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rates at the household level to show that there is enough heterogeneity in portfolio revaluations

to explain the entire rise in financial wealth inequality since the 1980s. A standard incomplete
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1 Introduction

Since discount rates have a direct link to the values of financial assets, a natural hypothesis is

that falling interest rates cause a rise in financial wealth inequality, and vice versa. Characterizing

this channel, however, requires overcoming two obstacles. First, the ultimate impact on financial

wealth inequality depends not on the average effect of discount rates on asset prices, but on the

heterogeneity of these revaluations across the population, and how they covary with initial levels of

financial wealth. Further, to the extent that real rates influence financial wealth inequality, whether

the resulting gains and losses occur only “on paper” or actually influence future consumption and

hence welfare is far from clear.

In this paper, we rigorously measure the link between real yields and financial wealth inequal-

ity, with the goal of answering two research questions. First, what share of the rise in financial

wealth inequality displayed can be quantitatively explained by falling interest rates? Second,

what are the implications for inequality in total wealth — defined as the present value of lifetime

consumption — that actually determines welfare?

To answer these questions, we combine a set of novel empirical estimates with a quantitative

structural model. For our first question, we directly measure the exposure of financial wealth

portfolios to changes in real interest rates at the household level, allowing us to directly estimate

the effect of asset revaluations on financial wealth inequality. For our second question, we use a

realistic consumption-savings model to compute the implied exposure of each household’s con-

sumption plan to the same changes in rates. We show that the extent to which this exposure

aligns or diverges from the exposure of the household’s financial wealth portfolio determines the

ultimate consequences of the change in rates for consumption and welfare.

We begin by summarizing the exposure of agents’ portfolios to a change in interest rates using

the cash flow duration of those portfolios. A sufficient condition for whether a fall in rates will

increase financial wealth inequality is that the the aggregate (value-weighted) duration of financial

wealth exceeds the average (equal-weighted) duration of financial wealth.

To check this condition, and quantify the impact of a fall in rates on financial wealth inequal-

ity, we turn to the data. We use microdata from the Survey of Consumer finances to character-

ize households’ portfolio allocations across asset classes. We then use an auxiliary asset pricing

model, estimated to fit asset prices and cash flows quarter-by-quarter, to compute the cash flow

duration of each asset class. Combined, we are able to characterize the distribution of financial

wealth durations across the population. Using these measures, we find that the aggregate duration

of financial wealth in our baseline 1980s economy was 25.72, compared to an average duration of

15.43, implying that a fall in interest rates will indeed raise measured financial wealth inequality.

We observe substantial heterogeneity in financial durations by wealth level and age. Low-

wealth households have low financial durations, driven by their higher shares of deposit-like
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assets, the presence of consumer debt, and lower shares of housing, private business, and stock

market wealth. The reverse is true for high-wealth households. Conditional on wealth, financial

durations are declining in age. This heterogeneity in financial duration is a new empirical finding,

and crucial for the response of financial inequality to the decline in long-term real rates.

To study the quantitative implications of these measured durations for financial wealth in-

equality, as well as future consumption (total wealth) inequality, we turn to a calibrated life-cycle

model of the U.S. economy. The model features idiosyncratic income risk, calibrated using Panel

Survey of Income Dynamics data, as well as a superstar income state that enables the model to

exactly match the financial wealth Gini in the 1980s. To capture our key empirical findings, we cal-

ibrate heterogeneity in the duration of financial wealth to flexibly match our empirical estimates

by wealth bin and age. For our main experiment, we initialize the model at a long-term real inter-

est rate of 4.82%, the level we estimate to have prevailed in the 1980s, then unexpectedly reduce it

permanently to 0.34%, the level we estimate to have prevailed in the 2010s.

First, we answer the positive question: what happens to financial wealth inequality in the

calibrated model after rates decline unexpectedly? To do this, we compute the implied financial

wealth distribution after revaluing all assets using the new interest rate and our distribution of

durations fitted to the data, which we denote the repriced distribution. Marking-to-market alone can

more than explain the rise in financial wealth inequality between the 1980s and 2010s. Repricing

increases the financial wealth Gini from 0.754 to 0.891, compared to an increase from 0.754 to 0.817

in the data. The top-10% share increases by 13.6pp under repricing, compared to an increase of

8.5pp in the data, while the top-1% share increases by 17.7pp under repricing, compared to an

increase of either 4.8pp or 10.5pp in the data, depending on the source.

Having established the strength of this mechanism, we turn to our second, normative question:

what are the implications of this change for total wealth or consumption inequality? Since wealth

gains can occur “on paper” without translating into actual consumption gains and losses, estab-

lishing the proper benchmark is essential. We compute this benchmark as the change in financial

wealth that would be required under the new, lower interest rate, so that each household would

be able to afford their prior consumption plans formed under the old interest rate. We denote this

object as the compensated financial wealth distribution, and verify that it represents a competitive

equilibrium in the low-rate economy.

To be completely hedged and keep its consumption unchanged, a household’s financial port-

folio duration needs to match the duration of its excess consumption plan, which is defined as

its future consumption minus labor income. We find that attaining this compensated distribution

requires a rightward shift in the wealth distribution following a decline in rates: Compensation re-

quires 170.8% more fin wealth, 32.1% goes to top 1%. with more than 40% of new financial wealth

accruing to the top-1% of the financial wealth distribution. These results imply that large increases

in the financial wealth of the richest individuals do not imply any actual change in consumption
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beyond “paper” gains.

However, we find that the aggregate duration of U.S. financial wealth is smaller than the du-

ration of a typical household’s excess consumption plan. Given that condition, financial wealth

inequality should decline to ensure that all households can afford the same consumption plan. The

compensated distribution is much less unequal than the original or the repriced one.

To summarize, financial wealth inequality would need to fall substantially under the com-

pensated distribution, rather than rising as observed in the data, implying that a fall in rates is

not consumption neutral. Holding agents’ consumption plans fixed would require the financial

wealth Gini to fall from 0.754 to 0.638, and for the top-10% and top-1% financial wealth shares to

fall by 14.5pp and 10.4pp, respectively. This large deviation from what is observed under repric-

ing implies that household portfolios provide far from perfect hedging, and that repricing instead

meaningfully reallocates consumption possibilities across the population.

This result is largely driven by life cycle dynamics. While financial wealth is equal to the

present value of lifetime excess consumption by definition, the exposures of these objects to in-

terest rate changes is differs across households. The young, who plan to save in middle age and

dissave in retirement, have a very high duration of excess consumption, because they keep con-

suming after retirement. This renders their consumption plans much more expensive as rates fall.

Young households are forced later to buy financial assets at higher prices.

At the same time, the low levels of financial wealth held by the young, combined with their

observed financial wealth durations from the data, fall far short of delivering the repricing gains

needed to afford this plan. Despite having little change in financial wealth on impact, the young

will struggle to accumulate wealth for retirement under low rates, and face a serious contraction in

their consumption possibilities. We find that this degree of under-hedging is decreasing with age,

while the oldest agents are actually over-hedged, and see their consumption possibilities expand

due to large capital gains on their wealth positions. In part because older agents are wealthier, we

find that net consumption gains are also increasing in households’ initial financial wealth position.

To sum up, our paper combines micro-level data on household portfolios with a structural

model to measure the impact of declining rates on the distribution of financial and total wealth.

We find that heterogeneity in repricing gains across household portfolios is a powerful mechanism

through which falling interest rates have increased wealth inequality since the 1980s, more than

explaining the entire rise in measured financial wealth inequality over this period. According

to our model, these mark-to-market effects will actually influence future consumption outcomes,

as younger and less wealthy households are forced to save at lower rates for their retirement

by purchasing more expensive assets in the future, while older and wealthier households gain

because of the mark-to-market effects.

The rest of the paper is organized as follows. The next section discusses the related literature.

Section 3 shows that the share of the top percentiles tracks the cost of an indexed annuity quite
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closely in the U.S., U.K., and France. This section then infers the distribution of financial duration

and computes the repriced wealth distribution. Section 4 derives theoretical results in a general

incomplete markets economy with aggregate uncertainty and idiosyncratic income risk. Section 5

describes a benchmark case in which households are fully hedged against rate declines. Section

6 quantifies the effect of an interest rate change by adding a life-cycle component to the model as

well as heterogeneity across demographic groups. Section 7 concludes.

Appendix A provides an auxiliary asset pricing model used to infer real interest rates and

durations of the components of financial wealth. Appendix C contains details on data sources

and construction. Appendix D contains the proofs of the propositions. Appendix E contains some

details of the calibrated model.

2 Related Literature

A large strand of recent literature documents the evolution of income inequality as well as fi-

nancial wealth inequality over the past century (Piketty and Saez, 2003; Piketty, 2015; Alvaredo,

Chancel, Piketty, Saez, and Zucman, 2018b). Most of the evidence suggests that financial wealth

inequality has increased in many countries over the past decades. Zucman (2019) reviews the

empirical literature on the topic. Benhabib and Bisin (2018) survey economic theories of wealth

inequality.

Much of the literature on wealth inequality adopts a backward-looking approach and explores

the connection between past returns and current wealth. This literature has argued that high

past rates of return and heterogeneity therein helps account for the increase in financial wealth

inequality (Piketty and Zucman, 2015; Fagereng, Guiso, Malacrino, and Pistaferri, 2020; Bach,

Calvet, and Sodini, 2020; Hubmer, Krusell, and Smith, 2020; Cox, 2020).

But wealth is also the current value of the household’s future consumption stream. Human

wealth is the value of future labor income and financial wealth is the value of future consumption

minus income. We bring an asset pricing perspective to the discussion on inequality. We impute a

valuation by discounting future cash flows. When rates declines, households need more wealth to

finance the same consumption stream. Households that have mostly human wealth are likely to be

better hedged. Households with mostly financial wealth need enough duration in their portfolio

in order to finance future consumption. To keep consumption shares unchanged, a decline in real

rates needs to entail a reallocation of financial wealth towards those households who rely mostly

on their (current and future) financial wealth to finance future consumption.

Discount rates matter. In a simple partial equilibrium model, Moll (2020) explains that small

discount rate-induced changes in the wealth distribution may have smaller welfare effects than

cash flow-induced changes. We make a related point in a version of the Bewley-style general

equilibrium model with aggregate and idiosyncratic risk. Recently, Catherine, Miller, and Sarin
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(2020) show that discounting social security transfers at time-varying discount rates has quantita-

tively important implications for wealth inequality.

Greenwald, Lettau, and Ludvigson (2019) point to increases in the share of output accruing to

profits as a key source of the rise in equity values since 1989. While we motivate our main exper-

iment using a drop in the real risk-free rate, the decline in expected returns applies more broadly

to other financial assets. This decline could arise either from a highly persistent change in the real

risk free rate or to a decrease in risk premia. To the extent that economic forces have varied these

quantities across time and across different financial assets, our methodology could be extended

to capture these more detailed patterns. The auxiliary asset pricing model in Appendix A indeed

shows declines in expected real returns not only on bonds but also on stocks and housing.

Our paper is related to recent work by Auclert (2019), who explores the effect of cross-sectional

variation in the duration of households’ financial assets for the effectiveness of monetary policy.

We consider a setting with aggregate risk, we develop measures of household duration based

on a no-arbitrage dynamic asset pricing model and household financial portfolios, and we assess

quantitatively the extent to which households have hedged their consumption plan against in-

terest rate innovations. In earlier work, Doepke and Schneider (2006) focus on the distributional

consequences of inflation. Our work instead focuses on the distributional effects of changes in

long-term real rates. Gomez and Gouin-Bonenfant (2020) study the effects of lower interest rate

on the cost of raising new capital for entrepreneurs, linking the decline in interest rates to the rise

in wealth inequality through a different channel.

There are important normative implications for fiscal policy. The compensated distribution

that allows all households to implement their old consumption plans features less top total wealth

inequality than both the old distribution and the actual repriced distribution, but a similar total

wealth Gini. This suggests that a tax on top-wealth households may be able to improve on the

repriced consumption distribution. In our life-cycle model, we find that young households are

hurt most by a reduction in rates. In that respect, our model speaks to the inter-generational

distribution of the burden of taxation. A large literature studies optimal labor and capital income

taxation in Bewley models with idiosyncratic risk, endogenous labor supply, and capital formation

(Aiyagari, 1995; Panousi and Reis, 2017; Heathcote, Storesletten, and Violante, 2017; Krueger and

Ludwig, 2018; Boar and Midrigan, 2020). We take labor income as given and do not model capital

formation, but instead focus on the distributional implications of lower interest rates.

As an aside, we resolve an outstanding issue in the literature on how to compute an individ-

ual’s human wealth. A common approach in the literature is to use the individual’s own SDF to

compute human wealth. Instead, Lustig, Van Nieuwerburgh, and Verdelhan (2013) propose using

the same stochastic discount factor (SDF) that prices traded assets to discount an individual’s la-

bor income stream. In this paper we show that using individual SDFs results in a wealth measure

that does not aggregate. For wealth accounting, the aggregate SDF is more convenient, because
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the aggregate value of individual wealth is consistent with market valuations.

By emphasizing total wealth (inequality), of which human wealth (inequality) forms a very

significant component, our work contributes to the literature on measuring wealth (inequality).

Our paper provides new and detailed statistics on the duration of financial wealth for U.S. house-

holds. Related, Kuhn, Schularick, and Steins (2020) study how housing and equity portfolio shares

differ across the wealth distribution and result in differing financial wealth dynamics for the mid-

dle class and the top of the financial wealth distribution. Recent work discusses the measurement

of private business income and wealth (Kopczuk, 2017; Saez and Zucman, 2016; Piketty, Saez, and

Zucman, 2018; Smith, Yagan, Zidar, and Zwick, Working Papers; Kopczuk and Zwick, 2020). In

our theoretical work, we sidestep this issue by recognizing that financial wealth is the present dis-

counted value of the future stream of consumption minus labor income. In our empirical work,

we infer the duration of private business wealth from that of small stocks.

Our conclusions regarding the differing behavior of financial and total wealth inequality are

not sensitive to the source of the decline in interest rates. The literature has proposed a long list of

candidates for such a growth slowdown: demographics (Summers, 2014; Eggertsson and Mehro-

tra, 2014; Eichengreen, 2015), a productivity slowdown due to a plateau in educational attainment

or diminishing technological progress (Gordon, 2017), a global saving glut and/or shortage of safe

assets (Bernanke et al., 2005; Caballero, Farhi, and Gourinchas, 2008), government spending that

leads to depressed future aggregate demand (Mian, Straub, and Sufi, 2020), a decline in competi-

tion (Gutiérrez and Philippon, 2017), a decline in desired investment due to lower relative prices

of capital goods (Rachel and Smith, 2017), among others. Lower tax progressivity could lead to

more saving by the rich, more aggregate wealth, and lower rates (Hubmer et al., 2020). However,

Heathcothe, Storesletten, and Violante (2020) argue that once transfers are considered, the U.S. tax

system has not become less progressive.

Alternatively, a rise in income inequality could be the origin of lower interest rates. Mian et al.

(2020) argue that the rich have a higher propensity to save than the poor; Fagereng, Blomhoff

Holm, Moll, and Natvik (2019) provide empirical evidence consistent with this from Norway. This

reduces aggregate demand and the real rate of interest in the wake of an exogenous increase in

income inequality, for example, due to skill-biased technological change. In our work, we consider

a decline in real rates driven by a decline in the expected growth rate of the economy. While

the interest rate is endogenous in the Bewley model of Section 4, our model features standard

homothetic preferences. The model in Section 6 keeps labor income inequality constant, in order

to isolate the effect of a decline in the long-run growth rate of the economy.1

1Hubmer et al. (2020) show that a rise in earnings risk actually lowers wealth inequality as it strengthens precau-
tionary savings motives meaningfully for all but the richest households. A rise in top-income inequality, in contrast,
can increase wealth inequality.
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3 Wealth Inequality and Real Rates: Empirical Evidence

In this section we document a strong time-series correlation between the evolution of long-term

real interest rates and wealth inequality. While our focus is on the U.S. in most of the paper, this

section documents that this correlation is present also in the United Kingdom and in France. This

evidence suggests that households are partially hedged against changes in long real rates.

3.1 Decline in Real Rates

We start by documenting a broad-based decline in expected returns across all major asset classes.

To do so, we develop an auxiliary no-arbitrage asset pricing model in Appendix A. The model

prices bonds of various maturities, both nominal and real, the aggregate stock market, several

cross-sectional stock market factors including small, growth, value, and infrastructure stocks, and

households’ housing wealth. According to this model, the ten-year real bond yield averaged 4.82%

in the 40 quarters of the 1980s decade and 0.34% in the 2010s decade.2 The asset pricing model

shows similarly large declines in expected real returns on the aggregate stock market and on hous-

ing wealth, as shown in Table 1. Other stock indices such as value and infrastructure stocks show

larger declines, while growth and small stocks show smaller declines. Expected returns on total

wealth, measured as a claim to GDP or to aggregate consumption, show large declines around

12pp-13pp. In other words, the decline in expected returns was broad-based.

Table 1: Expected Real Returns Decade Averages

Asset 1980s 2010s Decline

Ten-year real bond yield 4.82% 0.34% 4.48%
Aggregate stock market 7.98% 2.00% 5.98%
Growth stocks 5.21% 3.53% 1.68%
Value stocks 18.50% 7.19% 11.31%
Infrastructure stocks 11.75% 2.35% 9.40%
Small stocks 3.57% 3.18% 0.39%
Housing wealth 8.24% 4.89% 3.35%
GDP claim 15.90% 2.80% 13.10%
Consumption claim 15.27% 2.84% 12.43%

Note: The table reports model-implied real expected real returns and average them over the 40 quarters in the 1980s
and the 40 quarters of the 2010s. The model is described in Appendix A.

2The asset pricing model matches the available data on Treasury Inflation-Indexed Securities over the period for
which they are available. The model-implied yield changes are similar for real bonds of different maturities.
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3.2 Increased Wealth Inequality

Financial wealth inequality and long-term real interest rates have displayed a strong negative co-

movement in the post-WWII U.S. data. Figure 1 displays the bottom-90% financial wealth share

for the U.S., from the World Inequality Database, along with 10-year real yields, obtained from the

auxiliary asset pricing model described above. Real yields rose from an average of 0.17% in the

1950s to an average of 4.82% in the 1980s, before falling to an average of 0.34% in the 2010s. Over

the same period, the bottom-90% share of financial wealth rose from 31.5% in the 1950s to 37.0% in

the 1980s, before falling to 28.1% in the 2010s, displaying the same temporal pattern. Conversely,

the top 10% share of financial wealth displays a strong inverse relationship to real interest rates.

Figure 1: Bottom 90% Wealth Share vs. 10-Year Real Yields
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Note: The red solid line displays the bottom 90% financial wealth share for the United States, obtained annually from
1947 until 2019 from the World Inequality Database. The black dash-dot line displays an estimate of the 10-year real
bond yield, obtained from a dynamic affine term structure model, estimated on quarterly data from 1947.Q1-2019.Q4
(see Appendix A for details).

The inverse relationship between top wealth shares is robust across wealth measures, interest

rate measures, and countries. Figure 2 shows the wealth share of the top-10% of the population

in the left panels and the wealth share of the top-1% of the population in the right panels. The

top panel is for the U.S., the middle panel for the U.K., and the bottom panel is for France. Our

main source of wealth inequality data is the World Inequality Database. These data were recently

updated so that there is an old and a new WID series. For the U.S., we also plot the wealth

shares constructed from the Survey of Consumer Finances (SCF+). For the U.K. (France), we have

added wealth shares from the Credit Suisse (CS) Global Wealth report available after 2012 (2014).

