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Abstract

We study the use and economic impact of AI technologies among U.S. firms. We propose

a new measure of firm-level AI investments, using a unique combination of worker resume

and job postings datasets. Our measure reveals a stark increase in AI investments across sec-

tors. AI-investing firms see increased growth in sales, employment, and market valuations.

This growth comes primarily through increased product innovation, reflected in trademarks,

product patents, and product updates. AI-powered growth concentrates among ex-ante larger

firms, leading to higher industry concentration and reinforcing winner-take-most dynamics.

Our results highlight that new technologies can contribute to growth through product innova-

tion.
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Technological change is a key driver of economic growth (Romer, 1990; Aghion and Howitt, 1992).

The past decade has seen a new technological shift: substantial developments in artificial intelli-

gence (AI) technologies and their wide-spread commercial application, driven by rapid accumu-

lation of data, falling costs of computing power, and methodological breakthroughs (Furman and

Seamans 2019; Mihet and Philippon 2019). AI is a prediction technology, and predictions are at

the heart of decision-making under uncertainty (Agrawal et al., 2019). AI algorithms allow firms

to learn better and faster from vast quantities of data, significantly improving the accuracy of

predictions. As such, AI can be a general purpose technology that generates growth through in-

creased productivity and product innovation (Aghion et al., 2017; Cockburn et al., 2018). Indeed,

in a survey of executives at companies investing in AI, 70% anticipate that AI will fundamen-

tally transform their companies and industries within the next five years.1 Yet it remains an open

question whether artificial intelligence can transform economies and spur economic growth, as

lackluster aggregate productivity growth over the past decade has led to concerns that the ben-

efits of AI may be over-hyped or take a much longer time to materialize (Mihet and Philippon,

2019; Brynjolfsson et al., 2019; Haltiwanger, 2019). To date, the lack of comprehensive data on

firms’ use of AI technologies has posed the key challenge to understanding the prevalence and

the economic impact of AI technologies (Seamans and Raj, 2018).

In this paper, we propose a new measure of investments in AI technologies based on firms’

AI-skilled human capital. The heavy reliance of AI on human expertise makes the human-capital-

based approach particularly well-suited in this setting. We take advantage of a unique combi-

nation of datasets that capture both the stock of and the demand for AI-skilled employees among

U.S. firms: resume data from Cognism Inc, which offer job histories for 535 million individuals

globally, and job postings data from Burning Glass, which capture 180 million job vacancies. Our

new AI measure allows us to analyze the patterns of AI adoption and its impact on the adopt-

ing firms and industries. Our main takeaway is that firms that invest more in AI experience

higher growth through increased product innovation, which can be seen in increased trademarks,

product patents, and updates to firms’ product portfolios (Hoberg and Phillips, 2016). At the

aggregate level, growth in AI investments are associated with increased industry concentration

and winner-take-most dynamics, as larger firms benefit more from AI investments. Overall, our

results suggest that, so far, the first-order effect of AI has been in empowering growth through

product innovation, consistent with AI reducing the costs of product development.

Our work offers several innovations over the existing literature. First, while prior research has

made progress in studying the impact of AI on labor markets and occupations (e.g., Felten et al.,

2019; Acemoglu et al., 2021), we focus on the impact of AI on firms and shed new light on the

1See here for a survey by Deloitte in 2018.
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ability of AI to drive growth, including the mechanisms through which this growth is achieved.

To do so, we measure granular AI investments and their potential effects for a broad sample of

AI-using firms across a wide range of industries, which complements recent work that focuses on

AI-inventing firms (Alderucci et al., 2020). Second, in the absence of administrative firm-worker

matched U.S. data containing individual workers’ occupations, our Cognism resume data provide

high coverage of U.S. jobs with detailed job descriptions while representing more than 64% of

full-time U.S. employment as of 2018.2 Third, our paper is also the first to cross-validate AI labor

demand identified from job postings with inflows and outflows of AI workers identified from

resumes. Fourth, our rich data on firms’ employees and their jobs allow us to measure and control

for confounding factors, such as the use of non-AI information technologies, and capture the use of

external AI solutions and software (e.g., IPSoft Amelia). Finally, our comprehensive cross-industry

data provide a first glimpse at the aggregate industry-level implications of AI investments.

Even with our detailed data, identifying firms’ investments in AI is challenging due to the mul-

tifaceted nature of AI applications.3 We circumvent this challenge by proposing a new data-driven

approach to identify AI-related jobs, which does not depend on pre-specified lists of keywords.

Instead, our algorithm learns the AI-relatedness of each job posting empirically. First, we measure

the AI-relatedness of each skill in the job postings data, based on that skill’s co-occurrence with the

core AI skills—machine learning, computer vision, and natural language processing. Second, we

obtain a measure of AI-relatedness of each job posting by averaging the AI-relatedness of all skills

required by the job posting. Finally, we leverage the most AI-related skills from the job postings

data to classify AI workers in the less structured resume data. For each employee, we consider

whether skills with the highest AI-relatedness (e.g., “deep learning”) appear either in the job title,

in the job description, or in any publications, patents, or awards received during that job. This

gives us a classification of each employee of each firm at each point in time. We aggregate both

job postings data and resume data to the firm level and match to public firms in the Compustat

data. Encouragingly, the two measures of AI investments, although based on two independent

datasets, are highly correlated and yield consistent results throughout the paper.

We confirm that our human-capital-based measures of AI investments display intuitive prop-

erties. First, we manually inspect large samples of AI-classified jobs and confirm that our classi-

fication picks up highly AI-skilled positions. Second, given that we do not use job titles to filter

AI-skilled jobs, we validate our measure by confirming that the job postings with the highest AI-

2For comparison, while the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics (LEHD) program
provides firm-worker matched data and worker wages, it does not include any information on workers’ occupations or
their jobs (Abowd et al., 2009; Haltiwanger et al., 2014). Moreover, a typical project using the LEHD data does not have
access to all states due to administrative reasons: for example, Babina (2020) has access to about 40% of employment
and Babina and Howell (2018)—60%.

3Within a single firm, e.g. Caterpillar Inc., AI can have use cases ranging from improving machinery via computer
vision to offering a new product line of Internet of Things style analytics to machine operators.
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relatedness measures skew heavily towards highly AI-specific job titles. Third, we confirm that

our AI measure does not pick up general data-related skills, only those that are specifically asso-

ciated with AI implementation. Fourth, we provide detailed case studies of specific applications

of AI within several firms. Fifth, we confirm that AI-investing firms also increase research and

development (R&D) expenditures, consistent with increased experimentation with applying the

new AI technologies. Finally, we enrich our baseline measure by incorporating the use of external

AI solutions and software and find similar results.

We begin our analysis by describing key patterns in AI investments. In both job postings and

employee resume datasets, the fraction of AI jobs has increased dramatically over time, growing

more than seven-fold from 2010 to 2018. The share of AI jobs is highest in the technology sector,

but the rate of increase in AI investments over time is similar across sectors. At the firm level,

growth in AI investments are more pronounced among ex ante larger firms and firms with higher

cash holdings and R&D intensity. Looking at the local labor market conditions, we observe that

higher-wage and more educated areas experience faster growth in AI-skilled hiring.

We next address the fundamental question of whether AI investments are associated with

higher firm growth. As is standard in settings with slow-moving processes like technological

change (e.g., Acemoglu and Restrepo, 2020), our primary specification is a long-differences re-

gression of changes in firm outcomes from 2010 to 2018 on changes in the firm-level share of AI

workers. This strategy is especially well-suited for our setting, where AI investments accumulate

gradually over time and generate effects that may not be immediate. We include a rich set of

controls: industry fixed effects and firm-, industry-, and commuting-zone-level characteristics in

2010. We document a strong and consistent pattern of higher growth among firms that invest more

in AI: a one-standard-deviation increase in the resume-based measure of AI investments over the

8-year period corresponds to a 20.3% increase in sales, a 21.9% increase in employment, and a

22.4% increase in market valuation. The results are ubiquitous across major industry sectors (e.g.,

manufacturing, finance, and retail), supporting the idea that AI is a general purpose technology.

While the long-differences specification controls for time-invariant firm characteristics, we per-

form several tests to address concerns about omitted variables or reverse causality and buttress a

causal interpretation of our results. First, we exploit firm-level panel data to examine firm growth

dynamically in each year around AI investments using a standard distributed lead-lag model

(Aghion et al., 2020). We find no differential trends in firm growth prior to AI investments and a

positive effect after a lag of two to three years. Second, the results are robust to the inclusion of

controls for past firm and industry growth and future growth opportunities proxied by Tobin’s

q. Third, we confirm that our results reflect specifically investments in AI, rather than other tech-

nologies: the effects of AI investments remain unchanged when controlling for contemporaneous
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firm-level investments in robotics, non-AI information technologies, and non-AI data analytics.

We further address concerns regarding unobserved shocks driving both firm growth and AI

investments using a novel instrumental variables strategy. We instrument for growth in firm-level

AI investments using variation in firms’ ex-ante exposure to the future supply of AI talent from

universities that are historically strong in AI research. The core idea is that the scarcity of AI-

trained labor is one of the most important constraints to firms’ AI adoption (e.g., CorrelationOne,

2019), and universities that are historically strong in AI research have been able to train more AI-

skilled graduates in recent years, enabling firms that typically hire from those universities to more

readily recruit AI talent. To construct the instrument, we compile two new datasets on (i) the

ex-ante strength of AI research in each university and (ii) firm-university hiring networks prior

to 2010 to measure firms’ exposure to AI-strong universities. Consistent with commercial interest

in AI becoming widespread only since 2012, we show that firms’ connections to AI-strong uni-

versities in 2010 were not driven by the need to hire AI-skilled workers. Moreover, we validate

the key assumptions underlying this instrument and show that firms’ ex-ante connections to AI-

strong universities strongly predict ex-post hiring of AI-skilled workers. We then show that the

instrumented firm-level growth in AI investments robustly predicts firm growth. Finally, we ver-

ify that the results are not driven by other characteristics of AI-strong universities such as strength

in general computer science.

To understand the mechanisms through which AI generates firm growth, we examine two

key non-mutually-exclusive channels: (i) product innovation and (ii) reduction in operating costs.

The first channel is motivated by the extensive literature documenting the importance of product

innovation for firm growth (Klette and Kortum, 2004; Hottman et al., 2016; Argente et al., 2021).

Theoretically, AI can potentially reduce the costs of product innovation in two ways. First, since

product development involves lengthy experimentation with uncertain benefits (Braguinsky et al.,

2020), the ability of AI algorithms to quickly learn from large datasets can reduce the uncertainty

of experimentation in product development and make the process of learning about promising

projects more efficient. For example, at Moderna, AI algorithms have been leveraged in the de-

velopment of the first COVID-19 vaccine in just 65 days, a process that would previously take

years. Moreover, AI algorithms themselves can constitute improved products (e.g., AI-powered

trading platforms). Second, AI can contribute to increased product scope by improving firms’

ability to learn about customer preferences and tailor product offerings to customer tastes (Mihet

and Philippon, 2019). Empirically, we find that firms with larger growth in AI investments see in-

creased product innovation, reflected in more product patents (Ganglmair et al., 2021), trademarks

(Hsu et al., 2021), and updates to product portfolios (Hoberg et al., 2014).

The second channel through which AI can stimulate growth is by lowering operating costs
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and improving productivity, for example, by replacing human labor for some tasks (Agrawal

et al., 2019) or by increasing operational efficiency through better forecasting and more efficient

processes (Basu et al., 2001; Farboodi and Veldkamp, 2021). Empirically, we do not find support for

this second channel. Growth in AI investments have zero effect on changes in sales per worker,

total factor productivity, and process patents—which may reflect long lags in materializing the

productivity benefits of AI (David, 1990; Brynjolfsson et al., 2019).

The benefits from AI investments are unevenly distributed across firms, consistent with the

hypothesis that AI can increase inequality by favoring large firms with more data, which is a cru-

cial input to AI implementation (Mihet and Philippon, 2019; Farboodi et al., 2019). We estimate

the effect of AI investments within groups of firms by initial size and find that the positive rela-

tionship between AI investments and firm growth is much stronger among ex-ante larger firms.

These results provide a new angle to the endogenous growth literature. For example, Akcigit and

Kerr (2018) find that larger firms have higher costs of product innovation, which put constraints

on the ability of large firms to scale. Our evidence shows that AI can help large firms overcome

these previously documented barriers and scale up more easily.

Our final set of results speak to potential aggregate effects of AI on industry dynamics. We first

test whether firm-level growth translates into industry-level growth. It is possible that the positive

effects on AI-investing firms are offset or even dominated by negative spillovers to competitors

within the industry, and previous work shows that the use of technology can be contractionary at

the aggregate level if input use declines (Basu et al., 2006). Nevertheless, we find that industries

that invest more in AI experience an overall increase in sales and employment within the sample

of Compustat firms. Second, growth in AI investments are associated with increased industry

concentration, consistent with our finding that AI favors ex-ante larger firms with more data.

This suggests that AI investments can affect industry dynamics by reinforcing winner-take-most

dynamics.

Overall, we document that AI leads to higher firm growth, and this growth mainly comes

from firms’ use of AI technologies for product innovation. This mechanism reflects the nature

of AI as a prediction technology. Predictions are essential for firms’ decision-making across all

aspects of operations and particularly in product development, which requires experimentation

and learning about promising projects and customer preferences (Braguinsky et al., 2020). The

ability to perform better predictions with AI can create new business opportunities. In this context,

our paper offers micro-level evidence and helps to unpack the black box of where “new projects”

and investment opportunities come from: new technologies like AI, which allow firms to learn

better and faster, can expand the investment opportunity frontier by decreasing firms’ product

development costs.
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Related Literature

Our paper provides one of the first pieces of systematic evidence for the impact of artificial in-

telligence on firms and economic growth. While some recent work provides evidence on the use

of AI technologies in specific industries such as finance (D’Acunto et al., 2019) and retail (Bajari

et al., 2019),4 our comprehensive data allow us to measure AI investments across a wide range of

industries, offering a new measure of technology adoption based on firms’ human capital (Hall

and Jaffe 2018).5 Recent theoretical literature argues that as a general purpose technology, AI has

the potential to stimulate economic growth across a wide range of sectors (e.g., Aghion et al., 2017;

Mihet and Philippon, 2019). Our empirical evidence supports this view and offers an additional

insight: the mechanism through which AI fuels growth is by empowering product innovation.

Product innovation has been considered a key mechanism for firm growth (e.g., Hottman et al.,

2016; Argente et al., 2021). Our results suggest that AI can contribute to product innovation by

both (i) overcoming supply-side constraints, such as costly experimentation in product develop-

ment, and (ii) improving firms’ ability to learn about consumer preferences. Our findings are

consistent with Braguinsky et al. (2020), who argue that experimentation and new technologies

are crucial for firm growth, and support the insight by Cockburn et al. (2018) that AI technologies

can spur innovation by allowing for faster accumulation of knowledge. Our findings also com-

plement Rock (2019), who shows that the launch of Google’s TensorFlow expedited the gain in

market valuations associated with firms’ exposure to AI, with null effects on productivity.

Furthermore, our results speak to the literature on technology adoption, diffusion, and im-

plications for growth (e.g., Romer, 1990; Aghion and Howitt, 1992; Parente and Prescott, 1994).

Recent work by Crouzet et al. (2021) exploits demonetization in India to explore the role of com-

plementarities for technology adoption, and Juhász et al. (2020) highlight that experimentation

in applying new technologies can delay their effect on firms. Several previous technologies have

been specifically associated with increased product innovation. For example, Basker and Sim-

coe (2021) document an increase in trademark activity following the introduction of the universal

product codes. At the same time, previous waves of IT investment were associated with economi-

cally large productivity increases but mixed results on firm growth measures such as market share

(e.g., Tambe et al., 2020), and diffusion patterns for these technologies tended to favor smaller

firms (e.g., Hobijn and Jovanovic, 2001). By contrast, our evidence shows that AI technologies can

stimulate firm growth through product innovation, with effects that are especially pronounced

4Another strand of literature measures workers’ exposure to AI and its impact on labor market outcomes. See Felten
et al.(2018; 2019), Webb (2020), Grennan and Michaely (2020), and Acemoglu et al. (2021), among others.

5Our firm-level measures of AI investments based on human capital are complementary to recent work that mea-
sures technology adoption using survey data (e.g., Brynjolfsson and McElheran 2016; Acemoglu et al. 2022). To foster
further research on the economic impact of AI, all code to generate our AI investment measures and our firm-level AI
data will be publicly available on the authors’ websites.
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in large firms. Given the unique ability of AI to process large amounts of data and the fact that

large firms accumulate more data, AI appears to reduce the costs of product development that are

especially high for large firms (Akcigit and Kerr, 2018), allowing these firms to scale more easily.

Methodologically, our paper offers a new approach to measure firms’ intangible capital based

on human capital, with a specific application to capturing investments in AI. Despite ongoing

efforts to incorporate more comprehensive measures of intangibles in the U.S. at the national level

(Corrado et al. 2016), most firm-level measures of intangible capital use cost items such as R&D

and SG&A (e.g., Eisfeldt and Papanikolaou, 2013; Peters and Taylor, 2017; Crouzet and Eberly,

2019; Eisfeldt et al., 2020). Finer firm-level data on intangible investments, which are available for

some countries (e.g., New Zealand; see Chappell and Jaffe 2018), are generally not available for

U.S. firms. Our methodology offers a new measure of intangibles that is consistent across firms

and sectors and can be applied to measure various forms of intangible assets, especially those

based on human expertise. For example, while our focus is on AI investments, we are also able to

measure firm investments in robotics, non-AI information technology, and non-AI data analytics.

More broadly, our AI measure contributes to the growing literature that uses textual analysis to

construct measures of intangibles such as human capital and innovation. For example, Hoberg

and Phillips (2016) analyze text of 10-K filings to create measures of firms’ product markets, Fedyk

and Hodson (2019) use textual analysis to measure firms’ focus on technical skills, Kogan et al.

(2019) construct occupation-specific indicators of technological change using patent text, Argente

et al. (2020) employ textual analysis to map patents to products, and Babina et al. (2020) uses

patent text to build a new comprehensive measure of technological entrepreneurship.

Finally, we contribute to the active debate on the causes and consequences of rising industry

concentration (e.g., Gutiérrez and Philippon, 2017; Syverson, 2019; Covarrubias et al., 2019; Autor

et al., 2020). One proposed channel is that intangible assets propel growth of the largest firms, con-

tributing to increased industry concentration (e.g., Crouzet and Eberly, 2019). Our results support

this hypothesis and suggest that technologies like AI can contribute to increased concentration

by enabling large firms to grow even larger through increased product innovation, reinforcing

winner-take-most dynamics.

1 Artificial Intelligence: Background and Mechanisms

According to the Organisation for Economic Co-operation and Development (2019), an AI sys-

tem is defined as a “Machine-based system that can, for a given set of human-defined objectives, make

predictions, recommendations or decisions influencing real or virtual environments.” We provide a brief

overview of the current commercial use and key features of AI, followed by a discussion on eco-
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nomic mechanisms through which AI investments might benefit a broad range of firms.

1.1 Artificial Intelligence: A Brief Overview

Commercial applications and investments in AI have increased exponentially over the past decade.

While there are no systematic data on AI investments by firms, recent estimates hover around $140

billion globally per year with estimated growth of nearly 100% over the next three years.6 Histor-

ically, the U.S. is considered to be the leader in both academic research and private investments in

AI, but other regions including China and the E.U. have recently been spearheading their invest-

ments (Knight, 2017). There has also been an expansion of AI investments across industry sectors.

While the tech sector was an early adopter of AI, surveys of executives indicate widespread adop-

tion of AI technologies by firms in all industries (see here for a survey by McKinsey).

Academic research in AI has flourished for decades since John McCarthy coined the term in

1955 (McCarthy et al., 1955).7 The recent explosion of commercial interest in AI in the private sec-

tor is driven by supply-side factors: rapid accumulation of data, decreasing costs of computation,

and advances in methodologies, including deep learning (Hodson, 2016). In terms of commercial

applications, three key areas of artificial intelligence have captured the bulk of private sector in-

vestments: machine learning, natural language processing, and computer vision (see here for a

survey by Deloitte in 2018).8 These core techniques are united by their ability to perform high-

skilled, non-routine tasks, such as prediction, detection, and classification (Agrawal et al., 2019).

Their main distinction from traditional methods of data analysis consists of these techniques’ abil-

ity to learn from vast quantities of high-dimensional data (including text, speech, and image data;

Hauptmann et al., 2015) and significantly improve the accuracy of predictions. For example, the

ImageNet challenge in 2012 led to an almost halving of image recognition error rates (relative to

traditional methods), which launched large corporate interest in the computer vision space.9

AI has several key economic properties. First, AI is a prediction technology, and predictions

are at the heart of decision-making under uncertainty—faced by firms in all aspects of their op-

erations. As a result, the ability to perform better predictions with AI can create new business

opportunities. Second, economists have argued that AI may be a general purpose technology

(GPT): AI can be leveraged across different business segments and sectors to solve a wide range

of business problems. Well-known examples of GPT include the steam engine, electricity, and in-

ternal combustion. Third, investments in AI center around human expertise, with complementary

6See the PitchBook AI & ML Emerging Tech Report 2021 here.
7A brief history of AI research can be found here.
8While our focus is on artificial intelligence technologies rather than specific automation technologies like ATMs

and industrial robots, our measure does incorporate relevant recent robotics technologies (e.g., autonomous vehicles,
vision-guided robots) that are highly related to computer vision and machine learning technologies.

9See ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
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investments in computing technology and data infrastructure. This differs from technologies that

require mainly capital investments, such as industrial robots. As such, AI is an intangible asset,

reflecting the broader shift towards intangible capital (Mihet and Philippon, 2019). The fourth key

feature of AI technologies is that they are information goods with non-rival uses: new algorithms

are usually published openly and can be used simultaneously by many firms. However, the extent

to which AI can benefit firms depends to a large extent on who owns big data—the key input to

AI technologies (Fedyk, 2016; Jones and Tonetti, 2020).

1.2 Artificial Intelligence and Firm Growth: Mechanisms

It is an open question whether and how investments in AI technologies benefit firms. On the one

hand, as a potential general purpose technology, AI might spur economic growth. On the other

hand, current attention to AI may be over-hyped (Mihet and Philippon, 2019), or AI may still be

too early in the adoption cycle to have a meaningful impact on firm growth (Brynjolfsson et al.,

2020). Below, we discuss two non-mutually-exclusive channels through which investments in AI

can affect firm growth: (i) by increasing product innovation, e.g. through new product creation,

improved product quality, and product customization, and (ii) by lowering operating costs, e.g.

by replacing labor.

AI as a Driver of Product Innovation. An important mechanism for firm growth is through

product innovation and the expansion of product varieties. For example, Hottman et al. (2016)

quantify that practically all variation in firm growth in sales can be explained by variation in

firms’ product appeal to customers (due to either the quality of firms’ products or customer tastes)

and product scope (the number and variety of products). Importantly, Braguinsky et al. (2020)

point out that product variety and product appeal, which are commonly treated as primitives,

are actually determined endogenously through experimentation by firms, and other work also

stresses the importance of knowledge accumulated through exploration and experimentation for

product innovation (Klette and Kortum, 2004; Bustamante et al., 2020).

As a prediction technology, AI can potentially affect both aspects of product innovation high-

lighted by the prior literature: (i) innovations that overcome supply-side frictions to create new

products or products of superior quality, and (ii) demand-driven innovations that increase prod-

uct scope by better tailoring products to customer tastes. According to surveys of executives,

enhancement of existing products and services and the creation of new ones is the top use of AI

to date (see here for a survey by Deloitte).

