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Abstract

We analyze how computing power and data abundance affect speculators’ search

for predictors. Speculators optimally stop searching when they find a predictor with

a signal-to-noise ratio greater than an endogenous threshold. Greater computing

power raises this threshold by reducing search costs. In contrast, data abundance

can reduce this threshold because (i) it reduces rents from informed trading, except

for the best informed speculators and (ii) it increases the average number of trials

required to find a predictor. We derive predictions regarding the effects of progress

in information technologies on active asset managers’ performance, the similarity

of their holdings and the informativeness of asset prices.
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1. Introduction

Active asset managers play a central role in securities markets. They make substantial

investments to produce information about asset payoffs and, by trading on their infor-

mation, they make securities prices more informative. Technological progress is changing

how asset managers obtain information by enabling them to use (i) more diverse data

(generated by social media, web search, online transactions, mobile phones etc.) and (ii)

more powerful computer-based methods (e.g., machine learning) to mine these data.1 As

a result, the set of potential predictors for asset payoffs has considerably increased.2 This

evolution raises many interesting questions: How does it affect managers’ search for pre-

dictors? How does it affect asset managers’ performance? Does it make asset managers’

signals and holdings more or less similar? Does it make asset prices more informative?

In this paper, we address these questions. A unique feature of our theory is to dif-

ferentiate the expansion of the set of available data to find predictors (data abundance)

from the reduction of information processing costs (greater computing power). These

two aspects of the big data revolution are related but conceptually distinct.3 To develop

predictions about the effects of progress in information technologies, it is therefore im-

portant to develop models of information acquisition, like ours, in which data abundance

and computing power are different parameters.

Our model features a continuum of risk averse speculators (which we interpret as

quantitative asset managers). In the first stage (the “exploration stage”), each speculator

optimally scours available data to select predictors of a risky asset payoff. In the second

stage (the “trading stage”), each speculator observes the realization of her predictor and

optimally trades on this information, as in other rational expectations models (the trading

stage is similar to Vives (1995)). The novel implications of our model stem from the

exploration stage. Here, instead of following the standard approach (e.g., Grossman and

Stiglitz (1980) or Verrecchia (1982)), whereby speculators obtain a predictor of a given

1See Goldman Sachs Asset Management (2016): “The role of big data in investing.” Marenzi (2017)
estimates that asset managers have spent more than four billion in alternative data in 2017 (see also
“Asset managers double spending in new data in hunt for edge”, Financial Times, May 9, 2018).

2For instance, Martin and Nagel (2020) note (on p.2) that: “As technology has improved, the set of
available and potentially valuation-relevant predictor variables has expanded enormously over time” while
Gu et al. (2020) write (on p.2225) that machine learning enables investors to use ”efficient algorithms
for searching among a vast number of potential model specifications.

3For instance, social media or geolocation data expands the set of variables that investors can consider
to find predictors but does not per se lower the cost of processing these data).



precision at a fixed cost, we explicitly model the search for a predictor and we analyze

how the optimal search strategy depends on (i) the cost of exploration (computing power)

and (ii) the “search space” (data abundance).

We model the search for predictors as follows. Each speculator can combine variables

(e.g., past returns, accounting variables and social media data) from different datasets to

build predictors. A predictor is characterized by its signal-to-noise ratio (“quality”). The

quality of a given predictor is a priori unknown but speculators know the distribution of

quality across predictors. The lowest quality is zero (just noise) while the highest qual-

ity determines the “data frontier,” denoted τmax. Given this distribution, each speculator

simultaneously and independently discovers predictors during the exploration phase. Dis-

covering a predictor and its quality requires launching a round of exploration, which costs

“c.” A round returns a predictor with probability α and fails otherwise. After obtaining

a predictor, a speculator can decide to trade on the predictor or to search for another

one, which requires paying the exploration cost again. This process goes on until the

speculator finds a satisficing predictor.

In practice, discovering and selecting a predictor requires (a) buying and preparing new

data for analysis, (b) building a predictor with these data and assessing its quality with

statistical techniques and (iii) deciding, via extensive backtesting, whether a predictor is

good enough for live trading.4 One round of exploration comprises all these tasks and

we interpret the exploration cost as the total cost of executing them (which includes

labor and opportunity costs). We assume that automation and greater computing power

reduces this cost because they allow to complete an exploration round faster.5

In contrast, we assume that data abundance affects the distribution of predictors’

quality in two ways. Firstly, data abundance enables speculators to discover new predic-

tors by using combination of variables that previously were not available (e.g., data from

social media). This possibility pushes further the data frontier, τmax, i.e., improves the

quality of the best predictors (the “hidden gold nugget” effect).6 Secondly, data abun-

4See Chapters 8 and 9 in Narang (2013) for a practitioner’s account of the way quant funds generate
predictors.

5Brogaard and Zareei (2019) use a genetic algorithm approach to select technical trading rules. They
note that “the average time needed to find the optimum trading rules for a diversified portfolio of ten
NYSE/AMEX volatility assets for the 40 year sample using a computer with an IntelÂ® Core(TM)
CPU i7-2600 and 16 GM RAM is 459.29 days (11,022.97 hours).” For one year it takes approximately
11.48 days.” They conclude that their analysis would not be possible without the considerable increase
in computing power in the last 20 years.

6This effect is often discussed in the financial press (e.g., “Hedge funds see a gold rush in data mining”,
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dance creates a “needle in the haystack” problem: It results in a proliferation of datasets,

among which only a fraction is useful for forecasting asset payoffs. This effect increases

the likelihood that a particular dataset proves useless after being tested, i.e., reduces α.

In our model, we analyze these two effects separately by varying either τmax or α.

In equilibrium, each speculator optimally stops searching for a predictor after finding

one whose quality exceeds an endogenous threshold, τ ∗. This threshold is such that the

speculator’s expected utility of trading on a predictor of quality τ ∗ is just equal to her

expected utility of searching for another predictor (her continuation value). Thus, the

quality of predictors used in equilibrium ranges from τ ∗ (least informative) to τmax (most

informative). Hence, even though speculators are ex-ante homogeneous (same preferences

and exploration costs), they are heterogeneous in the quality of their predictors (and

therefore performance) due to serendipity in search outcomes.

Data abundance and computing power do not have the same effects on speculators’

optimal search policy, τ ∗. To understand why, it is useful to contrast the effect of a

decrease in the cost of exploration, c, and the effect of an increase in the quality of the

best predictor, τmax on the value of launching a new round of exploration after finding a

predictor (the continuation value), holding the search policy (τ ∗) constant. An increase

in τmax has two countervailing effects. On the one hand, it raises the continuation value

because the expected utility of trading on the best predictor becomes even larger. On the

other hand, speculators who obtain the best predictor now trade even more aggressively

on their signal (i.e., they make larger bets for a given deviation between the asset price

and their forecast of its payoff) because they face less risk (the “aggressiveness effect”).

As a result, the asset price is more informative (closer to the asset payoff), which reduces

the value of searching for a predictor. When τmax is large enough, the aggressiveness

effect dominates and speculators optimally react by adopting a less demanding search

policy (i.e., τ ∗ decreases in equilibrium).

In contrast, a decrease in c unambiguously raises the value of searching for another

Financial Times, August 28, 2017) and supported by recent empirical findings. For instance, Katona
et al. (2019) find that combining satellite images of parking lots of U.S. retailers from two distinct data
providers improves the accuracy of the forecasts of retailers’ quarterly earnings (see also Zhu (2019)).
Also, van Binsbergen et al. (2020) find that, with machine learning techniques, one can obtain more
precise forecasts of firms’ future earnings than analysts’ forecasts (they use random forests regressions
combining more than 70 accounting variables with analysts’ forecasts). Last, Gu et al. (2020) consider
900+ predictors of stock and market returns and find that machine learning techniques (trees and neural
networks) considerably increase out-of-sample R2 of predictive models.
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predictor after finding one because it reduces the total expected cost of search without

affecting speculators’ average trading aggressiveness. Thus, speculators optimally react

to a decrease in c by adopting a more demanding search policy (which, in equilibrium,

eventually raises their average aggressiveness). The effect of a decrease in α (the “needle

in the haystack” effect) is symmetric because it also increases the total expected cost of

search without affecting speculators’ average trading aggressiveness.

In sum, greater computing power always reduces the difference between the quality of

the best and the worst predictor used in equilibrium while data abundance (an increase

in τmax or a decrease in α) has the opposite effect (in the case of τmax when it is large

enough). These contrasting effects yield several testable implications.

Our first set of predictions is about the informativeness of asset prices for fundamen-

tals. Our model predicts that greater computing power improves price informativeness

because it leads speculators to be more demanding for the quality of their predictors.

The effect of a push back of the data frontier (due for instance to the availability of a new

type of data) on asset price informativeness is more complex. On the one hand, it can

lead speculators to be less demanding for the quality, τ ∗, of the least satisficing predictor.

On the other hand, as it increases the quality of of the best predictor (τmax), it increases

the trading aggressiveness of speculators who find the best predictors. The first effect

reduces speculators’ average trading aggressiveness while the second effect increases it.

We find that the second effect always dominates the first in equilibrium. Hence, a push

back of the data frontier has a positive effect on price informativeness, even though it can

induce some speculators to trade on predictors of lower quality. In contrast, an increase

in the severity of the needle in the haystack problem (a decrease in α) always reduces

price informativeness.

Our second set of predictions regards the effects of shocks to computing power (e.g., the

introduction of cloud computing) or data abundance (e.g., the introduction of new types

of data) on the heterogeneity of quantitative asset managers (“quant funds”), measured

in various ways. First, we analyze the effects of computing power and data abundance on

the cross-sectional distribution of asset managers’ trading profits (or equivalently square

Sharpe ratios), in particular the mean and the variance of this distribution . Greater com-

puting power raises the average quality of the predictors used in equilibrium and therefore

price informativeness. The first effect raises speculators’ expected trading profit while the
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second reduces it. The former dominates if and only if speculators’ cost of exploration, c,

is small enough. An increase in the quality of the most informative predictor, τmax, has

the same effect for the same reasons. A decrease in α reduces price informativeness and

the average quality of predictors used in equilibrium. The second (first) effect dominates

when the needle in the haystack problem becomes sufficiently severe (α is low enough).

In sum, the model predicts an inverse U-shape relationship between speculators’ trading

profits (averaged across managers) and (i) data abundance or (ii) computing power. This

suggests that progress in information technologies should initially benefit all quant funds

until a point where it starts reducing their profits.

In contrast, the model implies that an increase in computing power reduces the vari-

ance of asset managers’ trading profits while a push back of the data frontier (or an

increase in the severity of the needle in the haystack problem) can increase this variance.

Indeed, an increase in computing power induces speculators to be more demanding for the

quality of their predictors (τ ∗ increases). Thus, it reduces the dispersion in the quality of

predictors, and therefore trading profits, across speculators. On the contrary, data abun-

dance can induce speculators to be less demanding for the quality of their predictors,

which increases the cross-sectional dispersion in their performance. The same type of

predictions obtain if one considers the heterogeneity of asset managers’ investment skills,

measured by the predictive power of their holding of the asset for the return of the risky

asset (as in Kacperczyk et al. (2014)). This offers another way to test the predictions of

the model.

Another way to measure the heterogeneity in asset managers is by the pairwise cor-

relation of their holdings. Intuitively, two managers are less similar when their holdings

are less correlated. The model predicts that greater computing power (smaller c) or a

push back of the data frontier (greater α) reduce the pairwise correlation in speculators’

trades (i.e., increase the heterogeneity of their positions). The reason is that, in equilib-

rium, speculators optimally trade on the component of their predictors that is orthogonal

to the equilibrium price. As c decreases or τmax increases, this component increasingly

reflects the noise in speculators’ signals because the asset price becomes more informa-

tive. As this noise is independent across speculators, speculators’ holdings become less

correlated when c decreases or τmax increases (an increase in the severity of the needle in

the haystack problem has the opposite effect because it reduces price informativeness).
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Interestingly, this happens even though speculators may become more similar in terms of

the quality of their signal (e.g., in the case of a decrease in c).

2. Contribution to the Literature

Our paper contributes to the literature on informed trading in financial markets when

information acquisition is endogenous (see Veldkamp (2011) for a survey). This literature

often takes a reduced-form approach to model the cost of acquiring a signal of given

precision. For instance, Verrecchia (1982) (and several subsequent papers) assumes that

this cost is a convex function of the precision of the signal. The learning technology in

our model is different. The relationship between a speculator’s total expected cost of

obtaining information and the expected precision of her signal is endogenous and micro-

founded by an optimal search model. As explained previously, this approach enables

us to analyze separately the effects of greater computing power (a decrease in the cost

of processing data) and data abundance (an expansion of the search space). To our

knowledge, our paper is the first to offer this possibility.