Each panel also plots the price of a thirty-year real annuity, computed either from nominal yields

and inflation or alternatively from our auxiliary asset pricing model. Construction details are in
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Appendix C.1. The sample is 1947-2019.3

For both inequality measures, there is a strong positive correlation between top wealth shares

and the price of a long-term real annuity. Between 1947 and 1982, the top-10% (top-1%) wealth

share falls from 70% (29%) to 63% (24%) in the U.S. as the annuity becomes cheaper. From 1982

until 2015, the top-10% (top-1%) wealth share rises from 63% (24%) to 73% (36%). During this

period, the cost of the annuity more than doubles. There is a small decline in top wealth shares

from 2015 until 2019, which is expected to have reversed again in 2020.

The patterns in both wealth inequality and the evolution of the cost of the annuity are similar in

the UK and in France. Rachel and Smith (2017) show that the decline in the real rate has occurred

across a broad set of developed and emerging market countries. While many other factors no

doubt differ across countries, this shared trend in rates should result in a global rise in financial

wealth inequality.

Wealth measures are valuation metrics. From the household budget constraint, it follows that

wealth is the present value of future household consumption, and human wealth is the present

value of household labor income. Financial wealth is the difference between these two wealth

measures. As a result, there is a tight connection between wealth inequality and long rates. When

long-term real rates decline and aggregate valuation ratios increase, we expect measures of in-

equality to increase because wealth is being marked-to-market as long as different households

have different exposure to real rates, and even in the absence of news about the distribution of fu-

ture consumption shares. Wealth inequality measures are not immune to discount rate variation.

The evidence in Figure 2 is consistent with this insight.

3.3 Household Heterogeneity in Financial Duration

Variation in real rates only matters for wealth inequality if households have heterogeneous port-

folios. We find that there is significant heterogeneity in the exposure of household portfolios to

real rate variation.

Every asset has its own duration, which measures the sensitivity of the asset’s market price to

interest rates. By feeding in the actual duration of household portfolios, we can mark the house-

hold’s portfolios to market. The real world’s counter-part to the model’s financial asset is a port-

folio of various financial and real assets that households own. As Table 2 shows, household assets

consist of (i) cash, deposits, and money market instruments, (ii) stocks held directly and indirectly

in mutual funds and pension accounts, (iii) real estate, (iv) private business wealth, and (v) fixed

income assets (directly and indirectly held). Household liabilities consist of mortgage, student,

and consumer debt. The duration of a financial portfolio is the weighted average duration of the

components of the financial portfolio, where the weights are the portfolio weights ω(k) of the

3For France we start our sample in 1950 since inflation was very high coming out of WW-II, resulting in implausible
real bond yield estimates.
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Figure 2: Top Financial Wealth Inequality and Cost of Real Annuity
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Note: Each panel plots a financial wealth inequality measure against a measure of the cost of a 30-year real annuity.
The inequality measure in the left panels is the share of financial wealth going to the top-10% of the population. The
right panels plot the share of the top-1% of the population. The wealth shares are from the World Inequality Database
and, the SCF+ (U.S.), the Credit Suisse Global Wealth report (U.K., post 2012; France, post 2014), the U.K. Wealth and
Assets Survey (WAS) (U.K., post 2012). Details on annuities and wealth shares in Appendix C.1.
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various financial assets k:

D f in
t,i = ∑

k
ωi

t(k)Dt(k). (1)

Consider an asset that pays a risky payoff stream {Xt}.To measure the duration of each of the

components of financial wealth, we compute each asset’s duration as follows:

Dt(k) =
∑∞

j=0 Mt,t+jXt+j · j
∑∞

j=0 Mt,t+jXt+j
,

where Mt,t+j denotes the pricing kernel for payoffs that accrue at t + k. To do so, we use the

no-arbitrage asset pricing model, detailed in Appendix A. For these assets, the model provides

a McCauley duration in each quarter from 1947.Q1 until 2019.Q4. We use the durations for the

1980s, averaged across the 40 quarters in that decade.

We use the model-implied duration of the aggregate stock market to proxy for the duration of

households’ directly- and indirectly-held stock market wealth. We use the duration of small stocks

to proxy for the duration of household business wealth. We use the duration of owner-occupied

housing wealth to measure the duration of households’ real estate assets. For cash and deposits,

we assume a duration of 0.25 years. For fixed income, we assume a duration of 4 years.4

For student debt, we assume a duration of 4.5 years. Student loans are typically 10 year an-

nuities. At an interest rate of 5.8%, the average rate on outstanding student loans in 2017, the

duration is 4.56. At higher the interest rates that prevailed in the 1980s, the duration would be

slightly smaller. For consumer debt, we assume a duration of 1 year. Much of this debt is revolving

debt, while some of it is 24-month personal loans. The personal loans are amortizing.5 For mort-

gage debt, we obtain data for the Bloomberg-Barclays Aggregate MBS Index. It is a representative

portfolio of all outstanding U.S. pass-through mortgage-backed securities. The average McCauley

duration of this representative mortgage portfolio in 1989 and 1990 was 5.2 years. Most mortgage

debt in the U.S. is 30-year fixed-rate mortgages. The reasons for this much lower duration than

30 are several: amortization, high interest rates, and prepayment.6 The resulting durations are

reported in the first column of Table 2.

Next, we collect data from the Survey of Consumer Finances (SCF) on household portfolio

shares, the ωi
t(k) in (1). The wealth-weighted portfolio weights are reported in the last column of

Table 2. The details are in Appendix C.3. The aggregate, or wealth-weighted financial duration is

4For reference, the maturity of outstanding U.S. Treasury marketable securities averages 62 months between 2000
and 2020. The duration is strictly smaller than the maturity since bonds pay coupons. For example, if the coupon rate
is 4.65% and the bond pays semi-annual coupons, then the duration is 4.5 years. Other corporate and international
bonds and loans held by U.S. households tends to have somewhat lower duration than U.S. Treasuries because there
are fewer long-term bonds and coupons are higher.

5We exclude auto debt since we also exclude vehicles from assets. The reason is that our consumption measure
includes durable consumption.

6The average maturity of the outstanding MBS portfolio in 1989-1990 was 9.8 years and the average coupon rate was
9.35%.
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Table 2: Duration of the Household Financial Wealth Portfolio 1980s

Duration Portfolio Shares

Assets
Cash and Deposits 0.25 11.60
Equities 28.78 11.61
Real Estate 14.89 48.75
Private Business Wealth 61.25 24.56
Fixed Income 4.00 17.75

Liabilities
Mortgage Debt 5.20 12.12
Student Debt 4.50 0.27
Other Debt 1.00 1.88

Aggregate Duration 25.72
Average Duration 15.43

Note: The column “Duration” reports the duration of the asset, again averaged over all quarters in the 1980s. For Eq-
uities, Private Business Wealth, and Real Estate, the durations are computed form the asset pricing model in Appendix
A, averaging across the 40 quarters in the 1980s. The column “Portfolio Shares” reports the wealth-weighted average
or aggregate portfolio weights. Liabilities receive negative portfolio weights. These weights are based on the 1989 SCF.

the sum-product of the second and third columns of Table 2. It equals 25.72.

We also calculate the duration for each household separately, combining the household-level

portfolio weights with the asset-specific durations listed in the first column. The average, or

equally-weighted financial duration among all households is 15.43. This value is much lower

than the wealth-weighted duration.

The difference between the aggregate and average duration stems from the positive covariance

between financial wealth levels and financial durations. Richer households tend to hold more

private business wealth, equities, and housing wealth, which are long-duration assets, hold fewer

short-duration assets (cash), and hold less debt (negative duration). As a result, the aggregate

duration of all wealth in the economy exceeds the average duration. More wealth is created at the

macro level when rates decline than at the median household level and financial wealth inequality

increases. Conversely, inequality decreases when rates increase.

To quantify the empirical correlation between financial duration and the level of financial

wealth, Figure 3 plots the average duration by wealth bin in the SCF (dots). Since higher-wealth

agents are more important for aggregate wealth outcomes, Figure 3 displays 5% bins up to the

90th percentile, then 1% bins up to the 99th percentile, and 0.2% bins for the top 1%. The figure

shows that wealthier households hold longer-duration financial portfolios.

The second key data pattern is variation in financial duration by age. Figure 4 displays a

binscatter of measured duration in our SCF data by age, after controlling for net wealth using

dummies for each of the bins constructed in Figure 3. Figure 4 shows that there is a strongly

negative relationship between age and duration.
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Figure 3: Financial Duration by Net Worth Wealth Percentiles
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Figure 4: Financial Duration by Age
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Our empirical results in Appendix C.3 show that adding other covariates yields little addi-

tional power to explain variation in financial duration across households. Therefore, we approxi-

mate financial duration using the regression:

D f in
i = α + βAgei + ∑

j
γjNetWealthBini,j + ε i, (2)

where NetWealthBini,j is a dummy for whether household i falls in financial wealth bin j. The fit-

ted value is plotted with crosses in Figure 3 and as the solid line in Figure 4. We use this estimated

relation to impute durations to households in our structural model below.

To summarize, the key empirical finding is that the aggregate duration exceeds the average

household’s duration. Given this cross-sectional pattern in duration, a decline in real rates in-

creases wealth inequality as we show next.

3.4 Mark-to-Market Repricing

We can now feed in the actual decline in real rates and evaluate its effects on the wealth distribu-

tion. We a consider a one-time unanticipated interest rate decline of the same magnitude as in the

data: from 4.8% in 1980s to 0.3% in 2010s. We mark the distribution of wealth to market:

∆θi
t ≈ ∆R× D f in

t,i , (3)

using the cross-sectional distribution of durations D f in
t,i in the 1980s, obtained as the fitted value of

equation (2). We refer to the resulting wealth distribution as the repriced wealth distribution.

Figure 5a shows the repriced distribution in green, alongside the initial wealth distribution in

blue. The decline in interest rates creates 116.2% more financial wealth. All but the poorest agents

see large asset valuation gains. As shown in Figure 5b, the proportional gains are increasing in

wealth since wealthier households have higher durations.

Table 3 summarizes the results. Each row of the table displays a different statistic measuring

inequality. The first two columns display the statistics from the SCF+ data. We take the 1980s to be

the period preceding the interest rate decline, and the 2010s to be the period following the interest

rate decline. The next three columns display the results from the model. They report results for the

initial (pre-shock, high-interest rate) distribution and for the wealth distribution after the interest

rate decline. We focus on the repriced distribution here. The effects on the wealth distribution are

significant. Repricing increases the U.S. financial wealth Gini by 0.082 compared to 0.063 in data.

The top-10% financial wealth share increases by 13.2pp compared to 8.5pp in the SCF data. The

top-1% wealth share increases 15.2pp compared to 4.8pp in the SCF and 10.5pp in the WID data.7

7The rise in the top-1% financial wealth share in the United States is even larger, at 12pp, when measured between
1982 and 2015 according to the World Inequality Database. The SCF+ generates an increase in the top-1% financial
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Figure 5: Histograms, Repriced Financial Wealth Distribution
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If anything, the duration mechanism overpredicts the increase in wealth inequality.

3.5 Robustness to Private Business Durations.

Because we do not directly measure the duration of private business wealth in the data, we ap-

proximate them using the duration of a portfolio of small public equities, which our empirical

asset pricing model estimates to be 61.25.8 To explore robustness to this assumption, Table 4 re-

produces these results using two alternative assumptions. First, instead of assuming that private

business wealth behaves like a portfolio of perpetually small stocks that is continually resorted,

we use CRSP microdata on market value and payout to directly estimate the cash flow duration of

the smallest public companies, with full details on this procedure provided in Section F. This pro-

cedure yields values between 52 and 62, depending on whether we look at the smallest quintile or

decile of listed firms. In the interest of robustness, we choose a value of 50.9 The results under this

alternative assumption are displayed in the column DPB = 50. Since the share of private business

wealth share of 7.2% between the 1983 and 2016 surveys. The WID generates a 8.9pp increase in the top-10% share
between the 1980s and the 2010s, which is nearly identical to the 8.5pp point increase in the top-10% share in the SCF+
over the same period. Hence, the disagreement between data sources is concentrated in the top-1% only.

8To understand the high value for the duration of small stocks, consider a back-of-the-envelope calculation based
on the Gordon Growth Model where the McCauley duration is (1+ r)/(r− g). Under perfect foresight, we can use the
average realized real return and average realized real dividend growth rate from 1985–2020 to proxy for the expected
real return and expected real dividend growth rate in the 1980s. For the smallest market capitalization decile, we
find r = 8.01% and g = 6.55%. This delivers a duration of 75.8, close to the number we obtain using our more
sophisticated SDF model and the bottom quintile of market caps. For comparison, for stocks in the largest decile of
market capitalization, we obtain r = 7.94% and g = 0.81%, resulting in a duration of 15.2. The expected returns on
large and small stocks are nearly identical. Thus, the high duration for small stocks arises from its high cash flow
growth rate.

9For intuition, using the Gordon Growth Model where the McCauley duration is (1+ r)/(r− g) with a real discount
rate of 8.1%, a duration of 50 implies a growth rate of 5.9% per annum for private businesses.
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Table 3: Inequality, Model Comparison

Data Model

Before After Initial Repriced Comp

Gini FW 0.754 0.817 0.755 0.837 0.575
Top-10% share FW 64.0% 72.5% 64.0% 77.3% 49.9%
Top-1% share FW 28.8% 33.6% 44.1% 59.3% 35.4%

Gini HW – – 0.419 0.452 0.452
Top-10% share HW – – 33.9% 31.3% 31.3%
Top-1% share HW – – 18.6% 14.2% 14.2%

Gini TW – – 0.429 0.484 0.473
Top-10% share TW – – 38.2% 39.6% 36.0%
Top-1% share TW – – 23.9% 25.7% 20.3%

Note: Top 1%, Top 10% financial wealth shares as well as financial wealth Gini coefficients are estimated using SCF
surveys. For the Before period we use the average values in 1983 and 1989. For the After period we use the average
values in 2010, 2013 and 2016. More details on the computations are provided in Appendix C.3.8. For model results,
the columns represent the pre-shock wealth distribution (“Initial”), the compensated distribution (“Comp”), and the
repriced distribution (“Repriced”).

wealth in the household’s portfolio is increasing in financial wealth, this lower financial duration

dampens the positive link between financial wealth and financial duration, reducing the resulting

rise in inequality from a fall in rates. Under this calibration, the financial wealth Gini, top-10%

share, and top-1% share, rise by 0.063 , 10.4pp, and 11.9pp, compared to 0.063 , 8.5pp, and 4.8pp

(10.5%), respectively, in the SCF (WID) data. Thus, these results provide an even closer fit to the

growth in wealth inequality observed in the data.

Second, we consider an even more conservative specification in which private business wealth

has the same duration as public equity (28.78), with results displayed in the column DPB =

Dstocks.10 This decreases financial wealth duration for the wealthiest households, reducing the rise

in inequality. Under this specification, repricing raises the financial wealth Gini, top-10% share,

and top-1% share, by 0.025 , 5.0%, and 6.0%. These results show that while our quantitative find-

ings do vary with the estimated duration of private business wealth, the ultimate conclusion that

our duration mechanism explains an economically important share of the rise in financial wealth

inequality observed since the 1980s is robust.

4 Incomplete Markets Model with Household Heterogeneity

To analyze the effects of changes in discount rates on the distribution of wealth, we use a standard

Bewley (1986) endowment economy in which agents face idiosyncratic and aggregate risk. We al-

10Using the Gordon growth formula provided in the previous footnote and a real discount rate of 8.1%, this duration
implies cash flow growth of 4.3% per annum for the private businesses.

17



Table 4: Inequality by Private Business Duration

Repriced, Alternative Duration Specifications

Fin. Wealth Data Baseline DPB = 50 DPB = Dstocks

Gini +0.063 +0.082 +0.063 +0.025
Top-10% +8.5pp +13.2pp +10.4pp +5.0pp
Top-1% +4.8pp/+10.5pp +15.2pp +11.9pp +6.0pp

Note: Top 1%, Top 10% financial wealth shares as well as financial wealth Gini coefficients are estimated using SCF
surveys. Each cell calculates the difference between the average of the statistic in the 2010s (2010, 2013, 2016 waves)
relative to the average of the statistic in the 1980s (1983, 1989 waves). Repriced distributions are computed as in Table
3. The column DPB = Dstocks sets the duration of private business duration to be equal to the duration for equity, while
the column DPB = 50 sets the duration of private business wealth equal to 50. More details on the computations are
provided in Appendix C.3.8.

low for ex ante heterogeneity. We use an endowment economy to isolate the valuation effects. We

first show how to solve this model by transforming the problem into a stationary model without

aggregate risk.

4.1 Endowments

Time is discrete, infinite, and indexed by t ∈ [0, 1, 2, ...). The aggregate endowment e follows the

stochastic process:

et(zt) = et−1(zt−1)λt(zt)

where λ(zt) denotes the stochastic growth rate of the aggregate endowment and zt the aggregate

state. The history of aggregate shocks is denoted by zt = {zt, zt−1, · · · }. A share αt(zt) of the

aggregate endowment is financial income, the remaining 1 − αt(zt) share represents aggregate

labor income.

Households are subject to idiosyncratic income shocks, whose history is denoted by ηh =

{ηh, ηh−1, · · · }. The ηh shocks are i.i.d. across households and persistent over time. The idiosyn-

cratic shock process is assumed to be independent from the aggregate shock process. Labor in-

come y follows the following stochastic process:

yt(zt, ηh) = ŷt(zt, ηh)(1− αt(zt))et(zt),

The ratio of individual to aggregate labor income, which we refer to as the labor income share, is

given by ŷt(zt, ηh). We use (zt, ηh) to summarize the history of aggregate and idiosyncratic shocks,

and π(zt, ηh) to denote the unconditional probability that state st will be realized. If the aggregate

and idiosyncratic states are independently distributed, then we can decompose state transition
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probabilities into an aggregate and idiosyncratic component:

π(zt+1, ηh+1|zt, ηh) = φ(zt+1|zt, xt0)ϕ(ηh+1|ηh),

where xt0 denotes some household-specific characteristics. Below, we suppress dependence of

the transition probabilities on initial characteristics. To keep the notation tractable, we assume

households die when they reach age H. Below, in the calibrated model, we allow for mortality

risk.

4.2 Preferences

A household born at t0 maximize discounted expected utility over its lifetime:

U(c; t0) =
H

∑
j=1

βj ∑
(zt0+j,η j)

φ(zt0+j)ϕ(η j)
c(zt0+j, η j)1−γ

1− γ
,

where the coefficient of relative risk aversion γ > 1, and the subjective time discount factor 0 <

β < 1.

4.3 Technology

Households trade state-contingent bonds at(zt, ηh; zt+1) for each state zt+1 at prices qt(zt, zt+1) and

shares in the Lucas tree σt(zt, ηh) at price νt(zt) satisfying the budget constraint:

ct(zt, ηh) + ∑
zt+1

at(ztηh; zt+1)qt(zt, zt+1) + σt(zt, ηh)νt(zt) ≤Wt(zt, ηh).

Household cash on hand W evolves according to:

Wt+1(zt+1, ηh+1) = at(ztηh; zt+1) + ŷt+1(zt+1, ηh+1)(1− α(zt+1))et+1(zt+1)

+
(

α(zt+1)et+1(zt+1) + νt+1(zt+1)
)

σt(zt, ηh).