The potential of AI to help create new or better products comes from the insight that prod-

uct innovation is costly: it requires (often lengthy) experimentation, and its resulting benefits are

uncertain, creating supply-side barriers to product creation and improvement (Akcigit and Kerr,
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2018; Braguinsky et al., 2020). The ability of AI algorithms to quickly analyze large datasets and

learn about the underlying relationships in the input data can potentially lower these barriers

by reducing the uncertainty of experimentation and making the learning process more efficient,

which leads to more product innovation (Cockburn et al., 2018). In practice, recent years show

a number of ways in which AI has enabled or sped up the product innovation process. An im-

portant application is drug development, where AI can shorten the drug development life cycle.

For example, at Moderna, AI algorithms have been leveraged to design and optimize mRNA con-

structs, contributing to the development and the production of the first dose of the COVID-19 vac-

cine in just 65 days, a process that would previously take years.10 In addition, AI algorithms can

help innovate on the quality of existing products and services by building AI models directly into

products. For example, in Online Appendix A.1, we offer detailed case studies of the applications

of AI, which show examples of AI empowering the introduction of the AI-driven trading plat-

form DeepX at JPMorgan (which allows for faster and cheaper execution of trades) and “smart”

machinery at Caterpillar (which improves machine safety and flexibility).

At the same time, AI can also contribute to increased product scope by helping firms learn

about customer preferences more efficiently and, therefore, better tailor product and service of-

ferings to customers’ tastes and needs. An extensive literature in trade economics highlights the

importance of information regarding target market conditions—especially firms’ product appeal

to the target customers—for firms’ decisions to enter new export markets (e.g., Dickstein and

Morales 2018; Berman et al. 2019). Analogous hurdles apply to firms’ decisions to launch new

products or expand their product variety in domestic markets: there is uncertainty regarding

what customers want and how customer preferences might change. Using AI to analyze cus-

tomer data can potentially enable firms to overcome this hurdle, providing “the right product

on a hyper-individualized basis” (Hodson, 2016) and overcoming frictions in firms’ demand ac-

cumulation processes (Foster et al., 2016; Argente et al., 2021). For example, data on individual

behaviors, such as web browsing and location history and other digital footprints, can enable bet-

ter approximations of parameters entering individual demand functions than pure demographic

information, leading to more heterogeneity in products tailored to customers with different tastes

(Mihet and Philippon, 2019). This application of AI mirrors recent theories of big data as generat-

ing more precise forecasts regarding which product lines will yield the highest value (Bustamante

et al., 2020; Farboodi and Veldkamp, 2021): by better learning about consumer preferences for dif-

ferent products, AI can help direct firms’ efforts towards the development of the most promising

10See here, where Dave Johnson, Moderna’s VP of Informatics, Data Science, and AI, explains how Moderna was
able to develop a COVID vaccine so quickly: "We very purposely designed all this infrastructure that we think of as an
AI factory, in order to rapidly deliver algorithms from concept to production, to enable our scientists to leverage the
power of AI in their daily jobs. [...] That allows our scientists to design novel mRNA constructs, use AI algorithms to
optimize them, and then order them from our high throughput preclinical scale production line."

10

Electronic copy available at: https://ssrn.com/abstract=3651052

https://www.zdnet.com/article/moderna-leveraging-its-ai-factory-to-revolutionise-the-way-diseases-are-treated/


products.

Overall, AI can theoretically reduce the costs of product innovation and provide a mechanism

for the key drivers of firm growth highlighted by Hottman et al. (2016). AI can potentially help

firms increase both (i) their product appeal via improvements in product quality and the creation

of new products; and (ii) their product scope via improved inference of customer preferences and

the customization of products to those preferences. Empirically, if AI enables product innovation,

we should observe that AI investments are associated with increased product creation and variety.

AI as a Driver of Lower Operating Costs. Technological innovations also often aim at low-

ering costs of existing operations and improving productivity (e.g., Basu et al. 2001; Cardona et

al. 2013; Acemoglu et al. 2020). When it comes to AI, the technology can lower costs and in-

crease productivity in at least two ways. First, AI can potentially replace human labor for some

tasks (Agrawal et al., 2019), cutting per-unit labor costs. Specifically, the ability of AI to aid in the

decision-making process and in solving complex cognition problems has led to concerns that AI

can disrupt many high-skill and high-wage occupations, in contrast to previous waves of technol-

ogy adoption (Webb, 2020). Second, AI can increase operational efficiency through better forecast-

ing (Mihet and Philippon, 2019). For example, Bajari et al. (2019) examine the impact of big data in

the context of Amazon’s retail forecasting system. Theoretically, this aspect is explored by Tanaka

et al. (2019), who present a model of firm input choice under uncertainty and costly adjustment,

where forecast errors result in under- or over-investment.

The potential to use AI-based forecasting for streamlining firms’ existing operations can also

be seen in our data. The case studies in Online Appendix A.1 highlight how AI-enabled forecast-

ing improves firm operations across a variety of industries: for example, AI workers at JPMorgan

Chase model default of non-performing loans; Caterpillar leverages AI for inventory manage-

ment; and UnitedHealth uses AI to support efficient medical billing. Empirically, these potential

improvements can manifest through lower operating costs or higher firm-level productivity.

2 Data

We propose a new measure of firms’ investments in AI based on their intensity of AI-skilled hir-

ing. Relative to the prior literature, which has a dearth of firm-level data on AI investments, we

provide a uniquely comprehensive perspective on firm-level AI investments by simultaneously

measuring firms’ demand for AI workers through job postings and the stock of AI workers through

employment profiles. We detail each dataset and describe our sample construction.
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2.1 Job Postings from Burning Glass

The first dataset we use covers over 180 million job postings in the United States in 2007 and 2010–

2018. The dataset is provided by Burning Glass Technologies (BG in short) and draws from a rich

set of sources. BG examines more than 40,000 online job boards and company websites, aggregates

the job postings data, parses them into a systematic, machine-readable form, and creates labor

market analytic products. The company employs a sophisticated deduplication algorithm to avoid

double counting vacancies that post on multiple job boards. BG data contain detailed information

for each job posting, including job title, job location, occupation, and employer name. Importantly,

the job postings are tagged with thousands of specific skills standardized from the open text in

each job opening. The main advantages of the BG dataset are the breadth of its coverage and the

rich detail of the individual job postings. The dataset captures the near-universe of jobs posted

online and covers approximately 60–70% of all vacancies posted in the U.S., either online or offline.

Hershbein and Kahn (2018) provide a detailed description of the BG data and show that their

representativeness is stable over time at the occupation level.

We focus on jobs with non-missing employer names and at least one required skill. About 65%

of job postings have employer information and 93% of job postings require at least one skill.11 We

also drop job postings that are internships. We then match the employer firms in the remaining

job postings to Compustat firms. This step is necessary to aggregate job postings to the firm level

and merge with other firm-level variables. We perform a fuzzy matching between firm names

in BG and Compustat after stripping out common endings such as “Inc" and “L.P.". For obser-

vations that do not match exactly on firm name, we manually assess the top ten potential fuzzy

matches by looking at the firm name, industry, and location. Out of 112 million job postings with

non-missing employer names and skills, 42 million (38%) are matched to Compustat firms. This

slightly overrepresents employees of publicly listed firms, which constitute just over one fourth

of U.S. employment in the non-farm business sector (Davis et al., 2006).

2.2 Employment Profiles from Cognism

We complement job postings with employee resumes, which allow us to measure the actual stock

of AI workers at each firm and help address potential concerns around job postings: for example,

if a firm is not able to hire despite active job postings, if a firm posts numerous job openings for

one job, or if a firm on-boards AI talent through acquisitions rather than through direct hiring. We

leverage a novel dataset of approximately 535 million individual profiles provided by Cognism,

an aggregator of employment profiles for lead generation and client relationship management ser-

11Job postings with missing employer names are primarily those listed on recruiting websites that mask the employ-
ers’ identities.
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vices. Cognism obtains the resumes from a variety of sources, including publicly available online

profiles, collaborations with recruiting agencies, third party resume aggregators, human resources

databases of partner organizations, and direct user contributed data.12 These data are introduced

and described in detail in Fedyk and Hodson (2019). While the data slightly over-represent high-

skilled employees, they cover approximately 64% of the entire U.S. workforce as of 2018 and offer a

representative breakdown across industries. For each employment record listed by the individual,

we see the start and end dates, the job title, the company name, and the job description. Individ-

uals may also list their patents, awards, and publications. Cognism’s AI Research department

leverages techniques from machine learning and natural language processing, including named

entity disambiguation and graph-based modeling methods, to further enrich the resume data by

normalizing job titles and occupations, associating employees with functional divisions and teams

within each firm, and identifying institutions, degrees, and majors from education records.13

We match employer names in the Cognism data to the names of publicly traded firms using a

similar approach to matching employers in BG data to Compustat firms. Fedyk and Hodson (2019)

provide further details on the procedure as applied to the resume data. The matching of individual

resumes to firm entities is performed dynamically to account for acquisitions and divestitures.

Of the 657 million US-based person-firm-year employment records between 2007 and 2018, 120

million (18%) are matched to U.S. public firms. This is consistent with approximately 26% of

overall U.S. employment being accounted for by publicly listed firms (Davis et al., 2006). The

sample of 120 million person-firm-years matched to U.S. public firms is comprised of 19 million

distinct individual employees.

2.3 Additional Data Sources

We merge the Burning Glass job postings data and the Cognism resume data to several addi-

tional data sources. We collect commuting-zone-level wage and education data from the Census

American Community Surveys (ACS), industry-level wages and employment data from the Cen-

sus Quarterly Workforce Indicators (QWI), and academic publications from the Open Academic

Graph (described in detail in Appendix A). Firm-level operational variables (e.g., sales, employ-

ment, market value) come from Compustat.

12The processing of all profiles is compliant with the applicable GDPR and CCPA regulations.
13The data snapshot is from July of 2021. Following Tambe et al. (2020), we only use the years through 2018, because

the lag in workers updating their resumes could otherwise add significant noise to our measures.
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3 Methodology and Descriptive Evidence

3.1 AI Investments from Job Postings (Burning Glass)

We take advantage of the detailed information on required skills in the job postings data to pro-

pose a new data-driven methodology for identifying AI-related jobs. Other work classifies job

postings based on the presence of key terms from a pre-specified list,14 which is likely to suffer

from both Type I (incorrectly labeling tangentially-related employees as AI-related) and Type II

(missing real AI skills that did not make the initial dictionary) errors due to the arbitrariness of

the list of keywords. This is especially relevant in a quickly-evolving domain such as AI, where

new emerging skills can easily be missed. Our methodology circumvents these challenges by

learning the AI-relatedness of each of approximately 15,000 unique skills directly from the job

postings data, based on their empirical co-occurrence (within required lists of skills across job

postings) with unambiguous core AI skills. We then aggregate the skill-level measure to the job

level by generating a continuous measure of AI-relatedness for each job posting, from which we

can classify employees into AI-skilled workers and non-AI-skilled workers.

To measure the AI-relatedness of each skill, we calculate the skill’s co-occurrence with Ar-

tificial Intelligence (AI) and its three main sub-fields: machine learning (ML), natural language

processing (NLP), and computer vision (CV):

wAI
s =

# of jobs requiring skill s and (ML, NLP, CV or AI in required skills or in job title)
# of jobs requiring skill s

Intuitively, this measure captures how correlated each skill s is with the core AI skills. For example,

the skill “Tensorflow” has a value of 0.9, which means that 90% of job postings with Tensorflow

as a required skill also require one of the core AI skills or contain one of the core AI skills in the

job title. Hence, a “Tensorflow” requirement in a job posting is highly indicative of that job being

AI-related. On the other hand, the AI-relatedness measure of the skill “Microsoft Office” is only

0.003. We list the skills with the highest AI-relatedness measures in Online Appendix Table A1.

We define the job-level AI-relatedness measure ωAI
j for a given job posting j as the mean skill-

level measure wAI
s across all skills required by job posting j. We transform the continuous AI

measure into a binary indicator by defining each job posting j as AI-related if the measure ωAI
j is

above 0.1, a threshold that captures the full range of AI-related technical jobs while minimizing

false positives based on manual inspection of the data. The firm-level measure ShareAI
f ,t is then

defined as the fraction of job postings by firm f in year t that are AI-related (i.e. ωAI
j > 0.1).15

14For example, Hershbein and Kahn (2018) classify jobs as requiring cognitive abilities if any listed skills include at
least one of the following terms: “research,” “analy-,” “decision,” “solving,” “math,” “statistic,” or “thinking.” Similar
bag-of-words approaches with pre-specified search terms are used to identify AI-related employees (e.g., Alekseeva et
al., 2020; Acemoglu et al., 2021).

15Throughout our empirical analyses, we focus on jobs that are matched to Compustat firms. Online Appendix
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We use a discrete classification for ease of interpretability and consistency with the resume-based

measure in Section 3.2, but we show in Section 4.1 that the results are robust to: (i) alternative

cut-offs (e.g., 0.05 and 0.15), and (ii) using the continuous measure ωAI
j aggregated to the firm

level.

Online Appendix Table A2 provides examples of AI and non-AI job postings. For each job, the

continuous AI measure is the average AI-relatedness of all required skills. Our measure enables

us to capture a wide range of AI-related jobs, from data scientists to speech recognition scientists

to autonomous vehicle engineers. While many AI-related jobs are data scientists and similar data-

analysis-related jobs, our measure differentiates data-analysis jobs specifically related to AI (job

postings numbered 6-10) from data-analysis jobs that are not specific to AI and that focus on more

traditional statistical methods (job postings numbered 11-15). In addition, we further ensure that

our measure is not picking up general programming or statistics skills not specific to AI by show-

ing (in Section 4.1) the robustness of our results to manually refining our measure. In particular,

we screen out skills that represent general programming languages (e.g., Python) or statistics (e.g.,

linear regression) and only keep skills that relate specifically to AI, including AI methodology or

algorithms (e.g., supervised learning) and AI software (e.g., Tensorflow). This process, curated by

the AI-trained personnel at the AI for Good Foundation, categorizes the 700 skills that have an

AI-relatedness measure above 0.05 and are required in at least 50 job postings into “narrow” and

“broad” AI skills. This refinement mainly leaves out skills with relatively lower AI-relatedness

measures and empirically has little effect on the results.16

3.2 AI Investments from Resumes (Cognism)

In the Cognism resume data, we identify AI-related employees as those whose job positions di-

rectly involve AI. We begin with the set of 67 keywords in Online Appendix Table A1, which have

the highest skill-level AI-relatedness measures. We then search for these terms in every employ-

ment record of each individual in the resume data to see whether: (i) that job (role and description)

directly includes any of the identified AI terms; (ii) any patents obtained during the year of inter-

est or the two following years (to account for the time lag between the work and the patent grant)

include these AI terms; (iii) any publications during the year of interest or the following year in-

clude the AI terms; and (iv) any of the identified AI terms appear in awards received during the

year of interest or the following year. If any of these conditions are met, then that person at that

firm in that year is classified as an AI-related employee. For example, jobs with titles such as

Figure A1 plots the share of all job postings and the share of AI-related job postings that are matched to Compustat in
each year. Although publicly listed firms constitute 38% of all job postings, they account for approximately half of all
AI-related job postings. This suggests that, on average, publicly-listed firms hire more AI workers than private firms.

16For example, among the 50 skills with the highest AI-relatedness measures, 49 are classified as narrow AI skills (the
single exception is “statsmodels,” a Python package for general statistical analysis).
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“senior machine learning developer” or job descriptions such as “develop chatbots using Python

with Tensorflow and deep learning models" are identified as AI jobs.

After classifying each individual in each year, we use the number of AI-related employees and

the number of total employees at each firm in each year to compute the percentage of employees

of that firm in that year who are classified as AI-related. Given that our empirical analyses focus

on U.S.-listed firms, our firm-level measure focuses on the employees who are based in the U.S.

3.3 Summary Statistics and Validation

We examine both of our constructed measures of AI investments, confirm that they display intu-

itive properties, and discuss how our resume data help address potential limitations of measuring

AI investments through job postings. Validating our novel measure is challenging, given the lack

of existing firm-level measures of AI investments. However, we show that our measure displays

a number of intuitive properties, captures specifically AI investments, and does not suffer from

biases such as firms investing in AI by acquiring AI startups.

First, we document that both measures—based on job postings and resumes—display a natural

rise over time, increasing more than seven-fold from 2010 to 2018. Panel (a) of Figure 1 shows that

the fraction of AI-skilled job postings starts out at 0.1% in 2010, rises monotonically over time

(with the increase speeding up from 2014 to 2018), and peaks at 0.8% in 2018. Panel (b) shows

analogous patterns in the resume data. The fraction of all employees who are classified as AI-

related starts at 0.04% in 2007 and reaches 0.29% in 2018. There is substantial heterogeneity in

the growth in AI-skilled labor across individual firms, which provides the variation needed to

examine the relationship between AI investments and firm outcomes. For the entire sample of

public firms, while a median firm sees an increase of 0% (0%) in the resume-based (job-postings-

based) measure, this increase is 0.35% (1.33%) at the 90th percentile, 0.62% (2.99%) at the 95th, and

2.22% (8.11%) at the 99th percentile.

It is helpful to put into perspective the incidence of AI-skilled workers among U.S. employees.

While AI workers constitute a relatively small fraction of total employment, skyrocketing demand

for AI skills and correspondingly high salaries that they command—on the order of millions of

dollars for prominent AI-researchers (Gofman and Jin, 2020)—suggest that AI-skilled workers are

similar to other specialized, high-skilled, high-wage jobs. For example, in terms of the technolog-

ical and innovative nature of their work, AI-skilled workers could be compared to inventors. In-

ventors also tend to be highly paid and represent around 0.13–0.24% of the U.S. workforce, which

is similar in prevalence to AI workers.17 Overall, while AI workers form a small fraction of the

17These estimates come from the USPTO patent data (Babina et al., 2020), where 0.13% is the share of U.S. workers
who file patents in a given year, and 0.24% is the share of U.S. workers who file patents over a three-year period.
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overall workforce, it is helpful to contextualize their impact against that of executives (Bertrand

and Schoar, 2003) and patent inventors (Kline et al., 2019), both of whom are similarly small, high-

skilled groups of employees that can nonetheless disproportionately affect firm outcomes.

Second, we document that the increase in AI jobs displays an intuitive distribution across

industries. Panel (a) of Figure 2 plots the average share of AI-related jobs in the job postings data

for public firms in each of the 2-digit NAICS sectors, separately for the years 2007–2014 and 2015–

2018. Panel (b) repeats the same analysis for the share of AI-related employees in the resume data.

The figure highlights that the share of AI job postings (resumes) is highest in the “Information”

sector, growing from 0.57% (0.15%) in the early years of 2007–2014 to 1.68% (0.50%) in the later

period of 2015–2018. However, almost all sectors see a meaningful increase in both measures,

supporting the notion that AI is a general purpose technology (Goldfarb et al., 2019). The ability

of our measures to pick up AI investments in a broad cross-section of economic sectors highlights

a key advantage of our human-capital-based approach.

Third, intuitively, AI investments correlate positively with increased R&D expenditures. For

example, changes in the resume-based share of AI workers from 2010 to 2018 display a correlation

of 0.27 with changes in log R&D expenditures over the same time period, controlling for industry

fixed effects. The pattern of AI-investing firms increasing research and development (R&D) ex-

penditures supports the notion that AI investments involve a great deal of experimentation with

applying the new technology (Braguinsky et al., 2020).

Fourth, digging deeper into the skills and jobs with the highest AI-relatedness measures ac-

cording to our methodology, we observe that our measure is indeed capturing the essence of AI

investments by firms. The skills with the highest AI-relatedness measures, presented in Online

Appendix Table A1, are highly AI-specific skills, such as “Tensorflow” and “Random Forests,”

while general data-analytics-related skills have low AI-relatedness measures: for example, the

measure is equal to 0.04 for “Data Modeling” and 0.03 for “Quantitative Analysis.” Similarly, On-

line Appendix Table A3 shows that the job titles associated with the highest job-level measures

of AI-relatedness are all very relevant postings such as “Artificial Intelligence Engineer” (average

AI-relatedness measure of 0.497), “Senior Data Scientist - Machine Learning Engineer” (0.394),

and “AI Consultant” (0.369). Since we do not require information contained in job titles of job

postings to identify AI-related skills and jobs, these patterns provide additional validation that

our measure captures relevant AI positions.

As a further validation, it is worth noting the geographic locations of the identified AI jobs.

We aggregate firm-level AI investments of Compustat firms to the commuting zone level and link

the commuting-zone-level changes in the share of AI workers from 2010 to 2018 to 2010 commut-

ing zone characteristics from the Census American Community Survey. Online Appendix Figure
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A1 displays a heat map of the growth in the average job-level AI relatedness measure from 2010

to 2018 and shows that there is significant variation in AI investments across commuting zones.

Online Appendix Figure A1 (a) shows a strong positive relationship between the change in the

share of AI workers from 2010 to 2018 and the average commuting-zone-level log wage in 2010.

Online Appendix Figure A1 (b) demonstrates that the growth in AI workers is also concentrated in

commuting zones with a large fraction of college-educated workers. These patterns are intuitive,

given that AI employees tend to be high-skilled technologically-oriented workers, and contrast

with investments in robotics, which concentrate in areas with larger shares of manufacturing em-

ployment (Acemoglu et al., 2020).

Finally, we observe a high correlation between our two measures of AI investments (see Table

1), which helps address the concern that firms’ job postings may not be sufficient to capture firms’

actual hiring of AI talent. For example, if a firm is unable to fill AI-related vacancies, the job

postings measure will overstate that firm’s investments in AI. In practice, this does not appear to

be a main driver of the job-postings-based measure, because the two measures of AI investments—

using job postings and resumes—yield similar results throughout the remainder of the paper.

High correlations and consistency across our two measures also address the potential concern

that job postings do not reflect firms investing in AI by acquiring other firms (e.g., AI startups).

Human capital on-boarded through acquisitions is captured by the resume data, where employees

of acquisition targets are counted as employees of the acquirer subsequent to the acquisition. This

argument (that AI-skilled labor is not mainly acquired via acquisitions) is also supported by the

smooth increase (without jumps) of most firms’ AI workers (representative time series for a few

large firms are presented in Online Appendix A.1) and by industry reports estimating that 90% of

firms’ investments in AI are internal, with only 10% is spent on acquisitions (Bughin et al., 2017).

3.4 Firm-level Determinants of AI Investments

We consider the determinants of investments in AI technologies and document that larger firms

and firms with higher markups, cash reserves, and R&D tend to invest in AI more aggressively.

Our focus is on understanding the use of AI technologies by a wide range of firms, rather

than the invention of new AI tools. For that reason, we exclude firms in the tech sector (2-digit

NAICS 51 or 54) from our main empirical analyses in this and the following sections.18 Our main

regression sample is comprised as follows. In 2010, there are 3735 U.S.-listed public firms that

have non-missing industry codes, positive sales and employment, and are not in the tech sector.

18In later analyses, we confirm that the main effects of AI spurring firm-level growth are also present in these indus-
tries. A complementary analysis of the impact of AI on specifically AI-inventing firms is provided by Alderucci et al.
(2020).

18

Electronic copy available at: https://ssrn.com/abstract=3651052



Among these firms, 2668 are matched to Cognism,19 and 1933 are matched to Burning Glass. For

the Cognism sample, we further restrict to firms with at least 20 U.S. jobs in both 2010 and 2018 to

ensure good coverage of the firm’s workforce, which leaves us with 1993 firms. For the Burning

Glass sample, we further restrict to firms that are also matched to Cognism, so that we can cross-

validate with the actual hiring, leaving us with 1192 firms.

