(Rt+1 −Rft1N ),

M̂t+1 = E(Mt+1X
′
t+1)(E(Xt+1X

′
t+1)−1Xt+1

= (R−1ft , R
−1
ft µ

′ + b′[Vfcanβcan ′ + P ] + c′[Vε + P ′βcan ′])

(
1 + µ′V −1R µ −µ′V −1R

−V −1R µ V −1R

)
Xt+1

= (R−1ft − (b′[Vfcanβcan ′ + P ] + c′[Vε + P ′βcan ′])V −1R µ, (b′[Vfcanβcan ′ + P ] + c′Vε)V
−1
R )Xt+1

= R−1ft + (b′[Vfcanβcan ′ + P ] + c′[Vε + P ′βcan ′])V −1R (Rt+1 −Rft1N − µ),

where we apply the block formula for the inverse of a square matrix to E(Xt+1X
′
t+1), which

exists because of our assumption of less-than-perfect correlation between observed factors

and idiosyncratic shocks. Finally, by means of algebraic manipulations,

b′[Vfcanβ
can ′ + P ] + c′[Vε + P ′βcan ′] = λcan ′βcan ′ + α′,

which gives the desired result. �

Note that although the expressions for the coefficients in the SDF, namely b and c,

differ from the case P = 0Kcan×N , one still obtains the decomposition into the alpha- and

beta-SDFs:

Mt+1 = Mα
t+1 +Mβ,can

t+1 ,

where

Mβ,can
t+1 = R−1

ft −R
−1
ft b

′(f can
t+1 − E(f can

t+1)) and Mα
t+1 = −R−1

ft ε
′
t+1c,

where b and c are defined in Proposition C1. In terms of the pricing of asset returns:

E
(
Mβ,can
t+1

[
1

Rt+1 −Rft1N

])
= R−1

ft

[
1

(Vε + βcanP )c

]
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E
(
Mα
t+1

[
1

Rt+1 −Rft1N

])
= R−1

ft

[
0

−(Vε + βcanP )c

]
.

Notice that now cov(Mα
t+1,M

β,can
t+1 ) = R2

ftb
′Pc 6= 0. Despite this, as for the earlier orthogo-

nal case, the misspecified M can
t+1 prices the observed factors correctly, that is E(Mβ,can

t+1 f can
t+1) =

0Kcan .

Likewise, one obtains the decomposition in terms of linear projections as:

M̂t+1 = M̂α
t+1 + M̂β,can

t+1 , with

M̂β,can
t+1 = R−1

ft + b′[Vfcanβ
can ′ + P ]V −1

R

(
Rt+1 − E(Rt+1)

)
,

M̂α
t+1 = c′[Vε + P ′βcan ′])V −1

R

(
Rt+1 − E(Rt+1)

)
,

where it can be shown that the previous large-N results extend also to the non-orthogonal

case.26

C.2 The Nonnegative SDF with Non-Orthogonal Components

Given the strong analogies between the specifications of the linear and nonnegative SDF

cases, we introduce the nonnegative SDF for the case of correlated components, and its

corresponding decomposition in terms of (nonlinear) projections, without a formal proof.

Proposition C2 (Nonnegative SDF: Correlated case). Under Assumptions C1 and 2 of the

APT and that returns are conditionally Gaussian, there exists an admissible SDF Mexp,t+1

of the form

Mexp,t+1 = exp
[
µ+
m + b+′(f can

t+1 − E(f can
t+1)) + c+′εt+1

]
, with

µ+
m = ln(R−1

ft )− 1

2
(b+′, c+′)

(
Vfcan P
P ′ Vε

)
(
b+

c+ ),

b+ = −
(
V −1
fcanλ

can − V −1
fcanPH

−1(α− P ′V −1
fcanλ

can)
)
,

c+ = −
(
H−1(α− P ′V −1

fcanλ
can)

)
,

recalling H = Vε − P ′V −1
fcanP .