Households are subject to state-uncontingent and state-contingent solvency constraints:

∑
zt+1

at(ztηh; zt+1)qt(zt, zt+1) + σt(st)νt(zt) ≥ Kt(st)

at(ztηh; zt+1) +
(

α(zt+1)et+1(zt+1) + νt+1(zt+1)
)

σt(st) ≥ Mt(st, zt+1)

where K and M denote generic borrowing limits. Incomplete risk sharing arises from two sources:

the lack of an asset whose payoff depends on the idiosyncratic income shock ηt and the borrowing

constraints.
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4.4 Transformation into Stationary Economy

We can transform the stochastically growing economy into a stationary economy with a constant

aggregate endowment following Alvarez and Jermann (2001); Krueger and Lustig (2010). To that

end, define the deflated consumption allocations:

ĉt(zt, ηh) =
ct(zt, ηh)

et(zt, ηh)
, ∀(zt, ηh),

the deflated transition probabilities and the deflated subjective time discount factor:

φ̂(zt+1|zt) =
φ(zt+1|zt)λt+1(zt+1)

1−γ

∑zt+1
φ(zt+1|zt)λt+1(zt+1)1−γ

,

β̂(zt) = β ∑
zt+1

φ(zt+1|zt)λt+1(zt+1)
1−γ.

Agents in the deflated economy with these preferences:

U(ĉ)(zt, ηh) =
ĉ(zt, ηh)1−γ

1− γ
+ ∑

zt+1

β̂(zt+1, zt)φ̂(zt+1|zt) ∑
ηh+1

ϕ(ηh+1|ηh)U(ĉ)(zt+1, ηh+1) (4)

rank consumption plans identically as in the original economy. These are risk-neutral probabil-

ities. When there is predictability in aggregate consumption growth, shocks to expected growth

manifest themselves as taste shocks in the deflated economy. If aggregate growth shocks are i.i.d.

over time, then the deflated time discount factor is constant and given by:

β̂ = β ∑
zt+1

φ(zt+1)λt+1(zt+1)
1−γ. (5)

This i.i.d. assumption on aggregate growth shocks is the assumption we will make, noting that it

can easily be relaxed. In what follows, we also assume that aggregate factor shares are constant:

αt(zt) = α, ∀t. By definition, labor income shares average to one across households:

∑
t0≥1

∑
ηh

ϕ(ηh|η0)ŷt(η
h) = 1, ∀t.

4.5 Equilibrium in the Stationary Economy

In the stationary economy, agents trade a single risk-free bond and a stock. Both securities have

the same returns. The stock yields a dividend α in each period. Given initial financial wealth θt0

for a household born at t0, interest rates R̂t and stock prices ν̂t, households choose consumption

{ĉt(θt0 , ηh)}, bond positions {ât(θt0 , ηh)}, and stock positions {σ̂t(θt0 , ηh)} to maximize expected
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utility (4) subject to the budget constraint:

ĉt(η
h) +

ât(θt0 , ηh)

R̂t
+ σ̂t(θt0 , ηh)ν̂t = (1− α)ŷt(η

h) + ât−1(θt0 , ηh−1) + σ̂t−1(θt0 , ηh−1)(ν̂t + α),

and subject to borrowing constraints:

ât(θt0 , ηh)

R̂t
+ σ̂t(θt0 , ηh)ν̂t ≥ K̂t(η

h), ∀ηh

ât(θt0 , ηh) + σ̂t(θt0 , ηh)(ν̂t+1 + α) ≥ M̂t(η
h), ∀ηh.

Definition 1. For a given initial distribution of wealth Θt0 when born, a Bewley equilibrium is a list

of consumption choices {ĉt(θt0 , ηh)}, bond positions {ât(θt0 , ηh)}, and stock positions {σ̂t(θt0 , ηh)}
as well as stock prices ν̂t, and interest rates R̂t such that each household maximizes its expected

utility, and asset markets and goods markets clear.

∑
t0≥1

∫
∑
ηh

ϕ(ηh|ηt0)ât(θt0 , ηh)dΘt0 = 0,

∑
t0≥1

∫
∑
ηh

ϕ(ηh|ηt0)σ̂t(θt0 , ηh)dΘt0 = 1.

∑
t0≥1

∫
∑
ηh

ϕ(ηh|ηt0)ĉt(θt0 , ηh)dΘt0 = 1.

In the deflated economy, the return on the aggregate stock equals the risk-free rate:

R̂t =
ν̂t+1 + α

ν̂t
. (6)

The equilibrium stock price equals the present discounted value of the dividends:

ν̂t =
∞

∑
τ=0

R̂−1
t→t+τα,

discounted at the cumulative gross risk-free rate, defined as: R̂t→t+T = ΠT
k=0R̂t+k. Note that

R̂t→t = R̂t and define R̂t→t−1 = 1.

Both of these assets, the stock and the risk-free bond, earn the same risk-free rate of return

in the stationary economy. These households are indifferent between these 2 assets, or any other

assets with different durations, because the interest rates are deterministic.

In the calibrated version of this economy, in section 6, we will feed the observed heterogeneity

in duration into this model in the form of risk-free zero-coupon bonds of maturity k. This is

without loss of generality, because these households do not have a preference for one duration
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over another.

4.6 Equilibrium in the Growing Economy

We can map the equilibrium in the detrended economy into an equilibrium in the stochastically

growing economy.

Proposition 4.1. If {ĉt(θt0 , ηh), ât(θt0 , ηh), σ̂t(θt0 , ηh)} and {ν̂t, R̂t} are a Bewley equilibrium, then

{ct(θt0 , st), at(θt0 , st, zt+1), σt(θt0 , st)} as well as asset prices {νt(zt), qt(zt, zt+1)} are an equilibrium

of the stochastically growing economy with:

ct(θt0 , zt, ηh) = ĉt(θt0 , ηh)et(zt)

at(θt0 , zt, ηh; zt+1) = ât(θt0 , ηh)et(zt)

σt(θt0 , zt, ηh) = σ̂t(θt0 , ηh)

νt(zt) = ν̂tet(zt)

qt(zt, zt+1) =
φ̂(zt+1)

λ(zt+1)

1
R̂t

.

The proof is provided in Krueger and Lustig (2010). The last equation implies the following

relationship between the interest rate in the growing economy and the stationary economy:

Rt =

(
∑
zt+1

qt(zt, zt+1)

)−1

=

(
∑
zt+1

φ̂(zt+1)

λ(zt+1)

)−1

R̂t. (7)

5 Wealth Inequality and Heterogeneity in Duration

Next, we let the economy undergo a decline in the interest rate and show that this increases the

inequality in financial wealth. In the model, the equilibrium decline in the real rate arises from

a slowdown in expected economic growth. We use the model to describe a benchmark equilib-

rium in which households consume the same share of the aggregate endowment which they had

planned to consume before the unanticipated decline in rates. To achieve this perfect hedging,

households need to match the duration of their financial assets to that of their excess consumption

plan.

To keep the notation tractable, we use a version of the model in which households are ex

ante identical and infinitely lived. We relax these assumptions in the calibrated model of the next

section.
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5.1 Wealth Accounting

What is the right discount rate when measuring household wealth? If we want a wealth measure

that can be aggregated, we have to use the same discount rate for all claims.

Proposition 5.1. At time 0, the financial wealth of each household equals the present discounted

value of future consumption minus future labor income.

θ0 =
∞

∑
τ=0

∑
ητ

ϕ(ητ)

R̂0→τ−1
(ĉτ(η

τ)− (1− α)ŷτ(η
τ))

As the proof in the appendix shows, the proposition follows easily from iterating forward on the

one-period budget constraint. In this iteration, we take expectations over financial wealth in all

future states using the objective probabilities of the idiosyncratic events ϕ(ητ), and discount by

the cumulative risk-free rate R̂0→τ−1. Aggregate financial wealth in the economy in period 0 is

given by: ∫
θ0dΘ0 =

∫
(â−1(θ0) + σ̂−1(θ0)ν̂0)dΘ0 = 0 + 1ν̂0,

where we have used market clearing in the bond and stock markets at time 0.

Aggregating the cost of the excess consumption plan across all households, using the fact that

labor income shares average to 1, and imposing goods market clearing at time 0, we get:

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

ϕ(ητ) (ĉτ(η
τ)− (1− α)ŷτ(η

τ))dΘ0 =
∞

∑
τ=0

R̂−1
0→τ−1α = ν̂0.

The aggregate cost of households’ excess consumption plan, or households’ aggregate financial

wealth, exactly equals the stock market value ν̂0, the only source of net financial wealth in the

economy. This result relies on market clearing:∫
∑
ητ

ϕ(ητ) (ĉτ(η
τ)− (1− α)ŷτ(η

τ))dΘ0 = α,

at each time t, because
∫

∑ητ ϕ(ητ)ĉτ(ητ)dΘ0 = 1 from market clearing, and the labor income

shares sum to one as well.

The choice of the actual probability measure ϕ(·) and rate R̂ to compute an individual’s human

capital, the expected present discounted value of her labor income stream, may seem arbitrary. Af-

ter all, claims to labor income are not traded in this model and markets are incomplete. The key

insight is that, using any other pricing kernel to discount individual labor income and consump-

tion streams may result in a value of aggregate financial wealth different from the value of the

Lucas tree. To see this, consider using a distorted measure ψ(ητ)ϕ(ητ) different from the actual
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measure ϕ(ητ), where the household-specific wedges satisfy E0[ψt] = 1, ∀t. Under this differ-

ent measure, the goods markets do not clear and the labor shares do not sum to one, unless the

household-specific wedges do not covary with consumption and income shares:

Proposition 5.2. Wealth measures aggregate if and only if the following orthogonality conditions

holds for the househehold-specific wedges and household consumption and income:

Cov0 (ψt, ĉt) = 0, Cov0 (ψt, ŷt) = 0.

For all other wedge processes ψt(ητ), the resource constraint is violated:∫
∑
ητ

ψ(ητ)ϕ(ητ) (ĉτ(η
τ)− (1− α)ŷτ(η

τ))dΘ0 6= α,

It is common in the literature to use the household’s own IMRS to compute human capital (e.g.,

Huggett and Kaplan, 2016). The household’s IMRS is a natural choice because it ties the valuation

of human wealth directly to welfare. However, this approach does not lend itself to aggregation.

The wedges

ψ(ηt+1) =
u′(ĉ(ηt+1, ηt))

u′(ĉt(η0))
,

do not satisfy the zero covariance restrictions of the proposition. Imperfect consumption insurance

implies that:

Cov0(ψt, ĉt) ≤ 0, Cov0(ψt, ŷt) ≤ 0.

Proposition 5.3. If the cross-sectional covariance between the household-specific wedges and con-

sumption is negative (Cov0(ψt, ĉt) ≤ 0), then the aggregate valuation of individual wealth is less

than the market’s valuation of total wealth.

When aggregating, this pricing functional undervalues human wealth and therefore also total

wealth.11 In sum, while pricing claims to consumption and labor income using the household’s

IMRS is sensible from a welfare perspective, this approach does not lend itself to wealth account-

ing and aggregation.

5.2 Interest Rate Decline

We now analyze the main exercise of the paper, which is to let the economy undergo an unex-

pected and permanent decrease in the interest rate (“MIT shock”). Since interest rates are endoge-

nously determined, we generate this decrease through a decrease in the expected growth rate of

11Since the factor shares are constant, the consumption claim is in the span of traded assets. Financial wealth is the
value of the Lucas tree, which equals α times the value of a claim to total consumption.
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the economy:

E[λ] = ∑
zt+1

φ(zt+1)λ(zt+1)→ E[λ̃] = ∑
zt+1

φ(zt+1)λ̃(zt+1)

where E[λ̃] < E[λ]. A lower expected growth rate manifests itself as a higher subjective time

discount factor in the stationary economy, provided that the coefficient of relative risk aversion

γ > 1, or, equivalently, the elasticity of intertemporal substitution is smaller than one:

β̃ = β ∑
zt+1

φ(zt+1)λ̃t+1(zt+1)
1−γ > β̂.

In the transformed incomplete markets economy, the size of the decline in the rate of time prefer-

ence is governed by the EIS (1/γ). Just like in a representative agent economy, the larger the EIS,

the smaller the effect of a decline in the expected growth rate of aggregate consumption on the

risk-free rate.

In the simple case of log-normally distributed aggregate consumption growth, we obtain the

following expression for the rate of time preference in the stationary economy:

log β̂ = log β− γE[log λ]− 1
2

γ(1− γ)Var[log λ]. (8)

Hence, the change in the transformed rate of time preference in response to the growth shock is

given by: d log β̂
dE[log λ]

= −γ.

It is natural to ask whether we can still implement the equilibrium consumption allocation

{ĉt(θ0, ηt)} from the economy with high rates in the economy with low rates. Given that the

time discount factor of all agents increased by the same amount, there should be no motive to

trade away from these allocations. The following proposition shows that the old consumption

allocation is indeed still an equilibrium in the low interest rate economy, provided that initial

financial wealth is scaled up for every household.

Proposition 5.4. If the allocations and asset market positions {ĉt(θ0, ηt), ât(θ0, ηt), σ̂t(θ0, ηt)} and

asset prices {ν̂t, R̂t} are a Bewley equilibrium in the economy with β̂ and natural borrowing limits

{K̂t(ηt)},

K̂t(η
t) =

∞

∑
τ=t

R̂−1
t→τ−1 ∑

ητ |ηt

ϕ(ητ|ηt)(1− α)ŷτ(η
τ),

then the allocations and asset market positions {ĉt(θ̃0, ηt), ât(θ̃0, ηt), σ̂t(θ̃0, ηt)} and asset prices

{ν̃t, R̃t} will be an equilibrium of the economy with β̃ and natural borrowing limits {K̃t(ηt)},

K̃t(η
t) =

∞

∑
τ=t

R̃−1
t→τ−1 ∑

ητ |ηt

ϕ(ητ|ηt)(1− α)ŷτ(η
τ),
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asset prices are given by

β̃R̃t = β̂R̂t, and ν̃t =
∞

∑
τ=0

R̃−1
t→t+τα,

and every household’s initial wealth is adjusted as follows:

θ̃0 = θ0
∑∞

τ=0 R̃−1
0→τ ∑ητ ϕ(ητ) (ĉτ(ητ)− (1− α)ŷτ(ητ)

∑∞
τ=0 R̂−1

0→τ ∑ητ ϕ(ητ) (ĉτ(ητ)− (1− α)ŷτ(ητ)
.

The proof is in the appendix. Aggregate financial wealth undergoes an adjustment equal to

the ratio of the price of two perpetuities:

∑∞
τ=0 R̃−1

0→τ

∑∞
τ=0 R̂−1

0→τ

=
ṽ0

v̂0
.

Intuitively, with lower interest rates, all asset prices are higher than in the high-rate economy. The

Lucas tree becomes more valuable. A fraction 1− α of this tree reflects aggregate human wealth,

the remaining fraction is aggregate financial wealth. Each individual’s financial wealth adjustment

differs, and depends on the expected discounted value of the same future excess consumption plan

discounted at different rates. The higher one’s expected future excess consumption, the larger the

initial financial wealth adjustment needed to implement the old equilibrium allocation.

To a first-order approximation, i.e., for a small change in the interest rate, the adjustment in

initial financial wealth needed for agents to keep their initial consumption plan is given by the

duration of their planned consumption in excess of labor income. This is the duration households

will need in their net financial assets in order to be fully hedged against interest rate risk.

Characterizing Interest Rate Sensitivity Using Duration of Excess Consumption Define the

duration of a household’s excess consumption plan at time 0, following the realization of the

idiosyncratic labor income shock η0, as follows:

Dc−y(θ0, η0) =
∑∞

τ=0 ∑ητ |η0
τR̂−1

0→τ ϕ(ηt|η0) (ĉτ(ητ|η0)− (1− α)ŷ(ητ|η0))

∑∞
τ=0 ∑ητ |η0

ϕ(ηt|η0)R̂−1
0→τ (ĉτ(ητ|η0)− (1− α)ŷ(ητ|η0))

The duration measures the sensitivity of the cost of its excess consumption plan to a change in

the interest rate. In our endowment economy, aggregate consumption is fixed. We are interested

in the valuation effects of interest rate changes.12 The duration of the excess consumption claim

equals the value-weighted difference of the duration of the consumption claim and that of the

12Households in the detrended economy’s equilibrium face a deterministic interest rate, and do not anticipate interest
rate changes. Auclert (2019) was the first to conduct this type of duration analysis in a model with endogenous labor
supply to gauge the effects of monetary policy on consumption.
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labor income claim:

Dc−y =
Pc

0

Pc−y
0

Dc −
Py

0

Pc−y
0

Dy.

where Pc−y
0 = θ0 is household financial wealth, Py

0 is human wealth, and Pc
0 is total household

wealth, the sum of financial and human wealth. Households with a high positive duration of

excess consumption face a large increase in the cost of their consumption plan when interest rates

go down, insofar that this increased cost is not offset fully by the increase in their human wealth.

The duration of the aggregate excess consumption claim, the aggregate duration for short,

equals:

Da =
∑∞

τ=0 τR̂−1
0→τ

∑∞
τ=0 R̂−1

0→τ

This is the duration of a claim to aggregate consumption minus aggregate labor income, or equiv-

alently to aggregate financial income. It is the duration of a perpetuity in the stationary economy.

Recall that ν̂0 = ν0 = α ∑∞
τ=0 R̂−1

0→τ denotes aggregate financial wealth.

Proposition 5.5. The aggregate duration equals the wealth-weighted average duration of house-

holds’ excess consumption claims:

Da =
∫

Dc−y(θ0, η0)
θ0

ν0
dΘ0.

The proof follows directly from the definition of the household specific duration measure and

market clearing.

The next proposition is the main result. It shows that, when households that are richer than

average tend to have excess consumption plans of higher duration, then the (equally-weighted)

average household’s excess consumption plan duration is smaller than the aggregate duration.

Proposition 5.6. If cov(θ0, Dc−y(θ0)) > 0 then
∫

Dc−y(θ0, η0)dΘ0 ≤ Da and lower interest rates

increase financial wealth inequality when households are fully hedged.

The proof follows from recognizing the following relationship between (cross-sectional) ex-

pectations and covariances:

Da = E

[
θ0

νa
0

Dc−y(θ0, η0)

]
= E

[
Dc−y(θ0, η0)

]
+ cov

[
θ0

ν0
, Dc−y(θ0, η0)

]
.

The proposition says that under the covariance condition, if all households are perfectly hedged

in their portfolio, then wealth inequality should increase when rates decline.
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Ex Ante Identical Households In this class of Bewley models, if agents are ex ante identical,

agents with low financial wealth have encountered a bad history of labor income shocks. If labor

income is highly persistent, their labor income is low today and in the near future relative to labor

income in the distant future (because of mean-reversion). This pattern makes the duration of their

labor income stream high. But since the household is smoothing consumption inter-temporally,

Dc < Dy. As a result, low-wealth agents tend to have low duration of their excess consumption

plan. Conversely, rich agents have high labor income and high excess consumption duration.

Consumption smoothing is the force that makes the covariance assumption satisfied in a Bewley

model where the only source of heterogeneity is income shock realizations. It follows immediately

that, under the stated covariance restriction, the increase in the cost of the excess consumption

plan for the average household is smaller than the aggregate (per capita) wealth increase. Put

differently, financial wealth inequality should increase when rates go down if households want to

afford their old consumption plans.