In Table 2, we examine which ex ante firm characteristics predict future growth in firm-level

AI investments. For each measure of AI investments, we estimate the following specification:

∆ShareAIWorkersi,[2010,2018] = βFirmVariablei,2010 + IndustryFE + εi, (1)

where ∆ShareAIWorkersi,[2010,2018] denotes the change in the share of firm i ’s AI-related employees

(job postings) from 2010 to 2018 in Panel 1 (Panel 2). All regressions include 2-digit NAICS indus-

try fixed effects. Here and throughout all subsequent analyses, the ∆ShareAIWorkersi,[2010,2018]

variables are standardized to mean zero and standard deviation one to aid in economic interpre-

tation. FirmVariablei,2010 represents one of the ex ante firm characteristics of interest measured

as of 2010: log firm sales in column 1, the ratio of cash to total assets (Cash/Assets) in column

2, the ratio of R&D expenditures to sales (R&D/Sales) in column 3, revenue total factor produc-

tivity (TFP)20 in column 4, log markup measured as the log of the ratio of sales to cost of goods

sold following De Loecker et al. (2020) in column 5, Tobin’s Q defined as market value of assets

divided by book value of assets in column 6, market leverage measured as total debt divided by

market value in column 7, return on assets (ROA) measured as the ratio of net income plus interest

expense to assets in column 8, and firm age in column 9. Column 10 includes all variables in a

multivariate specification. We winsorize all continuous variables at 1% and 99% to limit the in-

fluence of outliers, although we confirm in untabulated analyses that, empirically, our results are

little changed by the winsorization. To account for differences in precision in the measurement

of AI investments across firms with different numbers of available observations, the estimating

equation is weighted by each firm’s number of resumes (job postings) in 2010.21

The results reported in Table 2 highlight that ex ante larger firms experience higher growth

in AI investments. For example, using the Cognism-based measure in Panel 1, a one-standard-

deviation increase in log sales in 2010 (which equals 2.1) corresponds to the share of AI workers

19Firms that are not matched to Cognism tend to be either ADRs that do not have many U.S. employees or smaller
firms with few employees.

20We use standard methodology to calculate revenue TFP as the residual from regressing log real sales on log em-
ployment and log capital, controlling for firm fixed effects and year fixed effects: log yit = µi + µt + αl

s log(lit) +
αk

s log(kit−1) + εit. The regression is estimated using OLS separately for each industry. The capital stock is constructed
using the perpetual inventory method. The TFP measure is specific to Cobb-Douglas production functions, while sales
per worker measure labor productivity for more general production functions.

21Since the numbers of worker resumes and job postings are correlated with firm size, this weighting scheme also
roughly weights firms in accordance to their contribution to the economy.
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increasing by 23% of the standard deviation from 2010 to 2018, significant at the 1% level. In

addition, firms with higher starting Cash/Assets, R&D/Sales, and markups also see greater in-

vestments in AI, consistent with contemporaneous work of Alekseeva et al. (2020). By contrast,

revenue total factor productivity, firm valuation (Tobin’s Q), market leverage, return on assets, and

firm age do not robustly predict future AI investments. In all further regressions, we control for the

ex-ante firm characteristics that predict firm AI adoption (size, cash, R&D intensity, and markups).

Importantly, the patterns for firm-level demand for AI talent measured with Burning Glass data

are consistent with the results using Cognism data, reinforcing the high correlations documented

in Table 1. This consistency suggests that, in the absence of matched employer-employee data, our

methodology for identifying AI investments from the job postings data can be a good proxy for

firms’ actual AI hiring.

4 AI Investments and Firm Growth

We next document that firms investing in AI technologies grow faster in sales, employment, and

market value, and that this effect cannot be explained by alternative explanations, including re-

verse causality (e.g., firms on faster growth trajectories investing more in AI) and omitted variables

(e.g., concurrent investments in other technologies or demand shocks driving both firm growth

and AI investments).

4.1 Long-differences Results

We begin the analysis by examining whether firms that invest in AI see faster growth from 2010

to 2018. As is standard in settings with slow-moving processes, such as technological progress

(e.g., Acemoglu and Restrepo, 2020), our primary specification is a long-differences regression of

changes in firm outcomes from 2010 to 2018 on changes in AI investments proxied by the share

of AI workers. This strategy is especially well-suited for our setting because AI investments are

gradual over time (with 70% of firms onboarding AI workers over a span of multiple years), with

effects that may not be immediate. By taking first differences in independent and dependent

variables, the long-differences specification helps to ensure that time-invariant firm characteristics

do not drive the results. In Table 3, we report the estimates from the following regression:

∆FirmVariablei,[2010,2018] = β∆ShareAIWorkersi,[2010,2018] + Controls
′
i,2010γ + IndustryFE + εi, (2)

where the main independent variable, ∆ShareAIWorkersi,[2010,2018], captures the change in the

share of AI workers in firm i from 2010 to 2018, standardized to mean zero and standard devi-

ation of one. As in Section 3.4, this analysis focuses on firms in non-tech sectors. IndustryFE are
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2-digit NAICS fixed effects.22 Panel 1 reports the coefficients for the resume-based measure of AI

investments, while Panel 2 considers the job-postings-based measure. In columns 1, 3, and 5 we

include only industry fixed effects to examine the unconditional relationship between changes in

AI investments and firm growth. In columns 2, 4, and 6, we include a rich set of controls that

are all measured at the start of the sample period in 2010: (i) the initial firm-level characteristics

that predict changes in AI investments in Section 3.4 (log sales, cash/assets, R&D/Sales, and log

markup) and the log of the firm’s total number of jobs (or job postings)23; (ii) characteristics of

the commuting zones (CZ) where the firms are located (the share of workers in IT-related occupa-

tions, the share of college-educated workers, log average wage, the share of foreign-born workers,

the share of routine workers, the share of workers in finance and manufacturing industries, and

the share of female workers); and (iii) the log industry-average wage.24 Out of the 1993 (1192)

non-tech firms in the Cognism (Burning Glass) sample in Table 2, 1472 (939) firms have positive

sales and employment in 2018, which are necessary to calculate the dependent variables. We

further restrict the sample to firms with non-missing control variables throughout, to keep the

sample composition stable. This results in a sample of 1052 firms in Cognism and 935 firms in

Burning Glass. The results of the regressions without controls are similar when estimated on the

entire available sample. Summary statistics on key variables for the main regression sample are

provided in Online Appendix Table A4.

In columns 1 and 2 of Table 3, the dependent variable is the firm-level change in log sales from

2010 to 2018. Both measures of changes in AI investments are associated with a significant and

economically meaningful increase in sales growth: a one-standard-deviation increase in the share

of AI workers over an eight-year period corresponds to an additional 15% to 20% growth in sales,

depending on the specification.25 In columns 3 and 4, we find a positive effect on employment

of a similar magnitude to the effect on sales. This suggests that AI is not yet displacing firms’

workforces, at least on net, although we do not rule out the reallocation of labor across different

job functions or tasks. In untabulated analyses, we confirm that the results are similar when using

changes in employee counts in the Cognism resume data rather than Compustat employment.

Columns 5 and 6 show that firms investing in AI also see increases in their stock market valua-

22In Online Appendix Table A7, we show that our results are robust to controlling for industry at 3-digit NAICS, 4-
digit NAICS, and 5-digit NAICS level. The coefficient on ∆ShareAIWorkersi,[2010,2018] remains stable, and the standard
error increases as more granular industry controls absorb more of the variation.

23We control for the log number of jobs to address the concern that the share of AI jobs may be more volatile in firms
with fewer total jobs. This control ensures that the variation in the share of AI jobs is between firms with similar total
numbers of jobs but different numbers of AI jobs.

24When firms span multiple commuting zones, we calculate commuting-zone-level variables as the weighted aver-
age, using numbers of BG job postings in each commuting zone as weights, which restricts the sample in the Cognism
regression analysis to firms that are also matched to the Burning Glass data. The results are similar in magnitude and
economic significance if we only include firm-level controls enumerated in list (i).

25A one-standard-deviation increase in the share of AI workers is roughly at the 90th percentile of the distribution of
changes in the share of AI workers (see Online Appendix Table A4).
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tions: a one-standard-deviation increase in the share of AI workers is associated with a 15%–23%

increase in the firm’s market value.26 It is worth noting that the inclusion of firm-level, location-

level, and industry-level controls in even columns (all measured at the start of the sample period

in 2010) generally has little effect on the estimated coefficients. This is consistent with our long-

differences specification already controlling for time-invariant firm characteristics.

The magnitude of the effects in Table 3 is economically meaningful (on the order of a 2% in-

crease in annual sales growth per one-standard-deviation increase in the share of AI workers).

Our results provide initial evidence that AI-skilled labor can have a strong positive relationship

with firm growth. In this context, our results are consistent with prior evidence that certain key,

high-skilled employees—including chief executives, inventors, and entrepreneurs—can have a

disproportionate effect on firm outcomes.

The positive relationship between increases in AI investments and firm growth is ubiquitous

across different sectors of the economy, reinforcing the notion that AI is a general purpose technol-

ogy. Online Appendix Table A5 displays the results from regressing changes in log sales and log

employment on the change in the share of AI workers, separately for the largest 2-digit NAICS

sectors: (i) Manufacturing, (ii) Wholesale and Retail Trade, (iii) Finance, and (iv) the remaining

non-tech sectors. While we exclude tech sectors from our main analysis, we find that AI also has

an positive relationship with growth for firms in the two tech sectors—Information and Profes-

sional and Business Services (see Online Appendix Table A6). Overall, we observe that invest-

ments in AI are associated with economically significant increases in firms’ operations, and these

effects are meaningful across key economic sectors.

However, the benefits from AI investments are not evenly distributed across the firm size

distribution. Table 4 shows the relationship between changes in AI investments and firm growth,

across terciles of firms by employment in 2010 (within the firm’s 2-digit NAICS sector), controlling

for initial size and sector-by-size-tercile fixed effects. The effect of AI investments on employment,

sales, and market value is monotonically increasing in the firm’s initial size. The stronger positive

relationship between changes in AI investments and growth among the ex ante larger firms is

consistent with big data and AI technologies having scale effects that favor large firms, which

accumulate large amounts of data as a by-product of their economic activity (Farboodi et al., 2019).

Akcigit and Kerr (2018) highlight that larger firms face constraints on their ability to scale due

to higher costs of new product innovation. The results in Table 4 suggest that AI may provide a

channel through which large firms can combat barriers to innovation and scale by leveraging their

data assets. For example, biotech firms that have accumulated large troves of proprietary samples

of molecular compounds are able to leverage AI tools to obtain an advantage over competitors

26Market value is defined as total assets (at), minus the book value of common equity (ceq), plus the market value of
common equity (prcc_c times csho).
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(see here for the PitchBook AI & ML Emerging Tech Report 2021).

4.2 Robustness

Our granular data allow us to rule out a number of alternative explanations for our results. We

first discuss measurement strengths of our data and show robustness to using alternative con-

structions of the AI measure. We then address several identification concerns and end this section

by addressing concerns related to sample selection bias.

Measurement strengths and potential concerns. First, it is worth noting that the resume data

address two important potential measurement concerns regarding job postings data: (i) that the

job-postings-based measure captures only firms’ demand for AI talent and not their actual abil-

ity to hire; and (ii) that firms acquire AI expertise through acquisitions, which would not be re-

flected in job postings. Cognism resume data reflect actual employees, including those onboarded

through acquisitions, and the results are consistent across these richer data and the BG job post-

ings, validating the use of job postings for measuring firms’ AI-skilled human capital.

Second, while our measure is centered on internal AI investments, our rich resume data allow

us to also consider whether firms’ use of external AI solutions might affect the interpretation of

our results. Even external AI software requires internal data management and implementation

guidance by AI-skilled workers to be effective (Fedyk, 2016), and industry reports underscore that

AI-skilled labor is the most critical input to successful deployment of AI programs. Nevertheless,

we leverage the rich detail of the Cognism resume data to confirm that our approach of focusing

on AI workers to identify AI investments is indeed a suitable one. We undertake a deep dive into

case studies of individual firms (see Online Appendix A.1 for examples) and observe that (i) our

measure captures internal AI investments well, and (ii) the use of external AI software solutions

(e.g., IBM Watson, IPSoft Amelia) tends to be complementary to internal AI hiring. In addition, we

process individual job descriptions and job titles in our resume data for any mention of external

AI software (including IBM Watson Studio, Symphony, AyasdiAI, Salesforce Einstein, and about

a hundred other key AI-powered solutions) to construct a proxy for firms’ reliance on external

AI solutions.27 In Online Appendix Table A8, we confirm that our results are robust to directly

including this proxy in our overall measure of AI investments.

Third, we confirm that our results are not sensitive to different methods of constructing firm-

level AI measures. In Online Appendix Table A9, we show that the results are robust to using

firm-level average continuous AI-relatedness measures of job postings based on all skills (Panel

27The Cognism resume data are especially well-suited to capture the use of external technological solutions, given
Cognism’s emphasis on developing “technographic data” (defined by Cognism as “the technologies that the employee
or company is using”). Cognism advertises these data for two purposes: (i) enhancing technology-providers’ targeted
marketing of their products, and (ii) improving individual firms’ understanding of which technologies are used by
their competitors.
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1) or refined narrow AI skills (Panel 2), which are defined in Section 3.1. The narrow AI mea-

sure excludes non-AI-specific skills such as general programming (“Python”) and statistics (e.g.,

“Linear Regressions”); however, Panel 2 shows that this refinement does not affect our results. In

Online Appendix Table A10, we also find similar results when using higher or lower cutoffs for

classifying AI job postings based on their continuous measure of AI-relatedness.

Identification concerns. We conduct several tests to show that our results are not driven by

reverse causality or omitted variables concerns, such as differential growth trends or investments

in other technologies. First, we address the concern that AI-investing firms might already be

on higher growth trajectories, leading to a potential positive bias in our estimates. In Online

Appendix Table A11, we control for past industry-level and firm-level growth in the decade before

our sample period (from 2000 to 2008) and find similar results. In Online Appendix Table A12, we

further confirm that the results are robust to the addition of controls for (i) Tobin’s Q as of 2010,

which proxies for the firm’s future growth opportunities, and (ii) state fixed effects, which control

for growth opportunities and other potential omitted variables at the state level. Furthermore,

Table Online Appendix A13 estimates a predictive regression of firm growth during the later part

of our sample (2015–2020) on growth in AI investments during the earlier part of the sample (2010-

2015).28 The estimates are qualitatively and quantitatively similar to those in Online Appendix

Table 3, with milder magnitudes corresponding to the shorter estimation period (growth from

2015 to 2020 rather than 2010–2018), pointing against reverse causality driving our results.

Second, we leverage our detailed data to address omitted variable concerns related to firms’

potential use of non-AI technologies driving our results—which is an important point, given re-

cent evidence that investments in information technology (IT) are also correlated with firm growth

(Tambe et al., 2020). Our rich data allow us to develop measures of investments in non-AI tech-

nologies that parallel the measure of AI investments: for each firm, we measure the percentage

of job postings in each year requiring IT-, robotics- or data-related skills that are not specific to

AI. In Online Appendix Table A14, we test whether our measure of AI investments captures in-

vestments in other technologies by estimating the relationship between changes in AI investments

and firm-level growth, controlling for growth in: (i) investments in (non-AI) IT, (ii) investments

in robots, (iii) investments in non-AI data skills (e.g., “Data Cleaning”), and (iv) investments in

non-AI-related data analytics (e.g., “SAS”). The estimated relationship between growth in AI in-

vestments and firm growth remains similar with the addition of these controls, confirming that the

documented effects on firm growth are specifically driven by AI rather than by other technologies.

Sample selection bias. A remaining concern is that the long-differences specification requires

AI-investing firms to be present at the beginning (2010) and the end of the sample (2018), and that

28In these regressions, we can use firm growth estimated through 2020, because this specification does not require
firm AI data (which end in 2018) to go beyond 2015.
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survivorship bias might affect our estimate of the effect of AI. While, by construction, we do not

observe growth of firms that are not present in both 2010 and 2018, we perform the industry-level

analysis in Section 6 for both: (i) only firms in our main sample, and (ii) including entering and

exiting firms. If the composition of firms changes in an important way, then the estimates of the

relationship between growth in AI investments and industry-level growth would be significantly

different across these two samples—which is not the case empirically. Moreover, in the next sec-

tion we use panel structure of the data—that does not condition on firms being present over the

entire sample period—to show in a dynamic setting that, similar to long-differences specification,

firms grow more following AI investments.

4.3 Dynamic Effects

We augment our long-differences specification by estimating firm growth dynamically following

AI investments. This analysis not only offers additional evidence against reverse causality con-

cerns and AI-investing firms being on differential growth trajectories prior to AI investments, but

also elucidates the lag between AI investments and their realized effects.

We use firm-level panel data to estimate firm growth dynamically around the years of AI in-

vestments in a distributed lead-lag model, which allows for continuous variation in the treat-

ment variable (Aghion et al., 2020; Stock and Watson, 2015). This specification is especially well-

suited to our setting, because firms tend to invest in AI on a continuous basis, rather than make

lumpy investments in a single year, which precludes us from examining dynamic effects in a

standard event-study framework with discontinuous treatment (e.g., before and after a lumpy

investment).29 The standard distributed lead-lag model is specified as:

Yit =
5

∑
k=−2

δk∆ShareAIWorkersi,t−k + µi + λnt + θst + εit (3)

where ∆ShareAIWorkersi,t−k is the annual change in the share of AI workers from year t− k− 1

to year t− k, normalized to mean zero and standard deviation of one, and Yit is either log sales or

log employment in year t. We include firm fixed effects µi to absorb firm-specific time-invariant

factors, and industry-year fixed effects λnt and state-year fixed effects θst to control for industry-

specific and state-specific trends. Each lead-lag coefficient δk captures the cumulative response

of the outcome variable in year t to AI investments in year t − k, holding fixed the path of AI

investments in all other years. As such, specification (3) incorporates both immediate and delayed

responses of firm size to firms’ AI investments.30 The estimated coefficients for the leads can be

29The percentage of AI-investing firms that only invest in a single year is 29.5%, compared to 70.6% for robotics
(Humlum, 2019).

30For each firm-year observation of sales or employment between 2010 and 2016, we consider five lags and two leads,
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used as a pre-trend test: if firms investing in AI are on similar growth trends as other firms prior

to AI investments, δk with k < 0 should be statistically indistinguishable from zero.31

Figure 3 reports the coefficients from the lead-lag regressions. The top panel shows that sales

increase following AI investments, but not immediately—it takes two to three years for firms to re-

alize the benefits from AI investments. The cumulative effect of a one-standard-deviation increase

in annual AI investments on log annual sales is 1.5%–2% and remains steady five years out. This

is consistent with the long-differences estimates in Section 4.1, where a one-standard-deviation

increase in AI investments is associated with a 15%–20% increase in sales over eight years. The

bottom panel shows that AI investments have a similar positive effect on firms’ employment. Im-

portantly, there is no evidence of pre-trends in either outcome variable: conditional on the controls

we include, firms that invest more in AI in any given year show comparable sales and employ-

ment paths in prior years and start diverging only afterwards. This provides additional evidence

that our results are not capturing the reverse effect of firm growth on AI investments or the ef-

fect of omitted variables placing AI-investing firms on differential growth trajectories, helping to

bolster a causal interpretation of our main results.

4.4 Instrumenting AI Investments

To further address endogeneity and measurement concerns, we instrument firm-level changes in

AI investments using variation in firms’ ex-ante exposure to the supply of AI talent from univer-

sities that are historically strong in AI research. The core idea is that the scarcity of AI-trained

labor is one of the most important constraints to firms’ AI adoption (e.g., CorrelationOne, 2019),

and universities that are historically strong in AI research have been able to train more AI-skilled

graduates in recent years, enabling firms that typically hire from those universities to more readily

attract AI talent. Since commercial interest in AI became widespread only around 2012, we argue

(and offer empirical support) that firms’ connections to AI-strong universities in 2010 were not

driven by the need to hire AI-skilled workers, especially for the sample of non-tech firms that are

the focus of this paper. To construct the instrument, we compile two datasets on: (i) the ex-ante

strength of AI research in each university, and (ii) firm-university hiring networks. To the best of

our knowledge, there is no comprehensive historical data on either of these two aspects. We now

so that we estimate the cumulative impact of AI investments on firm growth from two years before the investments to
five years after the investments. Since the data on AI investments end in 2018, we include only two leads to keep all
firm-year observations up to 2016. We obtain similar results when including only one lead or no leads at all. Further-
more, the analysis of dynamic effects focuses on the Cognism resume data, because these data offer full coverage of AI
investments going back to 2005. By contrast, Burning Glass job postings data have a more limited time series, where
including 2 leads and 5 lags would restrict the sample to only firm-year observations in 2015 and 2016.

31It is worth noting that, given that the independent variables in this distributed lead-lag model are changes in
continuous AI investments instead of period dummies as would be the case in a standard event-study framework, we
cannot normalize the estimates to an exact zero for any given period.
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briefly discuss the construction of both datasets, while Appendix A provides a detailed discussion

of these issues.

To identify universities strong in AI research before 2010, we use data from the Open Aca-

demic Graph (OAGv2), which provides the most comprehensive openly available repository of

scholarly work since 1870 (Sinha et al., 2015; Tang et al., 2008). We match 689 research institu-

tions in the National Science Foundation’s Higher Education Research and Development Survey

(HERDS) to researchers in the OAGv2 and work with the field experts at the AI for Good Foun-

dation to identify AI-related publications. We classify each AI researcher based on the share of AI

publications in that researcher’s overall portfolio, and we classify universities as AI-strong if their

number of AI researchers is at the top of the distribution over 2005–2009.

A key concern with our instrument is that AI-strong universities are also likely to be strong

in the broader field of computer science (CS), producing more CS-skilled graduates, which might

affect firm outcomes through channels other than AI investments. To address this concern, we also

measure the number of CS researchers in each university to include as a control. In addition, we

verify that AI-strong universities are not strongly correlated with the overall university rankings.

We construct the firm-university hiring networks by leveraging our resume data to observe

the universities granting the degrees of each firm’s employees.32 For the firm-university hiring

networks to provide the necessary variation for our instrumental variable strategy, different firms

need to hire from different sets of universities, and these networks need to be persistent over

time. Our data show evidence of both: each firm tends to concentrate its hiring in a small number

of universities, and ex-ante networks (i.e., which universities each firm hired from before 2010)

strongly predict the universities from which firms hire after 2010 (see Appendix Table 9).

We define our instrument for each firm i as: IVi = ∑u s2010
iu AIstrongu, where s2010

iu is the share

of STEM workers in firm i in 2010 who graduated from university u, and AIstrongu equals one if

university u is identified as an AI-strong university based on pre-2010 publications.33 To control

for the effects of general computer science (and not specifically AI), we construct an analogous

measure of firms’ exposure to ex-ante CS-strong universities: ∑u s2010
iu CSstrongu.

We examine an important identification concern regarding this instrument: if firms antici-

pated the surge in demand for AI, they could have started building their connections to AI-strong

universities before 2010, making firm-university hiring networks in 2010 endogenous to firms’ de-

32Aggregated to the university-year level, our resume data cover, on average, 59% of all degrees conferred by each
university according to IPEDS data, and the number of fresh graduates in the resume data is highly correlated with the
total number of degrees conferred (correlation=0.73) in the IPEDS data. Confirming the relevance of our measure of
AI-strong universities, Appendix Figure 5 shows that the increase in AI-trained graduates during the 2010s was much
more pronounced in ex-ante AI-strong universities than in non-AI-strong universities.

33We use firm-university hiring networks based on STEM workers to account for potential segmentation in firms’
hiring networks, where business employees may be hired from different universities than technically skilled employees.
However, empirically, firm-university hiring networks constructed from all workers yield similar results.
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mand for AI-trained students. This is unlikely, given the lack of both commercial interest in AI by

firms and AI-skilled graduates by universities prior to 2010 (see Appendix Figure 5). Moreover,

we confirm empirically that firms connected to AI-strong universities in 2010 did not increase their

share of hired fresh graduates from those universities from 2005 to 2010 (see Appendix Table 10).

