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Abstract

The (unobserved) economic valuation of a human life pays a central role in safety,

public health, legal, as well as quality vs quantity of life debates. Its shadow value must

be inferred from the explicit or implicit willingness to pay (WTP) or to accept compen-

sation (WTA) for beneficial and detrimental changes in longevity. Both evolve over the

life cycle (LC) through (i) accumulation and decumulation phases in financial, human

and life capital, (ii) age-increasing morbidity and mortality risks, and (iii) differing

mixes between market (e.g. consumption) and non-market (e.g. leisure) activities. The

objective of this paper is to characterize these age-dependent sources of variation in life

values. I solve and calibrate a LC model of consumption, leisure and health investment

choices, featuring generalized recursive preferences and age-dependent wages, exposure

to death and sickness risks. A calibration exercise reproduces observed labour, wealth

and health patterns and yields plausible WTP/WTA. It reveals how the willingness to

pay/accept compensation for beneficial and detrimental changes are altered by ageing,

and what are the implications for life valuations.

Keywords Value of Human Life; Value of Statistical Life; Gunpoint Value; Hicksian Com-

pensating and Equivalent Variations; Willingness to Pay; Willingness to Accept Com-

pensation; Mortality; Longevity; Non-Expected Utility.

JEL classification J17, D15, G11



1 Introduction

1.1 Motivation and overview

The COVID pandemic has highlighted the relevance of the economic value of a human life.

Indeed, the consequential macroeconomic costs of sanitary measures such as lockdown had

to be contrasted with both the costs of illness and the value of the lives saved. Moreover,

the allocation of scarce medical resources (e.g. access to intensive care) raised the specter of

uncomfortable tradeoffs between saving one person against another. These arbitrage were

complicated by the fact that both the pandemic incidence, and consequences varied greatly

across age and underlying medical conditions.

Computing the (non-marketed) value of a human life relies on identifying a shadow price

corresponding to a marginal rate of substitution (MRS) between additional life/mortality and

wealth. The two associated life valuations can be statistical, i.e. a collective willingness to

pay to save someone in the group, such as in the Value of a Statistical Life (VSL), or it can be

for an identified person, such as in the Human Capital (HK), i.e. the market value of foregone

net income, and Gunpoint (GPV) values, i.e. the willingness to pay and accept compensation

for immediate and certain death. For both statistical and identified perspectives, preferences

towards life can be either explicitly (i.e. stated preferences), or implicitly (i.e. revealed

preferences) recovered. Identifying the effects of age implies understanding how the life cycle

(LC) of the MRS is affected by factors as changing death and sickness risk exposures, or in

disposable resources, e.g. wealth, wages.

This paper adopts a revealed-preference perspective to solve the closed-form expressions

for the life cycles of both statistical and identified life values. I resort to a flexible LC

model where the agent optimally chooses investment in her health, labor/leisure, and con-

sumption/savings in an environment where wages peak at mid-life and decrease afterwards,

whereas mortality and morbidity risks exposures monotonously increase in age. I append
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separate intra-temporal substitution between labor and consumption, as well as bequest

motives to a generalized recursive preferences framework (Epstein and Zin, 1989, 1991; Weil,

1990, EZW) that disentangles inter-temporal substitution from risk aversion.

The identification of the life cycle of life values is calculated through the continuation

(indirect) utility, i.e. the forward-looking welfare of continued living along the optimal path.

More precisely, I calculate the Hicksian Equivalent (EV), and Compensating (CV) Variations

for both beneficial, and detrimental changes in death risk exposure using the continuation

utility from optimal investment, leisure, and consumption choices. In addition to the MRS,

the two Hicksian variations directly identify four key life valuations: the Willingness to

Pay (WTP) to attain beneficial, and to prevent detrimental changes, and the Willingness

to Accept (WTA) compensation to forego beneficial and to accept detrimental changes in

mortality. In addition to providing closed-form characterization on how ageing alters how we

value increases and decreases in longevity, the WTP/WTA allows for the calculation of the

life cycles of both Statistical and Gunpoint values of life. Importantly, all measures directly

address quality of life concerns by incorporating the shadow value of the human (i.e. health)

capital in the substitution between life and resources.