A few other papers have formalized information acquisition as a search problem (Gar-

leanu and Pedersen (2018), Han and Sangiorgi (2018), Banerjee and Breon-Drish (2020))

but they analyze different questions. In Garleanu and Pedersen (2018), investors can

invest in passive or active funds and pay a search cost to discover whether an active asset

manager is informed or not about a risky asset. In contrast to our model, informed man-

agers have a signal of the same precision obtained as in Grossman and Stiglitz (1980).

In Han and Sangiorgi (2018), an agent can draw, with replacement, normally distributed

signals from an “urn.” Each draw is costly, similar to the cost of exploration in our model.

Interestingly, the relationship between the precision of the average signal obtained by the

agent (a sufficient statistics for all his signals) and her total investment in drawing signals

is convex, which provides a microfoundation for the assumption that information acqui-

sition costs are convex in precision. Our approach differs in many respects. In particular,

we jointly solve for the equilibrium of the market for a risky asset and speculators’ optimal

search for predictors (Han and Sangiorgi (2018) do not apply their model to trading in fi-

nancial markets). In Banerjee and Breon-Drish (2020), one investor dynamically controls

her timing for information acquisition about the payoff of a risky asset. She optimally
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alternates between periods in which she searches for information (when the volume of

noise trading is high enough) and periods in which she does not. When she searches for

information, the investor finds a signal of a given precision according to a Poisson process

and starts trading on this signal as soon as she finds it. Banerjee and Breon-Drish (2020)

shows that this dynamic model generates predictions different from the standard static

model in which the informed investor must decide to acquire a signal before trading.

More broadly, our paper is related to the growing literature on the theoretical effects

of new information technologies for the production of financial information (e.g., Abis

(2020), Dugast and Foucault (2018), Farboodi and Veldkamp (2019), Milhet (2020) or

Huang et al. (2020)). This literature assumes that progress in information technologies

reduces the cost of processing information or relaxes investors’ attention constraints and

explores ramifications of this assumption. Our model accounts for another dimension

of this progress, namely data abundance (the expansion of speculators’ search space for

predictors). We show that the effects of data abundance and the cost of processing data

(c in our model) are different and derive several implications that should allow empiricists

to test whether these differences matter empirically.

Last, there is a growing literature in financial economics on the risk of false discovery

(p-hacking) due to extensive data mining (e.g., Harvey (2017)). Our model does not

speak to this issue. We interpret the search for predictors as data mining. However,

when a speculator discovers a predictor, there is no uncertainty about the quality of the

predictor (see Footnote 9 for more discussion).

3. Model

3.1 Searching predictors

We consider a financial market with a continuum of risk averse (CARA with risk aver-

sion ρ) speculators of unit mass, risk neutral and competitive market makers, and noise

traders. Speculators can invest in a risky asset and a risk free asset whose rate of return is

normalized to zero. Speculators have no initial endowments in these assets. We interpret

speculators in our model as managers of funds who have the infrastructure to process

vast amount data and trade on signals extracted from these data (“quantitative funds”).

As in Garleanu and Pedersen (2018)’s model of active asset management, we consider the

7



case in which speculators invest in only one risky asset for simplicity. Our focus is on

how speculators discover their trading signals. In Section 6, we endogenize the decision

to become speculator (i.e., the fraction of quantitative asset managers).

Figure 1 describes the timing of the model. The payoff of the risky asset, ω, is realized

in period 2 and is normally distributed with mean zero and variance σ2. Speculators

search a predictor of the asset payoff in period 0 (the “exploration stage”). Then, in

period 1 (the “trading stage”), they observe the realization of their predictor and can

trade in the market for the risky asset.

Period 0

Data Mining :

◮ Each speculator
searches for a
predictor of type θ
of the asset payoff.

◮ In each search
round, a speculator
finds a predictor
with probability
αPr

(
θ ∈

[
θ, π

2

])

Period 1

Trading :

◮ Each speculator
observes the realization
of her predictor (sθ) and
chooses a trading
strategy, x(sθ , p).

◮ Speculators, noise
traders and dealers
trade.

◮ Market clears : The
asset price is realized.

Period 2

Asset payoff, ω,
is realized.

Figure 1: Timing

The exploration stage. In period 0, each speculator i searches for a predictor of the

asset payoff, ω. There is a continuum of potential predictors. Each predictor, sθ, is

characterized by its type θ and is such that:

sθ = cos(θ)ω + sin(θ)εθ, (1)

where θ ∈ [0, π/2] and the εθs are normally and independently distributed with mean zero

and variance σ2.Moreover, εθ is independent from ω. Let τ(θ) ≡ cos2(θ)/ sin2(θ) = cot2(θ)

denote the signal-to-noise ratio for a predictor with type θ. We refer to this ratio as the

“quality” of a predictor. The quality of a predictor decreases with its type, θ and varies

from zero (θ = π
2 ) to infinity (when θ goes to zero). It is unrelated to the uncertainty about
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the asset payoff, σ2, because Var[εθ] = Var[ω] = σ2.7 We assume that predictors’ types,

θs, are distributed according to the cumulative probability distribution Φ(.) (density φ(.))

on [0, π/2].

An alternative, more standard, approach is to assume that speculators can find pre-

dictors ŝτ specified as ŝτ = ω + τ−
1
2 εθ and use the distribution of τ as a primitive

of the model. In either case, τ determines the informativeness of a predictor because

Var(ω | ŝτ ) = Var(ω | sθ) = (1 + τ)−1σ2 (a predictor with a larger τ reduces a specula-

tor’s uncertainty about the asset payoff by a larger amount). We show in Section II.B

of the online appendix that results with this specification are identical. In particular, if

τ = τ(θ), the predictor ŝτ is identical to the predictor sθ in the sense that a speculator

behaves exactly in the same way for each predictor. Our approach is just a change in

variable, which proves convenient for calculations of various moments required for solving

the model. In Section II.B of the online appendix, we also show how one can obtain the

probability distribution of τ(θ) for a given probability distribution of predictor’s type θ.

Speculators discover predictors’ types in period 0 via a sequential search process com-

prising multiple rounds of exploration. Each round costs c and possibly yields a new type

of predictor in [θ, π2 ), i.e., speculators cannot find predictors with quality higher than

τmax ≡ τ(θ). More specifically, with probability α(1−Φ(θ)) (0 < α ≤ 1), an exploration

round is successful and returns a predictor of type θ (picked according to the distribution

φ(.)) in [θ, π2 ). Otherwise, it returns a predictor that is just noise.8 After each exploration

round, a speculator can decide (i) to stop searching and to trade in period 1 on the pre-

dictor she just found or (ii) to start a new exploration. There is no limit on the number

of exploration rounds.

It is worth stressing that speculators observe the realization of their chosen predictor,

sθ, in period 1, not in period 0. In period 0, each speculator just chooses the type (quality)

of her predictor. A predictor can be viewed as a function (determined, for instance, with

linear regressions or machine learning techniques) of variables from different datasets (e.g.,

accounting data, geolocation data and consumer transactions data) that minimizes the

7Without this assumption, the quality of all predictors would, counter-intuitively, increase with
uncertainty.

8We assume that speculators draw the type of their predictors according to the unconditional dis-
tribution of predictors’ type (φ(.)) in the interval [0, π/2] but that they cannot exploit predictors with a
type θ < θ. Alternatively, one can assume that speculators draw the type of their predictors in [θ, π/2],
conditional on this type being in this interval. We show in the online appendix (Section II.D) that this
approach yields the same results.

9



predictor’s average forecasting error in-sample. The speculator then uses the realization

of these variables at date 1 to compute the predictor, sθ, at this date (out-of-sample).9

As more datasets become available (“data abundance”), investors can try more diverse

variables to predict asset payoffs (even holding the number of variables used to build

predictors constant). This evolution has two consequences controlled by parameters θ

and α in the model. First, it pushes back the “data frontier”, i.e., it improves(at least

weakly) the quality of the most informative predictor (the “hidden gold nugget effect.”)

This dimension of data abundance is controlled by θ in our model: When θ decreases,

the quality of the best predictor (the “hidden gold nugget”), τmax improves.

Second, while the number of combinations of variables that one can consider to build

predictors becomes very large, the number of combinations that actually yield informative

predictors might fall. For instance, there are myriads of ways in which one could combine

traffic data in large cities with other data to predict economic growth. However, only a

few are likely to be informative and discovering these combinations take time. We refer

to this dimension of data abundance as the “needle in the haystack problem.”10 It is

controlled by α in our model: As α decreases, a round of exploration is less likely to be

successfull.11

Finally, parameter c represents the cost of analyzing the predictive power of a specific

set of variables (possibily drom different datasets; see the online appendix II.C) to find a

predictor. It includes the cost of cleaning and preparing the data for analysis, running sta-

9 For instance, the predictor could be obtained by running a regression of ω on some variables (see
Section II.C in the online appendix for a formalization). In this approach, the R2 of the regression is
a measure of the quality of the predictor. Indeed, the theoretical R2 of a regression of ω on sθ (i.e.,
1−Var[ω | sθ]/Var[ω]) is equal to cos2(θ). Thus, the higher the quality of a predictor, the higher the R2

of a regression of the asset payoff on the predictor. In other words, searching for predictors of high quality
is the same thing as searching for predictors with high R2s. Note that, as usual in rational expectations
model, we assume that there is no uncertainty on θ, i.e., on the true predictive model relating the payoff
of the asset to the predictor. In reality, investors might be uncertain about the true R2 of a predictive
model (e.g., because of too few past observations for past cash-flows relative to the number of variables
used to forecast these cash-flows) and learn it over time (see Martin and Nagel (2020)). In our model,
this means that speculators would learn about the true θ of a predictor (e.g., after observing an estimate
of θ). We leave the analysis of this problem for future work.

10Agrawal et al. (2019) discusses a related problem for the generation of new scientific ideas. Specifi-
cally, as the space of possible combinations of existing ideas to create new ones enlarges, it becomes more
difficult to identify new useful combinations. One can think of the search for predictors at date 0 as a
search for new “ideas” to forecast asset payoff. Each new idea is characterized by its forecasting power.

11See for instance “The quant fund investing in humans not algorithms” (AlphaVille, Financial Times,
December 6, 2017), reporting discussions with a manager from TwoSigma noting that: “Data are noise.
Drawing a tradable signal from that noise, meanwhile, takes work, since the signal is continuously evolving
[...] Crucially, Duncombe added, there’s qualitative data decay going on too. Back in the day, star
managers may have had access to far smaller data sets, but the data in hand was of much higher quality.”
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tistical softwares to find optimal predictor with the predictive variables, and batckesting

trading strategies to assess the economic value of a predictor. These tasks require hu-

man capital (e.g., data scientists time) and involve opportunity costs (processing capacity

dedicated to these tasks cannot be used for another task). Increase in computing power

reduces this cost as it allows to complete an exploration round faster.12 Importantly, c

should not be interpreted as the investments required in infrastructure and datasets to

become a speculator (e.g., a quant fund). The cost of these investments is largely fixed

and we assume that it has been sunk by speculators before period 0. We consider the

decision to pay this cost to be a speculator in Section .

We focus on equilibria in which each speculator follows an optimal stopping rule θ∗i .

That is, speculator i stops searching for new predictors once she finds a predictor with

type θ ∈ [θ, θ∗] (a predictor of sufficiently high quality in the feasible range). We denote

by Λ(θ∗i ; θ, α) the likelihood of this event for speculator i in a given search round:

Λ(θ∗i ; θ, α) ≡ αPr(θ ∈ [θ, θ∗i ]) = α× (Φ(θ∗i )− Φ(θ)) (2)

Thus, a decrease in θ raises the likelihood of finding a predictor in a given exploration,

holding α constant. This effect captures the idea that while data abundance might reduce

the fraction of informative datasets, it increases the chance of finding a good predictor

once one has identified an informative dataset.

As the outcome of each exploration is random, the realized number of explorations

varies across speculators (even if they use the same stopping rule). Let ni be the realized

number of search rounds for speculator i. This number follows a geometric distribu-

tion with parameter Λ(θ∗i ; θ, α). Thus, the expected number of explorations for a given

speculator (a measure of her search intensity) is:

E[ni] = Λ(θ∗i ; θ, α)−1. (3)

The trading stage. Trading begins after all speculators find a predictor with satisficing

quality. At the beginning of period 1, each speculator observes the realization of her

12For instance, Anthony Ledford, the chief scientist of MAN AHL (a quantitative fund), writes that
“Strategies based on NLP [...] are also live in client trading. Researching such strategies requires [...] a
processor called graphical processing unit (GPU) that can complete the calculations [...] in 1/30th of the
time taken by [...] a standard computer.” See AI Pioneers in Investment Management, CFA Institute,
2019.
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predictor, sθ and chooses a trading strategy, i.e., a demand schedule, xi(sθ, p), where, p,

is the asset price in period 1.