Appendix Table 11 shows the first-stage results with industry fixed effects and the CS control

included throughout. We sequentially add (i) baseline controls (firm-, industry-, and commuting-

zone-level controls), (ii) pre-period firm sales and employment growth between 2000 and 2008 to

address unobservable firm characteristics that might simultaneously drive firms’ growth trajec-

tories and their hiring of AI workers, and (iii) state fixed effects to control for local labor market

characteristics that might drive both firms’ AI hiring and and their growth. The instrument has a

strong first stage with F-statistics well above the conventional level of 10 for all specifications us-

ing the Cognism resume data. The F-statistics are also above 10 for two out of four specifications

using the Burning Glass job postings data. Intuitively, the first stage is stronger in the Cognism

data because the data generating process for the instrument is based on Cognism resumes and

captures the supply of AI-skilled labor to firms. As a result, we focus on Cognism resume data in

the second stage in Appendix Table 5. The results show a robust and significant effect of AI in-

vestments on sales (columns 1–4), employment (columns 5–8), and market value (columns 9–12).

Online Appendix Table A15 shows similar results for the job postings data.

5 Mechanisms

We examine the drivers of AI-fueled firm growth by considering the two non-mutually-exclusive

mechanisms detailed in Section 1. We document that AI-investing firms are able to significantly

increase their product innovation and find no evidence of reductions in operating costs.

5.1 AI as a Driver of Product Innovation

As we outline in Section 1, AI can contribute to firm growth via product innovation by: (i) fa-

cilitating the creation of new and improved products, and (ii) increasing product scope through

improved tailoring of products to customer tastes. To explore this empirically, we need firm-level

data on products and services, which are challenging to obtain, especially across different sectors.

We overcome this challenge by using three proxies for firms’ product innovation.

First, we examine whether AI-investing firms experience increases in trademarks, which are

registered whenever new products or services are ready for commercialization and therefore of-

fer a good proxy for the creation of new products and services (Hsu et al., 2021). Columns 1

and 2 in Table 6 present the results from long-differences regressions of changes in firms’ USPTO
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trademarks against growth in their AI investments, showing that AI-investing firms significantly

increase their trademark portfolios.34 Second, columns 3 and 4 reveal a similar relationship be-

tween AI investments and the number of product patents, which are patents specifically focusing

on product innovations.35 While trademarks are registered with the creation of new products,

product patents reflect both new product creation and innovations in the quality of existing prod-

uct lines. We find that a one-standard-deviation increase in the share of AI workers based on

resumes (job postings) over eight years corresponds to a 21% (20%) increase in the number of

product patents.

Finally, we build a measure of changes in firms’ product mix based on the self-fluidity measure

in Hoberg et al. (2014). Using firm 10K filings, Hoberg et al. (2014) take the cosine similarity

between word vectors describing a firm’s product offerings in two adjacent years to measure the

extent to which the firm’s product offerings changed in a given year. These changes reflect both

the creation of new products and the tailoring of existing products to evolving consumer tastes.36

In columns 5 and 6, we find that growth in AI investments is associated with increased changes in

firms’ product mix from 2010 to 2018. For robustness, Online Appendix Table A16 shows that the

instrumented firms’ AI investments also have a positive effect on the number of trademarks, the

number of product patents, and the change in product offerings (although not always significant).

Overall, the results point towards firms utilizing AI to expand product variety and customization,

consistent with surveys of corporate executives, who highlight product improvement and creation

as top uses of AI (see here).

Our findings provide a first piece of evidence for how AI technologies can stimulate growth for

a broad set of firms: the unique reliance of AI on big data reduces the uncertainty of exploration

(Cockburn et al., 2018), facilitates the discovery process for new or better products, and enables

the tailoring of products to customer tastes. Moreover, AI algorithms themselves can be used

as an ingredient in product development and improvement (e.g., AI-powered trading platforms

or self-driving cars). These results are consistent with evidence from technological innovation

during industrialization, where new technologies have been shown to help firms expand through

34The dependent variable is the change in log(1 + number of trademarks) from 2010 to 2018, so that the regression
takes into account firms with zero trademarks in either 2010 or 2018. The results are also robust to using the inverse
hyperbolic sine transformation (i.e., ln(x +

√
(1 + x2))). The regression sample is smaller than our baseline sample,

because not all public firms file trademarks (we include firms with at least one trademark in 2009-2018).
35See Ganglmair et al. (2021) for the methodology to distinguish between product patents and process patents. The

regression sample is smaller than our baseline sample, because not all public firms file patents, and we only include
firms with at least one patent during 2005–2018. The dependent variable is the change in log(1 + number of product
patents) from 2010 to 2018.

36We use the same word vectors as Hoberg et al. (2014) and construct our measure as follows: for each year, we
calculate the angle between the two word vectors indicating firms’ product offerings in that year and the previous year.
For example, the measure equals 0 if the product offerings remain exactly the same and π/2 if the product offerings
change completely. We sum up of angle of each year over eight years from 2010 to 2018 to measure the total change in
firms’ product portfolios from 2010 to 2018.
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product innovation (Braguinsky et al., 2020).

5.2 AI as a Driver of Lower Operating Costs

We next test whether the increase in firm growth from AI investments could reflects AI technolo-

gies lowering firms’ operating costs and increasing firm-level productivity. First, in columns 1 to

4 of Table 7 we look at costs directly by considering how growth in firms’ AI investments relate

to changes in costs of goods sold (COGS) and operating expenses. AI investments are associated

with increases in costs that are similar in magnitude to the growth in firm sales, suggesting that

AI is not associated with lower operating costs.

Second, columns 5 to 8 of Table 7 consider two measures of productivity: sales per worker

(i.e., labor productivity) and revenue total factor productivity (TFP). The relationship between

AI investments and both productivity measures is not significant. The lack of growth in labor

productivity is consistent with the results in Section 4 that AI investments predict similar increases

in sales and employment, challenging the view that the primary effect of AI is to replace jobs.37

Furthermore, in columns 9 and 10, we bring another proxy for efficiency gains that complements

revenue-based measures of productivity: process patents, which reflect process innovations and

potential improvements in efficiency. We find a zero relationship between AI investments and

process innovation, in contrast to the positive increase in product patents documented in Table 6.

Overall, we do not find evidence that investments in AI help firms cut their operating expenses

and achieve productivity improvements. This speaks to the broader debate on the timing of pro-

ductivity gains from general purpose technologies. Our evidence is consistent with long-standing

arguments in the literature that the adoption of general purpose technologies leads to delayed

productivity benefits (David, 1990; Brynjolfsson et al., 2020). In Online Appendix Table A17, we

examine the effect of changes in AI investments during the first half of the period (2010–2014) on

productivity growth through 2018 and do not find any significant positive effect. Hence, even

with a lag of a few years, AI investments are not yet associated with productivity improvements.

6 AI Investments and Industry-level Outcomes

To shed light on the potential aggregate effects of AI, we examine the relationship between

industry-level variation in AI investments and: (i) industry growth; (ii) industry concentration.

37It is worth noting that both sales per worker and revenue TFP are revenue-based measures of productivity and may
not fully reflect actual physical productivity. For example, sales per work and revenue TPF may provide downward-
biased estimates of actual productivity changes if quantities produced increase to such an extent that lower prices are
charged (Foster et al., 2008; Garcia-Marin and Voigtländern, 2019; Caliendo et al., 2020). To consider this possibility, in
untabulated analyses we find that there are no changes in AI-investing firms’ markups.
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While AI-investing firms grow faster, the gains in industry sales and employment may be zero-

sum if the use of AI technologies creates a business-stealing effect on competitors (Bloom et al.,

2013). For example, negative spillovers have been shown to dominate positive firm-level effects

in the case of robotics, leading to an overall negative effect on aggregate employment (Acemoglu

et al., 2020). Hence, signing the aggregate effect of AI investments is an empirical question. We

estimate the following long-differences regression at the industry level:

∆ ln yj,[2010,2018] = γ∆ShareAIWorkersj,[2010,2018] + IndustrySectorFE + εj (4)

where ∆ ln yj,[2010,2018] is the change in total sales or employment for all Compustat firms (including

those that entered the sample after 2010 or exited before 2018) in 5-digit NAICS industry j, and

∆ShareAIWorkersj,[2010,2018] is the change in the share of AI workers among Compustat firms in

industry j from 2010 to 2018. Analogously to the firm-level tests, the regressions are weighted by

the total number of resumes (or job postings) in each industry in 2010.

Columns 1–4 of Table 8 show that AI investments are associated with a robust increase in em-

ployment and sales at the industry level. In both panels (Panel 1: resume-based AI measure, and

Panel 2: job-postings-based AI measure), odd columns estimate the unconditional relationship

(with 2-digit NAICS fixed effects only), and even columns add controls for log employment, log

sales, and log average wages at the industry level in 2010. For example, with the full set of con-

trols, a one-standard-deviation increase in the industry-level share of AI workers in the resume

data is associated with a 19.9% increase in sales and a 23.4% increase in employment. Importantly,

in Online Appendix Table A18, we show that the results remain similar when we restrict the sam-

ple to firms that are in the Compustat sample both in 2010 and 2018 (i.e., excluding entrants and

exits). This confirms that sample selection issues are not driving our main results for publicly

traded firms. While we cannot speak to growth effects outside of publicly traded firms (where

sales data are not reported), the fact that our effects concentrate among the largest firms in the

Compustat sample (Table 4) suggests that the net effects on industry growth of all (public and

private) firms are likely milder than those documented in Table 8.38

We next examine whether the higher AI-fueled growth among larger firms is substantial

enough to translate into increased industry concentration. We link industry-level growth in AI

investments to contemporaneous changes in industry concentration from 2010 to 2018. Following

Autor et al. (2020), we use the Herfindahl-Hirschman Index (HHI) to measure industry concen-

tration. To examine winner-take-most dynamics, we also consider the fraction of sales accruing to

38A caveat with these results is that the Compustat sample assigns each firm to a single main industry, even for
firms that might have operations in several industries. This caveat is unlikely to affect the interpretation of our results,
given that prior research using U.S. Census micro data shows that for a typical U.S. public firm the large majority of its
operations fall within one main industry (Babina, 2020).
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the largest firm in each 5-digit NAICS industry among the Compustat firms. Columns 5–8 of Table

8 show a positive relationship between industry-level growth in AI investments and changes in

industry concentration.

Overall, our results support the argument by Crouzet and Eberly (2019) that investments in

intangible assets are responsible for the rise in industry concentration observed in the U.S. data.

Our results suggest that, as a general purpose technology that can be applied across many indus-

tries, AI has the potential to further increase concentration across a broad range of industries by

facilitating product innovation and the expansion for the largest firms.

7 Conclusion

In this paper, we study how firms invest in and benefit from one of the most important new tech-

nologies of the last decade—artificial intelligence. We introduce a novel measure of investments

in AI technologies at the firm level using two detailed datasets on human capital: job postings

from Burning Glass Technologies, which indicate each firm’s demand for particular skills, and re-

sume data from Cognism, which reveal the actual composition of a firm’s workforce. Our unique

measure allows us to examine both the determinants and the consequences of AI investments by

firms across a wide range of sectors. We find a positive feedback loop between AI investments

and firm size: AI investments concentrate among the largest firms, and as firms invest in AI, they

grow larger, gaining sales, employment, and market share. This AI-fueled growth does not ap-

pear to stem from cost-cutting; instead, AI-investing firms expand through product innovation

and increased product offerings.

Our findings highlight important differences between the adoption of AI technologies and the

adoption of information technology (IT) in the 1980s and 1990s.39 Much of the previous litera-

ture finds that IT investments were associated with economically large productivity increases but

mixed results on firm growth measures such as market share. By contrast, we observe increased

growth for AI-investing firms, along with increased product innovation, but no evidence (yet) of

higher firm-level productivity. Our results also show higher AI adoption and larger gains from AI

investments for larger firms, which contrasts with prior work on diffusion patterns for IT (Hobijn

and Jovanovic, 2001). These differences underscore the distinctive features of AI relative to pre-

vious waves of IT: as a prediction technology, AI facilitates product innovation and creates new

business opportunities by enabling firms to learn better and faster from big data.

Our findings imply that the benefits from AI depend to a large extent on who owns big data—

the key input to AI technologies (Fedyk, 2016). While data are non-rival (data can be used by any

39See Dedrick et al. (2003) and Cardona et al. (2013) for reviews of that literature.
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number of firms simultaneously), recent theoretical work suggests that, fearing creative destruc-

tion, firms may choose to hoard data they own, leading to inefficient use of nonrival data; and

that giving the data property rights to consumers can generate allocations that are close to opti-

mal (Jones and Tonetti, 2020). While our empirical work does not directly speak to the optimality

of data ownership, our results suggest that AI contributes to the increase in industry concentration

and the rise of “superstar” firms documented in recent work (Gutiérrez and Philippon, 2017; Au-

tor et al., 2020). Further understanding how AI affects production processes, corporate strategies,

and organizational structure of firms and assessing the distribution of gains from investing in AI

technologies across firms and workers are fruitful avenues for future research.
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Figure 1. Time Series of AI Investments

This figure shows the time series of the two measures of AI investments. Panel (a) reports the
fraction of jobs with continuous AI measure above 0.1 for 2007 and 2010-2018, based on the job
postings in Burning Glass with employer firms matched to public firms in Compustat. Panel (b)
shows the fraction of all employees (across all public firms) in a given year who are classified as
holding directly AI-related positions in the Cognism resume data from 2007 to 2018.
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Figure 2. AI Investments by Industry Sector

This figure presents the average share of AI jobs at the industry level, based on the sample of
public firms. For each sector (based on NAICS-2 digit industry codes), we compute the average
share of AI-related job postings (with job-level continuous AI measure above 0.1) across all job
postings (in Panel (a)) and the fraction of AI-related employees in the resume data (in Panel (b)).
The statistics are computed across all public firms in each sector across two sub-periods: 2007–
2014 and 2015–2018.
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Figure 3. AI Investments and Firm Growth Over Time

This figure plots the coefficients from the distributed lead-lag model. The dependent variable is
annual log sales in Panel (a) and log employment in Panel (b). The independent variable is the
annual change in the share of AI workers in Cognism resume data, standardized to have a mean
of zero and a standard deviation of one. Regressions include firm-level sales (or employment)
observations between 2010 and 2016 and control for firm fixed effects, 2-digit NAICS industry-
by-year fixed effects, and state-by-year fixed effects. Regressions are weighted by the number of
workers in Cognism resume data. The vertical bars indicate 95% confidence intervals. Standard
errors are clustered at the 5-digit NAICS level.
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Table 1. Correlations between Job-posting-based and Resume-based AI Measures

This table reports, for each year from 2010 to 2018, the Spearman rank correlations between three
pairs of firm-level variables: (i) the absolute number of AI job postings in Burning Glass against
the absolute number of AI employees in resumes from Cognism; (ii) the fraction of employees
classified as AI-related in the two datasets; and (iii) the fraction of AI employees in Cognism
against the average continuous AI measure in Burning Glass. Panel 1 shows raw correlations, and
Panel 2 displays correlations conditional on industry sector fixed effects and the baseline controls
all measured as of 2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup,
and log number of jobs—resumes in Panel 1 and job postings in Panel 2), log industry wage, and
characteristics of the commuting zones where the firms are located (the share of workers in IT-
related occupations, the share of college-educated workers, log average wage, the share of foreign-
born workers, the share of routine workers, the share of workers in finance and manufacturing
industries, and the share of female workers). All correlations are computed over the cross-section
of firms with at least 20 total employees in the Cognism resume data in each year of the sample.

Panel 1: Raw Correlations

Correlations between:
Year Numbers of AI jobs Fractions of AI Jobs Cognism fraction & BG continuous measure

2010 0.320 0.272 0.374
2011 0.341 0.288 0.390
2012 0.338 0.291 0.388
2013 0.424 0.363 0.447
2014 0.468 0.410 0.484
2015 0.474 0.405 0.496
2016 0.503 0.421 0.499
2017 0.564 0.474 0.531
2018 0.574 0.484 0.538

Panel 2: Correlations Conditional on Baseline Controls

Correlations between:
Year Numbers of AI jobs Fractions of AI Jobs Cognism fraction & BG continuous measure

2010 0.825 0.650 0.470
2011 0.822 0.622 0.476
2012 0.801 0.583 0.487
2013 0.784 0.569 0.498
2014 0.757 0.526 0.551
2015 0.729 0.467 0.513
2016 0.702 0.475 0.501
2017 0.687 0.507 0.510
2018 0.670 0.502 0.513
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Table 2. Firm-level Determinants of AI Investments

This table reports the coefficients from regressions of cross-sectional changes in AI investments
by U.S. public firms (in non-tech sectors) from 2010 to 2018 on the following ex-ante firm charac-
teristics measured in 2010: log sales in column 1, cash/assets in column 2, R&D/sales in column
3, revenue TFP in column 4, log markup measured following De Loecker et al. (2020) in column
5, Tobin’s Q in column 6, market leverage in column 7, return on assets (ROA) in column 8, and
firm age in column 9. In Panel 1, the dependent variable is the growth in the share of AI workers
from 2010 to 2018 using the resume data from Cognism. In Panel 2, the dependent variable is the
growth in the share of AI workers from 2010 to 2018 using the job postings data from Burning
Glass. Regressions are weighted by the number of Cognism resumes in 2010 in Panel 1, and by
the number of Burning Glass job postings in 2010 in Panel 2. All specifications control for industry
sector fixed effects. The dependent variable is normalized to have a mean of zero and a standard
deviation of one. Standard errors are clustered at the 5-digit NAICS industry level and reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Share of AI Workers, 2010–2018

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 0.108*** 0.151***
(0.028) (0.026)

Cash/Assets 2010 3.819*** 1.957***
(1.140) (0.516)

R&D/Sales 2010 3.607*** 2.144**
(1.225) (0.840)

Revenue TFP 2010 1.343 -0.407
(0.995) (0.256)

Log Markup 2010 0.401* 0.375
(0.220) (0.258)

Tobin’s Q 2010 0.134*** -0.030
(0.049) (0.074)

Market Leverage 2010 -0.873 0.142
(0.644) (0.342)

ROA 2010 1.248 1.335
(0.830) (0.813)

Firm Age 2010 -0.003 -0.001
(0.004) (0.002)

Industry FE Y Y Y Y Y Y Y Y Y Y
Adj R-Squared 0.154 0.301 0.171 0.148 0.144 0.194 0.127 0.130 0.120 0.367
Observations 1,993 1,993 1,993 1,818 1,992 1,653 1,863 1,972 1,993 1,539

Panel 2: AI measure from job postings data

∆ Share of AI Workers, 2010–2018

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Sales 2010 0.159*** 0.224***
(0.034) (0.048)

Cash/Assets 2010 3.431*** 1.414***
(1.213) (0.488)

R&D/Sales 2010 2.667** 2.806**
(1.310) (1.106)

Revenue TFP 2010 0.549 -0.542
(0.965) (0.334)

Log Markup 2010 0.400** 0.403*
(0.194) (0.222)

Tobin’s Q 2010 0.172* -0.002
(0.097) (0.091)

Market Leverage 2010 -0.921 -0.238
(0.677) (0.328)

ROA 2010 2.729** 2.462
(1.334) (1.565)

Firm Age 2010 -0.005 -0.003
(0.004) (0.002)

Industry FE Y Y Y Y Y Y Y Y Y Y
Adj R-Squared 0.186 0.264 0.165 0.145 0.163 0.243 0.159 0.171 0.149 0.405
Observations 1,192 1,192 1,192 1,120 1,192 1,013 1,139 1,188 1,192 959
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Table 3. AI Investments and Firm Growth: Long-differences Estimates

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on the contemporaneous firm-level changes in AI investments among U.S. public firms (in
non-tech sectors). We consider three measures of firm growth: changes in log sales (columns 1
and 2), changes in log employment (columns 3 and 4), and changes in log market value (columns
5 and 6). The dependent variables are measured as growth from 2010 to 2018. The main indepen-
dent variable is the growth in the share of AI workers from 2010 to 2018, standardized to mean
zero and standard deviation of one. Panel 1 considers the resume-based measure of the share of
AI workers, while Panel 2 looks at the job-postings-based measure. Regressions are weighted by
the number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings
in 2010 in Panel 2. All specifications control for industry sector fixed effects. Columns 2, 4, and
6 also include the baseline controls all measured as of 2010: firm-level characteristics (log sales,
cash/assets, R&D/sales, log markup, and log number of jobs—resumes in Panel 1 and job post-
ings in Panel 2), log industry wage, and characteristics of the commuting zones where the firms
are located (the share of workers in IT-related occupations, the share of college-educated work-
ers, log average wage, the share of foreign-born workers, the share of routine workers, the share
of workers in finance and manufacturing industries, and the share of female workers). Standard
errors are clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.202*** 0.203*** 0.239** 0.219*** 0.231** 0.224***
(0.069) (0.060) (0.097) (0.077) (0.094) (0.077)

Industry FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.221 0.428 0.237 0.418 0.221 0.364
Observations 1,052 1,052 1,052 1,052 1,010 1,010

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.150*** 0.160*** 0.161** 0.127** 0.146* 0.189***
(0.055) (0.045) (0.076) (0.050) (0.083) (0.068)

Industry FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.273 0.452 0.320 0.526 0.338 0.461
Observations 935 935 935 935 903 903
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Table 4. Heterogeneous Relationship between AI Investments and Firm Growth by Initial
Firm Size

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on contemporaneous changes in AI investments among US public firms (in non-tech sectors),
separately for each tercile of initial firm size. Firms in each 2-digit NAICS sector are divided into
terciles based on employment in 2010. We consider three measures of firm-level growth for the
dependent variable: changes in log sales (columns 1 and 2), changes in log employment (columns
3 and 4), and changes in log market value (columns 5 and 6). The main independent variable is
the growth in the share of AI workers from 2010 to 2018, standardized to mean zero and stan-
dard deviation of one. Panel 1 considers the resume-based measure of AI workers, while Panel
2 looks at the job-posting-based measure. Regressions are weighted by the number of Cognism
resumes in 2010 in Panel 1 and the number of Burning Glass job postings in 2010 in Panel 2. All
specifications control for industry sector by initial firm size tercile fixed effects. Columns 2, 4, and
6 also include the baseline controls all measured as of 2010: firm-level characteristics (log sales,
cash/assets, R&D/sales, log markup, and log number of jobs—resumes in Panel 1 and job post-
ings in Panel 2), log industry wage, and characteristics of the commuting zones where the firms
are located (the share of workers in IT-related occupations, the share of college-educated work-
ers, log average wage, the share of foreign-born workers, the share of routine workers, the share
of workers in finance and manufacturing industries, and the share of female workers). Standard
errors are clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers*Size Tercile 1 0.046** 0.003 0.041** -0.012 0.059** 0.021
(0.023) (0.020) (0.018) (0.027) (0.028) (0.041)

∆ Share AI Workers*Size Tercile 2 0.219*** 0.186*** 0.217*** 0.177*** 0.202*** 0.171***
(0.054) (0.051) (0.048) (0.060) (0.045) (0.054)

∆ Share AI Workers*Size Tercile 3 0.223*** 0.213*** 0.260** 0.227*** 0.250** 0.235***
(0.077) (0.066) (0.105) (0.081) (0.103) (0.087)

Industry*Size tercile FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.248 0.427 0.253 0.430 0.214 0.342
Observations 1,044 1,044 1,044 1,044 1,003 1,003
T-test statistic 3.7 8.8 3.7 7.4 4.0 8.5
T-test p value 0.054 0.003 0.054 0.007 0.047 0.004

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers*Size Tercile 1 -0.068*** -0.079*** -0.056*** -0.109** -0.081*** -0.075*
(0.021) (0.029) (0.015) (0.049) (0.029) (0.039)