Low-financial wealth households in a Bewley model have high-duration human wealth, which

provides a natural interest rate hedge. High financial-wealth households have low-duration hu-

man wealth and need to increase financial wealth by more when rates decline to be able to afford

the old consumption plan.

Ex Ante Heterogeneous Households The insights of this normative proposition apply more

broadly. The covariance condition applies in the richer model with ex-ante heterogeneity across

households.

Proposition 5.7. If cov(θt, Dc−y
t (θt0)) > 0 then the average duration is lower than the aggregate

duration, ∑t0

∫
Dc−y

t (θ0, η0)dΘt0 ≤ Da
t and lower interest rates increase financial wealth inequality

when households are fully hedged.

We check this condition in a calibrated version of the model.

Real-world households may not be fully hedged, unlike the households in the Bewley model.

The actual duration of the household’s financial assets in the data, denoted D f in, can differ from

the duration of the excess consumption claim Dc−y in the model where households are fully

hedged. We now turn to a calibrated life-cycle version of the Bewley model with overlapping

generations to assess how well households are hedged against interest rate risk.

6 Quantitative Implications in Calibrated Economy

The previous section showed that in a Bewley model where agents are fully hedged, a rise in finan-

cial wealth inequality is required when interest rates decline. In this section, we aim to quantify
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this effect in a model with realistic heterogeneity among households. The model introduces over-

lapping generations of finitely-lived agents, generating heterogeneity by age. We feed in the actual

decline in interest rates and investigate how the financial, human, and total wealth distributions

change. We refer to these new wealth distributions as the compensated distributions.

We conduct our analysis in the stationary version of this economy, using the mapping de-

scribed in Proposition 4.1 to go from objects in the stochastically growing economy to objects

in the stationary economy. In the stationary economy, agents are indifferent between trading the

stock and the one-period risk-free bond, despite their different durations, because both assets earn

the risk-free rate in equilibrium and the risk-free rate is constant in the stationary equilibrium.

In the calibrated economy, we allow households to invest in a real, growing perpetuity with

duration k = (1 + r̂)/(r− gk), where r̂ = R̂− 1 and coupon stream δk
t which grows at rate gk. We

then feed the duration heterogeneity observed in the data into the model: the duration k(θt0 , ηh)

depends on the household characteristics.

Given initial financial wealth θt0 for a household born at t0 and bond prices q̂k
t , households

choose consumption {ĉt(θt0 , ηh)} and bond positions {âk(θt0 ,ηh)
t (θt0 , ηh)} to maximize expected util-

ity (4) subject to the budget constraint:

ĉt(η
h) + q̂

k(θt0 ,ηh)
t â

k(θt0 ,ηh)
t (θt0 , ηh) = (1− α)ŷt(η

h) + â
k(θt0 ,ηh−1)

t−1 (θt0 , ηh−1)

[
q

k(θt0 ,ηh−1)
t + δ

k(θt0 ,ηh−1)
t

]
As the previous section explained, the model with aggregate risk in total income maps into

a stationary economy without aggregate risk as long as the idiosyncratic and aggregate risk are

uncorrelated. The presence of aggregate risk in the growing economy affects the time discount

factor and hence the equilibrium risk-free rate in the stationary economy.

6.1 Calibration

Financial Duration We feed in the actual duration of household portfolios into the simulation.

We then calibrate financial durations in the model to be equal to the fitted value:

D̂ f in
i = α̂ + β̂Agei + ∑

j
γ̂jNetWealthBini,j, (9)

applied household by household, where hats denote sample estimates. This procedure delivers

the close fit between model and data observed in Figure 3, where the small discrepancies are due

to slight differences in the relationship between age and net wealth percentile in model and data.

The model delivers an equal-weighted duration of 16.9 and a value-weighted duration of 28.5,

both close to their empirical counterparts in Table 2.
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Aggregate Output Growth Process We assume that aggregate output growth λ follows an i.i.d.

log-normal process log λ ∼ N(g, σ2
λ), where g = 0.01893 and σλ = 0.02319 are the average annu-

alized growth and volatility of log real per-capita GDP in the U.S. data.

Preferences and Stationarity Households have CRRA preferences with risk aversion γ equal to

2. Substituting into (7), and using the initial risk-free rate 4.82% from the data (see below) implies

that the initial risk-free rate in the stationary economy is R̂ = 1.0294. We set β̂ = 1/R̂, implying

β̂ = 0.9715. For easier interpretation, converting back to the growing economy using (5) implies

that the true preference parameter β is equal to 0.9898.

Size of Decline in Real Yields In the model, the expected growth rate experiences an unantici-

pated decline, giving rise to decline in the real rates. In the stationary model, interest rates must be

adjusted for growth. Using the formula obtained from (7) in the lognormal case, we can back out

the rate in the stationary economy as a function of the risk-free rate in the stochastically growing

economy:

R̂t = Rt exp
{
−g +

(
γ− 1

2

)
σ2

λ

}
This change in R is the result of an unexpected and permanent decline in the expected aggre-

gate growth rate of the economy (an MIT shock). We model a decline in real rates of 4.48%. The

adjusted rates R̂ decline from 2.83% to R̃ -1.57%. Using our value of γ = 2, (8) implies that a

decline in rates of 4.48% can be generated using a decline in expected growth E[log λ] of 2.24%.

Following Proposition 5.4, the discount factor and the risk-free rate adjustments cancel out to pre-

serve the relation β̃R̃ = β̂R̂.

Regular Income Component The income process consists of a regular component and a super-

star component. The regular income process for household i of age a at time t that is not currently

in the superstar state takes the form standard in the literature, given by:

log
(

yi
t,a

)
= mt + χ′Xi

t + ηi
t, (10)

ηi
t+1 = αi + εi

t+1 + νi
t+1, (11)

εi
t+1 = ρεi

t + ui
t+1, (12)

where mt is a year-fixed effect and Xi
t is a vector of household characteristics that includes a cubic

function of age.13 When calibrating the model, we normalize the age profile χ′Xi
t so that its mean

13We have verified that our results are similar if we estimate the year fixed effect and the age profile separately for
groups of households that depend on education (college completion or not), race (white or non-white), gender (male
or non-male), giving rise to 8 groups in total. Since it makes little difference, we only consider one group here.
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is equal to unity during working life.

The stochastic income component ηi
t contains a household-fixed effect αi, a persistent com-

ponent εi
t+1, and an i.i.d. component νi

t+1. We have: E[ηi] = E[αi] = E[νi] = E[εi] = 0 and

Var[νi] = σ2
ν , Var[ui] = σ2

u , Var[αi] = σ2
α , and Var[εi

0] = σ2
ε,0. Note that the income risk param-

eters are common across groups. The parameters are estimated by GMM using PSID data from

1970 until 2017, as detailed in Appendix C.2. Figure A9 in that appendix plots the deterministic

life-cycle income profile.

The literature typically estimates (10)-(12) on labor income for males between ages 25 and 55.

We deviate from this practice in three ways, all of which are important for our purposes. First, we

consider a broader income concept. Second, we consider the entire life-cycle from age 18 to 80.

Third, we focus on households rather than individuals.

First, from the model’s perspective, the relevant notion of income includes transfers. It is

the risk in this income that the household is hedging by trading in financial markets (borrowing

and saving). To that end, we measure income in the data as income from wages and salaries,

the labor income component of proprietor’s income, and government transfers (unemployment

benefits, social security, other government transfers), and private defined-benefit pension income.

Obtaining consistent data on the various components of transfers is involved because successive

waves of the PSID use different variable codes for the same concepts. Appendix C.2 provides the

details. Catherine et al. (2020) also focuses on after-transfer income.

Second, we are interested in the entire life-cycle. We start at age 18 and go until age 80. Because

our income concept includes transfers such as unemployment benefits and retirement income

from public or private defined-benefit pension plans, we do not have to model labor force partic-

ipation decisions or retirement decisions. Our approach captures the average decisions made in

the data. For example, we do not need to make the assumption that retirement starts at age 65,

that income in retirement is some constant fraction of pre-retirement income, or that income risk

disappears in retirement. We can let the data speak on these issues. Since our income concept

includes income from part-time work, it captures income earned by students, for example. We

assign to students the educational achievement they will attain even before they have completed

their education, so that they are classified in the correct group.

Third, we focus on households, aggregating income across its adult members. This absolves

us from having to model demographic changes such as getting married, getting divorced, getting

widowed. We simply follow households identified by the head of household as designated in the

data.

Superstar Income Component To help the model match the level of wealth inequality in the

high-interest rate regime, we enrich the income process in (10)-(12) with a superstar income state.

This state has a high income level Ysup. Households enter in this state with probability psup
12 when
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they are in the normal income state, and return to the normal state with probability psup
21 when

they currently are in the superstar income state. The income level Ysup is chosen to match the top-

10% wealth share in the 1980s exactly, which requires a value equal to 43.6 times average income.

The transition probability parameters psup
12 = 0.0002 and psup

21 = 0.975 are taken from Boar and

Midrigan (2020). There is about a 1% probability of entering in the superstar income state over

one’s life-time. Conditional on entering, the state has an expected duration of 40 years.

In the computations, we discretize the stochastic income process η, with the extra superstar

state, as a markov chain.

Mortality Risk We assume that households enter at age 18 with zero financial wealth. They enter

in an annuity or tontine system in which surviving households receive the assets of households in

their gender-age cohort who died, assuring zero wealth at the end of life.14

6.2 High Interest-Rate Regime

We begin by describing the properties of the model in its stationary distribution under the high

interest rate regime. Figure 6 displays the life cycle profiles of income, consumption, financial

wealth, and human wealth. The axes are normalized such that 1 represents the typical income

during working life. Income inequality is increasing over the life cycle because of the accumu-

lation of income shocks and because of the increase in average income over the life cycle profile.

The income inequality drops after retirement but is still non-negligible since agents have hetero-

geneous retirement income and still face some income risk.

Turning to wealth, financial wealth in the bottom left panel increases in preparation for re-

tirement, and is subsequently run down during retirement. Financial wealth inequality rises and

falls over the life cycle. Human wealth in the bottom right panel is decreasing in age. There are

two effects at play. Human wealth rises as the households’ highest-earning periods are brought

closer to the present. Human wealth falls due to the overall decrease in the remaining periods of

work. The latter effect dominates. Total wealth consists almost exclusively of human wealth when

young. As households age and accumulate financial wealth, a larger share of total wealth becomes

financial wealth. However, human wealth remains a large component of total wealth throughout

the life-cycle.

Figure 7 displays the Lorenz curves for consumption and wealth for all households (in all

groups), and reports the Gini coefficients. The model generates a Gini coefficient for (after-transfer)

household income of 0.544. Consumption inequality (not plotted) closely tracks income inequality

and has a Gini coefficient of 0.496. Financial wealth is much more unequally distributed than hu-

man wealth or total wealth. The Gini coefficients of human and total wealth are 0.419 and 0.429,
14Our results are not sensitive to this assumption. Future extensions could add an operative bequest motive. They

would make the life-cycle model closer to the infinite-horizon model of the previous section.
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Figure 6: Life Cycle Profiles
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Note: This figure plots the life cycle profiles by age for the all agents of all groups combined. The axes are normalized
so that the average income across all agents of all ages is equal to unity. The center line displays the median, while the
dark and light bands represent 66.7% and 95% percentile bands. Although agents in the model have a maximum age
of 100, we truncate the plot at age 90 due the relatively small sample of agents surviving past this age.

compared to the Gini of financial wealth of 0.755. The low total wealth inequality arises from (i)

the importance of human wealth in total wealth, and (ii) the negative cross-sectional correlation

between financial and human wealth.

Figure 8 displays the duration of human and total wealth by age. Human wealth represents a

claim on lifetime income whereas total wealth represents a claim on lifetime consumption. Both

of these durations are similar because of the importance of human wealth in total wealth. These

durations are high when young, around 30, and drop rapidly as age increases, since there are

fewer years of life remaining to earn labor/pension income.
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Figure 7: Lorenz Curves
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Note: This figure plots the Lorenz curve for each variable, obtained from a long simulation of the model.

6.3 Change to Low Interest Rates

In this section we apply the main experiment of an unanticipated, permanent decline in the real

interest rate from 4.82% to 0.34% in the growing economy, corresponding to a decline from 2.83%

to -1.57% in the stationary economy. Before turning to the response of households’ actual wealth

portfolios, we first note that agents’ prior consumption plans may no longer be budget feasible.

Thus, even if financial wealth were unchanged, the change in interest rates could have large effects

on lifetime consumption and welfare.

To study the impact of the change in interest rates, we first simulate the model to generate an

initial draw from the model’s stationary distribution. We then change the interest rate, re-solve

the model at the new interest rate, and simulate forward 50 periods (years). To isolate the effect

of the rate change, we subtract out the results of the simulation with the same idiosyncratic shock

realizations under the old interest rate. We do not clear the bond market in this exercise. As a

result, when interest rates decline, the economy produces excess savings. We rebate those savings
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Figure 8: Wealth Durations
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Note: This figure plots the durations of labor income (human) wealth (left panel) and consumption (right panel).
The plots display durations computed for many agents simulated from the stationary equilibrium of the model. The
economy is normalized so that the average income is equal to unity. The center line displays the median, while the
dark and light bands represent 66.7% and 95% percentile bands.

to households so as to keep the total resources of the economy unchanged before and after the

interest rate change. Appendix E explains the details.

6.3.1 The Compensated Wealth Distribution

To establish an intuitive baseline that is consistent with the theoretical analysis in Proposition 5.4

of Section 5.2, we compute the change in financial wealth that would be required to maintain the

prior consumption allocation in the high interest-rate economy. We refer to the counterfactual

wealth allocation in which “fully hedged” households receive this financial wealth as the compen-

sated financial wealth distribution (defined as θ̃ in the theory above).

The resulting distribution of financial wealth, alongside the original (pre-shock) distribution,

is displayed in Figure 9. To ensure that the full distribution is visible, we display transformed

variables log(1 + x) on the x-axis.15 This comparison shows two major differences between the

pre-shock and compensated distribution. First, the compensated distribution is shifted substan-

tially to the right. Households in this economy mostly save (ct < yt) earlier in life before dissaving

(ct > yt) in old age. When rates are much lower, households lose much of the effect of compound

interest on their retirement savings. As a result, the aggregate amount of financial wealth in the

compensated distribution exceeds the pre-shock total by 170.8%. As can be seen from the plot, this

rightward shift extends up to the very top, implying that even the wealthiest individuals must be

compensated with additional financial assets to attain their old consumption plans. Indeed, more

15Because many agents have zero financial wealth, a standard log transform would be inappropriate in this context.
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Figure 9: Histogram, Compensated vs. Original Financial Wealth Distribution
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Note: This plot displays the distribution of financial wealth under the stationary distribution and under the com-
pensated distribution drawn from the stationary distribution of the economy. The x-axis displays a transformation
log(1 + x) of the original data. Each distribution is top coded at the top 0.1% of the pre-shock wealth distribution.

than one third (32.1%) of new financial wealth accrues to top-1% financial wealth holders under

the compensated distribution.

Second, although the wealthiest gain under this compensated distribution, the financial wealth

Gini falls substantially in the compensated distribution, as the less wealthy gain proportionally

more. Visually, while the original high interest-rate distribution of financial wealth is heavily

right-skewed, the compensated distribution is actually left-skewed. Quantitatively, the share of

financial wealth held by the top-1% decreases from 44.1% in the baseline economy to 35.4% in the

compensated economy.

To see why inequality falls in the compensated distribution, we can turn to Figure 10. Panel (a)

compares the original (horizontal axis) and compensated financial wealth distributions (vertical

axis) by age. The youngest agents (light/yellow) in the top left have close to zero financial wealth

in the original distribution, but require the most financial wealth in the compensated distribution.

As households age, their actual wealth initially increases, but their compensated wealth falls.

Finally, late in life, both actual and compensated wealth fall rapidly toward zero, with the actual

and compensated distributions close to coinciding for these older households.

This result is perhaps surprising, since the young have virtually their entire asset portfolio

invested in human wealth. Because human wealth has a very long duration (left panel of Figure

8), it is well-hedged against interest rate changes. The key challenge the young face in a low

interest rate environment, however, is not from their current portfolio, but their future portfolios.

Due to the life cycle profile of income, the young plan to save during middle age, then dissave

during retirement. Under a low interest rate, the young will be unable to accumulate enough
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Figure 10: Scatterplots, Compensated vs. Original Financial Wealth Distribution

(a) By Age
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(b) By Fin. Wealth
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Note: Panel (a) plots the distribution of original financial wealth against the distribution of compensated financial
wealth by age. Each dot represents one year of age, with the lightest (yellow) dots representing the youngest agents
and the darkest (purple) dots representing the oldest agents. Both variables are plotted using the transform log(1 + x).
The dashed line represents equality between the original and compensated distributions. Panel (b) plots the same
distribution by bins of original financial wealth in place of age.

interest on their future savings, making their original consumption plans unattainable without

large infusions of financial wealth today. In contrast, older agents have already benefited from

the higher rate of return in accumulating their retirement assets, while the oldest are dissaving,

consuming principal rather than interest. These households are less affected by the loss of high-

return investment opportunities, and require little compensation.

Panel (b) aggregates over ages to present the total compensation required for various levels of

pre-shock financial wealth. The lowest levels of financial wealth mix young agents who have not

begun saving with old agents who are spending down assets late in life. As a result, this group

mixes over agents requiring the largest and smallest amounts of compensation. Quantitatively,

the young make up a disproportionate share of this group and dominate the aggregate result, so

that the least wealthy agents in this economy require the most compensation, measured as the

vertical distance from the dot to the dashed 45-degree line. As wealth increases, we move toward

the middle-aged individuals in the economy, who require a non-zero level of compensation, but

less than those at the bottom of the wealth distribution. Finally, the wealthiest agents in the top

bin, whose wealth is more driven by their income realizations than by demographics, also require

a strictly positive level of compensation, but less than that of the least wealthy.
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6.3.2 The Repriced Wealth Distribution

Having computed the compensated financial wealth distribution required to keep consumption

plans constant, we can compare it to the financial wealth distributions that actually results under

low interest rates. We discussed this repriced distribution earlier in Section 3.4. Figure 11 plots

both repriced and compensated distributions in one graph. Lower interest rates increase aggre-

gate financial wealth by 116.2%, less than the increase in aggregate wealth required under the

compensated distribution (170.8%). The compensated and repriced distributions display strik-

ingly different shapes, with the repriced distribution leaving many more agents at low wealth

levels.

Figure 11: Histograms, Repriced Financial Wealth Distribution
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Note: This plot displays the distribution of financial wealth under the repriced distribution, compared to the original
distribution and compensated distribution. All distributions are drawn from the stationary distribution of the economy.
The x-axis displays a transformation log(1 + x) of the original data. Each distribution is top coded at the top 0.1% of
the pre-shock wealth distribution.