Proof of Proposition C2

We omit the proof because it is similar to the proof for Proposition 3, but using Proposi-

tion C1. �
26Details are available upon request.
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Note that the relevant decomposition of the nonnegative SDF in terms of (nonlinear)

projections is given by:

M̂exp,t+1 = M̂α
exp,t+1 M̂

β,can
exp,t+1, where

M̂β,can
exp,t+1 = R−1ft exp

[
b+′(Vfcanβcan ′ + P )V −1R (Rt+1 − E(Rt+1)− 1

2
b+′Vfcanb+

]
, and

M̂α∗+
exp,t+1 = exp

[
c+′(Vε + P ′βcan ′)V −1R

(
Rt+1 − E(Rt+1)

)
− 1

2
(b+′, c+′)

(
0Kcan×Kcan P

P ′ Vε

)
(
b+

c+
)
]
,

where the previous large-N results extend also to this non-negative non-orthogonal case.27

C.3 Estimation of the APT: the General Case

We now explain how to estimate the APT allowing for both tradable and nontradable

factors, and for both asset-specific pricing errors and pricing errors arising from omitted

systematic risk factors. Assume that

Rt+1 −Rft1N = a+ βmisλmis + βcan
1 (λcan

1 + f can
1t+1 − E(f can

1t+1)) + βcan
2 f can

2t+1 + εt+1, with

α = a+ βmisλmis, εt+1 = βmis(fmis
t+1 − E(fmis

t+1)) + et+1,

where we set βcan = (βcan
1 , βcan

2 ), Vf = var(ft+1), ft+1 = (f ′1t+1, f
e′
2t+1)′, with f1t+1 denoting

the set of Kcan
1 nontradable observed factors and fe2t+1 the set of Kcan

2 tradable observed

factors, expressed as excess returns, where Kcan = Kcan
1 +Kcan

2 . We assume that the missing

factors are uncorrelated with the observed factors.28 Given that f can
2t are excess returns,

or difference of, on tradable assets, their risk premia satisfy λcan
2 = E(f can

2t ) and, to avoid

confusion with the risk premia of the nontradable assets λcan
1 , we will use the expectation

formulation for λcan
2 .

The joint log-likelihood function takes the following form:

L(θ̃) =− 1

2
log(det( ˜βmis ˜βmis

′
+ Ṽe)) (C4)

− 1

2T

T∑
t=1

(
Rt −Rft1N − ˜βmisλ̃mis − ã− β̃can

1 (λ̃can
1 + f can

1t − Ẽ(f can
1t ))− β̃can

2 f can
2t

)′
× ( ˜βmis ˜βmis

′
+ Ṽe)

−1
(
Rt −Rft1N − ˜βmisλ̃mis − ã− β̃can

1 (λ̃can
1 + f can

1t − Ẽ(f can
1t ))− β̃can

2 f can
2t

)
27Details are available upon request.
28The estimator can be extended to the case of correlated observed and omitted risk factors; details are

available upon request.
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− 1

2
log(det(Ṽf ))− 1

2T

T∑
t=1

(ft − Ẽ(ft))
′Ṽf
−1

(ft − Ẽ(ft)).

Without loss of generality, one can assume that the missing factors have unit variance, that

is, var(fmis
t ) = IKmis , achieving identification of βmis.

Proposition C3 (Parameter estimation of APT: General Case). Suppose that the vector of

asset returns, Rt, satisfies Assumption 1 and that M̂fcan2
− f̄ can

2 f̄ can ′
2 is nonsingular, where

M̂fcan2
= T−1

∑T
t=1 f

can
2t f

can ′
2t and f̄ can

2 = T−1
∑T

t=1 f
can
2t . Then

θ̂ = argmax
θ̃

L(θ̃) subject to ã′Ṽε
−1
ã ≤ δapt,

where L(θ̃) is defined in (C4), and θ̂ = (â′, ˆλmis
′
, λ̂can ′

1 , Ê(f can
1t )′ , Ê(f can

2t )′, vec( ˆβmis)′,

vec(β̂can)′, vech(V̂e)
′, vech(V̂f )′)′.