As in Vives (1995), speculators trade with noise traders and risk-neutral market mak-

ers. The noise traders’ aggregate demand is price-inelastic and denoted by η, where

η ∼ N (0, ν2) (η is independent of ω and errors’ in speculators’ signals). Market-makers

observe investors’ aggregate demand, D(p) =
∫
xi(sθ, p)di+ η and behave competitively.

The equilibrium price, p∗ is equal to their expectation of the asset payoff conditional on

aggregate demand from noise traders and speculators:

p∗ = E [ω |D(p∗) ] . (4)

Speculators’ objective function. At t = 2, the asset pays off and speculator i’s final

wealth is

Wi = xi(sθ, p)(ω − p)− nic. (5)

The number of exploration rounds for speculator i, ni, is independent from the asset pay-

off, its price, and the realization of the speculator’s predictor, sθ, because ni is determined

in period 0, before the realizations of these variables. Thus, the ex-ante expected utility

of a speculator is:

E [− exp(−ρWi)] = E [− exp(−ρ(xi(sθ, p)(ω − p))]︸ ︷︷ ︸
Expected Utility from Trading

× E [exp(ρ(nic))]︸ ︷︷ ︸
Expected Utility Cost of Exploration

(6)

The first term in this expression represents the ex-ante expected utility that a speculator

derives from trading gross of her total exploration cost while the second term represents

the expected utility of the total cost paid to find a predictor (we call it the expected utility

cost of exploration). The expected utility from trading depends both on the investor’s

optimal trading strategy (xi(sθ,i, p)) and her optimal stopping rule (θ∗i ) because this rule

determines the distribution of sθ. The expected utility cost of exploration depends on

the speculator’s stopping rule, θ∗i , because it determines the distribution of ni. In the

literature (e.g., Grossman and Stiglitz (1980)), ni = 1 (investors pays a cost and gets one

signal of known quality). In our model, ni is random and its distribution is controlled by

the speculator via her stopping rule. Each speculator chooses her stopping rule, θ∗i , and

her trading strategy, xi(sθ,i, p), to maximize her ex-ante expected utility.
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3.2 Discussion of the modeling choices

In our framework, a new round of exploration does not necessarily yield a predictor of

better quality than in a previous round. At the first glance, this assumption may look

unrealistic: As speculators accumulate use an increasing number of variables to form their

predictors over exploration round, the quality of their predictors in a given round should

necessarily be larger than in previous rounds. However, this reasoning assumes that

speculators use an increasing number of variables in their predictive model. In reality,

asset management firms are likely to constrain their researchers to use a limited number

of variables, both to avoid the risk of overfitting and to limit data costs. In Section II.C of

the online appendix, we consider such a scenario. We explicitly formalize how speculators

build a predictor in each round by using N variables (N can be large; what matters is that

it is fixed over all exploration rounds) and show that in this case, the quality of predictors

does not necessarily increase from one exploration round to the next (the randomness in

the quality of predictors stems from randomness in the predictive power of new variables

considered in a given round).

We also assume that if a speculator turns down a predictor, she “forgets” it. We make

this assumption because it simplifies the exposition. However, in Section II.A of the online

appendix, we relax it. That is, when a speculator stops searching for a predictor, she can

trade on the best predictor she found until this moment. Thus, the state variable for a

speculator problem is the best predictor she found so far and by definition, the quality

of this predictor cannot decline. We show in Section II.A of the online apendix that the

results in this case are identical to those obtained in our simpler framework. Indeed, due

to the stationarity of speculators’ search problem, the optimal stopping rule is identical

in both problems.

Last, we assume that all speculators are ex-ante identical. In particular, they have

the same exploration costs (c), search set (θ), and risk bearing capacity (ρ). In this way,

we better highlight how the search for predictors can in itself be an endogenous source

of heterogeneity in asset managers’ performance. Of course, in reality, there are other

sources of heterogeneity between asset managers (e.g., fund size) and these should be

controlled for in testing the implications of the model regarding the distribution of asset

managers’ performance (see Section 6).
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4. Equilibrium Data Mining

We focus on symmetric equilibria in which all speculators choose the same stopping rule,

θ∗. We proceed as follows. First, we solve for the equilibrium of the trading stage in period

1 taking θ∗ as given and we deduce the ex-ante expected utility achieved by speculator i

when she chooses a predictor of type θ in period 0. We then observe that a speculator

should stop searching when she finds a predictor such that the expected utility of trading

on this predictor is larger than or equal to the expected utility she can obtain by launching

a new exploration. The optimal stopping rule of each investor, θ∗i (θ∗), is such that this

condition holds as an equality (so that the speculator is just indifferent between searching

more or stopping). Finally, we pin down θ∗ by observing that, in a symmetric equilibrium,

each speculator’s best response to other speculators’ stopping rule, θ∗, must be identical,

i.e., θ∗i (θ∗) = θ∗.

Equilibrium of the asset market in period 1. The outcome of the exploration phase

is characterized by the distribution of the predictors’ types chosen by speculators. Let

φ∗(θ; θ∗; θ, α) be this distribution given that speculators follow the stopping rule θ∗:

φ∗(θ; θ∗; θ, α) = αφ(θ)
Λ(θ∗; θ, α) . (7)

We denote the average quality of predictors across all speculators in period 1 by τ̄(θ∗, θ, α) ≡

E [τ(θ)| θ ≤ θ ≤ θ∗] and we assume that φ(.) is such that τ̄(θ∗, θ, α) is well defined even

when θ = 0, that is,

A.1: The distribution of predictors’ type, φ(.), is such that for all θ∗ > 0, τ̄(θ∗; 0, α)

exists.13

Proposition 1 provides the equilibrium of the asset market in period 1.

Proposition 1. In period 1, the equilibrium trading strategy of a speculator with type θ is

x∗(sθ, p) = E[ω|sθ, p]− p
ρVar[ω|sθ, p]

= τ(θ)
ρσ2

(
ŝτ(θ) − p

)
, (8)

13For some distributions of predictors’ type, φ(.), τ̄(θ∗; θ, α) can diverge because τ(θ) goes to infinity
when θ goes to zero. Assumption A.1 rules out these distributions.
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where ŝτ(θ) = ω + τ(θ)−1/2εθ and the equilibrium price of the asset is

p∗ = E[ω|D(p)] = λ(θ∗)ξ. (9)

where

ξ ≡ ω + ρσ2τ̄(θ∗; θ, α)−1η, and λ(θ∗) ≡ τ̄(θ∗; θ, α)2

τ̄(θ∗; θ, α)2 + ρ2σ2ν2 , (10)

This result extends Proposition 1.1 in Vives (1995) to the case in which specu-

lators have signals of heterogenous precisions (determined by their θ in our model).

The predictors sθ and ŝτ(θ) are equivalent from the viewpoint of a speculator because

ŝτ(θ) = (cos(θ)−1)sθ. A speculator’s optimal position in the asset is equal to the differ-

ence between her (equivalent) predictor and the price of the asset scaled by τ(θ)
ρσ2 . We

refer to this scaling factor as the speculator’s aggressiveness. Speculators with predictors

of higher quality (larger τ(θ)) trade more aggressively (take larger positions) on the dif-

ference between their predictor and the price of the asset because, conditional on their

information, they face less uncertainty.

As in Grossman and Stiglitz (1980), we measure the informativeness of the asset price

by I(θ∗; θ, α) = Var[ω | p∗]−1. Using Proposition 1, we obtain that

I(θ∗; θ, α) = τω + τ̄(θ∗; θ, α)2τ 2
ω

ρ2ν2 , (11)

where τω = 1/σ2 is the precision of speculators’ prior about the asset payoff. Thus,

the asset price is more informative when the average quality of speculator’s predictors,

τ̄(θ∗; θ, α), increases. Intuitively, the reason is that speculators’ average aggressiveness is

greater when the average quality of their predictors is higher. Thus, the total demand for

the asset (D(p)) is more informative because it becomes more driven by speculators’ orders

than by noise traders. As a result, the market maker can form a more precise forecast of

the asset payoff and the asset price is therefore more informative about this payoff. One

implication is that the informativeness of the asset price depends on speculators’ search

policy θ∗: It is inversely related to θ∗ because τ̄(θ∗; θ, α) decreases with θ∗. Thus, other

things equal, price informativeness is smaller when speculators chooses a less demanding

stopping rule for the quality of the predictors on which they trade.
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Equilibrium of the exploration phase. Using the characterization of the equilibrium

of the asset market, we compute a speculator’s expected utility from trading ex-ante,

i.e., before observing the realization of her predictor and the equilibrium price, when her

predictor has type θ and other speculators follow the stopping rule θ∗. We denote this

ex-ante expected utility by g(θ, θ∗) and refer to it as the trading value of a predictor with

type θ. Formally:

g(θ, θ∗) ≡ E [− exp(−ρ(x∗(sθ, p∗)(ω − p∗)) | θi = θ] . (12)

Lemma 1. In equilibrium, the trading value of a predictor with type θ is

g(θ, θ∗) = −
(

1 + Var[E[ω|sθ, p∗]− p∗]
Var[ω|sθ, p∗]

)− 1
2

= −
(

1 + τ(θ)τω
I(θ∗; θ, α)

)− 1
2

. (13)

The trading value of a predictor increases with its quality and decreases with the

informativeness of the asset price.14 Thus, it is inversely related to the average quality

of predictors used by speculators. Hence, the value of a given predictor for a speculator

depends on the search strategy followed by other speculators: It is smaller if other spec-

ulators are more demanding for the quality of their predictors (i.e., when θ∗ decreases).

Armed with Lemma 1, we can now derive a speculator’s optimal stopping rule given

that other speculators follow the stopping rule θ∗. Let θ̂i be an arbitrary stopping rule

for speculator i. The speculator’s continuation utility (the expected utility of launching

a new round of exploration) after turning down a predictor is

J(θ̂i, θ∗) = exp(ρc)
(
Λ(θ̂i; θ, α) E

[
g(θ, θ∗)

∣∣∣θ ≤ θ ≤ θ̂i
]

+ (1− Λ(θ̂i; θ, α))J(θ̂i, θ∗).
)

(14)

The first term (exp(ρc)) in eq.(14) is the expected utility cost of running an additional

exploration round. The second term is the likelihood that the next exploration round

is successful times the average trading value of a predictor conditional on the type of

this predictor being satisficing (in [θ, θ̂i]). Finally, the third term is the likelihood that

14 Observe that Var[E[ω|sθ,p∗]−p∗]
Var[ω|sθ,p∗] = E[(E[ω|sθ,p∗]−p∗)2]

Var[ω|sθ,p] because E[ω|sθ, p∗]−p∗ = 0. Thus, eq.(13) implies

that, τ(θ)τω
I(θ∗;θ,α) = E

[
( E(Rθ|sθ)
σRθ|sθ

)2
]
, where Rθ = ω/p∗ − 1 is the excess return of a speculator with type θ

(the riskless rate of return is normalized to zero) and σRθ|sθ is the standard deviation of this return

conditional on the observation of sθ. In other words, τ(θ)τω
I(θ∗;θ,α) is the equilibrium value of the expected

square Sharpe ratio of a speculator trading on a predictor with type θ.
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the next exploration is unsuccessful times the speculator’s continuation utility when she

turns down a predictor. Solving eq.(14) for J(θ̂i, θ∗), we obtain

J(θ̂i, θ∗) =
[

exp(ρc)Λ(θ̂i; θ, α)
1− exp(ρc)(1− Λ(θ̂i; θ, α))

]
︸ ︷︷ ︸
Expected Utility Cost from Exploration

×E
[
g(θ, θ∗)| θ ≤ θ ≤ θ̂i

]
︸ ︷︷ ︸
Expected Utility from Trading

(15)

Now suppose that speculator i has obtained a predictor with quality θ. If she stops

exploring the data at this stage, her expected utility is g(θ, θ∗) (her cost of exploration

to obtain this predictor is sunk). If instead the speculator decides to launch a new round

of exploration, her expected utility is J(θ̂i, θ∗). Thus, she optimally stops searching for a

predictor if g(θ, θ∗) ≥ J(θ̂i, θ∗) and keeps searching otherwise. As g(θ, θ∗) decreases with

θ, the speculator’s optimal stopping rule, θ∗i (θ∗), is the value of θ such that she is just

indifferent between these two options:

g(θ∗i , θ∗) = J(θ∗i , θ∗). (16)

In a symmetric equilibrium, θ∗i (θ∗) = θ∗. We deduce that θ∗ solves

g(θ∗, θ∗) = J(θ∗, θ∗). (17)

Using the expression for J(., θ∗) in eq.(14), we can equivalently rewrite this equilibrium

condition as

F (θ∗) = exp(−ρc), (18)

where

F (θ∗) ≡ α
∫ θ∗

θ
r(θ, θ∗)φ(θ)dθ + (1− Λ(θ∗; θ, α)) , for θ∗ ∈

[
θ,
π

2

]
, (19)

with

r(θ, θ∗) ≡ g(θ, θ∗)
g(θ∗, θ∗) =

(
τ(θ∗)τω + I(θ∗; θ, α)
τ(θ)τω + I(θ∗; θ, α)

) 1
2

, (20)

where the second equality in eq.(20) follows from eq.(13). The next proposition shows

that there is a unique interior solution (i.e., θ∗ ∈ (θ, π2 )) to the equilibrium condition (18)

when c is small enough.