∆ Share AI Workers*Size Tercile 2 0.040 0.061 0.040 0.035 0.006 0.087*
(0.052) (0.038) (0.043) (0.050) (0.040) (0.052)

∆ Share AI Workers*Size Tercile 3 0.166*** 0.168*** 0.176** 0.130** 0.165* 0.204***
(0.055) (0.048) (0.078) (0.051) (0.085) (0.073)

Industry*Size tercile FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.292 0.458 0.324 0.534 0.334 0.465
Observations 927 927 927 927 896 896
T-test statistic 19.2 22.8 8.1 9.6 7.3 11.3
T-test p value 0.000 0.000 0.005 0.002 0.007 0.001
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Table 5. AI Investments and Firm Growth: IV Estimates Using Resume Data

This table estimates the relationship between AI investments and firm growth from 2010 to 2018
for U.S. public firms (in non-tech sectors), where firm AI investments are instrumented with firm-
level ex-ante exposure to AI-skilled graduates from AI-strong universities. The independent vari-
able is the change in the share of AI workers from 2010 to 2018 based on the resume data. Re-
gressions are weighted by the number of Cognism resumes in 2010. The independent variable
and the instrument are standardized to mean zero and standard deviation of one. We consider
changes in log sales in columns 1 to 4, log employment in columns 5 to 8, and log market value in
columns 9 to 12. All specifications control for industry sector fixed effects and ex-ante exposure to
universities that are strong in computer science research. Columns 2–4, 6–8, and 10–12 also control
for the baseline controls all measured as of 2010: firm-level characteristics (log sales, cash/assets,
R&D/sales, log markup, and log number of jobs—resumes in Panel 1 and job postings in Panel
2), log industry wage, and characteristics of the commuting zones where the firms are located
(the share of workers in IT-related occupations, the share of college-educated workers, log aver-
age wage, the share of foreign-born workers, the share of routine workers, the share of workers
in finance and manufacturing industries, and the share of female workers). Columns 3–4, 7–8,
and 11–12 additionally control for firm-level changes in log sales and log employment from 2000
to 2008. Columns 4, 8, and 12 add state fixed effects. Standard errors are clustered at the 5-digit
NAICS industry level and reported in parentheses. The first-stage F-statistics of the instrument
are reported for all specifications. *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ Share AI Workers 0.311*** 0.446*** 0.407*** 0.261* 0.426*** 0.690*** 0.556*** 0.270* 0.345** 0.391** 0.319** 0.180
(0.097) (0.123) (0.127) (0.149) (0.140) (0.214) (0.177) (0.160) (0.136) (0.162) (0.161) (0.185)

Industry FE Y Y Y Y Y Y Y Y Y Y Y Y
CS Control Y Y Y Y Y Y Y Y Y Y Y Y
Baseline Controls N Y Y Y N Y Y Y N Y Y Y
Control Pre-trend N N Y Y N N Y Y N N Y Y
State FE N N N Y N N N Y N N N Y
F Statistic 14.7 19.4 20.4 29.2 14.7 19.4 20.4 29.2 14.8 19.6 20.3 30.2
Observations 1,001 1,001 777 773 1,001 1,001 777 773 963 963 753 746
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Table 6. AI Investments and Product Innovation

This table reports the coefficients from long-differences regressions of the changes in measures
of product innovation from 2010 to 2018 on the contemporaneous changes in AI investments by
U.S. public firms (in non-tech sectors). The dependent variables are the change in log(1+number
of trademarks) in columns 1 and 2; the change in log(1+number of product patents) in columns
3 and 4; and the change in the product mix in columns 5 and 6. Product patents are patents
with over 50% of the claims being product claims, following the categorization in Ganglmair et
al. (2021). The change in the product mix is measured as the sum of annual changes from 2010
to 2018, where each annual change is the angle between the two word vectors indicating firms’
product offerings in that year and the previous year (the word vectors are constructed as in Hoberg
et al. (2014). For the main independent variable, Panel 1 considers the resume-based measure of
the growth in the share of AI workers from 2010 to 2018, while Panel 2 looks at the job-posting-
based measure. Both measures are standardized to mean zero and standard deviation of one.
Regressions are weighted by the number of Cognism resumes in 2010 in Panel 1 and the number
of Burning Glass job postings in 2010 in Panel 2. All specifications control for industry sector
fixed effects. Columns 2, 4, and 6 also include the baseline controls all measured as of 2010: firm-
level characteristics (log sales, cash/assets, R&D/sales, log markup, and log number of jobs—
resumes in Panel 1 and job postings in Panel 2), log industry wage, and characteristics of the
commuting zones where the firms are located (the share of workers in IT-related occupations, the
share of college-educated workers, log average wage, the share of foreign-born workers, the share
of routine workers, the share of workers in finance and manufacturing industries, and the share of
female workers). Standard errors are clustered at the 5-digit NAICS industry level and reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Number of ∆ Log Number of
Trademarks Product Patents Change in Product Mix

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.144** 0.150* 0.221*** 0.212*** 0.149*** 0.114***
(0.065) (0.077) (0.035) (0.037) (0.036) (0.035)

Industry FE Y Y Y Y Y Y
Controls N Y N Y N Y
Observations 550 550 619 619 958 958

Panel 2: AI measure from job postings data

∆ Log Number of ∆ Log Number of
Trademarks Product Patents Change in Product Mix

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.132** 0.059 0.169*** 0.198*** 0.109*** 0.074**
(0.057) (0.063) (0.029) (0.050) (0.033) (0.036)

Industry FE Y Y Y Y Y Y
Controls N Y N Y N Y
Observations 505 505 560 560 860 860
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Table 7. AI Investments and Operating Costs

This table reports the coefficients from long-differences regressions of changes in firm operating
costs and firm productivity from 2010 to 2018 on contemporaneous changes in AI investments by
U.S. public firms (in non-tech sectors). The main independent variable is the change in the share of
AI workers from 2010 to 2018, standardized to mean zero and standard deviation of one. We look
at two measures of operating costs: log COGS in columns 1 and 2 and log operating expenses in
columns 3 and 4. We consider two measures of productivity: log sales per worker (columns 5–6)
and revenue TFP (columns 7–8). Revenue TFP is the residual from regressing log revenue on log
employment and log capital (constructed using the perpetual inventory method), with separate
regressions for each industry sector. In columns 9 and 10, the dependent variable is the change in
log(1+number of process patents), where process patents are patents with over 50% of the claims
being process claims, following the categorization in Ganglmair et al. (2021). Panel 1 considers the
resume-based measure of the share of AI workers, while Panel 2 looks at the job-posting-based
measure. Regressions are weighted by the number of Cognism resumes in 2010 in Panel 1 and the
number of Burning Glass job postings in 2010 in Panel 2. All specifications control for industry
sector fixed effects. Columns 2, 4, 6, and 8 also include the baseline controls all measured as of
2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup, and log number
of jobs—resumes in Panel 1 and job postings in Panel 2), log industry wage, and characteristics of
the commuting zones where the firms are located (the share of workers in IT-related occupations,
the share of college-educated workers, log average wage, the share of foreign-born workers, the
share of routine workers, the share of workers in finance and manufacturing industries, and the
share of female workers). Standard errors are clustered at the 5-digit NAICS industry level and
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel 1: AI measure from resume data

∆ Log ∆ Log ∆ Log Sales ∆ Revenue ∆ Log Number of
COGS Operating Expense per Worker TFP Process Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ Share AI Workers 0.195*** 0.182*** 0.206*** 0.204*** -0.082 -0.058 -0.049 -0.026 -0.010 -0.024
(0.052) (0.046) (0.066) (0.056) (0.055) (0.040) (0.046) (0.037) (0.039) (0.066)

Industry FE Y Y Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y N Y
Adj R-Squared 0.213 0.393 0.237 0.427 0.244 0.391 0.222 0.347 0.700 0.766
Observations 1,052 1,052 1,052 1,052 1,052 1,052 977 977 619 619

Panel 2: AI measure from job postings data

∆ Log ∆ Log ∆ Log Sales ∆ Revenue ∆ Log Number of
COGS Operating Expense per Worker TFP Process Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ Share AI Workers 0.153*** 0.143*** 0.148*** 0.151*** -0.039 -0.018 -0.018 -0.012 0.031 0.064
(0.039) (0.035) (0.051) (0.040) (0.050) (0.031) (0.042) (0.031) (0.048) (0.064)

Industry FE Y Y Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y N Y
Adj R-Squared 0.246 0.390 0.251 0.410 0.375 0.555 0.287 0.422 0.732 0.760
Observations 935 935 935 935 935 935 874 874 560 560
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Table 8. AI Investments and Changes in Industry Growth and Concentration

This table reports the coefficients from industry-level long-differences regressions of the changes
in industry sales, employment, and concentration on contemporaneous changes in industry-level
AI investments. All industry-level variables are calculated for all firms in Compustat (regardless
of whether they are in our main regression sample in Table 3 or not). Each observation is a 5-
digit NAICS industry, and (as in our main analysis) we exclude tech sectors. The independent
variable is the change in the share of AI workers from 2010 to 2018, standardized to mean zero
and standard deviation of one. Panel 1 considers the resume-based measure of the share of AI
workers, while Panel 2 looks at the job-posting-based measure. Regressions are weighted by the
total (industry-level) number of Cognism resumes in 2010 in Panel 1 and the total (industry-level)
number of Burning Glass job postings in 2010 in Panel 2. The dependent variables are the changes,
from 2010 to 2018, in log total sales in columns 1 and 2, log total employment in columns 3 and
4, the Herfindahl-Hirschman Index (HHI) in columns 5 and 6, and the market share of the top
firm in an industry in columns 7 and 8. All specifications control for industry sector fixed effects.
Regressions in columns 2, 4, 6, and 8 also include industry-level controls for log total employment,
log total sales, and log average wage in 2010. Standard errors are robust against heteroskedasticity
and reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ HHI ∆ Top Firm Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.173*** 0.199*** 0.205*** 0.234*** 0.019*** 0.011 0.023*** 0.013*
(0.045) (0.038) (0.063) (0.045) (0.007) (0.007) (0.007) (0.008)

Industry Sector FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
Observations 275 275 275 275 267 267 267 267

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ HHI ∆ Top Firm Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.159*** 0.159*** 0.158 0.139 0.036*** 0.041*** 0.040*** 0.047***
(0.058) (0.058) (0.106) (0.097) (0.006) (0.006) (0.006) (0.007)

Industry Sector FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
Observations 261 261 261 261 254 254 254 254

49

Electronic copy available at: https://ssrn.com/abstract=3651052



A Appendix on Instrument Construction

We instrument firm-level AI investments using variation in firms’ ex-ante exposure to the supply

of AI-trained graduates from universities that are historically strong in AI. The core idea is that

the scarcity of AI-trained labor is one of the most important barriers to firms’ AI adoption (e.g.,

CorrelationOne (2019)). Universities are a key source of skilled labor, and universities histori-

cally strong in AI research are able to train more AI-skilled graduates following the wide-spread

rise of commercial interest in AI in the 2010s. This enables firms with more ex-ante connections

to AI-strong universities (e.g., via alumni networks) to more readily attract AI talent from those

universities in the 2010s. It is important to note that while AI research flourished in universities

long before 2010 (research in AI and machine learning goes back to the 1950s), commercial inter-

est in AI applications started around 2012, driven by rapid accumulation of data, decreasing costs

of computation, and methodological advances in applying techniques such as deep learning.40

Moreover, universities did not set up specialized data science programs until the mid-2010s. For

example, Columbia’s Data Science Institute (described as a "trailblazer in the field"; see here) was es-

tablished in 2012. Therefore, in 2010, firms’ connections to AI-strong universities were not driven

by the need to hire AI-skilled workers, but rather by other pre-existing connections such as alumni

networks (e.g., the CEO having graduated from a particular university), especially for the sample

of non-tech firms that are the focus of this paper.

To construct the instrument, we need two different datasets. The first is a measure of the

strength of AI research in each university in the pre-period. The second, even more difficult to

construct, is a measure of firm-university hiring networks in the pre-period. To the best of our

knowledge, there is no comprehensive historical data on either of these two aspects. To construct

the first measure, we group all universities into those that are ex-ante strong in AI research and

those that are not, based on the number of researchers producing AI-related publications in each

university before 2010. A key concern with this measure for our instrument is that AI-strong

universities are likely to also be strong in the broader field of computer science (CS), producing

more CS-skilled graduates, which might affect firm outcomes through channels other than AI

investments. To address this concern, we also collect information on the number of CS researchers

in each university in each year to be included as a control. To construct the second measure (firm-

university hiring networks), we leverage our resume data to observe which universities the stock

of a given firm’s employees as of 2010 graduated from. To validate the data, we also measure:

(i) the number of fresh graduates in each year from each university hired by each firm to confirm

that ex-ante firm-university networks predict ex-post hiring, and (ii) the number of AI-trained

graduates from each university to validate our premise that ex-ante AI-strong universities produce

40A brief history of AI research can be found here.
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more AI-trained graduates following the increase in commercial interest in AI.

Data Construction. First, to identify universities that are ex-ante strong in AI, we use data

from the Open Academic Graph (OAGv2) to measure AI-related publications associated with each

university. OAGv2 provides a unified view of two large-scale databases of academic paper meta-

data, abstracts, citations, and author links: (i) the Microsoft Academic Graph (part of the Microsoft

Academic Service infrastructure in Sinha et al. (2015)), and (ii) ArnetMiner (Tang et al., 2008). To-

gether, these two datasets provide the most comprehensive openly available repository of schol-

arly work starting from the 1870s and allow us to track research articles and faculty across the

near-universe of academic and commercial institutions. The Open Academic Graph contains hun-

dreds of millions of papers from 366M distinct author names and lists author affiliations where

available. We use a keyword-based matching procedure to link 689 research institutions (or 99%)

in the Higher Education Research and Development Survey (HERDS) data to faculty information

in the OAGv2. HERDS data are collected by the National Science Foundation and cover all uni-

versities in the U.S. that have at least $150,000 in R&D expenditures in each fiscal year. Our strict

matching procedure requires that the full formal university name, or an official shortened variant

thereof, be found in full form within the institutional affiliations in the OAGv2 paper metadata

files, with only common "stop-words" (such as “and,” “the,” and “in”) removed from both sides

of the match. A manual review of the resulting linked data shows over 96% precision in matching

author affiliations from the Open Academic Graph to HERDS data, with the remaining incorrect

entries manually adjusted to ensure full correctness. For each university matched to HERDS, we

consider all publications in the Open Academic Graph in each year that have at least one co-author

affiliated with that university.

We work with the field experts at the AI for Good Foundation to identify AI-related publica-

tions.41 First, we identify a small set of “seed” journals and conference proceedings that explicitly

include terms like “artificial intelligence” and “machine learning” in their title (e.g., Journal of Ma-

chine Learning Research and Proceedings of the International Joint Conference on Artificial Intelligence).

Second, to identify potential additional AI-related journals and conference proceedings, we look

at all other journals and proceedings that have published work by the authors of the papers in

the seed journals and proceedings. We manually filter this broader set of journals and conference

proceedings to the ones that focus predominantly on AI, leading to a final list of 355 journals and

conference proceedings globally.

To make sure that our results are not driven by firms’ exposure broader (non-AI) CS-skilled

workers, we control for firms’ ex-ante exposure, via their hiring networks, to CS-strong universi-

ties. In particular, we construct an analogous measure of computer science publications by start-

41Learn more about the AI for Good Foundation here.
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ing with a set of seed journals and conference proceedings across different fields of computer

science (those with the terms “compilers,” “databases,” “cryptography,” “computation,” “soft-

ware,” “programming,” “informatics,” “robotics,” or “information security” in their titles) and

then manually screen all other journals and conference proceedings that publish papers by the

same authors. We exclude any journal or conference proceeding that we classify as AI-related,

leaving a total of 796 non-AI computer science journals and conference proceedings.

After identifying the set of AI-related and CS-related journals and conference proceedings,

we classify the focus area of each researcher r as either AI, computer science, or neither. If at

least one third of all publications co-authored by r are in either AI or CS journals and conference

proceedings, then r is considered a candidate researcher. If r is a candidate researcher and at least

half of r’s AI/CS publications are in specifically AI journals and proceedings, then r is marked

as an AI researcher. If more than half of r’s AI/CS publications are in non-AI computer science

journals and proceedings, then r is considered a non-AI CS researcher. Finally, if more than two

thirds of r’s publications are outside of the set of identified AI and CS journals and proceedings,

then r is classified as a researcher in other (unrelated) fields.

At the university level, we compute the percentage of researchers in each year who are classi-

fied as AI researchers and the percentage of researchers who are classified as CS researchers. Re-

searchers in other unrelated fields are included in the denominators of both measures. To reduce

noise, we assume that each researcher is employed at the respective university in a non-publishing

year if that researcher is employed at that university in both the following and the preceding year.

For example, if researcher r is identified as affiliated with university u in both 2005 and 2007 but

has no publications in 2006, then r is still considered to be affiliated with university u in year 2006.

We then classify whether each university is AI-strong. We define a university as being strong in

AI if it satisfies one of the following two criteria in at least one year between 2005 and 2009: (i)

the number of AI researchers is in the top 5% of the distribution across all universities in a given

year; (ii) the number of AI researchers is in the top 10% of the distribution, and the share of AI re-

searchers (the number of AI researchers divided by the number of other researchers in the OAGv2

data) is in the top 5% of the distribution across all universities in a given year. We use the second

criterion because there are some smaller, tech-oriented colleges that could potentially have a large

share of researchers in AI but do not necessarily have large departments. Our results are robust to

using other cutoffs and earlier years.

We verify that the OAGv2 publication data provide a reliable measure of university research.

In Figure 4, we plot the log number of (all) researchers in each university in the OAGv2 data

against the log R&D expenditure in the HERDS data. We find a strong positive correlation of 0.83.

Furthermore, the top universities we identify as AI-strong include top AI departments, such as
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Carnegie Mellon University, UCLA, Stanford University, UIUC, New York University, and Uni-

versity of Maryland College Park, but are not strongly correlated with the overall highest-ranked

universities based on the U.S. World & News Report. For example, only 50% (39%) of the top 20

(top 50) universities are AI-strong universities, and among AI-strong universities, only 25% (56%)

are ranked in the top 20 (top 50) universities in the U.S. World & News Report.

To construct the second ingredient for our instrument—firm exposure to AI-strong universities

via the ex-ante firm-university hiring networks—we use our Cognism resume data. In these data,

we observe the granting institutions of all degrees that workers list on their resumes. We disam-

biguate university names and match them to HERDS data. We define an individual i as a graduate

of university u if i’s resume lists at least one degree (undergraduate or graduate) from university

u. We define an individual i as a fresh graduate from university u in year t if i joined a firm in year t

and graduated from university u in year t or year t− 1. These data offer comprehensive coverage

of universities; for example, in 2010 there 668 of the 716 universities in the HERDS dataset have at

least one fresh graduate in our resume data. Since the firms’ hiring patterns might be different for

STEM versus non-STEM workers (e.g., if a firm has a hiring relationship with an economics de-

partment for economic policy talent and with a business school for management talent), we also

consider the firm-university hiring networks based specifically on STEM workers, in case such

networks are more relevant for hiring AI workers. We define STEM workers as employees who

have at least one degree with a major in either engineering (e.g., electrical, chemical, mechani-

cal), physical sciences (e.g., math, physics, chemistry, computer science, statistics), or biological

sciences (e.g., biology, pharmacology).

We compare the coverage of our university graduates data with official statistics from univer-

sities and show that our resume data cover a sizable proportion of university graduates in the

U.S. In particular, we aggregate the data to university-year level by calculating the total number

of fresh graduates from each university in each year. We compare these numbers with the total

numbers of all degrees (bachelors, masters, and PhDs) conferred by each university in each year,

using the Integrated Postsecondary Education Data System (IPEDS) data, which contain the total

enrollment and the number of degrees conferred each year for all post-secondary institutions in

the U.S. As of 2012 (the latest year of the IPEDS data), our resume data cover, on average, 59% of

all fresh graduates at each university. The number of fresh graduates in the resume data is also

highly correlated with graduates in the cross-section of universities (correlation=0.73).

Finally, we use our Cognism resume data to measure the share of all fresh university graduates

from each university who get AI-skilled jobs in each year between 2006 and 2018. These data allow

us to validate our premise that ex-ante AI-strong universities are able to increase the supply of AI-

skilled graduates following the increase in commercial applications in AI in the first half of the
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2010s, discussed below.

Instrument Validation. We first validate several core assumptions underlying the intuition

behind our instrument. Confirming our key argument, we show that the increase in AI-trained

graduates during the 2010s was much more pronounced in AI-strong universities than in non-

AI-strong universities. Figure 5 plots the share of fresh graduates that are AI-trained from AI-

strong and non-AI-strong universities from 2006 to 2018. In 2006, there were few AI graduates

across the board, with the share of AI graduates below 0.3% for both AI-strong and non-AI-strong

universities. Even in 2012, the share of AI graduates remained below 0.5% in both groups of

universities. From 2012 to 2018, however, the share of AI graduates tripled (to about 1.5%) in

AI-strong universities, while the share of AI graduates remained under 0.5% in non-AI-strong

universities.

We then examine whether firm-university hiring networks provide the necessary variation for

our instrumental variable strategy. First, our instrument leverages the variation in exposure to AI-

strong universities across firms. Therefore, it requires that firms do not hire uniformly from the

same universities. Empirically, most firms in our data concentrate their hiring in a small number

of universities. On average, a firm hires 18% of its fresh graduates from the single main univer-

sity in its network, 44% from its five main universities, and 59% from its 10 main universities. By

contrast, the largest university produces only 1.6% of all fresh graduates, the largest five universi-

ties produce 7.1% of all fresh graduates, and the largest 10 universities produce 12.9% of all fresh

graduates. Firms also hire disproportionately from universities located in the same state as their

headquarters: on average, firms hire 38% of all fresh graduates, 37% of STEM fresh graduates,

and 42% of AI fresh graduates from universities located in the same state. Second, in order for

the ex-ante firm-university network to predict ex-post hiring of AI-skilled labor, firm-university

networks need to be persistent over time. In column 1 of Table 9, we regress the share of fresh

graduates hired from each university after 2010 on the share of fresh graduates hired from each

university before 2010. We find a strong positive relationship, suggesting that firm-university

networks are correlated over time. In column 2, we use the share of all workers employed in a

firm in 2010 who graduated from each university to predict the share of fresh graduates hired

from that university after 2010, again finding a strong positive correlation. The persistence of

firm-university hiring networks also manifests in AI hiring. Columns 3 and 4 show that the uni-

versities from which a firm hired before 2010 also strongly predict the universities from which

the firm will hire its AI-skilled workers after 2010. Finally, in columns 5 and 6, we show that

pre-2010 firm-university hiring networks based only on STEM workers also strongly predict the

universities from which firms hire their AI workers after 2010.
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Our instrument is defined as follows for each firm i:

IVi = ∑
u

s2010
iu AIstrongu,

where s2010
iu is the share of STEM workers in firm i in 2010 who graduated from university u,

and AIstrongu equals one if university u is identified as an AI-strong university based on pre-

2010 publications. We use firm-university hiring networks based on STEM workers in the firm

as of 2010, because the instrument based on this measure has a stronger first stage; however, the

results are very similar when we construct firm-university hiring networks using all workers in

the firm as of 2010. To reduce noise, for each firm’s hiring network, we consider the 50 universities

from which the firm has the most workers in 2010. To control for the effects of general computer

science (and not specifically AI), we construct an analogous measure of firms’ exposure to CS-

strong universities: ∑u s2010
iu CSstrongu, where the weights s2010

iu are firms’ 2010 STEM hiring shares,

and CSstrongu is the average share of (non-AI) CS researchers (the number of CS researchers

divided by the number of all other researchers) at university u between 2005 and 2009.