A revealed preference perspective is relied upon to compute numerical life value estimates.

The model is calibrated to reproduce observed LC’s for both exogenous (mortality, morbidity

and wages) and endogenous variables (health, wealth, leisure, labor income). Since no unique

data set regroups all these variables, I combine Panel Study of Income Dynamics (PSID),

American Time Use Survey (ATUS), and U.S. Life Tables under a common time frame,

and under the assumption that the datasets are representative of a common set of agents.

The parametrization is selected to realistic values and adequately replicates the observed life

cycles in both exogenous and endogenous variables.

The four key takeaways from this paper are the following. First, consistent with pref-

erence for life over death, the change in the continuation utility induced by a change
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in mortality risk exposure is positive for reductions and negative for increases in death

risk. Second, the effects are asymmetric, with welfare losses from detrimental changes

being much lower than welfare gains from beneficial changes of similar magnitude. These

nonlinearities translate into larger WTP/WTA to attain/forego for longevity gains than for

to prevent/accept longevity losses. They also reveal endowment effects where selling prices

(WTA) are much larger than buying prices (WTP).

Third, ageing is invariably associated with flatter Hicksian variations and WTP/WTA

measures. Equivalently, older agents are both willing to spend less and are less reactive to

changes in longevity. Several reasons explain why this is the case. First, the combination

of optimally falling net total wealth and marginal values imply falling continuation utility.

Since this welfare is the measure against which changes in death risk are valued, elders have

both less resources, and willingness to pledge resources for longevity. Related to this is the

effect of finite maximal longevity; any gain or loss in death risk exposure is operational on a

shorter remaining horizon compared to younger agents.

Fourth, the structural life values are often higher than other estimates. First, unlike

reduced-form VSL calculations, I explicitly compute the value of the health capital stock,

and of the time endowment of agents. Since both are much larger than financial wealth,

net total wealth is also much larger. Second, accounting for leisure is also important. The

quality of life made possible by leisure implies that agents are willing to reduce consumption

more to prolong life.

This paper is primarily related to integrated, life cycle model-based approaches to life val-

uations initiated by Conley (1976); Shepard and Zeckhauser (1984); Rosen (1988).1 Córdoba

and Ripoll (2017) also consider a LC framework of consumption and leisure choices featuring

EZW preferences to analyze the value of changes in mortality exposure. They emphasize the

importance of non-linearities in death probabilities made possible by recursive preferences

1See Hugonnier et al. (2021a) for a more thorough review of the life valuation literature.
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to generate rich predictions regarding WTP’s. However, they do not integrate endogenous

human capital choices, nor morbidity shocks in their analysis of life valuations. Hugonnier

et al. (2013, 2021b) do incorporate human capital considerations in a continuous-time model

with similar recursive preferences. However, they abstract from leisure choices, as well as

from the role of bequests in life values. Bommier et al. (2019) also resort to a LC model

of consumption and financial decisions, and analyze its implications for life values However,

they abstract from both leisure and human capital considerations and consider non-EZW

(risk sensitive) preferences that are less general than the ones I rely upon. Importantly,

none of these papers provide full characterization of EV and CV measures for beneficial and

detrimental changes in longevity, and none explicitly focus on the LC trajectories for life

values.

The rest of the paper is organized as follows. I present the theoretical LC model, and

its optimal solution in Sections 2 and 3. Section 4 presents the theoretical implications for

life valuation measures. The empirical calibration strategy is detailed in Section 5. The

numerical life value estimates are presented in Section 6, and are discussed in Section 7.