Proposition 2. There is a unique symmetric equilibrium of the exploration phase in which

all speculators are active (i.e., a unique stopping rule such that θ ≤ θ∗ < π/2 common to
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all speculators) if and only if F (π/2) < exp(−ρc) < 1.

When exp(−ρc) ≤ F (π/2) (i.e., when c is large), the expected utility cost of explo-

ration is larger than expected utility of trading. Hence, a speculator is better off not

acquiring information at all if she expects all other speculators to obtain predictors with

types in [θ, π/2]. Thus, if the condition in Proposition 2 is not satisfied, there is no sym-

metric interior equilibrium. In this case, there exist asymmetric equilibria in which only

a fraction of all speculators are active, i.e., search for a predictor and trade (if c is not too

large). In these equilibria, active speculators search for a predictor with a stopping rule

equal to θ∗ = π/2 while others are inactive (do not search and do not trade). Moreover,

the fraction of active speculators is such that all speculators are indifferent between being

active or not. Henceforth,we focus on the case in which the equilibrium search strategy,

θ∗, is strictly less than π
2 (i.e., F (π/2) < exp(−ρc) < 1) because (i) our focus is on what

happens when the cost of exploration becomes small and (ii) this shortens the exposition.

5. Data abundance, computing power and speculators’ search

strategy.

In this section we study how data abundance (a decrease in θ and/or α) and greater

computing power (a decrease in c) affect speculators’ search strategy in equilibrium, i.e.,

θ∗. Indeed, their stopping rule determines the range of the quality of predictors used

in equilibrium and variations in this range (due to shocks to c or θ) generate a host of

testable implications that we derive in the next section. We are mainly interested in

effects that arise when the cost of search (c) become very small or data become very

abundant (θ close to zero) as these are probably the relevant range of parameters given

progress in information technologies.

Proposition 3. A decrease in the cost of exploration, c, always reduces the stopping rule

θ∗ used by speculators in equilibrium (∂θ∗/∂c > 0) and θ∗ goes to θ when c goes to zero.

Thus, greater computing power raises the quality, τ(θ∗), of the worst predictor used by

speculators in equilibrium.

Holding θ∗ constant, a decrease in the per-exploration cost, c, directly reduces the ex-

pected utility cost of launching a new exploration after finding a predictor (the first term
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in bracket in eq.(15)). Hence, it raises the value of searching for another predictor after

finding one (i.e., J(θ∗, θ∗)). This direct effect induces speculators to be more demanding

for the quality of their predictor and therefore works to decrease θ∗. One indirect con-

sequence is that the quality of the average predictor improves and therefore, on average,

speculators trade more aggressively on their signal (the “aggressiveness effect”). As a

result, price informativeness increases. This indirect effect reduces the expected utility

from trading on a satisficing predictor (the second term in bracket in eq.(15)) and there-

fore dampens the direct positive effect of a decrease in c on the value of searching for a

better predictor. However, in equilibrium, the aggressiveness effect can never fully offset

the positive direct effect of a decrease in c on the value of searching for a predictor.15

We now consider the effect of data abundance on speculators’ optimal stopping rule.

Remember that data abundance has two consequences in the model: (i) it pushes back

the data frontier by raising the quality of the best predictor and (ii) it increases the risk

for speculators of using datasets which, after exploration, proves to be useless (the needle

in the haystack problem).

Proposition 4.

1. A decrease in the fraction of informative datasets, α, increases speculators’ stopping

rule, θ∗, in equilibrium (∂θ∗/∂α < 0) and therefore reduces the quality, τ(θ∗), of

the worst predictor used by speculators in equilibrium.

2. When θ is low enough (less than a threshold, θtr(c)), a decrease in θ increases

speculators’ stopping rule in equilibrium (∂θ∗/∂θ < 0 for θ < θtr(c)) and reduces

the quality, τ(θ∗), of the worst predictor used by speculators in equilibrium.

When the needle in the haystack problem strengthens (α decreases), speculators be-

come less demanding for the quality of their predictors (Part 1 of Proposition 4). Intu-

itively, a drop in α increases the expected utility cost of launching a new exploration after

finding a predictor (the first term in bracket in eq.(15)) because it reduces the likelihood,

Λ, of finding a predictor in a given exploration. Thus, after turning down a predictor,

speculators expect to go through a larger number of exploration rounds before finding a

satisficing predictor, which increases their total cost of search. For this reason, a decrease

15Suppose instead that it does (to be contradicted) and that, as a result, for some values of c, a
decline in c raises θ∗. Then, speculators’ average aggressivess and therefore price informativeness would
fall when c declines. But then the value of searching for a new predictor would increase. A contradiction.
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in α has the same effects as an increase in c. Note however that one cannot capture

the needle in the haystack problem simply by varying c. Indeed, doing so would require

to argue that data abundance and computing power have opposite effects on the same

parameter. This approach would prevent a clean separation of the effects of data abun-

dance on the one hand and the effects of greater information processing power on the

other hand.

More surprisingly, pushing back the data frontier induces speculators to become less

demanding for the quality of their predictors when θ becomes small enough. The reason

is as follows. Holding θ∗ constant, a direct effect of a marginal decrease in θ is to increase

the average quality of speculators’ predictors. Thus, speculators’ average aggressiveness

increases and, as a result, price informativeness increases. This effect reduces speculators’

ex-ante expected utility of trading and therefore the value of searching for a predictor.

The improvement in the best predictor acts as a countervailing force because it raises

the expected utility of trading on the best predictor (the hidden gold nugget effect) This

effect raises the ex-ante expected utility from trading, holding θ∗ constant. However, the

aggressiveness effect always dominates the hidden gold nugget effect for θ low enough.

To show this more formally, we differentiate speculators’ ex-ante expected utility from

trading with respect to −θ (so that we consider a marginal decrease in θ), holding θ∗

constant:

−∂ E [g(θ, θ∗)| θ ≤ θ ≤ θ∗]
∂θ

= αφ(θ)
Λ(θ∗; θ, α)

g(θ, θ∗)− E [g(θ, θ∗)| θ ≤ θ ≤ θ∗]︸ ︷︷ ︸
Hidden Gold Nugget Effect

−
∫ θ∗

θ

∂g(θ, θ∗)
∂θ

φ(θ)dθ︸ ︷︷ ︸
Aggressiveness Effect


(21)

The first term in bracket is the difference between the expected utility of trading on

the best predictor and the ex-ante expected utility of trading. It measures the increase

in all speculators’ ex-ante expected utility of trading following a marginal decrease in θ

due to the improvement of the expected utility of trading on the best predictor. The

second term in bracket is the loss in speculators’ ex-ante expected utility of trading due

to the increase in speculators’ aggressiveness that follows an improvement in the quality

of the best predictor. When θ goes to zero, the residual risk faced by speculators who

obtain the best predictor vanishes (they face less and less uncertainty about the asset
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payoff). As a result, their aggressiveness become very large and the asset price becomes

increasingly closer to the asset payoff (more informative). Thus, speculators’ expected

trading profit vanish. For this reason, when θ becomes small enough, the aggressiveness

effect dominates and speculators’ ex-ante expected utility from trading decreases when

θ declines. Consequently, the value of searching for a predictor falls and therefore spec-

ulators become less demanding for their predictor (θ∗ increases).16 For sufficiently large

value of θ, the relative strengths of these effects are reversed: the hidden gold nugget

effect dominates the aggressiveness effect and in this case, a small decrease in θ raises

the value of searching for a predictor. Thus, speculators adopt a more stringent stopping

rule in equilibrium (θ∗ decreases when θ decreases). Ultimately, the stopping rule used

by speculators, θ∗ is a U-shaped function of the data frontier, θ (see Figure 2).

As explained previously, when c declines, speculators’ average aggressiveness also

increases, which reduces speculators’ ex-ante expected utility from trading. However,

this effect is never strong enough to offset the positive effect of a reduction in expected

search costs on speculators’ expected utility. The asymmetry between the effects of a

decrease in θ and c stems from the fact that a decrease in the exploration cost, c, never

fully dissipates speculators’ rents while a decrease in θ does. Indeed, consider the polar

case in which c goes to zero. In this case, speculators’ optimal stopping rule θ∗ goes

to θ because speculators search until they find the best predictor when search becomes

costless. However, as θ remains strictly larger than zero, the quality of speculators’ signal

remains bounded and therefore speculators’ average aggressiveness does not become very

large. As a result, speculators’ rents do not vanish when c goes to zero while they do

when θ goes to zero.

Figure 2 illustrate Propositions 3 and 4 when φ(θ) = 3 cos(θ) sin2(θ). This distribu-

tion for predictors’ types belongs to a more general family for which we can compute

F (.) in closed-form and therefore solve for the equilibrium of the model numerically (see

Section III.B in the online appendix). For this family of distributions, τ(θ) has a power

distribution and Assumption A.1 is satisfied (see the online appendix). As shown by

16Pushing back the data frontier has a third effect: It increases the chance of finding a satisficing
predictor holding the search strategy, θ∗ constant (Λ(θ∗; θ, α) increases when θ goes down). This effect
reduce the expected number of rounds required to find a predictor and therefore reduces the expected
utility cost of searching for a new predictor after rejecting one. Thus, like the hidden gold nugget effect,
it works to increase speculators’ continuation utility. However, the combined forces of this effect and the
hidden gold nugget effect, are not sufficient to offset the negative impact of the aggressiveness effect on
speculators’ continuation value for θ small.
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Figure 2, speculators’ optimal stopping rule, θ∗, declines when the exploration cost (c)

decreases. In contrast, as explained previously, there is a U-shape relationship between

θ∗ and the data frontier, so that when θ becomes small, a push back of the data frontier

raises θ∗.
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Figure 2: Left-hand-side: Equilibrium search threshold, θ∗, as a function of the search
cost, c (other parameter values are θ = π/8, ρ = σ2 = ν2 = 1). Right-hand-side:
Equilibrium search threshold, θ∗, as a function of the data frontier, θ (other parameter
values are c = 0.03, ρ = σ2 = ν2 = 1).

Proposition 5. The quality of the worst predictor used in equilibrium, τ(θ∗), increases

with the volume of noise trading, ν2, or the volatility of the asset payoff, σ2.

Other things equal (in particular θ∗), an increase in the volume of noise trading or

the volatility of the asset reduces the informativeness of the equilibrium price. This effect

raises the expected value of trading. Thus, the continuation value from searching increases

and speculators become therefore more demanding for their predictors (θ∗ decreases).

As shocks to computing power or data abundance affect speculators’ search strat-

egy (θ∗), they change the average quality of speculators’ predictors in equilibrium and

therefore the informativeness of the asset price, as stated in the next corollary.

Corollary 1.

1. In equilibrium, an increase in computing power (a decrease in c) raises the average

quality of speculators’ predictors and therefore price informativeness.

2. In equilibrium, an improvement in the quality of the most informative predictor

(a decrease in θ) raises the average quality of speculators’ predictors and therefore

price informativeness.

3. In equilibrium, a decrease in the proportion of informative datasets (a decrease in
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α) reduces the average quality of speculators’ predictors and therefore price infor-

mativeness.