Before proceeding, we examine an important identification concern regarding our instrument:

if firms anticipated the surge in demand for AI, they might have started building their connections

to AI-strong universities before 2010, making firm-university hiring networks in 2010 endogenous

to firms’ ability to hire AI-trained students ex-post. This is unlikely, given the lack of both com-

mercial interest in AI by firms and training of AI-skilled graduates by universities (Figure 5) prior

to 2010. Indeed, we are able to confirm empirically that firms connected to AI-strong universi-

ties did not increase their share of hired fresh graduates from those universities from 2005 to 2010.

Specifically, in Table 10, we find no significant relationship between the change in the share of fresh

graduates from AI-strong universities in the pre-period (from 2005 to 2010) and our instrument.

First Stage. Table 11 presents the first stage of the instrument, where we regress our key in-

dependent variable—firm-level changes in the share of AI-skilled workers from 2010 to 2018—on

the instrument, which measures ex-ante firm-level exposure to the supply of AI-trained univer-

sity graduates from AI-strong universities. We control for firm-specific ex-ante exposure to CS-

strong universities and industry fixed effects in all specifications. In column 2, we additionally

control for our baseline controls measured as of 2010: (i) firm-level variables (log employment,

cash/assets, log sales, R&D/Sales, and log markups), (ii) the characteristics of the commuting

zones where the firms are located in 2010 (the share of workers in IT-related occupations, the

share of college-educated workers, log average wage, the share of foreign-born workers, the share

of routine workers, the share of workers in finance and manufacturing industries, and the share

of female workers); and (c) the log industry-average wage. The inclusion of these controls helps
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to address the concern that firms’ ex-ante exposure to AI-strong universities might be correlated

with other firm characteristics that can drive AI adoption and firm growth. In column 3, we also

control for firms’ pre-period sales and employment growth between 2000 and 2008 to address

unobservable firm characteristics that might simultaneously drive firms’ growth trajectories and

their hiring of AI workers. In column 4, we further add state fixed effects to control for local

labor market characteristics that might drive both universities’ ability to produce AI graduates

and firm growth. The first stage F-statistics are well above the conventional level of 10 for all

specifications using the Cognism resume data. The F-statistic is also above 10 for two out of four

specifications using the Burning Glass job postings data. Intuitively, the first stage is stronger in

the Cognism data because: (i) the data generating process is similar for the firm-level AI invest-

ments and the firm-university hiring networks (they are both based on our resume data), whereas

job-postings-based AI investments are measured using different data than the instrument, and (ii)

our instrument captures the supply of AI-skilled labor to firms, which is likely to correlate more

strongly with firms’ actual hiring of AI workers in the Cognism resume data than with firms’

demand for AI workers in the Burning Glass job postings data.
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Figure 4. Correlation Between the Number of University Researchers and University R&D
Expenditures

This figure is a binned scatterplot of the log number of researchers in each university against the
log R&D expenditure in each university in 2010. Each dot represents roughly the same number of
universities, and the solid line is the fitted regression line. The number of researchers in each uni-
versity is the number of authors from that university with at least one publication in the OAGv2
data. The R&D expenditure of each university is from the NSF’s HERDS data.
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Figure 5. Time Series of the Share of AI-trained Fresh Graduates from Ex-ante AI-strong
Universities and Other Universities

This figure plots the average share of AI-trained fresh graduates out of all fresh graduates from
2006 to 2018, separately for ex-ante AI-strong universities and non-AI-strong universities. We
define a university as an AI-strong university if it satisfies one of the following two criteria in at
least one year between 2005 and 2009: (i) the number of AI researchers is in the top 5% of the
distribution across all universities in a given year; (ii) the number of AI researchers is in the top
10% of the distribution, and the share of AI researchers is in the top 5% of the distribution across all
universities in a given year. We define an individual i as a fresh graduate from university u in year
t if individual i joined a firm in year t and graduated from university u in year t or year t− 1. An
individual is considered an AI-trained fresh graduate in year t if the individual is a fresh graduate
in year t and that individual’s first job after graduation is an AI-skilled job. AI-skilled jobs are
defined based on the methodology described in Section 3.2 and used throughout the paper.
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Table 9. Persistence of Firm-University Hiring Networks

This table reports the coefficients from regressing the share of each firm’s fresh graduates hired
from each university after 2010 on the pre-2010 firm-university network. Each observation is a
firm-university pair. The dependent variable, constructed using the Cognism resume data, is the
share of all fresh graduates hired from each university after 2010 in columns 1 and 2 and the share
of AI-trained fresh graduates hired from each university after 2010 in columns 3–6. In columns
1 and 3, the independent variable is the share of all fresh graduates hired from each university
between 2005 and 2010. We define an individual i as a fresh graduate from university u in year t
if individual i joined a firm in year t and graduated from university u in year t or year t− 1. In
columns 2 and 4, the independent variable is the share of all workers in the firm in 2010 who grad-
uated from each university. In column 5, the independent variable is the share of all STEM fresh
graduates hired from each university before 2010. We define STEM workers as employees who
have at least one degree with a major in either engineering (e.g., electrical, chemical, mechanical),
physical sciences (e.g., math, physics, chemistry, computer science, statistics), or biological sci-
ences (e.g., biology, pharmacology). In column 6, the independent variable is the share of STEM
workers in the firm in 2010 who graduated from each university. All columns control for firm
fixed effects and university fixed effects. Standard errors are clustered at the university level and
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Share of Post-2010 Hires Share of Post-2010 AI Hires

(1) (2) (3) (4) (5) (6)

Share of Pre-2010 Hires 0.465*** 0.550***
(0.017) (0.054)

Share of 2010 Workers 0.147*** 0.236***
(0.006) (0.028)

Share of Pre-2010 STEM Hires 0.342***
(0.040)

Share of 2010 STEM Workers 0.197***
(0.021)

Firm FE Y Y Y Y Y Y
University FE Y Y Y Y Y Y
Observations 327,313 327,313 177,097 177,097 177,097 177,097
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Table 10. Changes in Hiring from Ex-ante AI-strong Universities during the Pre-period (2005–
2010)

This table reports the coefficients from regressing the change in the share of fresh graduates from
AI-strong universities from 2005 to 2010 on the instrument (the share of STEM workers in the firm
in 2010 who graduated from AI-strong universities). The independent variable is standardized to
mean zero and standard deviation of one. Columns 2–5 control for ex-ante exposure to univer-
sities that are strong in CS research. Columns 3–5 also control for industry sector fixed effects.
Columns 4 and 5 add the baseline controls all measured as of 2010: firm-level characteristics (log
sales, cash/assets, R&D/sales, log markup, and log number of jobs—resumes in Panel 1 and job
postings in Panel 2), log industry wage, and characteristics of the commuting zones where the
firms are located (the share of workers in IT-related occupations, the share of college-educated
workers, log average wage, the share of foreign-born workers, the share of routine workers, the
share of workers in finance and manufacturing industries, and the share of female workers). Col-
umn 5 additionally controls for state fixed effects. Regressions are weighted by the number of
Cognism resumes in 2010. Standard errors are clustered at the 5-digit NAICS industry level and
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

∆ Share of Fresh Graduates Hired from AI Hubs 2005-2010

(1) (2) (3) (4) (5)

Instrument 0.023 0.020 0.039 0.012 0.069
(0.088) (0.097) (0.088) (0.107) (0.112)

CS Control N Y Y Y Y
Industry FE N N Y Y Y
Baseline Control N N N Y Y
State FE N N N N Y
Observations 830 830 829 829 825
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Table 11. First Stage of the Instrument

This table reports the first stage of the instrument, where we regress our key independent
variable—firm-level changes in the share of AI-skilled workers from 2010 to 2018—on the instru-
ment, which measures ex-ante firm-level exposure to the supply of AI-trained university grad-
uates from AI-strong universities. The independent variable is the share of STEM workers in
the firm in 2010 who graduate from ex-ante AI-strong research universities. For the dependent
variable, Panel 1 considers the resume-based measure of the growth in the share of AI workers
from 2010 to 2018, while Panel 2 looks at the job-posting-based measure. Both the independent
variable and the dependent variable are standardized to mean zero and standard deviation of
one. Regressions are weighted by the number of Cognism resumes in 2010 in Panel 1 and the
number of Burning Glass job postings in 2010 in Panel 2. All specifications control for indus-
try sector fixed effects and ex-ante firm-level exposure to universities that are historically strong
in CS research. Columns 2–4 also include the baseline controls measured as of 2010: firm-level
characteristics (log sales, cash/assets, R&D/sales, log markup, and log number of jobs—resumes
in Panel 1 and job postings in Panel 2), log industry wage, and characteristics of the commut-
ing zones where the firms are located (the share of workers in IT-related occupations, the share
of college-educated workers, log average wage, the share of foreign-born workers, the share of
routine workers, the share of workers in finance and manufacturing industries, and the share of
female workers). Columns 3 and 4 add controls for firm-level pre-trends: changes in log sales and
log employment from 2000 to 2008. Column 4 adds state fixed effects. Standard errors are clus-
tered at the 5-digit NAICS industry level and reported in parentheses. The first-stage F-statistics
of the instrument are reported in both tables for all specifications. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Share of AI Workers

(1) (2) (3) (4)

Instrument 0.594*** 0.383*** 0.412*** 0.451***
(0.155) (0.087) (0.091) (0.084)

Industry FE Y Y Y Y
CS Control Y Y Y Y
Baseline Controls N Y Y Y
Control Pre-trend N N Y Y
State FE N N N Y
F Statistic 14.7 19.4 20.4 29.2
Observations 1,001 1,001 777 773

Panel 2: AI measure from job postings data

∆ Share of AI Workers

(1) (2) (3) (4)

Instrument 0.575*** 0.446*** 0.459*** 0.458***
(0.190) (0.146) (0.139) (0.130)

Industry FE Y Y Y Y
CS Control Y Y Y Y
Baseline Controls N Y Y Y
Control Pre-trend N N Y Y
State FE N N N Y
F Statistic 9.2 9.4 10.9 12.5
Observations 889 889 702 696
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A Online Appendix

A.1 Case Studies on Firms’ AI Investments

In order to illustrate the wide range of applications of AI technologies by individual firms, we

provide detailed summaries of the investment patterns and uses of AI technologies within four

firms in four different industries.

A.1.1 UnitedHealth Group

UnitedHealth Group (UNH) is a large managed healthcare company based in Minnetonka, Min-

nesota. The group includes a healthcare arm (UnitedHealthcare) established in 1977 and a new

technology arm founded in 2011 (Optum). While the UnitedHealthcare arm makes use of AI tech-

niques to optimize operations ranging from cost projections to fraud detection in medical claims,

the launch of Optum highlights the way in which firms such as UNH can leverage AI technologies

to expand operations by creating new products and entering new market segments. UNH is one

of very few companies with access to detailed patient, patient-physician, and drug-patient inter-

action data for large portions of the U.S. and many additional global locations, making it perfectly

placed to harness AI in its operations.

AI use cases and product impact. Most of the AI investments and impact at UNH center around

its Optum arm. The traditional UnitedHealthcare part of UNH uses AI in a limited capacity for

predictive analytics that inform business decisions and safeguards for vulnerabilities such as fraud

detection. The launch of Optum in 2011 has enabled UNH to leverage AI technologies to de-

liver new products across several healthcare markets. At its core, Optum is a vast data store

of proprietary and 3rd party datasets linked together to enable machine-learning-based analysis.

Specifically, the AI-powered Optum products include: (i) statistics on drugs and potential alterna-

tives through the pharmaceutical platform Optum Rx; (ii) analysis of electronic medical records

through the Optum One platform for physicians; and (iii) the Optum Population Health Man-

agement platform for larger institutions (including employers and federal and state agencies) to

optimize costs and accessibility to care. The AI-powered OptumIQ system, which is leveraged

throughout the Optum solutions, also targets machine-learning-based prediction and diagnostics

for diseases such as atrial fibrillation.

Timeline of AI investments at UNH. The use of AI technologies at UNH traces further back

than at most firms. As early as the 1990s, UNH piloted AdjudiPro, an AI-powered platform for

processing claims from physicians. However, the presence of AI-skilled labor at UNH remained

low throughout the 1990s and 2000s, noticeably picking up in 2011 with the launch of the Optum

platform. Thereafter, UNH’s investment in AI human capital rose steadily throughout the 2010s.

The Optum arm of the firm released the Optum360 and Impact Pro products in 2013 and the
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Optum One Analytics Platform in 2014, prompting a further acceleration in the rise of UNH’s

AI human capital in the second half of the decade. The timeline of AI investments at UNH is

displayed in Figure A1.

Internal structure of UNH’s AI workforce. UNH has a centralized approach to AI integration,

with strategic decisions primarily coming from the headquarters in Minnesota and regional of-

fices handling specific applications. Correspondingly, the majority of UNH’s AI workforce con-

centrates in Minneapolis and Minnetonka, including senior personnel heading AI and machine

learning efforts, automation/deployment, consumer analytics, and Optum enterprise analytics.

Locations outside of the headquarters tend to employ predominantly engineering and general IT

personnel to support the AI efforts.

A.1.2 JPMorgan Chase & Co

JPMorgan Chase & Co (JPM) is the largest bank in the U.S., based in New York City, NY, with

consumer banking that has relationships with more than half of U.S. households, a commercial

banking arm, a large investment banking business, and a sizable asset management arm. The bank

stores hundreds of petabytes of data ranging from credit card transactions and loan applications,

to financial news and market data, to alternative data sources.

AI use cases and product impact. The main use cases for AI at JPM fall into the following cate-

gories: (i) risk modeling and management ranging from internal cybersecurity to fraud detection

in consumer banking and assessment of geo-political risks; (ii) quantitative analysis and algo-

rithmic investment products, including the Algo Central, LOXM, and DeepX programs aimed at

executing trades at both maximal speed and optimal prices; (iii) general analytics for Big Data

use in broad internal applications including recruiting; and (iv) product development, including

enhancements to mobile apps and customer support through AI-powered virtual assistants. In

addition, JPM also employs AI in more peripheral applications, for example, with methods for

processing of alternative data such as satellite images and mapping contingency plans for AI-

driven workforce disruptions. The use of AI at JPM is aimed at both cutting costs (e.g., through

risk assessment) and creating new products (e.g., machine-learning-powered trading platforms

such as DeepX).

Timeline of AI investments at JPM. As highlighted by Figure A1, investments in AI at JPM began

at the turn of the century, with a steady increase through the first decade turning into an expo-

nential growth in the second decade. The explosion in AI investments at JPM during the 2010s is

marked by the acquisition of the multimedia recommendations patent in 2011; an underscoring of

the risks associated with data security following a data leak in 2016; and finally the establishment

of a dedicated AI research initiative (Machine Learning Center for Excellence) spearheaded by Dr.

Manuela Veloso (previously the Chair of the Machine Learning Department at Carnegie Mellon

63

Electronic copy available at: https://ssrn.com/abstract=3651052



University) in 2018.

Internal structure of JP Morgan’s AI workforce. AI efforts at JPM are centered in the New York

location, with peripheral AI expertise throughout the U.S., in London, and in India. JPM has taken

a top-down approach to AI investments, with involvement from the highest levels of management

and the establishment of a dedicated AI research team in 2018. At the same time, JPM’s invest-

ments in AI have seen not only the formation of dedicated AI hubs, but also a different approach

to corporate structuring. Specifically, the firm’s approach relies heavily on small skilled and re-

sponsive AI “task-forces" specializing in different sectors (quantitative analysis, user experience,

etc.), which can alternatively work on experimental projects (e.g., satellite imagery analysis) or

coordinate together to work on core applications (trading algorithms, firm-wide cybersecurity).

A.1.3 Caterpillar Inc.

Caterpillar Inc. is a large construction manufacturing firm headquartered in Deerfield, IL, with a

variety of additional business activities including financial products and insurance. The firm has

correspondingly varied applications for AI, ranging from inventory management to part recogni-

tion, to credit scoring for machinery financing.

AI use cases and product impact. AI investments at Caterpillar are organized along several key

verticals. First, the Data Innovation Lab at UIUC conducts core projects in demand forecasting

(unstable demand anticipation) and inventory management, in part identification (using tech-

niques from image recognition), and in tracking and tracing technology for fleet management.

Second, Caterpillar’s asset intelligence efforts include a product line of Internet of Things (IoT)

style analytics for managers and machine operators, which facilitates data collection, interpreta-

tion, predictive maintenance, and integration. Lastly, smaller targeted efforts at Caterpillar also

employ AI techniques in other parts of the business, including leveraging sensor-based data for

equipment management and using drone data to optimize job site organization. Caterpillar’s uses

of AI serve to modernize the firm’s machinery, streamline operations and reduce waste through

better forecasting and inventory management, and expand the product offerings with the IoT

product line and efficient long-term service contracts.

Timeline of AI investments at Caterpillar. Caterpillar began employing workers with AI exper-

tise at the turn of the century, but the growth in the firm’s AI workforce went hand-in-hand with

the growth in the firm’s overall workforce throughout the 2000s (with a dip during the financial

crisis). The share of AI employees at Caterpillar noticeably picked up only in mid-2010s, with the

CEO Douglas Obenhelmer underscoring the importance of capitalizing on the firm’s vast avail-

able data resources. Since 2014, Caterpillar has aggressively pursued the development of “smart"

machinery, connecting it to predictive IoT-style networks and developing better models for de-

mand prediction. In 2015, Caterpillar established the Analytics and Innovation Division headed
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by Greg Foley, and in 2016, the firm hired Morgan Vawters as the Chief of Analytics. The timeline

of Caterpillar’s investments in AI human capital is presented in Figure A1.

Internal structure of Caterpillar’s AI workforce. The majority of the AI employees at Caterpil-

lar are in the firm’s Technology division, with notable presence also in Business and Production

departments. The major locations setting the trend for Caterpillar’s AI adoption are the company

centers in Chicago and Peoria, Illinois, with projects percolating through the dedicated research

centers such as the Champaign Innovation Center and production centers such as the manufac-

turing plant in Aurora, Illinois.

A.1.4 Qualcomm Inc.

Qualcomm Inc. is a wireless telecommunications firm headquartered in San Diego, CA. The firm

produces a number of products including semiconductors, hardware, software, and other services

related to wireless technology. Device manufacturers such as Apple are Qualcomm’s primary

clients.

AI use cases and product impact. The principal use of AI at Qualcomm over the past decade

and a half has been the improvement of its core products. This includes optimization of chips

within mobile devices, improvements to the camera using techniques from computer vision for

face recognition and auto-adjustments, audio and video processing, physical sensitivity, power

use, and location tracking capabilities. More recently, Qualcomm made a large investment in

the development of the Snapdragon Neural Processing Engine (SNPE) platform, which offers a

combination of hardware and software on android devices that allows developers to more easily

create AI-powered or assisted applications. With the exception of a few stand-alone projects for

internal data processing efficiency (e.g., improving internal servers), Qualcomm does not appear

to be heavily invested in applying AI for applications such as sales or supply chain optimization,

unlike Caterpillar Inc. described above.

Outside of its core businesses, Qualcomm has invested in a number of side products at more ex-

ploratory or proof-of-concept stages, such as general work on autonomous vehicles, or enterprise

partnerships, for example with Accenture and Kellogg on virtual reality tracking of customers

for marketing purposes. This highlights the broad scope of AI technologies that facilitate firms

entering new markets: for example, the autonomous vehicle work at Qualcomm makes use of the

efforts aimed at enhancing smartphone components, only applied to a different domain.

Timeline of AI investments at Qualcomm. As can be seen from the timeline in Figure A1, the

presence of AI employees at Qualcomm began earlier than in the other firms, and by 2007 the

firm initiated dedicated AI research projects in its research arm. The ramp up continued through

2013, marked by collaborations with outside partners such as Brain Corp and internal projects on

problems such as face detection. After 2013, Qualcomm saw notable consequences of the earlier
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investments, including the first release of SNPE and the formation of an organizationally separate

AI research group, but the share of Qualcomm’s overall workforce that is skilled in AI remained

approximately flat from 2013 to 2018.

Internal structure of Qualcomm’s AI workforce. Between 2000 and 2018, the majority of Qual-

comm’s AI employees have been engineers focused on the improvement of the core product being

developed at each point in time, supported by an auxiliary staff of patent counsels and data sci-

entists. In 2018, Qualcomm established a separate AI research group, which is bringing about

increased centralization of its AI workforce. Specifically, AI efforts at Qualcomm are organized

around the San Diego headquarters, with leadership on overall AI strategy, the newly formed

AI research group, and teams spanning nearly every project from computer vision R&D to GPU

architecture. Smaller AI offices, scattered mostly throughout the U.S. and Canada, tend to focus

on single elements of Qualcomm’s AI initiative (for example, SNPE in Toronto and positioning

sensors in Santa Clara).
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Figure A1. Timeline of AI investments by UnitedHealth Group

Figure A1. Timeline of AI investments by JPMorgan Chase & Co
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Figure A1. Timeline of AI investments by Caterpillar Inc

Figure A1. Timeline of AI investments by Qualcomm Inc
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A.2 Additional Figures and Tables

Figure A1. Matching Rate to Compustat in Job Postings Data

This figure shows the time series of the share of all job postings and the share of AI job postings
(job postings with continuous measure ωAI

j above 0.1) that are matched to Compustat firms in the
Burning Glass data in 2007 and in each year from 2010 to 2018.
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Figure A1. Distribution of AI Investments across U.S. Geographies

This figure shows a heat map of changes in the job-posting-based measure of AI investments
across geographies in the U.S. The figure plots the change in the average AI-relatedness measure
(wAI

j ) of job postings of public firms in each commuting zone from 2010 to 2018.
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Figure A1. AI Investments and Local Conditions

This figure presents binned scatterplots of commuting-zone-level AI investments against local
conditions. Solid line are the fitted regression line, where the regressions are weighted by com-
muting zones’ populations in 2010. The y-axis is the change in AI investments (i.e., the change in
the share of AI workers) from 2010 to 2018, using the Burning Glass data (based on the sample
of public firms). The x-axis in Panel (a) is the average log wage of a commuting zone in 2010.
The x-axis in Panel (b) is the share of college educated workers in a commuting zone in 2010. The
log wage and the share of college-educated workers are from the Census American Community
Survey. The t-statistic on the regression slope is 23.8 in Panel (a) and 24.1 in Panel (b).
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Table A1. Skills with Highest AI-Relatedness Measures in Burning Glass Job Postings

This table lists the top skills in the Burning Glass data ranked by the skill-level AI measure wAI
s .

For each skill, we report the percentage of jobs requiring that skill that also require one of the four
core AI skills—artificial intelligence, machine learning, computer vision, and natural language
processing. For example, for jobs that require “Recurrent Neural Network (RNN),” 96.5% also
require one of the four core AI-skills. Only skills that appear in least 50 job postings are included.