Figure 12 compares changes in the repriced vs. compensated distributions by age in Panel (a)

and by wealth in Panel (b). Panel (a) shows that repricing delivers virtually no additional financial

wealth to the young, despite their large need for compensating transfers. In contrast, the old are, if

anything, slightly over-hedged, receiving more wealth under repricing than needed to afford their

former consumption plan. These are the points above the 45-degree line. Panel (b) displays the net

gain from repricing, defined as the change in repriced wealth net of the change in compensated

wealth. The figure reinforces this finding, showing that only the wealthiest agents gain on net

from repricing, while the least wealthy experience a large net loss from the interest rate change, as
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Figure 12: Scatterplots, Repriced Financial Wealth Distribution

(a) Compensated vs. Repriced
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(b) Scatter: Repriced Gain
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Note: This plot displays the distribution of financial wealth under the repriced distribution, compared to the com-
pensated distribution. Panel (a) displays the change in financial wealth relative to the original distribution for the
compensated (x-axis) and repriced (y-axis) distributions. Both axes display a transformation log(1 + x) of the original
data. Each dot represents one year of age, with the lightest (yellow) dots representing the youngest agents and the
darkest (purple) dots representing the oldest agents. Panel (b) displays original financial wealth on the x-axis and the
net financial gain (repriced minus compensated wealth) on the y-axis. The x-axis displays the transform log(1 + x),
while the y-axis displays the difference in transformed values. Each dot represents one bin from the original wealth
distribution. All distributions are drawn from the stationary distribution of the economy.

repricing fails to appropriately compensate these households.

6.3.3 Financial and Total Wealth Inequality

Our model’s combined implications for inequality following a fall in interest rates are summarized

in Table 3.

As discussed before, the repriced distribution produces a realistic level of financial wealth

inequality both for the pre-shock and the post-shock periods, generating a 13.2pp rise in the top-

10% financial wealth share, which is even larger than the observed increase of 8.5pp. The repriced

distribution also generates a large increase in the financial wealth gini of 0.063 and a large increase

in the top-1% financial wealth share of 15.2pp. In short, the combination of lower expected returns

on financial assets and heterogeneity in financial durations is quantitatively strong enough to

explain (more than) all of the rise in financial wealth inequality in the data.

The last column of Table 3 shows that the compensated distribution, which allows households

to afford their prior consumption plans, features a major decrease in inequality. The top-10% fi-

nancial wealth share falls by 14.1pp compared to pre-shock levels, the top-1% by 8.7pp and the

Gini coefficient by . This suggests that the actual allocations in the data failed to fully compensate

younger and less wealthy individuals, leaving them less well off than they were prior to the rate
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shock.

Turning to the center panel of Table 3, we observe that all three human wealth inequality indi-

cators are much lower than their financial wealth inequality counterparts in the initial distribution.

Lower interest rates modestly increase the human wealth Gini from 0.419 to 0.452. Younger house-

holds own most of the human wealth, and have a high duration of human wealth. The interest

rate decline generates the largest increase for the highest-human wealth households, explaining

the rise in human wealth inequality. However, the 0.033 increase in the human wealth Gini is

much smaller than the size of the 0.082 increase in the financial wealth Gini implied by the model.

The model predicts a substantial decline in the top-1% human wealth share, which spills over to

a modest decline in the top-10% share. The top percentile of human wealth contains many house-

holds who currently are in the superstar income state. Since that state arrives at random times in

the life-cycle, ends with 2.5% probability each period, the human wealth duration of the super-

stars is lower than that of typical young households.16 Hence, a decline in interest rates lowers

the top-1% human wealth share.

The bottom panel of Table 3 reports on total wealth inequality, where total wealth is the sum of

financial and human wealth. Since human wealth is by far the largest component of total wealth

for most households, the total wealth Gini (0.429) is close to the human wealth Gini (0.419) and

much lower than the financial wealth Gini (0.755). When interest rates decline, the total wealth

Gini rises by 0.055 , a magnitude much lower than the rise in the financial wealth Gini. At the top

of the wealth distribution, the changes in inequality are even smaller. The top-10% total wealth

share of the repriced distribution rises by 1.4pp, far less than the 13.2pp rise in the corresponding

financial wealth share. The top-1% total wealth share rises by a similar 1.8pp, far below the 15.2pp

increase in the top-1% financial wealth share.

The behavior of the top total wealth percentile in response to an interest rate decline can be

thought of as the composition of the responses of two types of households in the top 1%. The

first group consists of older households who hold most of their wealth in financial wealth. These

households have typically saved for a long time, and likely entered the superstar state sometime

in the past, but have since transitioned out of it. The second cluster are households who currently

are in the superstar state. They are younger on average and have much lower ratios of financial

to total wealth. The wealth dynamics of the former cluster are governed by the dynamics of the

top-1% financial wealth share, which increases sharply, while the wealth dynamics of the second

cluster are governed by the dynamics of the top-1% human wealth share, which falls sharply.

The effect of the first cluster dominates, and on net, there is a modest increase in the total wealth

share of the top-1%. The main take-away is that top total wealth inequality does not rise nearly as

16The average human wealth duration of households in the superstar state is 12.0 compared to 17.5 for those not in
the superstar state. Intuitively, the exit rate acts as an additional discount rate which lowers the duration. Moreover,
when younger agents enter the superstar state, it pulls forward their income profile, again lowering its duration.
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much as top financial wealth inequality when rates decline. Since consumption is ultimately what

matters to the households in the model, and total wealth is the present value of consumption, the

most relevant measure of wealth inequality has changed less than inequality in the more easily

measured financial wealth data.

Finally, we note that the repriced distribution for total wealth features more inequality than the

compensated distribution. Abstracting from incentive effects—which may well be very important—

progressive (total) wealth taxation would help move the economy under the repriced distribution

closer to that under the compensated distribution.

7 Conclusion

A persistent decline in real interest rates, like the one experienced in much of the world between

the 1980s and the 2010s, naturally leads to a rise in financial wealth inequality. Households whose

wealth is predominantly made up of financial rather than human wealth, and particularly those

with short-maturity assets, must increase savings to be able to afford the same consumption plan.

We show how a standard incomplete markets Bewley model predicts that a decline in rates in-

creases financial wealth inequality. We establish that households display large heterogeneity in

the duration of their financial wealth portfolio. Once the observed positive correlation between

financial wealth and financial wealth duration is taken into account, the model that feeds in the ob-

served decline in interest rates explains all of the rise in financial wealth inequality. Human wealth

inequality is much lower than financial wealth inequality, and increases by much less when rates

decline. Since human wealth represents a majority of total wealth, the effect of lower rates on top

total wealth shares is modest. While most households have been made worse off by the decline in

interest rates, due to imperfectly hedged portfolios of human and financial wealth, the costs have

fallen disproportionately on young and low-wealth households.
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A Affine Asset Pricing Model

This appendix develops a reduced-form asset pricing model. The asset pricing model is used for

three main purposes. First, to compute long-term real bonds yields, the cost of a 30-year real

annuity, and expected returns on stocks and housing wealth. Second, to compute the McCauley

duration of the aggregate stock market, small stocks, and real estate wealth in a manner that is

consistent with the history of bond and stock prices. Third, the model delivers the price and

duration of a claim to aggregate consumption and to aggregate labor income.

The asset pricing model in the class of exponentially-affine SDF models. A virtue of the

reduced-form model is that it can accommodate a substantial number of aggregate risk factors.

We argue that it is important to go beyond the aggregate stock and bond markets to capture the

risk embedded in households’ financial asset portfolios as well as the aggregate risk in consump-

tion and labor income claims. Similar models are estimated in Lustig et al. (2013); Jiang, Lustig,

Van Nieuwerburgh, and Xiaolan (2019); Gupta and Van Nieuwerburgh (2021).

A.1 Setup

A.1.1 State Variable Dynamics

Time is denoted in quarters. We assume that the N× 1 vector of state variables follows a Gaussian

first-order VAR:

zt = Ψzt−1 + Σ
1
2 εt, (13)

with shocks εt ∼ i.i.d.N (0, I) whose variance is the identity matrix. The companion matrix Ψ is

a N × N matrix. The vector z is demeaned. The covariance matrix of the innovations to the state

variables is Σ; the model is homoscedastic. We use a Cholesky decomposition of the covariance

matrix, Σ = Σ
1
2 Σ

1
2 ′, which has non-zero elements only on and below the diagonal. The Cholesky

decomposition of the residual covariance matrix allows us to interpret the shock to each state

variable as the shock that is orthogonal to the shocks of all state variables that precede it in the

VAR. We discuss the elements of the state vector and their ordering below. The (demeaned) one-

quarter bond nominal yield is one of the elements of the state vector: y$
t,1 = y$

0,1 + e′ynzt, where

y$
0,1 is the unconditional average 1-quarter nominal bond yield and eyn is a vector that selects

the element of the state vector corresponding to the one-quarter yield. Similarly, the (demeaned)

inflation rate is part of the state vector: πt = π0 + e′πzt is the (log) inflation rate between t− 1 and

t. Lowercase letters denote logs.
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A.1.2 Stochastic Discount Factor

The nominal SDF M$
t+1 = exp(m$

t+1) is conditionally log-normal:

m$
t+1 = −y$

t,1 −
1
2

Λ′tΛt −Λ′tεt+1. (14)

Note that y$
t,1 = −Et[m$

t+1]− 0.5Vart[m$
t+1]. The real log SDF mt+1 = m$

t+1 + πt+1 is also condi-

tionally Gaussian. The innovations in the vector εt+1 are associated with a N × 1 market price of

risk vector Λt of the affine form:

Λt = Λ0 + Λ1zt. (15)

The N× 1 vector Λ0 collects the average prices of risk while the N×N matrix Λ1 governs the time

variation in risk premia. Asset pricing amounts to estimating the market prices of risk (Λ0, Λ1).

We specify the moment conditions used to identify the market prices of risk below.

A.1.3 State Vector Elements

The state vector contains the following N = 22 variables, in order of appearance: (1) real GDP

growth, (2) GDP price inflation, (3) the nominal short rate (3-month nominal Treasury bill rate),

(4) the spread between the yield on a five-year Treasury note and a three-month Treasury bill, (5)

the log price-dividend ratio on the CRSP value-weighted stock market, (6) the log real dividend

growth rate on the CRSP stock market. Elements 7, 9, 11, and 13 are the log price-dividend ratios

on the first size quintile of stocks (small), the first book-to-market quintile of stocks (growth), the

fifth book-to-market quintile of stocks (value), and a listed infrastructure index (infra). Elements

8, 10, 12, and 14 are the corresponding log real dividend growth rates. Element 15 is the log price-

dividend ratio on housing wealth, element 16 is log real dividend growth on housing wealth.

Finally, the state vector contains the log change in the consumption/GDP ratio ∆cx in 17th, the

log change in the log labor income/GDP ratio ∆lx in 18th, the log level of the consumption/GDP

ratio cx in 19th, and the log level of the labor income/GDP ratio lx in 20th position.

zt =
[
πt, xt, y$

t,1, y$
t,20 − y$

t,1, pdm
t , ∆dm

t , pdsmall
t , ∆dsmall

t , (16)

pdgrowth
t , ∆dgrowth

t , pdvalue
t , ∆dvalue

t , pdin f ra
t , ∆din f ra

t

pdhw
t , ∆dhw

t , ∆cxt+1, ∆lxt+1, cxt+1, lxt+1

]′
.

This state vector is observed at quarterly frequency from 1947.Q1 until 2019.Q4 (292 observa-

tions). This is the longest available time series for which all variables are available. Inflation is

the log change in the GDP price deflator. For the yields, we use the average of daily Constant
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Maturity Treasury yields within the quarter. All dividend series are deseasonalized by summing

dividends across the current month and past 11 months. Small stocks are the bottom 20% of the

market capitalization distribution, growth stocks the bottom 20% of the book-to-market distribu-

tion, and value stocks the top 20% of the book-to-market distribution. The infrastructure stock

index is measured as the value-weighted average of the eight relevant Fama-French industries

(Aero, Ships, Mines, Coal, Oil, Util, Telcm, Trans). We subtract inflation from all nominal divi-

dend growth rates to obtain real dividend growth rates.

Dividend growth on housing wealth is measured as housing services consumption growth

from the Bureau of Economic analysis Table 2.3.5. The price-dividend ratio is the ratio of owner-

occupied housing wealth from the Financial Accounts of the United States Table B.101.h divided

by housing services consumption. The resulting price-dividend ratio on housing wealth aver-

ages 16.1 (for annualized dividends) between 1947 and 2019. We subtract inflation from dividend

growth on housing wealth and we also subtract 0.6% per quarter to reflect the fact that the size of

the housing stock is growing and we are only interested in the rental price change, not the change

in the quantity of housing. The resulting real rental growth rate is 1.82% per year, which is in line

with (and still on the higher end of the numbers reported in) the literature.

Aggregate consumption is measured as non-durables plus services plus durable services con-

sumption. Durable services consumption is constructed as the depreciation rate (20%) multiplied

by the stock of durables. The stock of durables itself is computed using the perpetual inventory

method. This series is divided by nominal GDP and logs are taken.

Aggregate labor income is measured as wages and salaries plus business income (proprietors’

income with inventory valuation and capital consumption adjustments) plus transfer income (per-

sonal current transfer receipts) minus taxes (Personal current taxes and Contributions for govern-

ment social insurance, domestic). This series is divided by nominal GDP and logs are taken. Real

consumption growth can then be written as the sum of real GDP growth plus the change in the

consumption/GDP ratio:

∆ca
t+1 = xt+1 + ∆cxt+1

and similar for labor income growth.

All state variables are demeaned with the observed full-sample mean. The first 18 equations

of the VAR are estimated by OLS equation by equation. We recursively zero out all elements of

the companion matrix Ψ whose t-statistic is below 2.2. The resulting point estimates for Ψ and Σ
1
2

are reported below.

The dynamics of cx are pinned down by the dynamics of ∆cx:

cxt+1 = cxt + ∆cxt+1 =
(
ecx + ecxgrΨ

)′ zt + ecxgrγ
1
2 εt+1

Therefore the 19st row of Ψ is identical to the 17th row, except that Ψ(19, 19) = Ψ(17, 19) + 1.
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Similarly, the 20th row of Ψ is identical to the 18th row, except that Ψ(20, 20) = Ψ(18, 20) + 1.

The innovations to the 19th and 20th row are not independent innovations but determined by the

innovations that precede it. The level variables cx and lx are only added to the VAR to enforce

cointegration between consumption and GDP and between labor income and GDP. As a result

of this cointegration, the aggregate consumption and labor income claims will have the same

aggregate risk as the GDP claim.

A.2 Estimation

A.2.1 Bond Pricing

In this setting, nominal bond yields of maturity τ are affine in the state variables:

y$
t,τ = − 1

τ
A$

τ −
1
τ

(
B$

τ

)′
zt.

The scalar A$(τ) and the vector B$
τ follow ordinary difference equations (ODE) that depend on

the properties of the state vector and on the market prices of risk. Real bond yield are also ex-

ponentially affine with coefficients that follow their own ODEs. We will price the cross-section of

nominal and real bond yields (price levels), putting more weight on matching the time series of

one- and twenty-quarter nominal bond yields since those yields are part of the state vector zt. We

also fit the dynamics of 20-quarter nominal bond risk premia (price changes).

Figure A1 plots the nominal bond yields on bonds of maturities 1 quarter, 1-, 2-, 3-, 5-, 7-,

10-, 20-, and 30-years. These are all available bond yields in the data. The 20-, and 3-year bond

yields are not available in parts of the sample, but the estimation minimizes the distance between

observed and model-implied yields for every period where data is available. The model matches

the time series of bond yields in the data closely. It matches nearly perfectly the 1-quarter and

5-year bond yield which are part of the state space.

Figure A2 shows that the model also does a good job matching real bond yields. These yields

are available over a much shorter sample in the data, and we only plot the relevant subsample for

the model-implied yields as well.

The top panels of Figure A3 show the model’s implications for the average nominal (left panel)

and real (right panel) yield curves at longer maturities. These long-term yields are well behaved.

The bottom left panel shows that the model matches the dynamics of the nominal bond risk pre-

mium, defined as the expected excess return on five-year nominal bonds. The compensation for

interest rate risk varies substantially over time, both in data and in the model. The bottom right

panel shows a decomposition of the yield on a five-year nominal bond into the five-year real bond

yield, annual expected inflation over the next five years, and the five-year inflation risk premium.

The importance of these components fluctuates over time. This graph shows the secular rise and
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fall of real bond yields, with a peak in the early 1980s.

Figure A1: Dynamics of the Nominal Term Structure of Interest Rates
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Note: The figure plots the observed and model-implied nominal bond yields. Data are from FRED: constant-maturity
Treasury yields, daily averages within the quarter.

A.2.2 Equity Factors and Housing Wealth Pricing

The VAR contains both the log price-dividend ratio and log dividend growth for five equity risk

factors (the aggregate stock market, small stocks, growth stocks, value stocks, and infrastructure

stocks), and residential real estate wealth. Together these two time-series imply a time-series for

log returns through the definition of a log stock return. Hence, the VAR implies linear dynamics

for the expected excess stock return, or equity risk premium, for each of these seven assets. We

estimate market prices of risk to match the VAR-implied risk premium levels and dynamics.

The price of a stock equals the present-discounted value of its future cash-flows. By value-

additivity, the price of the aggregate stock index, Pm
t , is the sum of the prices to each of its future

cash-flows Dm
t . These future cash-flow claims are the so-called market dividend strips or zero-

coupon equity (Wachter, 2005). Dividing by the current dividend Dm
t :

Pm
t

Dm
t

=
∞

∑
τ=1

Pd
t,τ (17)

exp
(

pd + e′pdm zt

)
=

∞

∑
τ=0

exp
(

Am
τ + Bm′

τ zt
)

, (18)
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Figure A2: Dynamics of the Real Term Structure of Interest Rates

2000 2005 2010 2015 2020

-2

0

2

4

%
 p

e
r 

y
e
a
r

Real yield on 5-yr TIIS

model

data

2000 2005 2010 2015 2020

-2

0

2

4

%
 p

e
r 

y
e
a
r

Real yield on 7-yr TIIS

model

data

2000 2005 2010 2015 2020

-2

0

2

4

%
 p

e
r 

y
e
a
r

Real yield on 10-yr TIIS

model

data

2000 2005 2010 2015 2020

-2

0

2

4

%
 p

e
r 

y
e
a
r

Real yield on 20-yr TIIS

model

data

2000 2005 2010 2015 2020

-2

0

2

4

%
 p

e
r 

y
e
a
r

Real yield on 30-yr TIIS

model

data

Note: The figure plots the observed and model-implied real bond yields. Data are from FRED: constant-maturity
Treasury inflation-indexed bond yields, daily averages within the quarter.

where Pd
t,τ denotes the price of a τ-period dividend strip divided by the current dividend. The

log price-dividend ratio on each dividend strip, pd
t,τ = log

(
Pd

t,τ
)
, is affine in the state vector and

the coefficients (Am
τ , Bm

τ ) follow an ODE. Since the log price-dividend ratio on the stock market is

an element of the state vector, it is affine in the state vector by assumption. Equation (18) restates

the present-value relationship from equation (17). It articulates a non-linear restriction on the

coefficients {(Am
τ , Bm

τ )}∞
τ=1 at each date (for each state zt), which we impose in the estimation.

Analogous present value restrictions are imposed for each of the other four equity factors, and for

housing wealth.

If dividend growth were unpredictable and its innovations carried a zero risk price, then divi-

dend strips would be priced like real zero-coupon bonds. The strips’ dividend-price ratios would

equal yields on real bonds with the coupon adjusted for deterministic dividend growth. All vari-

ation in the price-dividend ratio would reflect variation in the real yield curve. In reality, the dy-

namics of real bond yields only account for a small fraction of the variation in the price-dividend

ratio, implying large prices of risk associated with shocks to dividend growth that are orthogonal

to shocks to bond yields. Hence, matching price-dividend ratios (price levels) and expected re-

turns (price changes) allow us to pin down the market prices of risk associated with orthogonal

dividend growth shocks (shocks to the state variables in rows 6, 8, 10, 12, 14, 16, and 18 of the
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Figure A3: Long-term Yields and Bond Risk Premia
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Note: The top panels plot the average bond yield on nominal (left panel) and real (right panel) bonds for maturities
ranging from 1 quarter to 400 quarters. The bottom left panel plots the nominal bond risk premium in model and data.
The bottom right panel decomposes the model’s five-year nominal bond yield into the five-year real bond yield, the
five-year inflation risk premium and the five-year real risk premium.