A decrease in computing power induces speculators to be more demanding for the

quality of their predictors and thereby raises the average quality of their signals. Thus,

price informativeness increases when c declines. A decrease in the fraction of informative

datasets (α) has the opposite effect. Holding θ∗ constant, a drop in θ increases the

average quality of speculators’ predictors. However, speculators can react by being less

demanding for the quality of their predictors (Proposition 4). This second effect dampens

the first but never fully offsets it, so that a push back of the data frontier increase the

average quality of speculators’ predictors.

Recently, several authors have analyzed the effect of digitization on price efficiency

(e.g., Gao and Huang (2019), Zhu (2019), Barbopoulos et al. (2021)), the sensitivity

of firms’ corporate decisions to prices (e.g., Goldstein et al. (2020))) or the quality of

analysts’ forecasts at various horizons (Dessaint et al. (2021)). To do so, empiricists use

shocks to either the cost of accessing and processing the data (e.g., Gao and Huang (2019),

Barbopoulos et al. (2021), or Goldstein et al. (2020)) or the availability of new types of

data (e.g., Zhu (2019) or Dessaint et al. (2021)). Corollary 1 (and other implications of

the model derived in the next section) suggests that it is important to carefully distinguish

between these two types of shocks because they do not necessarily have the same effects.

For instance, Corollary 1 predicts that a reduction in the cost of processing information (c)

should improve price informativeness. In contrast, an increase in the volume of available

data can increase or decrease price informativeness depending on whether or not the

negative effect of the needle in the haystack effect on price informativeness dominates the

positive effect of pushing back the data frontier.

6. Implications for asset managers’ heterogeneity

The contrasting effects of shocks to computing power and data abundance on speculators’

search policy imply that shocks to computing power or data abundance should affect the

(cross-sectional) dispersion of (a) asset managers’ performance and (b) investment skills in

opposite directions (see Corollaries 3 and 4 below), even after controlling for other sources

of heterogeneity (e.g., differences in size). In contrast, shocks to computing power and the
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data frontier should affect their average performance and the correlation of their holdings

of the risky asset in the same direction (Corollaries 2 and 5).

6.1 The distribution of asset managers’ performance

One way to measure an asset manager’s performance is to measure her total dollar return

on investment (adjusted for risk). In our model, this corresponds to the trading profit of

a speculator equilibrium. The trading profit of a speculator with type θ on her position

in the risky asset, denoted Π(sθ), is

Π(sθ) = x∗(sθ, p∗)× (ω − p∗), (22)

where x∗(sθ, p∗) and p∗ are given by eq.(8) and eq.(9), respectively. Using eq.(8), we

deduce that:

x∗(sθ, p∗) = 1
ρσ2

(
τ(θ)(ω − p∗) + τ(θ)1/2εθ

)
. (23)

Thus, using eq.(22), the expected trading profit of a speculator with type θ is

Π̄(θ) ≡ E[Π(sθ)|θ] = τ(θ)
ρσ2 Var[ω − p∗] = τ(θ)τω

ρI(θ∗, θ) , (24)

where the last equality follows from the fact that p∗ = E(ω | p∗) so that Var[ω − p∗] =

Var[ω | p∗] = (I(θ∗, θ))−1 (by definition of I(θ∗, θ)).

Thus, the unconditional expected trading profit of all speculators (the average trading

profit across all speculators) is:

E[Π̄(θ)] = τ̄(θ∗; θ, α)
ρσ2I(θ∗, θ) = 1

ρσ2

(
τω

τ̄(θ∗; θ, α) + τ̄(θ∗; θ, α)
ρ2ν2

)−1

, (25)

and the variance of trading profits for speculators (the dispersion of average trading profits

across all speculators) is:

Var[Π̄(θ)] = Var[τ(θ) | θ < θ < θ∗]
σ4ρ2I2(θ∗, θ) . (26)

Empirically, E[Π̄(θ)] and Var[Π̄(θ)] could be measured by the cross-sectional mean and

variance of total trading profits of active funds (for instance in a given quarter). Another

possibility is to consider the distribution (across funds) of the squared Sharpe Ratio of
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active funds. Indeed, one can show that Π̄(θ) is the expected squared Sharpe ratio of a

speculator with type θ, divided by her risk aversion (see Footnote 14). Thus, E[Π̄(θ)] and

Var[Π̄(θ)] can also be interpreted as the mean and variance of the distribution of squared

Sharpe ratios across funds.

An increase in the average quality of predictors (τ̄(θ∗; θ, α) has an ambiguous effect

on speculators’ expected profit. On the one hand, as speculators have better predic-

tors on average, they make better investment choices (they are more likely to buy the

asset when its return is positive and sell the asset otherwise). On the other, price in-

formativeness increases because speculators trade more aggressively on their signals on

average. As shown by eq.(25), the first effect raises speculators’ expected profit while

the second reduces it. Using eq.(25), we find that the first effect dominates if and only if

τ̄(θ∗; θ, α) ≤ (τωρ2ν2)1/2. Thus, speculators’ average expected profit reaches its maximum

for τ̄(θ∗(θ, c, α), θ, α) = (τωρ2ν2)1/2 if there are values of (θ, c, α) for which this equality

holds (we write θ∗ as a function of (θ, c, α) to emphasize that it depends on the value of

these parameters). We deduce the following result.

Corollary 2. Computing power, data abundance and speculators’ average performance

(E[Π̄(θ)]))

1. If τ̄(θ∗(θ, 0, α), θ, α) > (τωρ2ν2)1/2 then speculators’ expected profit is a hump shaped

function of c, which reaches its maximum for c = ĉ (characterized in the proof of the

proposition). Otherwise, speculators’ expected profit decreases with c and reaches its

maximum for c = 0

2. If τ̄(θ∗(0, c, α), 0, α) > (τωρ2ν2)1/2 then speculators’ expected profit is a hump shaped

function of θ, which reaches its maximum for θ = θ̂ (characterized in the proof of the

proposition). Otherwise, speculators’ expected profit decreases with θ and reaches

its maximum for θ = 0.

3. If τ̄(θ∗(θ, c, 1), θ, 1) > (τωρ2ν2)1/2 then speculators’ expected profit is a hump shaped

function of α, which reaches its maximum for α = α̂ (characterized in the proof

of the proposition). Otherwise, speculators’ expected profit increases with α and

reaches its maximum for α = 1

Corollary 2 generate two important predictions. First, positive shocks to computing

power and data abundance should have the same qualitative effects on asset managers’
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average performance. Second, these effects become negative when c, θ or α become

low, other things equal. This implies that even though data abundance and greater

computing power initially increase asset managers’ average performance, this evolution

should eventually make them worse off (see Figure 3 for a numerical illustration).
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Figure 3: Left: Speculators’ expected profits, E(Π̄), as a function of the search cost, c
(other parameter values are θ = π/5, ρ = σ2 = ν2 = 1). Right: Speculators’ expected
profits, E(Π̄), as a function of the data frontier, θ (other parameter values are c = 0.05, ρ =
σ2 = ν2 = 1). In each case φ(θ) = 3 cos(θ) sin2(θ).

Corollary 3. Computing power, data abundance and the dispersion of speculators’

performance (Var[Π̄(θ)]

1. Other things equal, for c small enough, the dispersion of speculators’ expected trading

profit decreases when the cost of processing data goes down (dVar[π(θ)]/dc > 0 for

c sufficiently close to zero).

2. Other things equal, for θ small enough, the dispersion of speculators’ expected profit

increases when the data frontier is pushed back (dVar[π(θ)]/dθ < 0 for θ sufficiently

close to zero).

Thus, when c and θ are low enough, a push back the data frontier increases the

dispersion of asset managers’ performance while reducing the cost of exploration has

the opposite effect. The reason is that these parameters have opposite effects on asset

managers’ managers optimal search strategy. Pushing back the data frontier induces

speculators to accept predictors of lower quality (Proposition 4) so that the range of

predictors’ quality used by speculators (τ(θ) − τ(θ∗)) widens. In contrast a decrease

in c leads speculators to become more demanding for the quality of their predictors

(Proposition 3) so that the range of predictors’ quality shrinks. Figure 4 numerically
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shows that these results hold for a large range of values for c or θ) (the conditions that c

and θ are small in Corollary 3 are sufficient but not necessary).
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Figure 4: Left: Variance of speculators’ expected profits, Var[Π(θ)], as a function of
the search cost, c (other parameter values are θ = π/5, ρ = 1, σ2 = 1, ν2 = 1). Right:
Variance of speculators’ expected profits as a function of the data frontier, θ (other
parameter values are c = 0.05, ρ = 1, σ2 = 1, ν2 = 1). In each case φ(θ) = 3 cos(θ) sin2(θ).

6.2 The distribution of asset managers’ investment skills

Kacperczyk and Seru (2007) find empirically that there is heterogeneity in asset managers’

investment skills (see their Table I), defined the ability to predict future returns. Our

model suggests that this heterogeneity might stem, after controlling for other factors,

from serendipity in the search for predictors. If our theory is correct, shocks to computing

power or data abundance should affect the dispersion of asset managers’ investment skills,

as shown below in Corollary 4.

One way to measure an asset manager’s investment skills is to study the extent to

which he tilts his holdings of a risky asset in the direction of subsequent returns for the

asset (see, for instance, Kacperczyk et al. (2014)). One way to do so consists in regressing

fund holdings at a given point in time on the subsequent returns on their holdings.17 If the

asset manager has investment skills, the coefficient of this regression should be positive.

In our model, the theoretical coefficient, βθ, of a regression of a speculator’s position

(x(sθ, p∗)) on her realized return (ω − p∗) is

βθ = Cov(x(sθ, p∗), ω − p∗)
Var[ω − p∗] = τ(θ)

ρσ2 , (27)

17Alternatively, one can measure investment skills as in Kacperczyk and Seru (2007). Specifically,
Kacperczyk and Seru (2007) measures the precision of asset managers’ signals (their “skill”) by the
sensitivity of their holdings to public information. The higher is this sensitivity, the lower is the precision
of a manager’s private signals. This would also be the case in a simple extension of our model in which
speculators receive a public signal at date 1 in addition to their private signal sθ.

27



where the last equality follows from Proposition 1. Holding risk aversion constant, a

ranking of speculators based on their investment skill (measured by βθ) is identical to a

ranking based on the (unobservable) quality of their predictors, τ(θ).

Let define ∆β ≡ β(θ))−β(θ∗)
β(θ)) = τ(θ))−τ(θ∗)

τ(θ)) . Thus, ∆β is the difference between the

investment skills of the best and worst speculators (empirically, one could use the differ-

ence between the average investment skills of the funds in the top and bottom deciles of

the investment skills distribution). This difference is one way to measure the dispersion

in asset managers’ investment skills. Propositions 3 and 4 yield therefore the following

testable implications.

Corollary 4. Computing power, data abundance and the dispersion of speculators’

investment skills

1. Other things equal, the dispersion of speculators’ investment skills (∆β) decreases

when computing power increases (c decreases).

2. Other things equal, for θ low enough (less than θtr), a push back of the data frontier

(a decrease in θ) increases the dispersion of speculators’ investment skills (∆β).

The effect of a decrease in α is identical.

One could also test whether the dispersion of speculators’ investment skills (∆β) is

reduced in periods of heightened fundamental volatility or noise trading, as implied by

Proposition 5. Of course, in testing our predictions, empiricists should control for other

factors known to determine asset managers’ investment skills (e.g., fund size; see Chen

et al. (2004), Ferreira et al. (2012) or Zhu (2018)). Our theory does not say that these

factors do not play a role. It just highlights a new source of heterogeneity in investment

skills.

6.3 Heterogeneity of asset managers’ holdings

Another way to measure the heterogeneity of asset managers is by the correlation of their

holdings. The smaller is this correlation, the higher the heterogeneity in asset managers’

holdings. Let Cov(x(sθi , p∗), x(sθj , p∗)) be the covariance between the equilibrium holdings

of a speculator with type θi and a speculator with type θj. Using eq.(23) and the fact
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that Var[ω − p∗] = (I(θ∗, θ))−1, we obtain:

Cov(x∗(sθi , p∗), x∗(sθj , p∗)) = τ(θi)τ(θj)
σ4ρ2 Var[ω − p∗] = τ(θi)τ(θj)

σ4ρ2I(θ∗, θ) . (28)

Thus, the pairwise correlation between the equilibrium positions of a speculator with type

θi and a speculator with type θj is:

Corr(x∗(sθi , p∗), x∗(sθj , p∗)) =
(

1 + I(θ∗, θ)
τ(θi)τω

)− 1
2
(

1 + I(θ∗, θ)
τ(θj)τω

)− 1
2

(29)

Holding the quality of the predictors used by two speculators constant, their positions

become less correlated when price informativeness is higher. The reason is that specu-

lators trade on the component of their forecast of the asset payoff that is orthogonal to

the price. This component reflects both the component of the fundamental, ω, that is

not reflected into the equilibrium price and the noise in speculators’ signal. The higher

the first component relative to the second, the higher the pairwise correlation in specula-

tors’ positions in the asset. As the price becomes more informative, the first component

becomes smaller relative to the noise component and as a result, the pairwise correlation

between speculators’ positions drops. Using Corollary 1, we deduce the following result.