# Skills AI-relatedness Score
1 Artificial Intelligence 1.000
2 Computer Vision 1.000
3 Machine Learning 1.000
4 Natural Language Processing 1.000
5 ND4J (software) 0.980
6 Kernel Methods 0.979
7 Microsoft Cognitive Toolkit 0.975
8 Xgboost 0.972
9 Sentiment Classification 0.971

10 Long Short-Term Memory (LSTM) 0.971
11 Libsvm 0.968
12 Semi-Supervised Learning 0.968
13 Recurrent Neural Network (RNN) 0.965
14 Word2Vec 0.956
15 MXNet 0.953
16 Caffe Deep Learning Framework 0.950
17 Autoencoders 0.949
18 MLPACK (C++ library) 0.942
19 Keras 0.941
20 Theano 0.938
21 Torch (Machine Learning) 0.932
22 Wabbit 0.929
23 Boosting (Machine Learning) 0.905
24 TensorFlow 0.904
25 Vowpal 0.903
26 Convolutional Neural Network (CNN) 0.897
27 Jung Framework 0.894
28 OpenNLP 0.894
29 Natural Language Toolkit (NLTK) 0.892
30 Unsupervised Learning 0.891
31 Dlib 0.891
32 Scikit-learn 0.889
33 Latent Semantic Analysis 0.889
34 Latent Dirichlet Allocation 0.889
35 Stochastic Gradient Descent (SGD) 0.881
36 Gradient boosting 0.872
37 Dimensionality Reduction 0.861
38 Deep Learning 0.859
39 DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 0.855
40 AI ChatBot 0.844
41 Recommender Systems 0.842
42 Random Forests 0.840
43 Deeplearning4j 0.839
44 Support Vector Machines (SVM) 0.817
45 Unstructured Information Management Architecture 0.806
46 Apache UIMA 0.805
47 Maximum Entropy Classifier 0.799
48 Hidden Markov Model (HMM) 0.796
49 Pybrain 0.786
50 Computational Linguistics 0.780
51 Naive Bayes 0.768
52 H2O (software) 0.763
53 Expectation-Maximization (EM) Algorithm 0.763
54 WEKA 0.761
55 Clustering Algorithms 0.740
56 Matrix Factorization 0.739
57 Object Recognition 0.727
58 Classification Algorithms 0.721
59 Information Extraction 0.709
60 Image Recognition 0.706
61 Bayesian Networks 0.705
62 Supervised Learning (Machine Learning) 0.695
63 OpenCV 0.688
64 K-Means 0.683
65 Sentiment Analysis / Opinion Mining 0.679
66 Machine Translation (MT) 0.655
67 Neural Networks 0.640
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Table A2. Examples of AI and Non-AI Job Postings in Burning Glass

This table displays examples of job postings and their continuous AI measure ωAI
j . Jobs 1–10 are

examples of AI-skilled jobs, with the first five being non-data-specific and the last 5 being data-
specific. Jobs 11–20 are examples of non-AI-skilled jobs, with the first five being data specific and
the last 5 being non-data-specific. The AI relatedness score of each skill is listed in parentheses.

Job Title Employer Skills Score
AI jobs

1
Research Engineer - Natural 
Language Processing InterActiveCorp

Machine Learning (1), Natural Language Processing (1), Natural Language Toolkit (0.895), Computational Linguistics (0.777), 
WEKA (0.760), Information Extraction (0.709), Mahout (0.593), Information Retrieval (0.360), Apache Hadoop (0.204), Lucene 
(0.188), SOLR (0.142), C++ (0.067), Software Engineering (0.043), Python (0.116), Lexical Semantics (0.625), Ontologies (0.326), 
Java (0.040), PERL Scripting Language (0.034), Relational Databases (0.024), SQL (0.023), Search Analytics (0.022), Shell Scripting 
(0.020), Web Analytics (0.012), Research (0.011), Online Research (0.010), Extensible Markup Language (0.010) 0.31

2
Computer Vision & Image 
Processing Researcher

Rambus 
Incorporated

Computer Vision (1), Object Recognition (0.725), OpenCV (0.689), Pattern Recognition (0.442), CUDA (0.362), Image Processing 
(0.179), Troubleshooting Technical Issues (0.006), C++ (0.067), Communication Skills (0.003), MATLAB (0.113), Self-Motivation 
(0.002), Optical System Design and Analysis (0.019), Research (0.011), Writing (0.004), OpenGL (0.117), Prototyping (0.042), Very 
Large Scale Integration (0.037), Creativity (0.007) 0.21

3 Algorithm Developer IBM
Natural Language Processing (1), Machine Learning (1), IBM Watson (0.125), Java (0.040), Software Development (0.027), 
Candidate Generation (0.013), Creativity (0.007), Troubleshooting (0.003), English (0.002) 0.25

4
Senior Autonomous Vehicle 
Localization Software Engineer

Nvidia 
Corporation

Computer Vision (1), Deep Learning (0.859), Linear Algebra (0.187), OpenGL (0.117), C++ (0.067), Software Engineering (0.043), 
Geometry (0.009), Motor Vehicle Operation (0.006), Teamwork / Collaboration (0.005), Calibration (0.004) 0.230

5 Speech Recognition Scientist
Vocera 
Communications

Computational Linguistics (0.780), Automatic Speech Recognition (0.457), Speech Recognition (0.215), Experiments (0.045), 
Performance tuning (0.011), Research (0.011), Written Communication (0.003) 0.217

6 Data Scientist Zappos

Machine Learning (1), Natural Language Processing (1), Boosting (Machine Learning) (0.902), Support Vector Machines (0.816), 
Naive Bayes (0.759), Matrix Factorization (0.738), Classification Algorithms (0.718), Data Science (0.379), Data Mining (0.159), 
NoSQL (0.119), Clustering (0.103), Data Structures (0.069), Relational DataBase Management System (0.028), SQL (0.023), 
Attribution Modeling (0.072), Detail-Oriented (0.002), Revenue Projections (0.003), Traffic Maintenance (0.002) 0.384

7 Data Mining Engineer Apple Inc.

Artificial Intelligence (1), Natural Language Processing (1), Machine Learning (1), Unsupervised Learning (0.891), Supervised 
Learning (0.696), Mahout (0.593), Pattern Recognition (0.442), Apache Hadoop (0.204), Image Processing (0.179), Data Mining 
(0.159), NoSQL (0.119), Data Collection (0.008), Communication Skills (0.003), Java (0.040), Detail-Oriented (0.002), MATLAB 
(0.113), SQL (0.023), Network Engineering (0.007), Research (0.011), Python (0.116), Meeting Deadlines (0.002), R (0.248), 
Predictive Models (0.243) 0..309

8 Big Data Engineer Socialwire
Machine Learning (1), Recommender Systems (0.843), MapReduce (0.285), Apache Hadoop (0.204), Big Data (0.196), Facebook 
(0.006), R (0.248), Pinterest (0.003), Writing (0.004), MATLAB (0.113) 0.290

9 Big Data Senior Data Scientist AT&T

Machine Learning (1), WEKA (0.760), Clustering Algorithms (0.738), Mahout (0.593), Data Science (0.379), Big Data (0.196), Data 
Mining (0.159), Clustering (0.103), Simulation (0.028), Experimental Testing (0.039), R (0.248), SPSS (0.067), Creativity (0.007), 
SAS (0.053), Information Systems (0.007), Experiments (0.045), Presentation Skills (0.006), Research (0.011), Data Quality (0.025) 0.235

10 Data Scientist Warby Parker

Natural Language Processing (1), Natural Language Toolkit (0.895), Random Forests (0.839), Pandas (0.498), Data Science (0.379), 
PIG (0.290), Apache Hadoop (0.204), Data Mining (0.159), Data Visualization (0.136), Tableau (0.074), Pentaho (0.058), NumPy 
(0.552), SQL (0.023), Python (0.116), Java (0.040), DevOps (0.039), Agile Development (0.030), Creativity (0.007), Django (0.039), 
Apache Webserver (0.034), Predictive Models (0.243), Relational Databases (0.024), Data Modeling (0.037) 0.249

Non-AI jobs

11 Director Of Business Intelligence
Odesus 
Incorporated

Data Science (0.379), Data Transformation (0.060), SQL (0.023), Communication Skills (0.003), SQL Server Reporting Services 
(0.009), SQL Server (0.009), SQL Server Analysis Services (0.034), Budgeting (0.001), Microsoft Sharepoint (0.002), Data 
Warehousing (0.025), MySQL (0.028), Key Performance Indicators (0.006), Problem Solving (0.005), Web Analytics (0.012), 
Market Research (0.006), Data Modeling (0.037), Business Intelligence (0.026), Creativity (0.007) 0.037

12 Director, Data & Analytics
Decision 
Resources

Big Data (0.196), Business Intelligence (0.026), Business Intelligence Industry Knowledge (0.020), Teamwork / Collaboration 
(0.005), Biopharmaceutical Industry Knowledge (0.004), Communication Skills (0.003) 0.042

13
Senior Healthcare Economics 
Data Analyst

UnitedHealth 
Group

Tableau (0.076), Advanced Statistics (0.149), SAS (0.053), Data Analysis (0.026), SQL (0.023), Economics (0.016), Database Design 
(0.014), Clinical Data Analysis (0.012), Clinical Data Review (0.010), Business Process (0.006) 0.039

14 Data Analyst

United 
Technologies 
Corporation

Data Analysis (0.026), Data Quality (0.025), Data Management (0.018), Database Design (0.014), Proposal Writing (0.007), 
Product Improvement (0.007), Business Planning (0.002) 0.014

15 Sas Database Administrator Pitney Bowes
SAS (0.053), SQL (0.023), Business Strategy (0.009), Teradata DBA (0.005), Self-Starter (0.004), Database Administration (0.004), 
Pivot Tables (0.004), Market Analysis (0.004), Technical Support (0.002), Microsoft Excel (0.002) 0.011

16 Delivery Driver And Technician
Rotech 
Healthcare

Physical Abilities (0.000), Lifting Ability (0.000), Caregiving (0.000), Patient Contact (0.000), Patient Transportation and Transfer 
(0.000), HAZMAT (0.000), Hazardous Materials Endorsement (0.000) 0

17 Vice President Underwriting Morgan Stanley
Workflow Management (0.005), Written Communication (0.003), Detail-Oriented (0.002), Financial Analysis (0.001), Mortgage 
Underwriting (0.001), Staff Management (0.001) 0.002

18 Quality Assurance Engineer Amazon
Computer Engineering (0.034), Software Development (0.027), User Interface (UI) Design (0.016), Software Quality Assurance 
(0.010), Black-box testing (0.009), Quality Assurance and Control (0.003), Consumer Electronics (0.002) 0.014

19 Sales Associate GNC Sales (0.001), Retail Industry Knowledge (0.000), Retail Sales (0.000), Basic Mathematics (0.000) 0

20
Dog And Cat Department 
Manager Petco

Creativity (0.007), Leadership (0.003), Budgeting (0.001), Sales Goals (0.001), Retail Industry Knowledge (0.000), Physical 
Abilities (0.000), Inventory Management (0.000) 0.002
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Table A3. Job Titles with the Highest Average AI-relatedness Measures

This table reports the job titles in Burning Glass with the highest average job-level AI measure
ωAI

j . We only include job titles that have at least 50 job postings and are matched to Compustat
firms.

Job Title Avg. Continuous AI Measure
1 Artificial Intelligence Engineer 0.497
2 Senior Data Scientist - Machine Learning Engineer 0.394
3 Lead Machine Learning Scientist - Enterprise Products 0.369
4 AI Consultant 0.369
5 AI Senior Analyst 0.358
6 Machine Learning Engineer 0.315
7 Technician Architecture Delivery Senior Analyst AI 0.311
8 Artificial Intelligence Analyst 0.308
9 Software Engineer, Machine Learning 0.307

10 Artificial Intelligence Architect 0.303
11 Machine Learning Researcher 0.300
12 Computer Vision Engineer 0.293
13 Senior Machine Learning Engineer 0.286
14 Senior Machine Learning Scientist 0.281
15 Senior Software Engineer - Machine Learning 0.278
16 Senior Engineer II - Data Scientist 0.265
17 Senior Machine Learning Researcher 0.264
18 Artificial Intelligence Consultant 0.263
19 Computer Vision Scientist 0.256
20 Lead Machine Learning Researcher 0.255
21 Senior AI Engineer 0.248
22 Senior Applied Scientist 0.245
23 Senior Engineer - Machine Learning 0.243
24 Senior Risk Modeler 0.241
25 Data Scientist - Engineer 0.238
26 Artificial Intelligence Manager 0.237
27 Machine Learning Scientist 0.230
28 Applied Scientist 0.230
29 Software Engineer - Data Mining/Data Analysis/Machine Learning 0.229
30 Senior Associate, Data Scientist 0.223
31 Director, Data Scientist 0.222
32 Big Data Hadoop Consultant 0.214
33 Vice President- Data Analytics 0.211
34 Data Scientist Specialist 0.210
35 Applied Researcher 0.209
36 Data Scientist, Junior 0.205
37 Senior Staff Data Scientist 0.204
38 Principal Data Scientist 0.204
39 Director, Data Science 0.203
40 Research And Development Engineer - Data Mining/Data Analysis/Machine Learning 0.195
41 Manager, Data Scientist 0.192
42 Big Data Scientist 0.191
43 Architect - Relevance Infrastructure 0.191
44 Director Of Data Science 0.189
45 Senior Manager, Data Science 0.189
46 Data Science Specialist 0.188
47 Data Scientist II 0.188
48 Senior Data Science Engineer 0.187
49 Staff Data Scientist 0.186
50 Lead Data Scientist 0.186
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Table A4. Summary Statistics

This table reports summary statistics for the sample of firms in our baseline regressions (including 1052 firms in the regressions with the
resume-based measure and 935 firms in the regressions with the job-postings-based measure). All changes in variables are computed
over 2010–2018. Changes in the numbers of trademarks and patents are measured as changes in log(1+number) to take into account
firms with zero trademarks or patents. We follow the methodology proposed by Ganglmair et al. (2021) to distinguish between product
patents and process patents. The number of product and process patents are de-trended using the entire patent sample due to the
truncation of the patent sample in recent years. The change in the product mix is measured as the sum of annual changes from 2010
to 2018, where each annual change is the angle between the two word vectors indicating firms’ product offerings in that year and the
previous year following Hoberg et al. (2014). Log markup is measured as the log of the ratio of sales to cost of goods sold, following
De Loecker et al. (2020). For each variable, we report the number of observations, the mean, the standard deviation, the median, and
1st, 5th, 10th, 25th, 75th, 90th, 95th, and 99th percentiles.

Variable Name N Mean Std. Deviation p1 p5 p10 p25 p50 p75 p90 p95 p99

Change in share of AI workers (Cognism) 1052 .0010 .0022 -.0018 -.00011 0 0 .00024 .0011 .0029 .0046 .014
Change in share of AI workers (Burning Glass) 935 .0046 .012 -.0033 0 0 0 0 .0034 .013 .026 .076
Change in log sales 1052 .45 .66 -1.2 -.61 -.24 .073 .39 .77 1.3 1.7 2.6
Change in log employment 1052 .3 .64 -1.8 -.67 -.35 -.036 .26 .61 1.0 1.4 2.2
Change in log market value 1010 .52 .72 -1.2 -.78 -.38 .1 .51 .94 1.4 1.7 2.6
Change in log number of trademarks 553 -.13 1.2 -3.0 -2.3 -1.8 -.92 0 .41 1.4 2.0 3.2
Change in log number of product patents 621 -.20 1.1 -2.9 -2.2 -1.8 -.94 .062 .85 .85 .85 1.5
Change in log number of process patents 621 -.067 .99 -3.0 -2.0 -1.5 -.63 .067 .76 .76 .76 1.5
Change in product mix 958 4.3 1.3 2.1 2.6 3.0 3.4 4.1 5.0 6.0 6.9 7.9
Change in log sales per worker 1052 .14 .39 -1.0 -.44 -.24 -.038 .12 .30 .56 .79 1.6
Change in revenue TFP 977 .0065 .36 -1.2 -.51 -.36 -.17 .0016 .17 .38 .55 1.2
Change in log COGS 1052 .38 .67 -1.6 -.80 -.34 .038 .35 .72 1.2 1.6 2.3
Change in log operating expense 1052 .42 .61 -1.3 -.57 -.22 .073 .37 .74 1.2 1.6 2.1
Employment in 2010 (thousands) 1052 23 55 .066 .21 .39 1.2 4.5 16 57 109 294
Sales in 2010 (millions) 1052 9104 24318 16 69 146 491 1601 5965 20732 50272 125805
Cash / Assets in 2010 1052 .16 .17 .00054 .0062 .014 .041 .11 .23 .41 .55 .70
R&D / Sales in 2010 1052 .055 .17 0 0 0 0 0 .029 .14 .23 1.1
Log markup in 2010 1052 .56 .47 -.34 .082 .14 .25 .44 .74 1.2 1.5 2.3
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Table A5. AI Investments and Firm Growth across Non-Tech Sectors

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on the contemporaneous changes in AI investments among U.S. public firms (in non-tech
sectors), separately by broad industry sector. Columns 1 and 2 consider firms in the manufacturing
sector (2-digit NAICS = 31, 32, 33), columns 3 and 4 consider firms in the wholesale and retail
trade sectors (2-digit NAICS = 42, 44, 45), columns 5 and 6 look at firms in the finance sector (2-
digit NAICS = 52), and columns 7 and 8 include firms in the other non-tech sectors (all 2-digit
NAICS sectors, except those listed above and 51 and 54). Panel 1 considers the resume-based
measure of the share of AI workers, while Panel 2 looks at the job-posting-based measure. The
changes in the AI measures are standardized to mean zero and standard deviation of one within
each sample. We consider two measures of firm growth: changes in log sales in odd columns
and changes in log employment in even columns. Regressions are weighted by the number of
Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in 2010 in Panel
2. All regressions include industry sector fixed effects and the baseline controls all measured as of
2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup, and log number
of jobs—resumes in Panel 1 and job postings in Panel 2), log industry wage, and characteristics of
the commuting zones where the firms are located (the share of workers in IT-related occupations,
the share of college-educated workers, log average wage, the share of foreign-born workers, the
share of routine workers, the share of workers in finance and manufacturing industries, and the
share of female workers). Standard errors are clustered at the 5-digit NAICS industry level and
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel 1: AI measure from resume data

Manufacturing Wholesale & Retail Finance Other

∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log
Sales Employment Sales Employment Sales Employment Sales Employment

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.135** 0.125* 0.321*** 0.357*** 0.239** 0.264** 0.177*** 0.125*
(0.057) (0.072) (0.061) (0.061) (0.107) (0.103) (0.061) (0.067)

Industry FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
Adj R-Squared 0.321 0.281 0.817 0.857 0.473 0.478 0.473 0.363
Observations 516 516 109 109 149 149 278 278

Panel 2: AI measure from job postings data

Manufacturing Wholesale & Retail Finance Other

∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log
Sales Employment Sales Employment Sales Employment Sales Employment

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.135** 0.110 0.259*** 0.291*** 0.195*** 0.141* 0.141 0.040
(0.065) (0.081) (0.035) (0.035) (0.067) (0.068) (0.092) (0.095)

Industry FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
Adj R-Squared 0.319 0.366 0.673 0.771 0.594 0.605 0.570 0.731
Observations 458 458 102 102 123 123 252 252
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Table A6. AI Investments and Firm Growth in Tech Sectors

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on the contemporaneous changes in AI investments among U.S. public firms in tech sectors.
Columns 1 and 2 consider firms in the information sector (2-digit NAICS = 51), and columns 3
and 4 consider firms in the professional and business services sector (2-digit NAICS = 54). Panel
1 considers the resume-based measure of the share of AI workers, while Panel 2 looks at the job-
posting-based measure. The changes in the AI measures are standardized to mean zero and stan-
dard deviation of one within each sample. We consider two measures of firm growth: changes
in log sales in odd columns and changes in log employment in even columns. Regressions are
weighted by the number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass
job postings in 2010 in Panel 2. All regressions include industry sector fixed effects and the base-
line controls all measured as of 2010: firm-level characteristics (log sales, cash/assets, R&D/sales,
log markup, and log number of jobs—resumes in Panel 1 and job postings in Panel 2), log industry
wage, and characteristics of the commuting zones where the firms are located (the share of work-
ers in IT-related occupations, the share of college-educated workers, log average wage, the share
of foreign-born workers, the share of routine workers, the share of workers in finance and manu-
facturing industries, and the share of female workers). Standard errors are clustered at the 5-digit
NAICS industry level and reported in parentheses. *, **, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

Information Prof. & Business Svcs

∆ Log Sales ∆ Log Employment ∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.495*** 0.409*** 0.035 0.140*
(0.125) (0.114) (0.125) (0.073)

Industry FE Y Y Y Y
Controls Y Y Y Y
Adj R-Squared 0.673 0.622 0.501 0.388
Obs 129 129 54 54

Panel 2: AI measure from job postings data

Information Prof. & Business Svcs

∆ Log Sales ∆ Log Employment ∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.279*** 0.286*** 0.083 0.101*
(0.036) (0.042) (0.085) (0.050)

Industry FE Y Y Y Y
Controls Y Y Y Y
Adj R-Squared 0.384 0.388 0.092 0.395
Obs 119 119 49 49
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Table A7. AI Investments and Firm Growth: Controlling for Detailed Industry Fixed Effects

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on the contemporaneous firm-level changes in AI investments among U.S. public firms (in
non-tech sectors), with detailed industry fixed effects. We consider three measures of growth:
changes in log sales (columns 1–4), changes in log employment (columns 5–8), and changes in
log market value (columns 9–12). The main independent variable is the growth in the share of
AI workers from 2010 to 2018, standardized to mean zero and standard deviation of one. Panel
1 considers the resume-based measure of the share of AI workers, while Panel 2 looks at the job-
posting-based measure. Regressions are weighted by the number of Cognism resumes in 2010 in
Panel 1 and the number of Burning Glass job postings in 2010 in Panel 2. All specifications include
the baseline controls all measured as of 2010: firm-level characteristics (log sales, cash/assets,
R&D/sales, log markup, and log number of jobs—resumes in Panel 1 and job postings in Panel
2), log industry wage, and characteristics of the commuting zones where the firms are located
(the share of workers in IT-related occupations, the share of college-educated workers, log aver-
age wage, the share of foreign-born workers, the share of routine workers, the share of workers
in finance and manufacturing industries, and the share of female workers). Columns 1, 5, and
9 include the baseline specification with the industry sector fixed effects; columns 2, 6, and 10
control for 3-digit NAICS fixed effects; columns 3, 7, and 11 control for 4-digit NAICS fixed ef-
fects; columns 4, 8, and 12 control for 5-digit NAICS fixed effects. Standard errors are clustered
at the 5-digit NAICS industry level and reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ Share AI Workers 0.203*** 0.184*** 0.194** 0.208** 0.219*** 0.188** 0.193* 0.197* 0.224*** 0.183** 0.195* 0.210**
(0.060) (0.066) (0.090) (0.090) (0.077) (0.082) (0.107) (0.104) (0.077) (0.081) (0.102) (0.100)

NAICS2 FE Y N N N Y N N N Y N N N
NAICS3 FE N Y N N N Y N N N Y N N
NAICS4 FE N N Y N N N Y N N N Y N
NAICS5 FE N N N Y N N N Y N N N Y
Controls Y Y Y Y Y Y Y Y Y Y Y Y
Adj R-Squared 0.428 0.496 0.515 0.525 0.418 0.479 0.554 0.565 0.364 0.499 0.568 0.598
Observations 1,052 1,047 1,011 942 1,052 1,047 1,011 942 1,010 1,006 968 896

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ Share AI Workers 0.160*** 0.141** 0.143* 0.156* 0.127** 0.101* 0.110 0.124 0.189*** 0.112 0.111 0.134*
(0.045) (0.056) (0.082) (0.084) (0.050) (0.061) (0.076) (0.083) (0.068) (0.069) (0.077) (0.077)

NAICS2 FE Y N N N Y N N N Y N N N
NAICS3 FE N Y N N N Y N N N Y N N
NAICS4 FE N N Y N N N Y N N N Y N
NAICS5 FE N N N Y N N N Y N N N Y
Controls Y Y Y Y Y Y Y Y Y Y Y Y
Adj R-Squared 0.452 0.532 0.578 0.615 0.526 0.624 0.654 0.670 0.461 0.570 0.647 0.686
Observations 935 927 886 827 935 927 886 827 903 896 852 790
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Table A8. AI Investments (Including External AI Software) and Firm Growth