(i) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂ > 0, setting

D = (βmis, βcan
1 ), λ = (λmis ′, λcan ′

1 )′,

then, using ⊗ to denote the Kronecker product,

vec(B̂can
2 ) =

(
(M̂fcan2

⊗ IN )− (f̄ can
2 f̄ can ′

2 ⊗ Ĝ)
)−1

vec
(
M̂hfcan2

− Ĝh̄f̄ can ′
2

)
, (C5)

λ̂ = (D̂′ V̂ε
−1
D̂)−1D̂′ V̂ε

−1
(
h̄− β̂can

2 f̄ can
2

)
,

â =
1

κ̂+ 1

(
h̄− β̂can

2 f̄ can
2 − D̂λ̂

)
,

where V̂ε = ˆβmis ˆβmis
′
+ V̂e, M̂hfcan2

= T−1
∑T

t=1 htf
can ′
2t , h̄ = T−1

∑T
t=1 ht with ht = Rt −

Rf1N − β̂can
1 (f can

1t − f̄ can
1 ) and f̄ can

1 = T−1
∑T

t=1 f
can
1t , and

Ĝ =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
D̂(D̂′ V̂ε

−1
D̂)−1D̂′ V̂ε

−1
.

Note that D̂ = ( ˆβmis, B̂can
1 ) and V̂e do not admit a closed-form solution and, as before, Ê(ft)

and V̂f coincide with the sample mean and sample covariance of the observed factors ft.

(ii) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂ = 0 one can

estimate only αN = a+Dλ but not the two components separately, and one obtains

α̂N,MLC = R̄− R̄f1N − β̂can
2 f̄ can

2 ,

and the expression for vec(β̂can
2 ) can be obtained by setting κ̂ = 0 in the terms that appear

in (C5). The expressions for Ê(ft) and V̂f are unchanged, and, as before, the expressions

for the estimators of D̂ and V̂e do not admit a closed-form solution.
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Proof. Within this proof, for simplicity, we do not use the ·̃ notation to denote feasible

parameter values.

Defining by θ̃ the MLC corresponding to κ̂ = 0, this is unfeasible whenever we have that

ã′Ṽε
−1
ã > δapt. Similarly, case κ̂ > 0 is unfeasible whenever,

(
R̄− R̄f1N − β̂can

2 f̄ can
2 − D̂ λ̂

)′
V̂ε
−1
(
R̄− R̄f1N − β̂can

2 f̄ can
2 − D̂ λ̂

)
< δapt,

because (1 + κ̂)2 =

[
R̄−R̄f1N−β̂can

2 f̄can2 −D̂ λ̂

]′
V̂ε
−1
[
R̄−R̄f1N−β̂can

2 f̄can2 −D̂ λ̂

]
δapt

. When both cases are

feasible, the optimal value for the Karush-Kuhn-Tucker multiplier will be greater than zero

or equal to zero, depending on which case maximizes the log-likelihood, namely depending

on whether L(θ̂) or L(θ̃) is largest, respectively. Note that when κ > 0 then â′V̂ε
−1
â = δapt

by construction.

We now derive the formulae for the estimators. Assume for now that case κ̂ > 0 holds.

Differentiating the penalized log-likelihood with respect to λ, a, and the Lagrange multiplier

κ, the first K∗ +N equations, setting K∗ = Kmis +Kcan
1 , (after some algebra) are:

( D′Vε
−1

IN

)(
R̄− R̄f1N − βcan

2 f̄ can
2

)
=
( D′Vε

−1D D′Vε
−1

D (1 + κ̂)IN

)(
λ̂
â

)
,

where recall that Vε = βmisβmis′ + Ve, and noting that all the expressions above and below

are left as function of the feasible values for Ve and D (as opposed to their MLC values). It

is straightforward to see that, because of the APT restriction, λ and a can now be identified

separately, as long as κ̂ > 0. In fact, the above system of linear equations can be solved

because the matrix pre-multiplying λ̂ and â is non-singular for every κ̂ > 0, leading to the

closed-form solution:

λ̂ = (D′Vε
−1D)−1D′Vε

−1
(
R̄− R̄f1N − βcan

2 f̄ can
2

)
, (C6)

â =
1

κ̂+ 1

(
R̄− R̄f1N − βcan

2 f̄ can
2 −Dλ̂

)
. (C7)

Turning now to the first-order condition with respect to the generic (a, b)th element of

β2N,MLC, denoted by B2ab with 1 ≤ a ≤ N, 1 ≤ b ≤ Kcan
2 , one obtains

1

T

T∑
t=1

(
Rt −Rft1N − βmisλmis − a− βcan

1 (λcan
1 + f can

1t − f̄ can
1 )− β̂can

2 f can
2t

)′
Vε
−1(− ∂β

can
2

∂B2ab
f can

2t ) = 0.
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Now, inserting (C6) and (C7) into the above expression, setting

G =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
D(D′Vε

−1D)−1D′Vε
−1,

and re-arranging terms yields, setting M̂fcan1 fcan2
= 1/T

∑T
t=1 f

can
1t f

can ′
2t ,

β̂can
2 M̂fcan2

−Gβ̂can
2 f̄ can

2 f̄ can ′
2 = M̂Rfcan2

−G(R̄− R̄f1N )f̄ can ′
2 − βcan

1 (M̂fcan1 fcan2
− f̄ can

1 f̄ can ′
2 ),

which can be rewritten more succinctly as

1

T

T∑
t=1

f can
2t g

′
t = 0Kcan

2 ×N ,

with gt =
(
ht −Gh̄− β̂can

2 f can
2t +Gβ̂can

2 f̄ can
2

)
. Taking the vec operator and solving for β̂can

2

gives the desired expression in (C5).

We need to show that a solution for β̂can
2 exists. This requires one to establish that the

matrix
(

(M̂fcan2
⊗ IN )− (f̄ can

2 f̄ can ′
2 ⊗G)

)
is invertible. This matrix can be written as

(
(M̂fcan2

⊗ IN )− (f̄ can
2 f̄ can ′

2 ⊗G)
)

=
(

((M̂fcan2
f̄ can

2 f̄ can ′
2 )⊗ IN ) + (f̄ can

2 f̄ can ′
2 ⊗ (IN −G))

)
.

The first matrix on the right hand side is non-singular, given the assumptions made. One

then just needs to show that the second matrix is positive semi-definitive, which follows

from the proof of Theorem B1.

Therefore, plugging β̂can
2 = β̂can

2 (D,Ve) into λ̂ and â, and then λ̂ into â, one obtains that

β̂can
2 = β̂can

2 (D,Ve), λ̂ = λ̂(D,Ve), â = â(D,Ve) and κ̂ = κ̂(D,Ve).

Substituting them into L(θ)−κ(a′Vε
−1a− δapt), gives the concentrated log-likelihood func-

tion, which is a function of only D and Ve and it will be maximized numerically to obtain

D̂ and V̂e. Observe that the penalization term vanishes for the concentrated log likelihood

function for either κ̂ = 0 and κ̂ > 0.

(ii) Suppose now that κ̂ = 0. One can clearly obtain a unique solution for (D, IN )
(
λ̃
ã

)
=

Dλ̃+ ã. However, to solve for λ̃ and ã separately, one needs to invert the matrix

( D′Vε
−1

IN

)
(D, IN ) =

( D′Vε
−1D D′Vε

−1

D IN

)
,
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which is not possible because it is of dimension (N+K∗)×(N+K∗) but of rank N , because

the left-hand side shows that it is obtained from the product of two matrices of dimension

(N + K∗) × N . Thus, only the sum Dλ̃ + ã can be estimated. All the other parameters

are identified separately and their expressions follow from differentiating L(θ) and solving

the resulting first-order conditions. For instance, the formula for β̃can
2 follows from setting

G = IN into (C5). �
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