Corollary 5.

1. Greater computing power (a decrease in c) or a push back of the data frontier (a

reduction in θ reduces the pairwise correlation of speculators’ positions.

2. A decrease in the fraction of informative datasets, α, increases the pairwise corre-

lation of speculators’ positions.

Testing Corollary 5 requires measuring the pairwise correlation of speculators’ po-

sitions, holding the quality of their signal constant. One possibility is to estimate the

cross-sectional distribution of funds’ predictors quality using the method described in

Section 6.2 and analyze the effect of shocks to computing power or data abundance on

the correlation in the positions of funds in different quantiles of the distribution.
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7. Extension: Endogenous entry of speculators

In this section, we relax the assumption of a unit mass of speculators and we endogenize

the decision to become a speculator. To this end, we add an entry stage before date t = 0.

During this entry stage, a unit mass of investors (“asset managers”) simultaneously choose

one of two options: (i) invest K to become a speculator (a ”quantitative fund”) or (ii) not

invest K and be a discretionary investor. The investment K enables a speculator to access

the learning technology described in Section 3.1. In contrast, a discretionary investor has

only access to signals of type θ̄ with θ < θ̄ < π
2 . To focus on the choice between being a

speculator or a discretionary investor, we assume that discretionary investors obtain their

signal at no cost.18 We interpret K as technological investments in infrastructure and

data required to find predictors with quantitative methods. These investments represent

a fixed cost that enable asset managers to discover signals using data mining techniques

at low cost per exploration round (low c). Discretionary investors do not pay this cost but

face a prohibitively high exploration costs, which limits their ability to discover predictors

of high quality.19

As both speculators and discretionary investors are informed, we refer to them as

“informed investors.” We denote by µ (∈ [0, 1]) the fraction of speculators among informed

informed investors and by θ∗(µ) speculators’ optimal stopping time. To simplify the

exposition,we focus on the case in which c is small enough so that θ∗(1) < θ̄ (this condition

is always satisfied for c small because θ∗(1) decreases with c and goes to θ when c goes

to zero). This condition guarantees that all speculators trade on signals of better quality

than discretionary investors because θ∗(µ) increases with µ (Lemma 2). For a fixed µ,

the average quality of informed investors’ signals is

τ̄(θ∗, µ, θ, θ̄, α) = µE [τ(θ)| θ ≤ θ ≤ θ∗] + (1− µ)τ(θ̄). (30)

18One can extend the analysis to the case in which discretionary investors pay a fixed cost for their
signal, as in many other models of information acquisition (e.g., Grossman and Stiglitz (1980). However,
in this case, there is a possibility that some investors will decide to be neither speculator, nor discretionary
investor because the costs of discretionary investing and K are too high. This possibility increases the
number of cases to analyze without adding new economic insights.

19Abis (2020) also considers a model with quants and discretionary investors. Our model differs in
many ways and does not focus on the same issues. In particular, in contrast to Abis (2020), we do not
analyze the type of information (systematic or idiosyncratic collected by each type of investors. Moreover,
in this section, we study how data abundance and the cost of computing power affect the proportion of
investors becoming speculators(quants) and speculators’ search policy. In Abis (2020) the proportion of
quants is fixed and data abundance does not play a role.)
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For a fixed value of µ, we can proceed as in Section 4 to derive speculators’ equilibrium

stopping rule with τ̄(θ∗, µ, θ, θ̄, α) playing the role of τ̄(θ∗, µ, θ, θ̄, α) in all equations (see

Section II.F in the online appendix for details and the proof of the next lemma).

Lemma 2. Suppose that θ∗(1) < θ̄. For a fix value of µ > 0, all implications obtained

in the case µ = 1 are still qualitatively valid. Moreover, θ∗(µ) and price informativeness

increase with µ.

Thus, the implications obtained in Sections 5 and 6 still hold when 0 < µ < 1. When

µ increases, the average quality of informed investors’ signals in equilibrium increases

with µ (see eq.(30)), holding θ∗ constant. This effect improves price informativeness and

therefore reduces speculators’ average expected utility from trading. Speculators respond

by searching less intensively, which explains why θ∗(µ) increases with µ.

Now, we analyze how µ is determined in equilibrium. Let µ∗ be the equilibrium value

of µ. After paying the cost K, the problem faced by a speculator is identical to that

analyzed in Section 4. Thus, gross of the entry cost K, the ex-ante expected utility

of a speculator is J(θ∗(µ), θ∗(µ)) = g(θ∗(µ), θ∗(µ)) (Condition (17)) and, therefore, her

expected utility net of the entry cost is exp(ρK)g(θ∗(µ), θ∗(µ)). If instead an investor

becomes a discretionary investor, she obtains an expected utility equal to g(θ̄, θ∗(µ)). In

an interior equilibrium, i.e., µ∗ ∈ (0, 1), an investor is just indifferent between being a

speculator or a discretionary investor, which requires:

exp(ρK)g(θ∗(µ∗), θ∗(µ∗) = g(θ̄, θ∗(µ∗)), (31)

that is,

exp(ρK)[g(θ∗(µ∗), θ∗(µ∗))
g(θ̄, θ∗(µ∗))

] = 1. (32)

The term in bracket on the L.H.S of eq.(32) is the ratio of speculators’ expected util-

ity of trading to discretionary investors’ expected utility from trading. This ratio is

less than 1, i.e., speculators obtain a higher expected utility of trading (g(θ̄, θ∗(µ∗)) <

g(θ∗(µ∗), θ∗(µ∗)) < 0) because the quality of speculators’s predictors is higher on average.

When the mass of speculators, µ increases, the expected utility of all informed investors

decreases because price informativeness increases. However, that of speculators decreases

faster so that the ratio of speculators’ expected utility from trading to discretionary in-

vestors’ expected utility from trading increases (gets closer to 1), as shown in the proof
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of Proposition 6. Thus, if there is an interior equilibrium (a solution to eq.(32)) then it

is unique. If instead eq.(32) has no solution, there is no interior equilibrium and, in equi-

librium, either no investor becomes a speculator (µ∗ = 0) or all investors are speculators

(µ∗ = 1). The first case arises when K is large enough and the second case when K is

low enough.

Proposition 6. The equilibrium mass of speculators, µ∗, is unique. It is equal to 1 when

K ≤ K0, strictly between 0 and 1 when K0 < K < K1 and equal to 0 when K ≥ K1.

When K0 < K < K1 (i.e., µ∗ ∈ (0, 1)), an improvement in computing power (a decrease

in c) or a push back of the data frontier (a decrease in θ) induces speculators to be more

demanding for the quality of their predictors (i.e., θ∗(µ∗) decreases when c or θ decrease).

Last, a decrease in α induces speculators to be less demanding for the quality of their

predictors.

Thus, when the mass of speculators, µ, adjusts to a change in the data frontier,

a push back of the data frontier always leads speculators to be more demanding for

the quality of their predictors. In contrast, when µ is fixed, a push back of the data

frontier has the opposite effect (see Proposition 4). The reason for this difference is

the following. As explained previously, holding µ and θ∗ fixed, a decline in θ results in

a smaller expected utility from trading for speculators when θ becomes smale enough.

When µ is fixed, speculators partially offset this change by searching less intensively for

predictors (the intensive margin). When µ is endogenous, there is another margin of

adjustment for speculators’ expected utility: µ can drop (the extensive margin). Indeed,

such a drop reduces the average quality of predictors used by informed traders and price

informativeness. As a result, speculators’ expected utility from trading increases, which

partially offset the negative effect of a drop in θ. Thus, when µ can adjust, this is via the

extensive margin rather than the intensive margin (the search intensity) that speculators

offset the negative effect of a push back of the data frontier on their expected utility from

trading.

Figure 5 illustrates this point. Panel A shows the evolution of speculators’ equilibrium

search policy (θ∗(µ∗) and the equilibrium mass of speculators as θ declines for various

values of θ̄. As it can be seen, the equilibrium mass of speculators is single peaked in θ.

Thus, there is always a cutoff value for θ after which a decline in θ has a negative effect

on µ∗. This effect explains why the effect of θ on θ∗(µ∗) is monotonic while it is not when
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µ is fixed. Interestingly, as Panel B shows, the effect of a change in c on the equilibrium

mass of speculators can be non monotonic as well (this depends on parameter values).

Indeed, holding µ constant, speculators search for predictors more intensively when c

decreases (θ∗(µ) decreases with c; Proposition 3). This response has an ambiguous effect

on their relative expected utility from trading. On the one hand, it increases it because

it increases their average informational advantage relative to discretionary funds. On the

other hand, it increases speculators’ aggressiveness and therefore price informativeness,

which reduces the gain of informed trading, especially for speculators. This second effect

can dominate when c becomes sufficiently small (at this point, a decrease in c triggers a

decrease in the equilibrium mass of speculators, µ∗).

There are two reasons why the case in which µ does not adjust (i.e., the case analyzed

in previous sections) is relevant in reality. First, building up the infrastructure and

human capital required for quant funds take some time. Thus, the adjustments of µ

following shocks to computing power and data abundance cannot be immediate. Thus,

our predictions for a fixed µ regarding the effects of θ hold at least in the short term

following these shocks (those regarding c and α hold whether µ is fixed or not). Another

reason is that investments in infrastructure and technologies (K) are largely sunk costs.

Thus, once a speculator has decided to pay these costs, she has no reason to exit (the

case in which a decrease in θ triggers a decrease in µ∗ means that some speculators exit

the market and become discretionary investors). This suggests that once the industry has

reached the point at which µ∗ reaches its peak, there should be no furher adjustments in

µ∗ as c or θ keep declining (or very slow adjustments).
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(c) Panel B: Effect of c on µ∗
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Figure 5: Parameter values: ρ = σ2 = ν2 = 1; θ̄ = π
3 ; K = −log(0.85));c = 0.04 (upper

panel); θ = π
8 (lower panel). In each case φ(θ) = 3 cos(θ) sin2(θ).

8. Conclusion

Progress in information technologies enable investors to have access to more data (data

abundance), both in terms of volume and diversity, and greater computing power, so

that they can deploy more powerful techniques to extract information from raw data. In

this paper, we propose a new model of information acquisition to analyze separately the

effects of these two distinct dimensions of technological progress.

In our model, speculators search (mine data) for predictors via trials and optimally

stop searching when they find a predictor with a signal-to-noise ratio larger than an en-

dogenous threshold. As the outcome of speculators’ search process is random, speculators

discover different predictors. Thus, even though they are homogenous ex-ante, speculators

are heterogeneous ex-post in terms of the quality of their predictors, their performance,

their holdings etc. In this way, our model generates predictions about the effects of data

abundance and computing power on the distribution of asset managers’ skills (precisions

of their signals), the distribution of their trading profits, or the correlation in their hold-

ings. Moreover, asset price informativeness is determined by speculators’ optimal data

mining strategy because this strategy determines the average quality of their signals and

thereby the informativeness of their aggregate demand.
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The main message of our model is that the effects of data abundance and greater com-

puting power are not the same. For instance, greater computing power always induces

speculators to be more demanding for the minimal quality of their predictors while this

is not necessarily the case for data abundance. As a result, positive shocks to computing

power improve and homogenize predictors’ quality across speculators and, for this rea-

son, improve price informativeness. In contrast, data abundance can result in a greater

dispersion of predictors’ quality across speculators and a drop in price informativeness.

35



References

Abis, Simona, 2020, Man vs machine: Quantitative and discretionary equity management,
Working paper, Columbia University.

Agrawal, Ajay, John McHale, and Alexander Oettl, 2019, Finding needles in haystacks:
Artifical intelligence and recombinant growth, in The Economics of Artificial Intelli-
gence, the University of Chicago Press .

Banerjee, Snehal, and Bradyn Breon-Drish, 2020, Dynamics of research and strategic
trading, Working paper, University of California at San Diego.

Barbopoulos, Leonidas, Rui Dai, Talis Putnins, and Anthony Saunders, 2021, Market
efficiency in the age of machine learning, Working paper, University of Edinburgh.

Brogaard, Jonathan, and Abalfazl Zareei, 2019, Machine learning and the stock market,
Working paper, University of Utah.