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on the contemporaneous firm-level changes in AI investments among U.S. public firms (in
non-tech sectors). The main independent variable is the growth in the share of AI-utilizing work-
ers (including both workers with AI skills and workers with jobs referencing external AI software,
such as IBM Watson) from 2010 to 2018, standardized to mean zero and standard deviation of one.
We consider three measures of firm growth: changes in log sales (columns 1 and 2), changes in log
employment (columns 3 and 4), and changes in log market value (columns 5 and 6). Regressions
are weighted by the number of Cognism resumes in 2010. All specifications control for indus-
try sector fixed effects. Columns 2, 4, and 6 also include the baseline controls all measured as of
2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup, and log number
of jobs—resumes in Panel 1 and job postings in Panel 2), log industry wage, and characteristics of
the commuting zones where the firms are located (the share of workers in IT-related occupations,
the share of college-educated workers, log average wage, the share of foreign-born workers, the
share of routine workers, the share of workers in finance and manufacturing industries, and the
share of female workers). Standard errors are clustered at the 5-digit NAICS industry level and
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.242*** 0.228*** 0.289*** 0.265*** 0.285*** 0.279***
(0.056) (0.050) (0.081) (0.062) (0.075) (0.063)

Industry FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.245 0.445 0.268 0.448 0.253 0.397
Observations 1,023 1,023 1,023 1,023 994 994
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Table A9. AI Investments (Continuous AI Measure) and Firm Growth

This table reports the coefficients from long-differences regressions of growth of U.S. public firms
(in non-tech sectors) from 2010 to 2018 on the contemporaneous changes in the average job-level
continuous AI measure across all Burning Glass job postings of each firm. The independent vari-
able is the change in the firm-level average continuous AI-relatedness measures from 2010 to 2018,
standradized to mean zero and standard deviation of one. Panel 1 presents results from the con-
tinuous measure based on all skills (ωAI

j ), and Panel 2 shows results from the continuous measure
based on narrow AI skills (ωNarrowAI

j ). The continuous measure based on narrow AI skills removes
the impact of general programming or statistics skills not specific to AI (e.g., Python or linear re-
gression). See Section 3.1 for detailed descriptions of these measures. We consider three measures
of firm growth: changes in log sales (columns 1 and 2), changes in log employment (columns
3 and 4), and changes in log market value (columns 5 and 6). Regressions are weighted by the
number of Burning Glass job postings in 2010. All specifications control for industry sector fixed
effects. Columns 2, 4, and 6 also include the baseline controls all measured as of 2010: firm-level
characteristics (log sales, cash/assets, R&D/sales, log markup, log number of jobs—resumes in
Panel 1 and job postings in Panel 2), log industry wage, as well as characteristics of the commut-
ing zones where the firms are located (the share of workers in IT-related occupations, the share
of college-educated workers, log average wage, the share of foreign-born workers, the share of
routine workers, the share of workers in finance and manufacturing industries, and the share of
female workers). Standard errors are clustered at the 5–digit NAICS industry level and reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: Continuous All-skill AI Measure

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.143** 0.177*** 0.144 0.130* 0.132 0.197**
(0.069) (0.053) (0.093) (0.069) (0.095) (0.076)

Industry FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.254 0.432 0.306 0.521 0.324 0.446
Observations 935 935 935 935 903 903

Panel 2: Continuous Narrow AI measure

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.147*** 0.174*** 0.154* 0.133*** 0.139 0.202***
(0.057) (0.041) (0.079) (0.050) (0.086) (0.067)

Industry FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.271 0.443 0.317 0.525 0.335 0.459
Observations 935 935 935 935 903 903

79

Electronic copy available at: https://ssrn.com/abstract=3651052



Table A10. AI Investments (Alternative Cutoffs for AI Jobs in Burning Glass) and Firm Growth

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on the contemporaneous changes in the share of AI job postings of U.S. public firms (in
non-tech sectors). AI job postings are defined as job postings with continuous job-level measure
ωAI

j above 0.05 in Panel 1, and job postings with continuous job-level measure ωAI
j above 0.15

in Panel 2. See Section 3.1 for the detailed description of the methodology. The independent
variable is standardized to mean zero and standard deviation of one. We consider three measures
of firm growth: changes in log sales (columns 1 and 2), changes in log employment (columns
3 and 4), and changes in log market value (columns 5 and 6). Regressions are weighted by the
number of Burning Glass job postings in 2010. All regressions control for industry sector fixed
effects. Columns 2, 4, and 6 also include the baseline controls all measured as of 2010: firm-
level characteristics (log sales, cash/assets, R&D/sales, log markup, and log number of jobs—
resumes in Panel 1 and job postings in Panel 2), log industry wage, and characteristics of the
commuting zones where the firms are located (the share of workers in IT-related occupations, the
share of college-educated workers, log average wage, the share of foreign-born workers, the share
of routine workers, the share of workers in finance and manufacturing industries, and the share of
female workers). Standard errors are clustered at the 5-digit NAICS industry level and reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: Cutoff = 0.05

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.142** 0.168*** 0.153* 0.138*** 0.132 0.192***
(0.058) (0.042) (0.080) (0.049) (0.087) (0.067)

Industry FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.268 0.454 0.317 0.528 0.332 0.460
Observations 935 935 935 935 903 903

Panel 2: Cutoff = 0.15

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.146** 0.140** 0.154* 0.106* 0.149 0.176**
(0.065) (0.056) (0.085) (0.058) (0.092) (0.082)

Industry FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.261 0.437 0.311 0.520 0.334 0.453
Observations 935 935 935 935 903 903
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Table A11. AI Investments and Firm Growth: Controlling for Industry- and Firm-level Pre-
trends

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on the contemporaneous firm-level changes in AI investments among U.S. public firms (in
non-tech sectors). In this table, we control for past industry and firm growth, which helps address
the concern that AI-investing firms might already be on higher growth trajectories prior to AI in-
vestments. We consider three measures of firm growth: changes in log sales (columns 1 and 2),
changes in log employment (columns 3 and 4), and changes in log market value (columns 5 and
6). The main independent variable is the growth in the share of AI workers from 2010 to 2018,
standardized to mean zero and standard deviation of one. Panel 1 considers the resume-based
measure of the share of AI workers, while Panel 2 looks at the job-posting-based measure. Re-
gressions are weighted by the number of Cognism resumes in 2010 in Panel 1 and the number of
Burning Glass job postings in 2010 in Panel 2. All specifications control for industry sector fixed
effects and include the baseline controls all measured as of 2010: firm-level characteristics (log
sales, cash/assets, R&D/sales, log markup, and log number of jobs—resumes in Panel 1 and job
postings in Panel 2), log industry wage, and characteristics of the commuting zones where the
firms are located (the share of workers in IT-related occupations, the share of college-educated
workers, log average wage, the share of foreign-born workers, the share of routine workers, the
share of workers in finance and manufacturing industries, and the share of female workers). Ad-
ditionally, columns 1, 3, and 5 control for industry-level growth in sales and employment from
2000 to 2008 (at the 5-digit NAICS level), and columns 2, 4, and 6 control for firm-level growth
in sales and employment from 2000 to 2008. Standard errors are clustered at the 5-digit NAICS
industry level and reported in parentheses. *, **, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.196*** 0.179*** 0.212*** 0.201*** 0.210*** 0.185***
(0.057) (0.046) (0.074) (0.065) (0.069) (0.060)

Industry FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Industry pre-trend Y N Y N Y N
Firm pre-trend N Y N Y N Y
Observations 1,004 815 1,004 815 962 789

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.144*** 0.132*** 0.118** 0.158*** 0.168*** 0.149***
(0.042) (0.039) (0.047) (0.040) (0.062) (0.055)

Industry FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Industry pre-trend Y N Y N Y N
Firm pre-trend N Y N Y N Y
Observations 897 738 897 738 865 71881
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Table A12. AI Investments and Firm Growth: Controlling for State FE and Tobin’s q

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on the contemporaneous firm-level changes in AI investments among U.S. public firms (in
non-tech sectors), with additional controls for state FE and Tobin’s q. We consider three measures
of growth: changes in log sales (columns 1 and 2), changes in log employment (columns 3 and 4),
and changes in log market value (columns 5 and 6). The main independent variable is the growth
in the share of AI workers from 2010 to 2018, standardized to mean zero and standard deviation of
one. Panel 1 considers the resume-based measure of the share of AI workers, while Panel 2 looks at
the job-posting-based measure. Regressions are weighted by the number of Cognism resumes in
2010 in Panel 1 and the number of Burning Glass job postings in 2010 in Panel 2. All specifications
control for industry sector fixed effects, state fixed effects, and the baseline controls all measured as
of 2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup, and log number
of jobs—resumes in Panel 1 and job postings in Panel 2), log industry wage, and characteristics of
the commuting zones where the firms are located (the share of workers in IT-related occupations,
the share of college-educated workers, log average wage, the share of foreign-born workers, the
share of routine workers, the share of workers in finance and manufacturing industries, and the
share of female workers). Columns 2, 4, and 6 also control for Tobin’s Q in 2010, defined as market
value of assets divided by book value of assets. Standard errors are clustered at the 5-digit NAICS
industry level and reported in parentheses. *, **, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.178*** 0.156*** 0.181*** 0.160*** 0.196*** 0.172***
(0.059) (0.043) (0.069) (0.053) (0.068) (0.051)

Tobin’s Q 2010 0.223*** 0.231*** 0.246***
(0.065) (0.063) (0.077)

Industry FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
State FE Y Y Y Y Y Y
NAICS3 FE N N N N N N
Adj R-Squared 0.492 0.551 0.511 0.563 0.425 0.474
Observations 1,046 1,004 1,046 1,004 1,001 1,000

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.139*** 0.108*** 0.155*** 0.122*** 0.143** 0.110**
(0.050) (0.036) (0.053) (0.038) (0.065) (0.049)

Tobin’s Q 2010 0.188*** 0.194*** 0.214***
(0.043) (0.048) (0.062)

Industry FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
State FE Y Y Y Y Y Y
NAICS3 FE N N N N N N
Adj R-Squared 0.547 0.581 0.681 0.701 0.568 0.593
Observations 927 896 927 896 893 892
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Table A13. Past AI Investments and Future Firm Growth

This table reports the coefficients from a predictive regression of firm growth during the later part
of our sample (2015–2020) on growth in AI investments during the earlier part of the sample (2010-
2015) among U.S. public firms (in non-tech sectors). The dependent variables are changes in log
sales in columns 1 and 2, and changes in log employment in columns 3 and 4. The main indepen-
dent variable is the growth in the share of AI workers from 2010 to 2015, standardized to mean
zero and standard deviation of one. Panel 1 considers the resume-based measure of the share of
AI workers, while Panel 2 looks at the job-posting-based measure. Regressions are weighted by
the number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job post-
ings in 2010 in Panel 2. All specifications control for industry sector fixed effects. Columns 2 and
4 also include the baseline controls all measured as of 2010: firm-level characteristics (log sales,
cash/assets, R&D/sales, log markup, and log number of jobs—resumes in Panel 1 and job post-
ings in Panel 2), log industry wage, and characteristics of the commuting zones where the firms
are located (the share of workers in IT-related occupations, the share of college-educated work-
ers, log average wage, the share of foreign-born workers, the share of routine workers, the share
of workers in finance and manufacturing industries, and the share of female workers). Standard
errors are clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.128** 0.084** 0.149* 0.088*
(0.053) (0.041) (0.079) (0.052)

Industry FE Y Y Y Y
Controls N Y N Y
Adj R-Squared 0.250 0.372 0.211 0.357
Observations 990 990 982 982

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.109** 0.116*** 0.144** 0.151***
(0.051) (0.031) (0.073) (0.048)

Industry FE Y Y Y Y
Controls N Y N Y
Adj R-Squared 0.179 0.327 0.150 0.353
Observations 875 875 868 868
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Table A14. AI Investments and Firm Growth: Controlling for Other Technologies

This table reports the coefficients from long-differences regressions of firm growth from 2010 to
2018 on the contemporaneous changes in AI investments among U.S. public firms (in non-tech
sectors), controlling for investments in other (non-AI-specific) technologies measured using the
Burning Glass data. Columns 1 and 2 control for the 2010-2018 change in the firm’s share of non-
AI IT jobs, columns 3 and 4 control for the change in the share of robot-related jobs, columns 5 and
6 control for the change in the share of non-AI data-related jobs, and columns 7 and 8 control for
the changs in the share of non-AI data analysis jobs. An IT job is defined as a job for which at least
10% of the required skills are in the “Information Technology” skill cluster; a robot-related job is a
job with a robot relatedness score (constructed with the same methodology as the AI-relatedness
score but using the core skill of “Robotics”) above 0.1; a data-related job is a job with at least
10% of required skills in data-related skill clusters; a data analysis job is a job with at least 10%
of required skills in the “Analysis” skill cluster. All measures are standardized to mean zero and
standard deviation of one. Panel 1 considers the resume-based measure of the share of AI workers,
while Panel 2 looks at the job-posting-based measure. Regressions are weighted by the number of
Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in 2010 in Panel
2. All regressions control for industry sector fixed effects and the baseline controls all measured as
of 2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup, and log number
of jobs—resumes in Panel 1 and job postings in Panel 2), log industry wage, and characteristics of
the commuting zones where the firms are located (the share of workers in IT-related occupations,
the share of college-educated workers, log average wage, the share of foreign-born workers, the
share of routine workers, the share of workers in finance and manufacturing industries, and the
share of female workers). Standard errors are clustered at the 5-digit NAICS industry level and
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel 1: AI measure from resume data

∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log
Sales Employment Sales Employment Sales Employment Sales Employment

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.207*** 0.217*** 0.208*** 0.219** 0.192*** 0.203*** 0.195*** 0.207***
(0.053) (0.075) (0.063) (0.084) (0.049) (0.070) (0.053) (0.074)

∆ Share Non-AI IT Workers 0.138*** 0.114**
(0.051) (0.045)

∆ Share Robot Workers -0.016 -0.016
(0.032) (0.040)

∆ Share Non-AI Data Workers 0.136*** 0.131***
(0.037) (0.034)

∆ Share Non-AI Data Analysis Workers 0.073** 0.068**
(0.030) (0.031)

Industry FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
Adj R-Squared 0.456 0.430 0.434 0.419 0.465 0.441 0.443 0.425
Observations 970 970 970 970 970 970 970 970

Panel 2: AI measure from job postings data

∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log ∆ Log
Sales Employment Sales Employment Sales Employment Sales Employment

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.158*** 0.119** 0.154*** 0.128*** 0.160*** 0.120*** 0.165*** 0.128***
(0.039) (0.047) (0.038) (0.047) (0.039) (0.045) (0.040) (0.047)

∆ Share Non-AI IT Workers 0.138*** 0.178***
(0.052) (0.057)

∆ Share Robot Workers 0.071 0.015
(0.048) (0.049)

∆ Share Non-AI Data Workers 0.054 0.093
(0.064) (0.072)

∆ Share Non-AI Data Analysis Workers 0.019 0.022
(0.050) (0.052)

Industry FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
Adj R-Squared 0.459 0.540 0.445 0.525 0.443 0.528 0.441 0.525
Observations 935 935 935 935 935 935 935 93584
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Table A15. AI Investments and Firm Growth: IV Estimates Using Job Postings Data

This table estimates the relationship between AI investments and firm growth from 2010 to 2018
for U.S. public firms (in non-tech sectors), where firms’ AI investments are instrumented with
firm-level ex-ante exposure to AI-skilled graduates from AI-strong universities. The independent
variable is the change in the share of AI jobs from 2010 to 2018 based on the job postings data.
Regressions are weighted by the number of Burning Glass job postings in 2010. The independent
variable and the instrument are standardized to mean zero and standard deviation of one. We
consider changes in log sales in columns 1 to 4, log employment in columns 5 to 8, and log market
value in columns 9 to 12. All specifications control for industry sector fixed effects and ex-ante
exposure to universities that are strong in computer science research. Columns 2–4, 6–8, and 10–
12 also include the baseline controls all measured as of 2010: firm-level characteristics (log sales,
cash/assets, R&D/sales, log markup, and log number of jobs—resumes in Panel 1 and job post-
ings in Panel 2), log industry wage, and characteristics of the commuting zones where the firms
are located (the share of workers in IT-related occupations, the share of college-educated workers,
log average wage, the share of foreign-born workers, the share of routine workers, the share of
workers in finance and manufacturing industries, and the share of female workers). Columns 3, 4,
7, 8, 11, and 12 additionally control for firm-level changes in log sales and log employment from
2000 to 2008. Columns 4, 8, and 12 control for state fixed effects. Standard errors are clustered
at the 5-digit NAICS industry level and reported in parentheses. The first-stage F-statistics of the
instrument are reported for all specifications. *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.

∆ Log Sales ∆ Log Employment ∆ Log Market Value

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ Share AI Workers 0.154 0.247** 0.230*** 0.093 0.440** 0.436*** 0.234* 0.048 0.100 0.160 0.210* 0.119
(0.099) (0.103) (0.078) (0.097) (0.207) (0.140) (0.122) (0.138) (0.164) (0.152) (0.114) (0.138)

Industry FE Y Y Y Y Y Y Y Y Y Y Y Y
CS Control Y Y Y Y Y Y Y Y Y Y Y Y
Baseline Controls N Y Y Y N Y Y Y N Y Y Y
Control Pre-trend N N Y Y N N Y Y N N Y Y
State FE N N N Y N N N Y N N N Y
F Statistic 9.2 9.4 10.9 12.5 9.2 9.4 10.9 12.5 9.2 9.4 10.9 12.5
Observations 889 889 702 696 889 889 702 696 860 860 684 676
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Table A16. AI Investments and Product Innovation: IV Estimates Using Resume Data

This table estimates the relationship between AI investments and product innovation from 2010 to
2018 for U.S. public firms (in non-tech sectors), where firms’ AI investments are instrumented with
firm-level ex-ante exposure to AI-skilled graduates from AI-strong universities. The independent
variable is the change in the share of AI workers from 2010 to 2018 based on the resume data. The
independent variable and the instrument are standardized to mean zero and standard deviation
of one. Regressions are weighted by the number of Cognism resumes in 2010. We consider the
change in log(1+number of trademarks) in columns 1 to 4, the change in log(1+number of prod-
uct patents) in columns 5 to 8, and the change in the product mix in columns 9 to 12. Product
patents are patents with over 50% of the claims being product claims, following the categoriza-
tion in Ganglmair et al. (2021). The change in the product mix is measured as the sum of annual
changes between from 2010 to 2018, where each annual change is the angle between the two word
vectors indicating firms’ product offerings in that year and the previous year, following Hoberg et
al. (2014). All specifications control for industry sector fixed effects and ex-ante exposure to uni-
versities that are strong in computer science research. Columns 2–4, 6–8, and 10–12 also include
the baseline controls all measured as of 2010: firm-level characteristics (log sales, cash/assets,
R&D/sales, log markup, and log number of jobs—resumes in Panel 1 and job postings in Panel
2), log industry wage, and characteristics of the commuting zones where the firms are located
(the share of workers in IT-related occupations, the share of college-educated workers, log aver-
age wage, the share of foreign-born workers, the share of routine workers, the share of workers
in finance and manufacturing industries, and the share of female workers). Columns 3, 4, 7, 8,
11, and 12 additionally control for firm-level changes in log sales and log employment from 2000
to 2008. Columns 4, 8, and 12 add state fixed effects. Standard errors are clustered at the 5-digit
NAICS industry level, and reported in parentheses. The first-stage F-statistics of the instrument
are reported for all specifications. *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.

∆ Log Number of ∆ Log Number of
Trademarks Product Patents Change in Product Mix

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ Share AI Workers 0.081 0.367 0.435* 0.429** 0.175 0.317* 0.472*** 0.466** 0.189 0.180 0.179 0.444**
(0.267) (0.351) (0.261) (0.212) (0.174) (0.170) (0.159) (0.200) (0.272) (0.228) (0.205) (0.205)

Industry FE Y Y Y Y Y Y Y Y Y Y Y Y
CS Control Y Y Y Y Y Y Y Y Y Y Y Y
Baseline Controls N Y Y Y N Y Y Y N Y Y Y
Control Pre-trend N N Y Y N N Y Y N N Y Y
State FE N N N Y N N N Y N N N Y
F Statistic 14.0 15.2 15.8 24.0 14.3 21.5 41.1 40.0 15.0 15.7 13.1 19.4
Observations 528 528 435 426 586 586 479 469 932 932 725 717
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Table A17. AI Investments and Productivity of Early Adopters

This table reports the coefficients from long-differences regressions of changes in firm productivity
from 2010 to 2018 on changes in AI investments by U.S. public firms (in non-tech sectors) from
2010 to 2014. We consider two measures of productivity: log sales per worker in columns 1 and
2 and revenue TFP in columns 3 and 4. Revenue TFP is the residual from regressing log revenue
on log employment and log capital (constructed using the perpetual inventory method), with
separate regressions for each industry sector. The main independent variable is growth in the
share of AI workers from 2010 to 2014, calculated based on resumes in Panel 1 and based on
job postings in Panel 2. All independent variables are standardized to mean zero and standard
deviation of one. Regressions are weighted by the number of Cognism resumes in 2010 in Panel
1 and the number of Burning Glass job postings in 2010 in Panel 2. All specifications control for
industry sector fixed effects. Columns 2 and 4 also include the baseline controls all measured as of
2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup, and log number
of jobs—resumes in Panel 1 and job postings in Panel 2), log industry wage, and characteristics of
the commuting zones where the firms are located (the share of workers in IT-related occupations,
the share of college-educated workers, log average wage, the share of foreign-born workers, the
share of routine workers, the share of workers in finance and manufacturing industries, and the
share of female workers). Standard errors are clustered at the 5-digit NAICS industry level and
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Revenue
per Worker TFP

(1) (2) (3) (4)

∆ Share AI Workers 2010-2014 -0.075 -0.046 -0.041 -0.018
(0.065) (0.042) (0.053) (0.039)

Industry FE Y Y Y Y
Controls N Y N Y
Adj R-Squared 0.225 0.383 0.211 0.344
Observations 1,033 1,033 961 961

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Revenue
per Worker TFP

(1) (2) (3) (4)

∆ Share AI Workers 2010-2014 0.010 0.045 0.026 0.045
(0.070) (0.042) (0.055) (0.037)

Industry FE Y Y Y Y
Controls N Y N Y
Adj R-Squared 0.368 0.557 0.287 0.426
Observations 929 929 869 869
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Table A18. AI Investments and Industry Growth within a Balanced Panel of Firms

This table reports the coefficients from industry-level long-differences regressions of the changes
in total industry sales and employment on contemporaneous changes in AI investments for a bal-
anced panel of firms existing in both 2010 and 2018. Each observation is a 5-digit NAICS industry,
and we exclude tech sectors. The independent variable is the change in the share of AI workers
from 2010 to 2018, standardized to mean zero and standard deviation of one. Panel 1 considers
the resume-based measure of the share of AI workers, while Panel 2 looks at the job-posting-based
measure. Regressions are weighted by the total (industry-level) number of Cognism resumes in
2010 in Panel 1 and the total (industry-level) number of Burning Glass job postings in 2010 in
Panel 2. The dependent variables are the changes, from 2010 to 2018, in log total sales (not includ-
ing entrants and exits between 2010 and 2018) in columns 1 and 2 and in log total employment in
columns 3 and 4. All measures are calculated using Compustat firms that exist at the beginning
(2010) and the end (2018) of our sample. All specifications control for industry sector fixed effects.
Regressions in columns 2 and 4 also include industry-level controls for log total employment, log
total sales, and log average wage in 2010. Standard errors are robust against heteroskedasticity
and reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

Panel 1: AI measure from resume data

∆ Sales ∆ Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.171*** 0.188*** 0.194*** 0.211***
(0.058) (0.045) (0.074) (0.062)

Industry Sector FE Y Y Y Y
Controls N Y N Y
Observations 275 275 275 275

Panel 2: AI measure from job postings data

∆ Sales ∆ Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.157** 0.138** 0.161 0.142
(0.073) (0.064) (0.116) (0.108)

Industry Sector FE Y Y Y Y
Controls N Y N Y
Observations 261 261 261 261
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