VAR).

Figures A4 and A5 show the equity risk premium, the expected excess return, in the left panels

and the price-dividend ratio in the right panels. The various rows cover the five equity indices

and the housing wealth series we price. The dynamics of the risk premia in the data are dictated

by the VAR. The model chooses the market prices of risk to fit these risk premium dynamics as

closely as possible alongside with the price-dividend ratio levels. The price-dividend ratios in the

model are formed from the price-dividend ratios on the strips of maturities ranging from 1 to 3600

quarters, as explained above. The figure shows an excellent fit for price-dividend levels and a

good fit for risk premium dynamics. Some of the VAR-implied risk premia have outliers which

the model does not fully capture. This is in part because the good deal bounds restrict the SDF

from becoming too volatile and extreme. We note large level differences in valuation ratios across

the various stock factors, as well as big differences in the dynamics of both risk premia and price

levels, which the model is able to capture well.
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Figure A4: Equity Risk Premia and Price-Dividend Ratios (1/2)
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Note: The figure plots the observed and model-implied equity risk premium on the overall stock market, small stocks,
and growth stocks in the left panels, as well as the corresponding price-dividend ratio in the right panels. The model is
the blue line, the data are the red line.

A.2.3 Pricing Claims to Aggregate Consumption and Labor Income

Shocks to the growth rate in consumption/GDP (labor income/GDP) ratio are priced only to the

extent that they are correlated with other priced sources of risk. The innovation to the change

in the consumption/GDP (labor income/GDP) ratio that is orthogonal to all prior shocks is not

priced. Since consumption/GDP growth and labor income/GDP growth appear last in the VAR

and the model includes many sources of priced aggregate risk, those innovations are as small as

possible.

Figure A6 plots the annual price-dividend ratios on the claims to GDP, aggregate consumption,

and aggregate labor income. It contrasts these valuation ratios to those for the aggregate stock

market, and housing wealth. The valuation ratios of GDP, aggregate consumption, and aggregate

labor income claims are all highly correlated. They are high at the start of the sample, low in

the early 1980s, and high at the end of the sample. Since total wealth is a claim to aggregate

consumption, this suggests that expected returns on total wealth were highest in the early 1980s

and have been falling ever since.
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Figure A5: Equity Risk Premia and Price-Dividend Ratios (2/2)
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Note: The figure plots the observed and model-implied equity risk premium on value stocks, infrastructure stocks, and
housing wealth in the left panels, as well as the corresponding price-dividend ratio in the right panels. The model is
the blue line, the data are the red line.

A.2.4 Cash-flow Duration

The (McCauley) duration is the weighted average time for an investor to receive cash flows. For

the aggregate stock market, this measure is computed as follows:

DCF,m
t =

∞

∑
τ=1

wt,ττ, wt,h =
Pd

t,τ
Pm

t
Dm

t

=
exp (Am

τ + Bm′
τ zt)

exp
(

pd + e′pdm zt

)
where Pd

t,τ is the price-dividend ratio of a τ-period dividend strip. Since durations are usually

expressed in years while time runs in quarters in our model, we divide by 4. Duration is defined

analogously for the other four equity indices, housing wealth, and for the GDP, consumption, and

labor income claims. Note that for a nominal or real zero-coupon bond of maturity τ, DCF
t = τ.

Figure A7 The figure plots the model-implied time series of cash-flow durations on the overall

stock market, small stocks, growth stocks, value stocks, infrastructure stocks, housing wealth, the

GDP claim, the aggregate consumption claim, and the aggregate labor income claim. Durations

tend to be positively correlated with the price-dividend ratios: high at the start of the sample,
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Figure A6: Valuation Ratios
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Note: The figure plots the annual price-dividend ratios on the aggregate stock market, housing wealth, and on claims
to GDP, aggregate consumption, and aggregate labor income.

lowest in the early 1980s, and high at the end of the sample. The duration of housing wealth is

highest during the housing boom in 2003–2007 when the valuation ratio of housing peaks. It then

falls sharply in the housing bust before rising again in the housing boom that starts in 2013.

A.2.5 Market Price of Risk Estimates

The market prices of risk are pinned down by the moments discussed in the main text. Here we

report and discuss the point estimates. Note that the prices of risk are associated with the orthog-

onal VAR innovations ε ∼ N (0, I). Therefore, their magnitudes can be interpreted as (quarterly)

Sharpe ratios. The constant in the market price of risk estimate Λ̂0 is:

0.11 0.00 -0.36 0.06 0.00 0.43 0.00 -0.01 0.00 0.12 0.00 0.25 0.00 0.26 0.00 2.76 0.00 0.00 0.00 0.00

The matrix that governs the time variation in the market price of risk is estimated to be Λ̂1 =:
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Figure A7: Cash-Flow Duration
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Note: The figure plots the model-implied time series of cash-flow durations on the overall stock market, small stocks,
growth stocks, value stocks, infrastructure stocks, housing wealth, the GDP claim, the aggregate consumption claim,
and the aggregate labor income claim. The duration is expressed in years.
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B Model-Free Repricing

Now that we have measured the exposure of household portfolios to changes in real rates, we

can now feed in the actual path of interest rates, reprice these portfolios according to our duration

measure, and compute the resulting impact on financial wealth inequality.

To begin, we use our auxiliary asset pricing model to compute implied 10-year real rates for

the three years prior to each SCF wave, denoted Rt, where t belongs to the set of SCF wave years.

For each household in SCF wave t, we now compute the effect on that household’s net wealth of

moving from interest rate Rt to rate Rt+1. Recall that financial wealth duration is the negative of

the semielasticity of financial wealth with respect to interest rates:

∂ log θi,t

∂Rt
= −D f in

i,t

where θi,t is financial wealth for household i at time t, and D f in
i,t is its duration. Turning this into a

first-order approximation and rearranging yields

θ
repriced
i,t+1 ' θi,t exp

{
−∆Rt+1 × D f in

i,t

}
(19)

where θ
repriced
i,t+1 is the implied value of the household’s net wealth following revaluation due exclu-

sively to the change in real interest rates, ignoring other factors such as savings that will influence

the actual evolution of wealth between time t and t + 1.

Using (19), we compute this repriced value of wealth θ
repriced
i,t+1 for each household i at each date

t. We next compute the impact of this change on financial wealth inequality according to

dSq,repriced
i,t = Sq,repriced

i,t+1 − Sq
i,t

where Sq
i,t is the share of financial wealth θi,t held by the top q% of the population, and Sq,repriced

i,t is

the equivalent statistic using the repriced distribution θ
repriced
i,t .

This statistic dSq,repriced
i,t reflects the impact of repricing on inequality between a single pair of

SCF waves. To compute the combined impact of changes along our entire real interest rate series,

we cumulate these changes as

Ŝq,repriced
i,t = const + ∑

τ≤t
dSq,repriced

i,τ

and choose the constant term so that Ŝq,repriced
i,t is exactly equal to the actual top wealth share Sq

i,t in

the 1989 wave of the SCF.

To measure the contribution of interest rates to financial wealth inequality, Figure A8 compares
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Figure A8: Top 10% Financial Wealth Shares, Actual vs. Repriced
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our implied top-10% wealth share Ŝ10,repriced
i,t that incorporates changes due to repricing only (red

dots), against the true series S10
i,t (black line). The figure shows that repricing has been a powerful

force, implying a rise of 10.2pp in the top-10% financial wealth share from 1989 to the end of the

sample, which accounts for more than half of the 9.1pp rise observed in the data.
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C Data Appendix

C.1 Inequality Data

The top wealth shares presented in 2 are from the World Inequality Database. The data for the

U.S. are available until 2019, for the U.K. until 2012, and for France until 2014.

Our primary source of data for the top wealth shares presented in 2 is the World Inequality

Database maintained by WID team. As the WID time series for the UK and France have a limited

window of observation, we augment the WID estimates with additional measures of top wealth

shares obtained from survey data and the Credit Suisse Global Wealth Report (Shorrocks, Davies,

and Lluberas, 2020), where available and necessary. This serves to increase the size of the obser-

vation window and provides additional robustness to our results.

For the United States the WID time series provides complete coverage. In addition, we report

survey estimates of top wealth shares from the Survey of Consumer Finances (SCF) and the SCF+,

the database developed by Kuhn et al. (2020), from 1950 to 1983. We slightly modify the definition

of total financial net-wealth by subtracting vehicles (for both the SCF and SCF+ data).17

For the United Kingdom the time series of top wealth shares from the WID ends in 2012.

From 2012 onwards, we rely on top wealth share estimates from the Credit Suisse Global Wealth

Report (Shorrocks et al., 2020). In addition, we construct estimates of the top 1% wealth share by

augmenting survey microdata from the U.K. Wealth and Assets Survey (WAS) with observations

from the Sunday Times Rich List to estimate the top 1% wealth share implied by fitting a Pareto

tail to the wealth distribution, following Vermeulen (2018). We choose this method of estimating

the top wealth share because in the periods of overlap between the WAS and WID the estimates

of top wealth inequality in the raw survey data do not align well with the estimates from the WID

which are based on the work of Alvaredo, Atkinson, and Morelli (2018a) using administrative

estate tax records. The most likely cause of this misalignment is undersampling of the rich in

the WAS, which can be remediated by the Pareto-tail fitting exercise using rich list observations

proposed by Vermeulen (2018).

For France the time series of top wealth shares from the WID ends in 2014. As for the U.K., we

rely on top wealth share estimates from the Credit Suisse Global Wealth Report (Shorrocks et al.,

2020) for the time period from 2014 onwards.

We construct the price of a real 30 year annuity by estimating the historical real yield curve for

each country. Letting yr
t,m denote the real yield at maturity m at time t the cost of the annuity is

calculated as

at =
30

∑
m=1

1
(1 + yr

t,m)
m

17Note that the SCF+ database uses a definition of total financial net-wealth that is consistent with the SCF.
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Due to varying availability of data we use three different approaches to estimate the real yield

curve that lead to broadly consistent estimates. Firstly, for the UK post 1985 we use historical

time series of real yields from to fit a spline through these points and construct the real yield

curve directly. Secondly, for the U.S. and France we use the time series of historical nominal yields

and inflation provided by Global Financial Data, augmented with data from the Macrohistory

database constructed by Jordà, Schularick, and Taylor (2017), to annually estimate real yields at

different maturities and then fit a spline through the estimated real yields to construct the real

yield curve. We construct real yields for each year by estimating an AR(1) process for inflation

on a sample of 50 years prior and then subtracting forecasted inflation from nominal yields at all

available maturities (3-month treasury yields and 10-year government bond yields for all periods,

as well as 30-year government bond yields for later periods). Thirdly, for the U.K. and U.S. we

also use model estimates of the real yield curve from .

We construct the price of a real 30 year annuity by estimating the historical real yield curve for

each country. Letting yr
t(h) denote the real yield at maturity h at time t the cost of the annuity is

calculated as:

30

∑
h=1

1
(1 + yr

t(h))h

Due to varying availability of data and for robustness, we use three different approaches to esti-

mate the real yield curve that lead to broadly consistent estimates.

First, for the UK post 1985 we use historical time series of real yields of various maturities

available from the Bank of England. We fit a spline through these points and construct the real

yield curve directly.

Second, for the U.S. and France we use the time series of historical nominal yields and in-

flation provided by Global Financial Data, augmented with data from the Macrohistory database

constructed by Jordà et al. (2017), to estimate real yields at different maturities and then fit a spline

through the estimated real yields to construct the real yield curve. We construct real yields for each

year by estimating an AR(1) process for inflation on a rolling sample of 50 years of past data, and

then subtracting forecasted inflation from nominal yields at all available maturities. Those are

3-month treasury yields and 10-year government bond yields for all periods, as well as 30-year

government bond yields for later years.

Third, for the U.K. and U.S. we also use model estimates of the real yield curve. The U.S.

estimates are from the model in Section A. The U.K. estimates are from a similar model estimated

for the U.K. in Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2021).
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C.2 Income Data

C.2.1 Data Source: PSID

The Panel Study of Income Dynamics (PSID) is a household panel survey that began in 1968. The

PSID was originally designed to study the dynamics of income and poverty. Thus, the original

1968 PSID sample was drawn from two independent samples: an over-sample of 1,872 low in-

come families from the Survey of Economic Opportunity (the “SEO sample”) and a nationally

representative sample of 2,930 families designed by the Survey Research Center at the University

of Michigan (the “SRC sample”). A total of approximately 500 post-1968 immigrant families were

added in 1997/1999 to update the PSID by adding a representative sample of recent immigrants to

the United States: this sample is called the 1997 PSID Immigrant Refresher Sample. A total of 615

post-1997 immigrant families were added in 2017 to update the PSID by adding a representative

sample of recent immigrants to the United States: this sample is called the 2017 PSID Immigrant

Refresher Sample.

C.2.2 PSID Income variables

We now describe the construction of the relevant income variables used in the paper. We construct

the following variables: labinc2f is labor income excluding transfers but including the labor part of

business and farm income for both head and eventual spouse; transf which are total households

transfer (including Social Security Income and other transfers); labinc3f, which is our measure of

total household income for both head and eventual spouse,is the sum of labinc2f and transf.

We provide further details on how we build these three variables. As the variables included

in the PSID are subject to change, the variable construction vary with different sample period. For

this reason, below we provide details on the variables used in different time periods. Moreover,

the ticker for each variable changed in each survey. We therefore define the ticker used in a specific

year as (YYYY:Ticker).18

labinc2f In the 1970 - 1993 sample, this variable is defined as the sum of Total labor income of

head, including wages and salaries, labor part of business income and farm income (1993:V23323),

and Spouse’s total labor income, including labor part of business income and farm income (1993:V23324).

In the 1993 - 2017 sample, this variable is defined as the sum of Reference Person’s total la-

bor (including wages and other labor) excluding Farm and Unincorporated Business Income,

(2017:ER71293), Labor Part of Business Income from Unincorporated Businesses (2017:ER71274),

Reference Person’s and Spouse’s/Partner’s Income from Farming (2017:ER71272), Wife’s Labor

Income, Excluding Farm and Unincorporated Business Income (2017:ER71321), Wife’s Labor Part

18The PSID website provides information on how to harmonize tickers across different surveys.
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of Business Income from Unincorporated Businesses (2017:ER71302). Note that farm’s income

includes both labor and asset portions of income.

transf In the 1970-1993 sample, this variable is defined as Total Transfer Income of Head and

Wife/”Wife” (1993:V22366) and Total Transfer Income of Others (1993:V22397) In the 1994-2003

sample, this variable is defined as Head’s and Wife’s Total Transfer Income, Except Social Security

(2017:ER71391), Other Total Transfer Income, Except Social Security (2017:ER71419), Total Fam-

ily Income from Social Security (1994:ER4152). In the 2004-2017 sample, this variable is defined

as: Head’s and Wife’s Total Transfer Income, Except Social Security (2017:ER71391), Other Total

Transfer Income, Except Social Security (2017:ER71419), Reference Person’s Income from Social

Security (2017:ER71420), Spouse’s/Partner’s Income from Social Security (2017:ER71422), Others

Income from Social Security (2017:ER71424).

labinc3f We then construct labinc3f by summing labinc2f and total family transfers transf.

C.2.3 Aggregation: NIPA vs PSID

We compare the PSID aggregates to the NIPA table aggregates from NIPA Table 2.1. We use

NIPA Wages and salaries and compare to labinc2f. We then use the Census data on US number of

households to compute Wages and salaries per households (note that our PSID measures are at the

household level).

C.2.4 Group Definitions

Our groups are defined based on gender, race and education. Here we detail the variables used

from the PSID. Sex. We use the sex of the head of the household (2017:ER66018).

Race. We use the variable race (2017:ER70882). We only have an indicator function if the head

is white and zero for all other races.

Education. We use a measure of years completed of education (2017:ER34548).19 We define an

individual to be college educated if they have 16 years of schooling or more. This definition is con-

sistent with Heathcote, Perri, and Violante (2010). Before 1975, we use the variable (1975:V4198).

C.2.5 Estimating Income Process

We estimate the income profile for different groups following Meghir and Pistaferri (2004). The

income process for household i in group g of age a at time t is given by (10)-(12). The estimation

19The question in the survey is: ”What is the highest grade or year of school that (you/he/she) has completed?”. We
make the following assumption: Education is based on highest level of educational achievement with perfect foresight.
So, income of an 18 year old who goes to college later should be part of the college income profile.
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proceeds in two steps. In the first step, we estimate the year-fixed effects and the coefficients on

the deterministic income profile χ from (10). In the second stage, we estimate the risk parameters

using the residuals zit from the first step. This estimation is done by GMM as detailed below.

Figure A9 plots the deterministic income profile of the different groups, evaluated at the 2016

year-fixed effects. The graph plots the expected income profile for the average person in each

group who is 18 years old in 2016, expressed in thousands of 2016 dollars.

20 40 60 80
Age

40

60

80

100

120
MWC

20 40 60 80
Age

20

40

60

80
MWN

20 40 60 80
Age

20

40

60

80

100
MOC

20 40 60 80
Age

20

30

40

50

60
MON

20 40 60 80
Age

20

40

60

80
FWC

20 40 60 80
Age

10

15

20

25

30
FWN

20 40 60 80
Age

20

30

40

50

60
FOC

20 40 60 80
Age

10

15

20

25

30
FON

Figure A9: Income Profile by Group

Note: This figure displays the life cycle income profile of households within different groups. M stands for male, F for
female; W stands for white, O for all other races; C stands for college, N for non-college. We use the 2016 year fixed
effects. The figure is in thousands of 2016 dollars. The model is estimated according to Equation (10)-(12) on PSID data
from 1970 to 2017.

Using Equation (10)-(12), and define j as equal to the age of the households minus the mini-

mum age (18), we find that:

E[ηi
j, ηi

j+h] = σ2
α + E[εi

j
2
] + σ2

ν if h = 0,

E[ηi
j, ηi

j+h] = σ2
α + ρhE[εi

j
2
] if h > 0,

E[εi
j
2
] = ρ2jσ2

ε0
+

j

∑
k=1

ρ2(j−k)σ2
u .

We then use a GMM estimation to estimate θ = (ρ, σν, ση , σα, σε0). We use a Minimum Distance

Estimator, where the weighting matrix is the identity matrix. We only include sample moments
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estimated on more than 10 observations.

Sample Selection. We use PSID data from 1970 to 2017. We only include households whose

head is 18 to 80 years old. We only include households which were in the survey for three or more

periods. We exclude households with zero or negative income. In each year, we trim the top 2.5%

of households by their income.

We pool all households together, after removing group-specific year-fixed effects and cubic

age-profiles, and estimate the idiosyncratic risk parameters θ. The point estimates are displayed

in Table A1. These are the parameters used in the main text.

Table A1: Idiosyncratic Risk Parameter Estimates

ρ σ2
u σ2

ν σ2
α σ2

ε0
N. Obs.