Chen, Joseph, Harrison Hong, Ming Huang, and Jeffrey D. Kubik, 2004, Does fund size
erode mutual fund performance? the role of liquidity and organization, American
Economic Review 94.

Dessaint, Olivier, Thierry Foucault, and Laurent Frésard, 2021, Does alternative data
affect financial forecasting? the horizon effect, Technical report, Working Paper.

Dugast, Jerome, and Thierry Foucault, 2018, Data abundance and asset price informa-
tiveness, Journal of Financial economics 130, 367–391.

Farboodi, Maryam, and Laura Veldkamp, 2019, Long run growth of financial technology,
forthcoming American Economic Review .

Ferreira, Miguel A., Aneel Keswani, António F. Miguel, and Sofia B. Ramos, 2012, The
determinants of mutual fund performance: A cross-country study, Review of Finance
17.

Gao, Meng, and Jiekun Huang, 2019, Informing the market: The effect of modern in-
formation technologies on information production, The Review of Financial Studies
1367–1411.

Garleanu, Nicolae, and Lasse Heje Pedersen, 2018, Efficiently inefficient markets for assets
and asset management, Journal of Finance 78, 1163–1711.

Goldstein, Itay, Shiijie Yang, and Luo Zuo, 2020, The real effects of modern information
technologies, Working paper, NBER .

Grossman, Sanford, and Joseph Stiglitz, 1980, On the impossibility of informationally
efficient markets, American Economic Review 70, 393–408.

Gu, Shihao, Bryan Kelly, and Dacheng Xiu, 2020, Empirical Asset Pricing via Machine
Learning, The Review of Financial Studies 33, 2223–2273.

Han, Jungsuk, and Francesco Sangiorgi, 2018, Searching for information, Journal of Eco-
nomic Theory 175, 342–373.

36



Harvey, Campbell, 2017, The scientific outlook in financial economics, Journal of Finance
72, 1399–1440.

Huang, Shyang, Yang Xiong, and Liyan Yang, 2020, Information skills and data sales,
Working paper .

Kacperczyk, Marcin, and Amit Seru, 2007, Fund managers use of public information:
New evidence on managerial skills, Journal of Finance 62, 485–528.

Kacperczyk, Marcin, Stijn van Nieuwerburgh, and Laura Veldkamp, 2014, Time-varying
fund manager skills, Journal of Finance 69, 1455–1483.

Katona, Zsolt, Markus Painter, Panos Patatoukas, and JienYin Zengi, 2019, On the
capital market consequences of alternative data: Evidence from outer space, Technical
report.

Marenzi, Octavio, 2017, Alternative data: The new frontier in asset management, Report,
Optimas Research .

Martin, Ian, and Stefan Nagel, 2020, Market efficiency in the age of big data, Working
paper, LSE and University of Chicago .

Milhet, Roxana, 2020, Financial innovation and the inequality gap, Technical report.

Narang, Rishi, 2013, Inside the Black Box: A simple guide to quantitative and high-
frequency trading (Wiley, New-York).

van Binsbergen, Jules H., Xiao Han, and Alejandro Lopez-Lira, 2020, Man vs. machine
learning: The term structure of earbnings expectations and conditional biases, Working
paper, NBER .

Veldkamp, Laura, 2011, Information choice in macroeconomics and finance (Princeton
University Press).

Verrecchia, Robert, 1982, Information acquisition in a noisy rational expectations econ-
omy, Econometrica 1415–1430.

Vives, Xavier, 1995, Short-term investment and the informational efficiency of the market,
Review of Financial Studies 8, 125–160.

Zhu, Christina, 2019, Big data as a governance mechanism, Review of Financial Studies
32, 2021–2061.

Zhu, Min, 2018, Informative fund size, managerial skill, and investor rationality, Journal
of Financial Economics 130.

37



A. Proofs

Proof of Proposition 1. We show that x∗(sθ, p) and p∗ as given by eq.(8) and eq.(9) form

an equilibrium. First, suppose that x∗(sθ, p) is given by x∗(sθ, p) = a(θ)(ŝ(θ) − p) . In

this case, the aggregate demand for the asset is given by:

D(p) =
∫
x∗(sθ, p) + η = ā(ω − p) + η, (33)

where ā is the average value of a(θ) across all speculators (ā = E[a(θ) | θ ∈ [θ, θ∗]]).

Hence, observing D(p) (and p) is informationally equivalent to observing ξ = ω + ā−1η.

Thus:

p∗ = E [ω | D(p)] = E[ω | ξ] =
(

σ2

σ2 + ā−2ν2

)
ξ =

(
τξ

τω + τξ

)
ξ, (34)

where τξ ≡ ā2

ν2 is the precision of ξ as a signal about ω.

Now consider speculators. Using standard calculations in the CARA gaussian frame-

work, we obtain that the optimal demand for the risky asset of a speculator with signal

sθ is:

x∗(sθ, p) = E[ω|sθ, p]− p
ρVar[ω|sθ, p]

, (35)

As speculators have rational expectations on the price, they anticipate that it is linear in

ξ, as in eq.(34). Moreover, let ŝθ ≡ ω + τ(θ)− 1
2 εθ, so that sθ = cos(θ)ŝθ. Thus,

E[ω|sθ, p] = E[ω|ŝθ, ξ]. (36)

and

Var[ω|sθ, p] = Var[ω|ŝθ, ξ]. (37)

Note that the precision of ŝθ is τ(θ)τω. Thus, as all variables are normally distributed

and εθ and η (the noises in ŝθ and ξ) are independent, standard calculations yield:

E[ω|ŝθ, ξ] = τ(θ)τωŝθ + τξξ

τω + τ(θ)τω + τξ
. (38)

and

Var[ω|sθ, p] = 1
τω + τ(θ)τω + τξ

. (39)
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Thus, we can rewrite eq.(35) as:

x∗(sθ, p) = τ(θ)τωŝθ + τξξ − (τω + τ(θ)τω + τξ)p
ρ

, (40)

Using the fact that p = τξ
τω+τξ

ξ we deduce that:

x∗(sθ, p) = τ(θ)τω
ρ

(ŝθ − p) = τ(θ)
ρσ2 (ŝθ − p). (41)

Thus, x∗(sθ, p) is as conjectured (and as in eq.(8)) if and only if a(θ) = τ(θ)
ρσ2 . If follows

that ā = τ̄(θ)
ρσ2 . Eq.(9) and eq.(10) in the text immediately follow from substituting this

expression for ā in eq.(34).

In sum we have shown that (i) if dealers expect speculators to follow the trading

strategy x∗(sθ, p) given by eq.(8) then they set a price given by eq.(9) and (ii) if dealers

set a price given by eq.(9) then speculators follow the trading strategy x∗(sθ, p) given

by eq.(8). Thus, eq.(8) and eq.(9) form an equilibrium. More generally, it is possible to

show that this is the unique equilibrium in which speculators’ trading strategy is a linear

function of their signal and the price.

Proof of Lemma 1. Conditional on the realization of the price at date 1 and her signal,

sθ, the expected utility of trading for an investor given her optimal trading strategy is:

E[− exp(−ρx∗(sθ, p)(ω − p)) | sθ, p] =

−E
[
exp

(
−ρ

(
x∗(sθ, p)(E[ω | sθ, p]− p)−

ρ(x∗(sθ, p))2

2 Var[ω | sθ, p]
))]

.
(42)

Substituting x∗(sθ, p) by its expression in eq.(35), we deduce that:

E [− exp(−ρx∗(sθ, p)(ω − p)) | sθ, p)] = − exp
(
−(E[ω|sθ, p]− p)2

2 Var[ω|sθ, p]

)
(43)

Thus:

g(θ, θ∗) = −E
[
exp

(
−(E[ω|sθ, p∗]− p∗)2

2 Var[ω|sθ, p∗]

)]
. (44)

For a normally distributed variable Z with mean 0 and variance σ2
Z , E[exp(−Z2)] =

(1 + 2σ2
Z)−1/2. As E[ω|sθ, p] − p, is normally distributed with mean zero, defining Z =
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E[ω|sθ, p]− p, we deduce that:

g(θ, θ∗) = −
(

1 + Var [E[ω|sθ, p∗]− p]
Var[ω|sθ, p∗]

)−1/2

(45)

Observe that:

Var[E[ω|sθ, p∗]− p∗]
Var[ω|sθ, p∗]

= ρ2 Var[ω|sθ, p∗] Var[x∗(sθ, p∗)]. (46)

Now using the expression for x∗(sθ, p∗) in eq.(41), we obtain that:

Var[x∗(sθ, p∗)] = τ(θ)2τ 2
ω

ρ2 [Var(ŝθ) + Var(p∗)− 2 Cov(ŝθ, p∗)]. (47)

Using the expression for p∗ in eq(34) and the fact that ŝθ = ω+ τ(θ)− 1
2 εθ, we obtain after

some algebra that:

Var[x∗(sθ, p∗)] = τ(θ)τω(τω + τωτ(θ) + τξ)
ρ2(τω + τξ)

. (48)

Thus, using the expression for Var[ω|sθ, p∗] in eq.(39), we deduce that:

Var[x∗(sθ, p∗] = τ(θ)τω
ρ2(τω + τξ) Var[ω|sθ, p∗]

. (49)

Hence, using eq.(46) and the fact that τξ = τ̄(θ∗;θ,α)2τ2
ω

ρ2ν2 , we deduce that:

Var[E[ω|sθ, p]− p]
Var[ω|sθ, p]

= τωτ(θ)
τω + (τω τ̄(θ∗;θ,α))2

ρ2ν2

. (50)

This yields the expression for g(θ, θ∗).

Proof of Proposition 2. The derivative of F (θ∗) is

∂F

∂θ∗
= α

∫ θ∗

θ

∂r(θ, θ∗)
∂θ∗

φ(θ)dθ, (51)

where r(θ, θ∗) is defined in eq.(20). As θ∗ increases, both τ(θ∗) and I(θ∗; θ, α) decreases.

We deduce that r(θ, θ∗) decreases in θ∗. Thus, ∂F
∂θ∗ < 0. Moreover, we have (i) F (θ) = 1,

(ii) 0 < F (π/2) < 1 and (iii) exp(−ρc) < 1 (since c > 0). Thus, there is a unique

solution to the condition F (θ∗) = exp(−ρc) and this solution is in (θ, π/2) if and only if
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F (π/2) ≤ exp(−ρc) < 1.

Proof of Proposition 3. In equilibrium, F (θ∗) = exp(−ρc). The R.H.S of this condition

decreases with c and F (.) decreases in θ∗ (see the proof of Proposition 2). We deduce that

θ∗ increase in c. Moreover when c goes to zero, the R.H.S of the equilibrium condition

goes to 1. This implies that F (θ∗) goes to 1 as well, which (by continuity of F (.)) is

possible only if θ∗ goes to θ (as F (θ) = 1).

Proof of Proposition 4.

Part 1. It directly follows from eq.(19) that ∂F
∂α

= −
∫ θ∗

θ (1 − r(θ, θ∗)φ(θ)dθ) < 0, since

r < 1. Thus, F (θ∗) decreases in α. As F (.) also decreases in θ∗ and, in equilibrium,

F (θ∗) = exp(−ρc), it immediately follows that θ∗ increases in α, as claimed in the first

part of the proposition.

Part 2. Remember that I(θ∗; θ, α) = τω + τ̄(θ∗;θ,α)2τ2
ω

ρ2ν2 . Thus, we can rewrite r(θ, θ∗) given

in eq.(20) as:

r(θ, θ∗) = g(θ, θ∗)
g(θ∗, θ∗) =

(
ρ2σ2ν2τ(θ∗) + ρ2σ2ν2 + τ̄ 2(θ∗; θ, α)
ρ2σ2ν2τ(θ) + ρ2σ2ν2 + τ̄ 2(θ∗; θ, α)

) 1
2

. (52)

The ratio (a+ x)/(b+ x) increases with x iff a < b. Thus, as τ(θ) > τ(θ∗), the sign of ∂r
∂θ

is the same as the sign of ∂τ̄
∂θ

because τ(θ) > τ(θ∗). We obtain:

∂τ̄(θ∗; θ, α)
∂θ

= −φ∗(θ) (τ(θ)− τ̄(θ∗; θ, α)) < 0, (53)

where the last inequality follows from the fact τ(θ) decreases with θ. Thus, ∂r
∂θ
< 0.

We deduce from the expression for ∂r
∂θ

that r(θ, θ∗) decreases with θ (∂r
∂θ
< 0). Using

the expression for F (.) in eq.(19), we deduce that:

∂F

∂θ
= αφ(θ)(1− r(θ, θ∗))︸ ︷︷ ︸

>0

+α
∫ θ∗

θ

∂r

∂θ︸︷︷︸
<0

φ(θ)dθ. (54)

Thus, the effect of θ on F (.) and therefore the equilibrium stopping rule θ∗ is ambiguous.