Pooled 0.952 0.021 0.201 0.073 0.163 10638

Note: ρ, σ2
u , σ2

ν , σ2
α , σ2

ε0
are estimated using Equation (10)-(12). Data are based on PSID and runs from 1970 to 2017.

C.3 Portfolio Shares

C.3.1 Data Source: SCF

The Survey of Consumer Finances (SCF) is a statistical survey of the balance sheet, pension, in-

come and other demographic characteristics of families in the United States. We use data from

the Summary Extract Data – that is, the extract data set of summary variables used in the Federal

Reserve Bulletin. It includes data from the triennial surveys beginning in 1989.20 We collect the

following variables.

Total Financial Assets. This includes: All types of transaction account (liquid assets), Certifi-

cates of deposit, Directly held pooled investment funds (exc. money mkt funds), Savings bonds,

Directly held stocks, Directly held bonds (excl. bond funds savings bonds), Cash value of whole

life insurance, Other managed assets, Quasi-liquid retirement accounts, Other misc. financial as-

sets.

Cash & Deposits This includes all types of transaction account (liquid assets) and certificated

of deposits. The list of variables are: Money market accounts; Checking accounts (excl. money

market); Savings accounts; Call accounts; Prepaid cards; Certificates of deposit.

Equities (direct & indirect). Total value of financial assets held by household that are invested

in stock. That includes: directly-held stock, Stock mutual funds: full value if described as stock

mutual fund, 1/2 value of combination mutual funds; RAs/Keoghs invested in stock: full value

if mostly invested in stock, 1/2 value if split between stocks/bonds or stocks/money market,

20The SCF Flow Chart provides information on how variables are constructed https://www.federalreserve.gov/

econres/files/networth%20flowchart.pdf. The code on how different variables in the Summary Extract Data are
constructed can be found here: https://www.federalreserve.gov/econres/files/bulletin.macro.txt
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1/3 value if split between stocks/bonds/money market; Other managed assets with equity in-

terest (annuities, trusts, MIAs): full value if mostly invested in stock, 1/2 value if split between

stocks/MFs & bonds/CDs, or ”mixed/diversified”, 1/3 value if ”other”; Thrift-type retirement

accounts invested in stock: full value if mostly invested in stock,1/2 value if split between stocks

and interest earning assets.

The allocation rules for mixed investments in 3), 4), and 5) do not apply to 2004 since new

questions in 2004 directly ask the share of stock in those assets.

Real Estate. The real estate variable includes: Primary residence; Residential property exclud-

ing primary residence (e.g., vacation homes);

Private Business Wealth. Businesses (with either an active or nonactive interest). Businesses

include both actively and nonactively-managed business(es). Value of active business(es) calcu-

lated as net equity if business(es) were sold today, plus loans from the household to the busi-

ness(es), minus loans from the business(es) to the household not previously reported, plus value

of personal assets used as collateral for business(es) loans that were reported earlier. Value of

nonactive business(es) is calculated as the market value of the business(es).

Fixed Income. Fixed income is calculated as the residual of Total financial assets minus Cash

& Deposits and Equity (direct & indirect).

Mortgage Debt. This includes: Debt secured by prim. resid. (mortgages, home equity loans,

HELOCs); Debt secured by other residential property.

Student Debt. Total value of education loans held by household. This includes education

loans that are currently in deferment and loans in scheduled repayment period. We exclude in-

stallment loans: these are mostly student loans (which we accounts for separately), vehicle loans

(which we do not account as debt as vehicles are part of consumption).

Consumer and Other Debt. This includes: Other lines of credit (not secured by resid. real

estate); Credit card balances after last payment; Other installments other than vehicles debt and

student debt

Net Wealth. We calculate net wealth for each household as the difference between total assets

(Cash & Deposits, Equities (direct & indirect), Real Estate, Private Business Wealth and Fixed

Income) and total liabilities (Mortgage Debt, Student Debt and Consumer and Other Debt).

C.3.2 Data Source: SCF+

We use the SCF+ database developed by Kuhn et al. (2020) in order to extend our sample back-

ward. Here we detail how we construct income and financial variables to be consistent with the

data in the SCF described above.

Income: tinc - total household income, excluding capital gains

Real Estate: house - asset value of house; oest - other real estate (net position); hoestdebt -
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other real estate debt (note: we add back the debt to the other real estate net position).

Cash and Deposits: liqcer - liquid assets and certificates of deposit.

Equities: ffaequ - equity and other managed assets; Indirect holdings through mutual funds

and pension funds.

Fixed Income: ffafin - financial assets; Equities.

Private Business Wealth: ffabus - business wealth.

Indirect Equity holdings

As in the SCF+ the indirect holdings of equity are not available, we follow the methodology of

Leombroni, Piazzesi, Schneider, and Rogers (2020) to compute indirect holdings exploiting aggre-

gate information from the US financial account. In order to look-through the mutual funds and

pension holdings we use data from the US financial account. We compute the mutual funds eq-

uity holdings using Corporate Equities (LM653064100)21. We compute the shares dividing equity

holdings by total mutual funds assets (LM654090000).

We compute the DC pension total equity holdings as the sum of Corporate equities (LM573064133)

and indirect holdings of equity through mutual funds. We compute the pension fund indirect

holdings as mutual fund shares (LM573064255)×mutual funds equity shares (as computed above).

We then divide the total equity holdings by total DC pension assets (FL574090055) to estimate the

pension equity shares. For each household we calculate the indirect equity holdings by multi-

plying the holdings (in dollar) of mutual funds and pension by the calculated indirect portfolio

shares.

Mortgage Debt: hdebt - housing debt on owner-occupied real estate; oestdebt - other real

estate debt. Student Debt: Student debt is not available in the SCF+. We assume it is 0. Other

Debt: pdebt - personal debt.

C.3.3 Groups

From the SCF and SCF+ data, we extract the sex of the reference person22, the education attainment

and the race. Using the education attainment we divide the sample into households with college

degree and households without college degree. We only include households older than 25 years

old. Table A2 provides information on the different groups.

C.3.4 Holdings

We compute the holdings for each of the assets and liabilities for each household. Table A3 shows

summary statistics for the distribution of asset holdings. Note that Private Business Wealth is

21The code refers to the ones used in the US financial account.
22In the SCF+ this information is not available.
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Table A2: Summary Statistics by Group

Groups Population Share (%) Median Age Median NW Average NW Std NW Negative NW Zero NW

MWC 16.82 42 298.02 918.26 3731.29 4.88 0.00
MWN 41.20 46 117.34 336.79 1777.63 7.44 2.12
MOC 2.61 41 84.11 517.01 1960.47 10.84 1.02
MON 12.26 42 28.43 102.57 338.46 13.12 10.46
FWC 3.62 51 168.08 335.90 657.92 8.83 0.00
FWN 14.12 63 54.95 151.99 459.71 9.65 3.99
FOC 0.79 40 20.56 105.85 224.83 38.73 5.89
FON 8.57 49 0.39 36.43 112.86 16.88 27.93
All 100.00 46 91.86 356.90 1970.48 9.21 5.19

Note: Groups Information. SCF 1989. Column 1 is in percentage. Column 3, 4 and 5 in 2016 thousands dollars, Column
6 and 7 are in percentage. M stands for male, F for female; W stands for white, O for all other races; C stands for college,
N for non-college.

a measure net of loans from the business to the households and hence may also be a negative

number.

Table A3: Portfolio Holdings

Mean std Min 25% 50% 75% 90% 95% Max

Cash and Deposits 37.55 241.49 0.00 0.75 4.11 22.11 82.99 158.87 67856
Equities 37.58 327.56 0.00 0.00 0.00 5.01 52.33 142.98 103966
Real Estate 190.97 820.86 -33929.77 0.00 91.58 214.94 420.54 631.74 201293
Private Business Wealth 79.53 1227.62 -1336.37 0.00 0.00 0.00 9.35 186.90 258433
Fixed Income 57.49 459.77 -0.00 0.00 3.74 27.66 103.17 223.72 171369
Mortgage Debt 39.26 96.52 0.00 0.00 0.00 50.46 123.36 192.51 30035.59
Student Debt 0.87 5.58 0.00 0.00 0.00 0.00 0.00 3.74 166.35
Other Debt 6.09 49.90 -0.00 0.00 0.26 3.74 11.03 20.56 4205.36
Net Wealth 356.90 1970.48 -39721.95 9.35 91.86 278.49 682.20 1322.91 290573.32

Note: Data are based on SCF 1989 and are reported in 2016 thousands dollars. Note that Private Business Wealth is a
measure net of loans from the business to the households. For this reason some observations are negative.

C.3.5 Financial Duration

For the purpose of our duration calculation, we exclude households with zero net-wealth but pos-

itive assets. We then compute household’s portfolio share in each asset by dividing the dollar

holdings in the asset by the households net wealth. Using the portfolio shares, we compute the

durations of the household’s financial portfolio by multiplying the asset duration of an asset (as-

sets durations are reported in the first column of Table 2) by the portfolio share of that asset, and

summing over all assets in the portfolio. We trim household financial durations by excluding the

top and bottom 2.5% of observations. In the last row of Table 2, we report the average duration,

by averaging over all households (using the SCF sampling weights). Similarly, we compute aver-
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age durations by group by averaging durations among the households in a group (using the SCF

sampling weights).

Table 2 also reports value-weighted portfolio shares for each asset. They are obtained by sum-

ming dollar holdings of an asset among all households (households in a group) by the total dollar

holdings of all assets among all households (households in a group). Aggregate durations are

then obtained by multiplying the value-weighted portfolio weights for each asset by the duration

of that asset, and summing over assets. They are reported in the last but one row of Table 2.

Figure A10 shows portfolio shares by age in the 1989 SCF. We bundle households into different

cohort groups: 25-35, 35-45, 45-55, 55-65, 65-75, 75-85. Figure A10a uses the value-weighted port-

folio shares. Figure A10b plots the median portoflio share in each asset category, and then rescales

the resulting shares so that they sum to 100%.

Figure A10: Portfolio Shares by Cohorts

(a) Wealth-Weighted Portfolio Shares
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(b) Median Portfolio Shares
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Note: Portfolio shares by age in the 1989 SCF. We bundle households into different cohort groups: 25-35, 35-45, 45-55,
55-65, 65-75, 75-85. The top panel uses the value-weighted portfolio shares. The bottom panel uses the median portfolio
share in each asset category, and then rescales the resulting shares so that they sum to 100%. We exclude households
with zero net wealth as the portfolio shares are undefined.

Figure A11 provides further information on the distribution of durations across households.

Figure A11a plots the average duration by cohort. We bundle households into cohort groups

and estimate the average duration. Figure A11b bundles households in wealth-weighted per-

centile and estimate the average duration of households in each bin.23 Figure A11c and A11d rank

23Households are ranked according to their net-wealth and allocated to different bins. Each bin is designed such that
the share of total wealth held by the households in each bin is the same across different bins.
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households according to their wealth and income percentile, respectively, and estimate the aver-

age duration of each group. Figure A11e and Figure A11f also rank households according to their

wealth and income. Then plot the average duration of each group against the average net-wealth

or income.

We also evaluate more formally the correlation between financial duration and some covari-

ates of interest. First, we regress household financial duration on household position in the Lorenz

Curve. To calculate households’ positions, we rank households by their net-wealth, then calcu-

late the cumulative sum of net-wealth and divide by the aggregate net-wealth. We then add a

dummy for each group, a quadratic function of age and the log of household income. We exclude

households with zero net-wealth and positive assets (as the duration is indeterminate) and trim

the bottom/top 2.5% of households ranked by their duration. The regression estimate take into

account survey weights. Table A4 reports the estimation results.

C.3.6 Financial Duration Over Time

Figure A12 uses information from each SCF survey from 1989 till 2019. Figure A12a compute

the aggregate (wealth-weighted) while A12b computes the average average (equally-weighted)

duration over time. We use two different specifications for the duration of assets. Full sample

computes the duration of the asset using the information over the whole sample; the duration

of each asset is kept constant over time. The time varying specification computes time varying

duration measures for equity, private business wealth and real estate. We then use these time

varying measures to compute the portfolio duration.

C.3.7 Financial Duration - Robustness

To make sure our results are robust we replicate Figure 3 using different samples and different

duration estimates for business wealth. Figure A13a uses a measure of business duration equal to

50, Figure A13b uses as duration of business wealth, the same duration used for equity (28.7), A13c

plots the median duration instead of the average duration, Figure A13d uses a different trimming:

trim the bottom/top 1%.

Table A5 reproduces the last two rows of Table 2 but using a duration of business wealth equal

to 50.

We also provide a robustness for the figure on the distribution of duration, by plotting both

the median duration as well as the average duration for the different percentiles. In Figure A14

we plot both average duration (Figure A14a) as well as the median duration (Figure A14b).
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Table A4: Determinants of Household-level Financial Duration

(1) (2) (3) (4) (5) (6) (7) (8)
Age 0.034 -0.36∗∗∗ -0.33∗∗∗ -0.18∗∗∗ -0.20∗∗∗

(0.51) (-5.80) (-5.12) (-2.76) (-3.11)

Age Squard -0.0023∗∗∗ 0.00100∗ 0.00097∗ -0.00044 -0.00013
(-3.96) (1.84) (1.76) (-0.78) (-0.23)

Net-Wealth 0.0000010∗∗∗

(8.18)

Income 0.0000015∗∗∗

(3.06)

Log-Net-Wealth 2.43∗∗∗

(27.40)

Log-Income 0.065 0.60∗∗∗

(0.42) (3.33)

Net-Wealth Pctl 0.11∗∗∗

(16.04)

Income Pctl 0.038∗∗∗

(5.88)

Lorenz 0.17∗∗∗ 0.15∗∗∗ 0.20∗∗∗ 0.19∗∗∗

(18.97) (14.48) (20.40) (16.74)

MWC 7.87∗∗∗ 4.63∗∗∗ 1.67∗∗ 0.99
(12.09) (6.65) (2.29) (1.34)

MWN 5.39∗∗∗ 3.89∗∗∗ 2.46∗∗∗ 2.03∗∗∗

(9.04) (6.52) (3.92) (3.18)

MOC 6.74∗∗∗ 4.97∗∗∗ 2.19∗ 1.73
(5.07) (3.81) (1.68) (1.34)

MON 4.56∗∗∗ 4.16∗∗∗ 2.50∗∗∗ 2.15∗∗∗

(6.11) (5.63) (3.29) (2.81)

FWC 0.19 -1.52 -2.44∗∗ -2.86∗∗∗

(0.19) (-1.62) (-2.50) (-2.93)

FWN -0.76 -1.47∗∗ -0.040 -0.25
(-1.19) (-2.33) (-0.06) (-0.39)

FOC 3.06∗∗∗ 2.13∗ 1.15 0.69
(2.61) (1.84) (1.11) (0.68)

Constant 21.8∗∗∗ 4.56∗∗ 23.8∗∗∗ 15.1∗∗∗ 12.9∗∗∗ 12.6∗∗∗ 23.6∗∗∗ 17.9∗∗∗

(11.85) (2.10) (13.46) (77.03) (23.23) (22.72) (12.34) (6.76)
Observations 13145 13145 13145 13145 13145 13145 13145 13145
R2 0.098 0.201 0.159 0.053 0.051 0.084 0.157 0.159
Adjusted R2

Note: Data based on SCF 1989. T-stats in parentheses (∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01)
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Table A5: Robust Aggregate and Average Duration

All MWC MWN MOC MON FWC FWN FOC FON

Aggregate Duration 22.21 23.35 22.49 27.01 20.15 15.93 14.91 18.05 16.68
Average Duration 14.85 19.55 16.50 16.33 13.71 12.30 10.27 11.89 7.68

Note: Data are based on SCF 1989. This table reproduces the last two rows of Table 2 but using a duration of business
wealth equal to 50. M stands for male, F for female; W stands for white, O for all other races; C stands for college, N for
non-college.

C.3.8 Wealth Shares, Income Shares, and Gini Coefficients

We estimate the net-wealth shares held by the top-10% and top-1%. We also estimate gini coeffi-

cients. We use the SCF+ database developed by Kuhn et al. (2020) in order to have a longer time

series of wealth and income. We slightly modify their definition of total financial net-wealth by

subtracting vehicles and other non-financial wealth.

Figure A15 plots the top shares and the gini coefficient for financial (net) wealth. Table A6

computes averages for these moments, computed over all surveys in the 1980s and all surveys in

the 2010s, for both financial wealth and income. The income moments in this table are from the

SCF. We define household income as SCF total household income minus capital income.

Table A6: Summary Statistics Wealth and Income Inequality in SCF

SCF WID
1980s 2010s 1980s 2010s

Wealth: Top 1 Share (%) 26.9 36.4 25.3 35.1
Wealth: Top 10 Share (%) 64.9 76.2 63.2 71.8
Wealth: gini (×100) 77.0 85.8 77.8 83.6

SCF WID PSID PSID (ex transf.)
1980s 2010s 1980s 2010s 1980s 2010s 1980s 2010s

Income: Top 1 Share (%) 11.5 18.3 12.2 18.6 6.4 9.5 8.1 11.8
Income: Top 10 Share (%) 36.3 45.5 36.3 45.1 29.2 34.3 35.4 41.7
Income: gini (×100) 48.2 56.1 48.7 57.9 42.8 47.8 56.9 62.7

Note: Shares and Gini coefficients estimated using the SCF+ developed by Kuhn et al. (2020), the WID database and
the PSID. We use our income variable labinc3f from the PSID as well the income variable excluding transfers (labinc2f ).
From the SCF+ we use the total income variable excluding capital gain. SCF+ 1980s average over the surveys in 1977,

1983 and 1989.

C.3.9 Inheritance

The survey of consumer finances also includes data on inheritance. We include the total of gift,

intheritance or assets received through trusts or in some other forms.24 We calculate the total

amount of inheritances received: the SCF provides some details on three main inheritance and

then aggregate all the other inheritances in an additional variable. We first compute the sum

24Note that this also includes life insurance or other settlements.
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of SCF variables: X5804 + X5809 + X5814, which report the approximate value of the three main

inheritances at the time they were received. We only include transfers received from grandparents

and parents (variables X5806, X5811, X5816 have to be equal to 1 or 2).25 We also use the variables

that detail the year in which the inheritances were received and deflate the inheritance values to

be in 2016 dollars (variables X5805, X5810 and X5815). We also calculate the age at which the

inheritance was received using the current age and subtracting the number of years to the time

the main inheritance was received (X5805).26

25We do not therefore include transfer from Child, Aunt/Uncle, Sibling, Friend, Government settlement; compensa-
tion , Family, n.e.c., Divorced former spouse

26We assume it was received at birth if the year it was received is before the household was born.
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Figure A11: Distribution of Durations

(a) Average Duration by Cohort
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(c) Average Duration by Net-Wealth
Percentile
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(d) Average Duration by Income Per-
centile
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(e) Duration vs Net-Wealth
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(f) Duration vs Income
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Note: Data are based on SCF 1989. We exclude households with zero net wealth and positive assets (as their port-
folio shares would be indeterminate) and we trim the data based on households’ overall duration: we exclude the
top/bottom 2.5%. Panel (a) plots the average duration by cohort. We bundle households into cohort groups and es-
timate the average duration. Panel (b) bundles households in wealth-weighted percentile and estimate the average
duration of households in each bin. Panel (c) and Panel (d) rank households according to their wealth and income
percentile, respectively, and estimate the average duration of each group. Then plot the average duration of each group
against the average net-wealth (Panel (e)) or income (Panel (f)).
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Figure A12: Financial Duration Over Time

(a) Wealth-Weighted Duration
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(b) Equally-Weighted Duration

1990 1995 2000 2005 2010 2015 2020
Year

16

18

20

22

24

26

Av
er

ag
e 

D
ur

at
io

n

Full Sample
Time Varying

Note: A12 uses information from each SCF survey from 1989 till 2019. Figure A12a compute the aggregate (wealth-
weighted) while A12b computes the average average (equally-weighted) duration over time. We use two different
specifications for the duration of assets. Full sample computes the duration of the asset using the information over
the whole sample; the duration of each asset is kept constant over time. The time varying specification computes time
varying duration measures for equity, private business wealth and housing.
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Figure A13: Duration by Net Worth, Robustness

(a) Business Wealth Duration = 50
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(b) Business Wealth Duration = Equity Du-
ration
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(c) Median Duration
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(d) Trim top / bottom 1%
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Note: Data are based on SCF 1989. We always exclude households with zero net wealth and positive assets (as their
portfolio shares would be indeterminate). Figure A13a uses a measure of business duration equal to 50, Figure A13b
uses as duration of business wealth, the same duration used for equity (28.7), A13c plots the median duration instead
of the average duration, Figure A13d uses a different trimming: trim the bottom/top 1%.
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Figure A14: Financial Duration by Net Worth Population Percentiles, Robustness

(a) Average Duration
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(b) Median Duration
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Note: This figure plots both average duration (Figure A14a) as well as the median duration (Figure A14b) estimated for
different percentiles of net-wealth. Data are based on SCF 1989. We exclude households with zero wealth and positive
assets holdings. We trim the top/bottom 2.5% of households ranked by the duration of their portfolio.