We now show that this effect becomes negative when θ is close enough to zero. To see

this, observe that eq.(54) implies that:

∂F

∂θ
< αφ(θ)

1 +
∫ θ∗

θ
∂r
∂θ
φ(θ)dθ

φ(θ)

 (55)
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We show in Section 4 of the internet appendix that

∫ θ∗

θ
∂r
∂θ
φ(θ)dθ

φ(θ) goes to −∞ when θ goes

to zero. Thus, ∂F
∂θ

< 0 for θ small enough. Let θtr be the smallest value of θ such that

∂F
∂θ
< 0. As in equilibrium, F (θ∗) = exp(−ρc) and F (.) decreases in θ∗, it follows that θ∗

increases in θ when θ < θtr, as claimed in the second part of the proposition.

Proof of Proposition 5. It follows from direct inspection of the expression for r(θ, θ∗)

given in eq.(52) that r(θ, θ∗) decreases with σ2, and ν2 because τ(θ) > τ(θ∗). Thus, from

eq.(19), we deduce that F (θ∗) decreases with σ2, and ν2. It follows from this observation,

the fact F (θ∗) decreases with θ∗ and the equilibrium condition F (θ∗) = exp(−ρc) that θ∗

decreases with σ2 and ν2.

Proof of Corollary 1.

Part 1. Greater computing power induces speculators to be more demanding for the

quality of their predictors (to put more effort in the search of good predictors) because it

reduces the cost of exploring new data to obtain a predictor (see Proposition 3). Thus,

speculators obtain signals of higher quality on average. Hence, on average, they trade

more aggressively on their signals, their aggregate demand for an asset becomes more

informative and, for this reason, price informativeness increases (see eq.(11)).

Part 2. When a decrease in θ reduces θ∗, it is clear that it raises the average quality

of predictors and therefore price informativeness. Now consider the other possible case,

i.e., the case in which a decrease in θ increases θ∗. We know that this possibility arises

when θ is low enough (see Proposition 4). We prove below, by contradiction, that price

informativeness, I(θ∗; θ, α), is also inversely related to θ in this case.

Suppose (to be contradicted) that there is a value of θ such that when ∂θ∗

∂θ
< 0 then

∂I(θ∗;θ,α)
∂θ

> 0. Let L(θ∗i , θ∗) be:

L(θ∗i , θ∗) ≡ α
∫ θ∗

i

θ

g(θ, θ∗)
g(θ∗i , θ∗)

φ(θ)dθ + 1− α
∫ θ∗

i

θ
φ(θ)dθ. (56)

Function L is decreasing with θ∗i because:

∂L

∂θ∗i
= α

∫ θ∗
i

θ

∂

∂θ∗i

(
g(θ, θ∗)
g(θ∗i , θ∗)

)
φ(θ)dθ < 0. (57)

Now, using the expression for J(.) given in eq.(15), we can rewrite the indifference con-
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dition (16) as:

L(θ∗i , θ∗) = exp(−ρc). (58)

Moreover: L(θ, θ∗) = 1 and 0 < L(π/2, θ∗) < 1. Thus, as L(θ∗i , θ∗) decreases in θ∗i ,

eq.(56) has a unique solution θ∗i (θ∗) when c is small enough. This solution defines the

best response of a speculator when other speculators choose the stopping rule θ∗.

Next, for θ∗i ≥ θ ≥ θ, define

l(θ, θ∗i , θ∗) = g(θ, θ∗)
g(θ∗i , θ∗)

=
(
ρ2σ2ν2τ(θ∗i ) + ρ2ν2 + σ2τ̄(θ∗; θ, α)2

ρ2σ2ν2τ(θ) + ρ2ν2 + σ2τ̄(θ∗; θ, α)2

) 1
2

=
(
τ(θ∗i )τω + I(θ∗; θ, α)
τ(θ)τω + I(θ∗; θ, α)

) 1
2

.

(59)

Clearly, l(θ, θ∗i , θ∗) increases when I(θ∗; θ, α) increases. Thus, if ∂I(θ∗;θ,α)
∂θ

< 0, then

∂l(θ,θ∗
i ,θ

∗)
∂θ

> 0 since θ affects l(θ, θ∗i , θ∗) only through its effect on price informativeness.

This implies that:
∂l

∂θ
+ ∂l

∂θ∗
∂θ∗

∂θ
> 0. (60)

As:

L(θ∗i , θ∗) ≡ α
∫ θ∗

i

θ
l(θ, θ∗i , θ∗) + 1− α

∫ θ∗
i

θ
φ(θ)dθ, (61)

we deduce that:

dL

dθ
= ∂L

∂θ
+ ∂L

∂θ∗
∂θ∗

∂θ
= αφ(θ)(1− l(θ, θ∗i , θ∗))︸ ︷︷ ︸

>0

+α
∫ θ∗

i

θ

(
∂l

∂θ
+ ∂l

∂θ∗
∂θ∗

∂θ

)
φ(θ)dθ. (62)

Eq.(60) implies that the second term is also positive. Thus, dL
dθ
> 0. Thus, a decrease in

θ results in a smaller value of L, holding θ∗i constant. As ∂L/∂θ∗i < 0 and L(θ∗i , θ∗) =

exp(−ρc), it follows that in this case θ∗i increases with θ. As, in equilibrium, θ∗i = θ∗, this

also implies that ∂θ∗

∂θ
> 0. A contradiction with our starting hypothesis. We deduce that

when ∂θ∗

∂θ
< 0 then ∂I(θ∗;θ,α)

∂θ
< 0. Thus, for all values of θ, a decrease in θ improves price

informativeness.

Part 3. By definition, τ̄(θ∗; θ, α) =
∫ θ∗

θ τ(θ)φ∗(θ)θ. Using the definition of φ∗(θ), we

deduce that ∂τ̄(θ∗;θ,α)
∂α

= ∂θ∗

∂α
(φ∗(θ∗)(τ(θ∗) − τ̄(θ∗; θ, α)) > 0, where the last inequality

follows from the fact that τ(θ) decreases with θ and ∂θ∗

∂α
< 0 (see Proposition 4). Hence,

price informativeness increases with α because (i) I(θ∗; θ, α) increases with τ̄(θ∗) and

(ii) depends on α only through τ̄(θ∗) (see eq.(11). This proves the second part of the

proposition.
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Proof of Corollary 2. Consider the effect of θ on speculators’ expected profits. We know

from Corollary 1 that τ̄(θ∗(θ, c, α), θ, α) decreases with θ. Moreover, lim
θ→π

2

τ̄(θ∗(θ, c, α), θ, α) =

τ(π2 ) = 0. Thus, if τ̄(θ∗(0, c, α), 0, α) > (τωρ2ν2)1/2, there is a unique value of θ, de-

noted θ̂, such that τ̄(θ∗(θ̂, c, α), θ̂, α) = (τωρ2ν2)1/2. Consequently, when θ varies, hold-

ing other parameters constant, speculators’ expected profit reaches its maximum for

τ̄(θ∗, θ̂, α) = τωρ
2ν2. If instead, τ̄(θ∗(0, c, α), 0, α) ≤ τωρ

2ν2, then speculators’ expected

profit always increases as θ decreases. This proves Part 2 of Corollary 2. The proofs of

Parts 1 and 3 are similar and therefore omitted for brevity. In these cases, one obtains

that ĉ and α̂ are the unqiue solutions of, respectively, τ̄(θ∗(θ, ĉ, α), θ, α) = (τωρ2ν2)1/2

and τ̄(θ∗(θ, c, α̂), θ, α̂) = (τωρ2ν2)1/2.

Proof of Corollary 3.

Part 1. For a given θ, when c = 0 we have θ∗ = θ and therefore Var[Π(θ)] = 0, and when

c > 0, θ∗ > θ and therefore Var[Π(θ)] > 0. Hence, it must be the case that Var[π(θ)] is

strictly increasing with c, for c close enough to 0.

Part 2. In order to analyze the effect of θ, it is useful to rewrite Var[Π(θ)] as follows

(using eq.(26) and the definition of I(θ∗; θ, α)):

Var[Π(θ)] = ρ2σ4ν4 (m2(θ∗, θ, α)− τ̄(θ∗, θ, α)2)
(τ̄(θ∗, θ, α)2 + ρ2σ2ν2)2 . (63)

where m2(θ∗, θ, α) ≡ E [cot4(θ)| θ ≤ θ ≤ θ∗] is the second order moment of the variable

τ(θ) (the distribution of the quality of speculators’ predictors). The first moment of this

distribution is τ̄(θ∗, θ, α̂). For a given search cost c, we must distinguish two cases. First,

if the second moment of the distribution for the variable τ(θ) diverges when θ goes to zero

(that is, limθ→0m2(θ∗, θ, α) = +∞,), then we also have limθ→0 Var[Π(θ)] = +∞. Thus,

Var[π(θ)] is strictly decreasing with θ, for θ close enough to 0.

If the second moment of the distribution for the variable τ(θ) converges when θ goes

to zero, the analysis is more complex.20 Indeed, as shown below, both the second and

the first moments of the distribution for τ(θ) decreases with θ. If the effect on the

second moment dominates then Var[Π(θ)] decreases with θ while if the effect on the first

moment dominates then Var[Π(θ)] increases with θ (see eq.(63)). We show below that for

20Notice first that m2(θ∗, θ, α) < ∞ (the second moment converges) implies that φ(θ) cot4(θ) can
be integrated in 0. Locally around θ = 0, since cot(θ) ∼ sin−1(θ) ∼ θ−1, we have φ(θ) cot4(θ) ∼
φ(θ) cot2(θ)θ−2 As θ−2 cannot be integrated in 0, it must be the case limθ→0 φ(θ) cot2(θ) = 0. This is a
necessary condition so that φ(θ) cot4(θ) can be integrated.
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θ sufficiently close to zero the first effect dominates.

We have:
dτ̄(θ∗, θ, α̂)

dθ
= ∂τ̄(θ∗, θ, α̂)

∂θ
+ ∂τ̄(θ∗, θ, α̂)

∂θ∗
∂θ∗

∂θ
(64)

Thus:

dτ̄(θ∗, θ, α̂)
dθ

= −
(
φ∗(θ)(τ(θ)− τ̄(θ∗, θ, α̂)) + φ∗(θ∗) (τ̄(θ∗, θ, α)− τ(θ∗)) ∂θ

∗

∂θ

)
(65)

According to Corollary ??, we have dτ̄(θ∗,θ,α̂)
dθ

< 0, and according to Proposition 4, we

have ∂θ∗/∂θ < 0 for θ < θtr(c) small enough. Hence, using eq.(64), we deduce that for θ

close to 0 we have

0 < −∂θ
∗

∂θ
< φ(θ)×

(∗)︷ ︸︸ ︷
τ(θ)− τ̄(θ∗, θ, α̂)

φ(θ∗) (τ̄(θ∗, θ, α)− τ(θ∗)) . (66)

The term (∗) is dominated by the term τ(θ) for θ small enough. Then, for θ small, there

is a constant K1 > 0 such that

0 < −∂θ
∗

∂θ
< K1φ(θ)τ(θ). (67)

and therefore, inserting inequality (67) in equation (64), we obtain that there exists a

constant K2 such that

0 < −dτ̄(θ∗, θ, α̂)
dθ

< K2φ(θ)τ(θ). (68)

Next, we compute the derivative of the second moment in equilibrium and obtain

dm2(θ∗, θ, α)
dθ

= −
(
φ∗(θ)

(
τ 2(θ)−m2(θ∗, θ, α)

)
+ φ∗(θ∗)

(
m2(θ∗, θ, α)− τ 2(θ∗)

) ∂θ∗
∂θ

)
(69)

As the order of magnitude of ∂θ∗/∂θ is (at best) φ(θ)τ(θ), we deduce from the previous

equation that:
dm2(θ∗, θ, α)

dθ
∼ −φ∗(θ)τ 2(θ), (70)

when θ is small. Hence, around θ = 0, dm2(θ∗,θ,α)
dθ

dominates dτ̄(θ∗,θ,α̂)
dθ

by an order of

magnitude. Indeed, the ratio between the second derivative and the first is bounded by

1/τ(θ), which goes to zero when θ goes to zero.
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Proof of Corollary 4. Direct from the arguments in the text.

Proof of Corollary 5. Direct from the arguments in the text.

Proof of Â¨Proposition 6. To be written.
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