Figure A15: Financial Wealth Inequality in the SCF+
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Note: Data are based on SCF+ database developed by Kuhn et al. (2020) and WID database.
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D Proofs

D.1 Proof of proposition 5.1

Proof. The one-period budget constraint:

ĉt(η
t) +

ât(ηt)

R̂t
+ σ̂t(η

t)ν̂t = (1− α)ŷt(η
t) + ât−1(η

t−1) + σ̂t−1(η
t−1)(ν̂t + α),

can be restated, using equation (6), as:

ĉt(η
t)− (1− α)ŷt(η

t) +
ât(ηt) + σ̂t(ηt)(ν̂t+1 + α)

R̂t
= ât−1(η

t−1) + σ̂t−1(η
t−1)(ν̂t + α). (20)

Rewriting (20) one period later:

ĉt+1(η
t+1)− (1− α)ŷt+1(η

t+1) +
ât+1(η

t+1) + σ̂t(ηt+1)(ν̂t+2 + α)

R̂t+1
= ât(η

t) + σ̂t(η
t)(ν̂t+1 + α).

Multiply this equation by ϕ(ηt+1|ηt) and sum across all states ηt+1 to obtain:

∑
ηt+1

ϕ(ηt+1|ηt)

(
ĉt+1(η

t+1)− (1− α)ŷt+1(η
t+1) +

ât+1(η
t+1) + σ̂t(ηt+1)(ν̂t+2 + α)

R̂t+1

)
= ât(η

t) + σ̂t(η
t)(ν̂t+1 + α),

where we used the fact that ∑ηt+1
ϕ(ηt+1|ηt) = 1 on the right-hand side. Next, substitute this

expression back into (20) to obtain:

ĉt(η
t)− (1− α)ŷt(η

t) + R̂−1
t ∑

ηt+1

ϕ(ηt+1|ηt)
(

ĉt+1(η
t+1)− (1− α)ŷt+1(η

t+1)
)

+R̂−1
t→t+1 ∑

ηt+1

ϕ(ηt+1|ηt)
(

ât+1(η
t+1) + σ̂t(η

t+1)(ν̂t+2 + α)
)
= ât−1(η

t−1) + σ̂t−1(η
t−1)(ν̂t + α).

Define financial wealth, scaled by the aggregate endowment, as:

θ̂t = ât−1(η
t−1) + σ̂t−1(η

t−1)(ν̂t + α).

Continuing the forward substitution, we end up with the following expression:

θ̂t =
∞

∑
τ=t

R̂−1
t→τ−1 ∑

ητ |ηt

ϕ(ητ|ηt) (ĉτ(η
τ)− (1− α)ŷτ(η

τ)).

where ϕ(ηt|ηt) = 1. Financial wealth must equal the cost of the household’s excess consumption

plan, where excess refers to the part not paid for with labor income. Noting that e0 = 1 so that
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θ̂0 = θ0, writing this expression at time zero:

θ0 =
∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

ϕ(ητ) (ĉτ(η
τ)− (1− α)ŷτ(η

τ))

recovers the statement of the proposition.

D.2 Proof of Proposition 5.2

Proof. We note that the cross-sectional expectation of the product can be decomposed in the stan-

dard way: ∫
∑
ητ

ϕ(ητ)ψ(ητ) (ĉτ(η
τ)) dΘ0 = E0[ψτcτ] = Cov0[ψτ, cτ] + E0 [ψτ]E0 [cτ] .

If the orthogonality condition is satisfied, then the following result obtains:∫
∑
ητ

ϕ(ητ)ψ(ητ) (ĉτ(η
τ)) dΘ0 = E0[ψτcτ] = E0[ψτ]E0[cτ] = E0[cτ] = 1,

because E0[ψt] = 1.

D.3 Proof of Proposition 5.3

Proof. This inequality 0 ≥ Cov(ψt, ĉt) directly implies that the following inequalities obtain:

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

ϕ(ητ)ψ(ητ)ĉτ(η
τ)dΘ0 ≤

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

ϕ(ητ)ĉτ(η
τ)dΘ0 =

∞

∑
τ=0

R̂−1
0→τ−1,

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

ϕ(ητ)ψ(ητ)ŷτ(η
τ)dΘ0 ≤

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

ϕ(ητ)ŷτ(η
τ)dΘ0 =

∞

∑
τ=0

R̂−1
0→τ−1.

As a result, this new measure implies an aggregate value of individual wealth that falls short of

total wealth, ∑∞
τ=0 R̂−1

0→τ−1. Note that even though this claim to total consumption is itself not

traded, the Lucas tree is a claim to α of the same cash flow stream. The market value of the Lucas

tree is α ∑∞
τ=0 R̂−1

0→τ−1, and hence the value of total wealth has to be ∑∞
τ=0 R̂−1

0→τ−1.

D.4 Proof of proposition 5.4

Proof. An unconstrained household’s Euler equation in the high-growth economy is given by:

1 = β̂R̂t ∑
ηt+1

ϕ(ηt+1|ηt)
u′(ĉ(ηt+1, ηt))

u′(ĉt(ηt))
.
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This Euler equation is satisfied because the allocations and prices constitute a Bewley equilibrium

in the high-growth economy. This household’s Euler equation in the new economy with lower

interest rates is still satisfied at the old consumption allocation. This can be seen by plugging in

the new equilibrium interest rates:

R̃t β̃ = β̂R̂t,

to recover the unconstrained household’s Euler equation in the low-growth economy:

1 = β̃R̃t ∑
ηt+1

φ(ηt+1|ηt)
u′(ĉ(ηt, ηt+1)

u′(ĉt(ηt))
.

We allocate the following amount of financial wealth at time 0 to ensure the household can afford

the same consumption plan:

θ̃0(θ0, η0) =
∞

∑
τ=0

R̃−1
0→τ−1 ∑

ητ

ϕ(ηt) (ĉτ(η
τ)− (1− α)ŷτ(η

τ)).

Aggregating this initial financial wealth across households:

∫
θ̃0dΘ0 = α

∞

∑
τ=0

R̃−1
0→τ = ν̃0,

where we have used the goods market clearing condition and the definition of labor income

shares. The last equation shows that the new allocation of initial financial wealth uses up all

aggregate financial wealth in the economy. Finally, note that the natural borrowing constraints

are not binding in the high-growth economy. They remain non-binding in the low-growth econ-

omy because consumption is nonnegative. Hence, the allocations are feasible, and they satisfy the

sufficient conditions for optimality.

E Life-Cycle Model Details

Each agent in the life-cycle model with age j, portfolio of financial assets {ak,t}, and idiosyncratic

labor income state z solves the Bellman equation:

Vj(at; zt) = max
at+1

c1−γ
t

1− γ
+ βsjEt

[
Vj+1(at+1; zt+1)

]
(21)

subject to the budget constraint:

ct ≤ yt +
K

∑
k=0

(qk + δk)s−1
j ak,t − qkak,t+1 (22)
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where y is after-tax income as specified in equations (10) and (11), sj is the probability of surviving

to age j + 1, qk and δk are the prices and cash flows, respectively, of the set of risk free finan-

cial assets available to the household. The term s−1
j in the budget constraint (22) represents that

households enter an annuity or tontine system in which surviving households receive the assets

of households in their age cohort who died, proportional to their asset holdings. This assump-

tion ensures a sufficiently strong savings motive for older households in the absence of a bequest

motive.

We can generalize the problem through some convenient variable substitutions. First, we can

simplify the asset structure. In a stationary equilibrium, without aggregate shocks or changes to

the interest rate, the specific form of the financial assets is arbitrary, although it will be relevant

for repricing assets following an interest rate shock. As a result, we can define x to be the start-of-

period value of the entire portfolio, including both its cash flow and continuation value:

θt =
K

∑
k=0

(qk + δk)ak,t.

By no arbitrage, we have

qk + δk

qk
= R

for all k, which implies

K

∑
k=0

qkak,t+1 =
K

∑
k=0

(qk + δk)R−1ak,t+1 = R−1θt+1.

Substituting now yields the simplified the budget constraint

ct ≤ yt + θt − R−1θt+1. (23)

Under a constant interest rate, the problem can therefore be solved as if the agents held one-

period debt with face value θ in each period, allowing us to use a single solution to characterize

economies with portfolios over many possible assets.

Compensated Distribution. To compute the compensated distribution under a change from in-

terest rate R to R̃, we first compute total wealth under the original and new interest rates:

Ωt =
∞

∑
τ=0

R−τct+τ

Ω̃t =
∞

∑
τ=0

R̃−τct+τ.
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We next compute human wealth under the original and new interest rates:

Υt =
∞

∑
τ=0

R−τyt+τ

Υ̃t =
∞

∑
τ=0

R̃−τyt+τ.

The implied amount of financial wealth that makes the original consumption plan affordable is

therefore

θ
comp
t = Ω̃t − Υ̃t

= θt + (Ω̃t −Ωt) + (Υ̃t − Υt)

where θt is pre-shock financial wealth.

Repriced Distribution. To compute the repriced distribution following a change from interest

rate R to R̃, we will need to specify the specific asset structure. We assume that agents hold zero

coupon bonds with maturity m, which implies qm = R−m. At the moment of the interest rate

change, the repriced (post-shock) financial wealth θ
repriced
t is related to pre-shock financial wealth

θt according to the formula

θ
repriced
t =

(
q̃m

qm

)
θt =

(
R̃
R

)−m

θt (24)

for a household with bonds of maturity (duration) m. For our computations, we set m equal to

financial wealth duration, and apply (24).

F Robustness: Measurement of Private Business Duration

Our benchmark model uses the duration of small stocks—those in the bottom decile of the market

capitalization distribution of publicly listed firms—as a proxy for the duration of private business

wealth. Since the price-dividend ratio and dividend growth rates of small stocks are included in

the state vector of the auxiliary asset pricing model, the latter model fits the post-war quarterly

time series of small stock returns and cash flow growth rates exactly and implies a quarterly time

series for the duration of small stocks. The resulting private business duration, averaged over the

40 quarters of the 1980s, is 61.25.

This approach may be understating the duration of private business wealth, to the extent that

firms in the bottom decile of publicly listed firms already experienced a lot of (cash flow) growth

leading up to their inclusion in the publicly-listed universe. Including the cash-flow (growth)
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leading up to the point of the IPO would result in a higher duration.

The approach may also be overstating duration in that it measures the duration of small public

firms, holding fixed inclusion in this group. In reality, firms in the bottom decile of publicly-listed

firms may grow further and transition into higher deciles of the market capitalization distribution.

Since larger firms may have lower cash flow pay-out ratios, taking into account that small firms

do not remain small may lead us to overstate the duration of small public firms. In this appendix,

we address this potential overstatement issue, and explain how to arrive at the duration of firms

that are currently in the bottom decile (or quintile) of the market cap distribution , but may not

remain there in the future.

F.1 Measuring Duration with Firm Life-Cycles

The duration of a firm is the weighted average time to its cash flows:

Dur =
∞

∑
t=1

t
PVt

∑∞
t=1 PVt

Let s indicate the current-year size group of a firm, where size is measured by market capitaliza-

tion. Let there be S groups. We assume that PVt = CFt(1+ R)−t for some constant discount rate R,

calibrated as discussed below. We model the cash flow of the median firm in size group st, which

came from size group st−1 in the previous period, as the product of the payout-asset ratio of the

median firm in that size group and the assets of the median firm in that size group:

CFt(st|st−1) = (CFt/At) (st|st−1) · At(st|st−1) (25)

The state (market capitalization group) transition matrix is denoted by P(st|st−1). Conditional on

starting out in the smallest decile at time zero, the cash flow of a typical firm t periods later is:

Dt|s0 =
S

∑
st=1
P t−1 · (P · (Dt/At) · At) (26)

F.2 Implementation

We use CRSP-Compustat data on the universe of publicly-listed firms for the standard sample

from 1967–2020. Market capitalization is measured as price per share times shares outstanding,

properly adjusted for stock splits. We also make an adjustment for mergers & acquisitions. As is

commonly done, we delete stocks whose price is below $1 per share and whose market capitaliza-

tion is less than $10 million at the first time of observation (and only then).

Cash flow CF is either computed as cash dividends or as cash dividends plus net share re-

purchases, with the latter bounded from below at zero. Cash flows and assets are deflated by the
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consumer price index. To compute assets and the cash flow-to-asset ratio in each size group, we

first compute book assets and CF/asset ratios for each firm, then winsorize at the 1% level, then

compute the median across the firms that are in size group st in the current year and were in size

group st−1 in the prior year. This delivers a time series for the S× S matrices (CFt/At) (st|st−1)

and At(st|st−1). We then average these objects across years.

Our groups are either market capitalization deciles (S = 10) or quintiles (S = 5). When com-

puting the size transition probability matrix P , we collapse set all transition probabilities that are

more than three notches up (down) to zero and add the empirical weight of those transitions to the

state that is exactly three notches up (down). We take the time-series average of the state transition

probability matrices in each year.

Finally, we calibrate the discount rate R, needed in the duration calculation, in order to obtain a

duration of 28 for the value-weighted market portfolio of all stocks. This is the duration of the ag-

gregate stock market we estimate in the auxiliary asset pricing model. This enables comparability

across approaches.

F.3 Results

Size Deciles. Using deciles for size groups, the transition probability matrix is P(s′|s) =

75.1% 19.5% 3.6% 1.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20.3% 49.8% 22.2% 5.8% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3.7% 20.9% 43.9% 22.8% 6.9% 1.8% 0.0% 0.0% 0.0% 0.0%

0.8% 5.3% 20.7% 42.2% 23.8% 5.9% 1.2% 0.0% 0.0% 0.0%

0.0% 1.6% 5.2% 19.8% 43.3% 24.5% 4.9% 0.6% 0.0% 0.0%

0.0% 0.0% 1.7% 4.2% 18.8% 47.2% 24.3% 3.6% 0.2% 0.0%

0.0% 0.0% 0.0% 1.4% 3.5% 17.6% 52.2% 23.7% 1.5% 0.0%

0.0% 0.0% 0.0% 0.0% 1.4% 2.5% 15.4% 61.0% 19.5% 0.2%

0.0% 0.0% 0.0% 0.0% 0.0% 1.2% 1.3% 12.1% 72.9% 12.5%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.8% 0.9% 8.6% 88.6%


Table A7 shows, for each of the size groups, the dividend/asset ratio, the payout/asset ratio

(which includes net share repurchases in the numerator), log assets, and the duration using ei-

ther dividends or payouts. For the smallest decile of listed firms, which is our proxy for private

businesses, we obtain a duration of 62.5 using cash dividends and 62.3 using the broader pay-

out measure. We conclude that this number is quite similar to the 61.25 number we use in our

benchmark results.
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Table A7: Duration by Size Decile

Deciles D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Log asset 4.09 4.82 5.18 5.53 6.04 6.43 6.94 7.48 8.32 9.58
CF / asset (div, %) 0.10 0.21 0.30 0.37 0.51 0.56 0.77 1.03 1.36 1.93
CF / asset (payout, %) 0.13 0.34 0.42 0.49 0.68 0.81 1.06 1.36 1.70 2.35
Duration (div) 62.5 59.8 56.7 53.4 49.6 45.4 40.8 35.6 29.7 23.2
Duration (payout) 62.3 59.6 56.5 53.3 49.5 45.3 40.7 35.6 29.7 23.3

Note: The first row reports the log of book assets of the median firm in each decile of market capitalization. The second
and third rows report the ratio of cash flows to book assets for the median firm in each decile of market capitalization,
where cash flows are measured as cash dividends (div) in the first instance and dividends plus the max of net share
repurchases and zero in the second instance. Assets and CF/assets depend on both the current size decile and the prior
year’s size decile, but are integrated across the prior year’s size deciles for presentation purposes. The last two rows
report the durations, using either dividends or dividends plus net share repurchases as the measure of cash flow.

Size Quintiles. As a further robustness check, we also compute durations for quintiles, assum-

ing that private businesses resemble firms in the bottom-20% of the size distribution of listed firms.

Using quintiles for size groups, the transition probability matrix is P(s′|s) =

81.8% 17.0% 1.2% 0.1% 0.0%

15.2% 64.9% 19.1% 0.7% 0.0%

1.0% 15.1% 66.9% 16.8% 0.1%

0.2% 1.0% 12.1% 76.1% 10.7%

0.0% 0.5% 0.7% 7.7% 91.0%


Table A8 shows, for each of the size groups, the dividend/asset ratio, the payout/asset ratio

(which includes net share repurchases in the numerator), log assets, and the duration using ei-

ther dividends or payouts. For the smallest decile of listed firms, which is our proxy for private

businesses, we obtain a duration of 52.0 using cash dividends and 51.9 using the broader payout

measure.

Combining the results for deciles and quintiles suggests that a value around 50 for the du-

ration of private business wealth is conservative. This is particularly true, given the concern of

understatement of private business durations mentioned at the beginning of this appendix.

84



Table A8: Duration by Size Quintile

Quintiles Q1 Q2 Q3 Q4 Q5
Log asset 4.44 5.34 6.19 7.20 8.88
CF / asset (div, %) 0.12 0.32 0.50 0.89 1.63
CF / asset (payout, %) 0.20 0.42 0.70 1.18 1.99
Duration (div) 52.0 47.7 41.8 34.3 25.2
Duration (payout) 51.9 47.6 41.7 34.2 25.3

Note: The first row reports the log of book assets of the median firm in each quintile of market capitalization. The
second and third rows report the ratio of cash flows to book assets for the median firm in each quintile of market
capitalization, where cash flows are measured as cash dividends (div) in the first instance and dividends plus the max
of net share repurchases and zero in the second instance. Assets and CF/assets depend on both the current-year and
the prior year’s size quintiles, but are integrated across the prior-year’s size quintiles for presentation purposes. The
last two rows report the durations, using either dividends or dividends plus net share repurchases as the measure of
cash flow.
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