2 Model

2.1 Horizon, savings, labour choices and human capital

Horizon Let t ∈ [0, T ] denote discrete time, where T is the maximal biological longevity,

Tm ∈ (0, T ] be the stochastic timing of death following a Poisson process with age-increasing

intensity λmt . The age-t one-period st and k−period St,t+k ahead survivals, as well as expected
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longevity Lt are:

st = exp(−λmt ), (1a)

St,t+k =
k−1∏
τ=0

st+τ = exp

(
−

k−1∑
τ=0

λmt+τ

)
, (1b)

Lt =
T−t∑
k=1

St,t+k. (1c)

Financial and health capital dynamics Let Wt denote the agent’s financial wealth,

ct her consumption and `t ∈ [0, 1] her leisure. The agent’s faces the following financial

constraints:

Wt+1 = [Wt + Yt −Mt − ct]R, (2a)

Yt = y + wt(1− `t), (2b)

Mt = i+ It −BHt. (2c)

The budget constraint (2a) assumes a constant risk-free rate R = exp(r). Income Yt in (2b)

is net wages wt over work time nt = (1− `t), plus constant revenues y (e.g. social security).

Medical expenses Mt in (2c) include a constant level i (e.g. health insurance) plus the time-

varying expenses that increase in chosen level of investment It, but decrease in the agent’s

health Ht.

Regarding the latter, I assume the following dynamics for health capital:

Ht+1 = AIαt H
1−α
t + (1− δ − εht+1φ)Ht, (3a)
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where stochastic morbidity schock

εht+1 =


0 with prob. exp(−λht ),

1 with prob. 1− exp(−λht ).
(3b)

The Grossman (1972); Ehrlich and Chuma (1990) demand for health function (3a) is similar

to Hugonnier et al. (2013, 2020, 2021b) and assumes Cobb-Douglas technology. Stochastic

morbidity εht+1 is appended to gross investment in (3b) where illness occurs at age-increasing

hazard rate λht and induces additional depreciation φ ∈ (0, 1− δ) in the health stock.

We close our discussion of financial constraints and health dynamics by assuming perfect

financial markets. In particular, health shocks in εht+1 can be fully insured against at

actuarially-fair insurance rate. Moreover, a claim to any net income stream can be sold

at no additional costs in exchange for its risk-adjusted capitalized value.

Agent’s problem I resort to Epstein and Zin (1989, 1991) non-expected utility to repre-

sent the agent’s preferences. I append to that framework separate iso-elastic preferences over

consumption and leisure, as well as a bequest motive. More precisely the agent’s problem

can be written as:

Vt = Vt(Wt, Ht) = max
{ct,`t,It}

[
(1− β)u(ct, `t)

1−ε + βCEt(Vt+1)1−ε] 1
1−ε , (4a)

where the felicity function is:

u(ct, `t) =
[
θc1−σ
t + (1− θ)`1−σ

t

] 1
1−σ , (4b)
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where the certainty-equivalent of the continuation utility is:

CEt(Vt+1) =
[
EtV

1−γ
t+1

] 1
1−γ ,

=
[
stE

h
t V

1−γ
t+1 + (1− st) b Eh

t [Wt+1 + V H
t+1]1−γ

] 1
1−γ ,

(4c)

and where the value of human capital V H
t+1 at death is:

V H
t+1 = ηt+1Ht+1. (4d)

The dynamic problem is subject to financial (2) and health dynamics (3) and where initial

wealth and health (W0, H0) are taken as given.

First, β ∈ (0, 1) is a subjective discount factor, whereas 1/ε > 0 measures the elasticity of

inter -temporal substitution in the agent’s problem (4a). Second, the parameter θ ∈ (0, 1) in

the felicity (4b) measures the consumption share whereas 1/σ > 0 is the elasticity of intra-

temporal substitution between consumption and leisure. Third, Et = Em,h
t in (4c) denotes

the joint conditional expectations with respect to mortality Tm, and morbidity εht+1, and

Eh
t denotes the expectation with respect to the latter in (3b). Fourth, γ > 0 is the agent’s

relative risk aversion.

Finally, b > 0 captures the warm-glow utility benefit of the financial and health statuses

evaluated at death. More precisely, the non-zero agent’s utility at death depends on her

end-of-life financial wealth Wt+1 and health V H
t+1 statuses. The latter in (4d) captures lower

terminal care expenses, as well as better life quality (e.g. less suffering, more sense of

fulfillment) for healthier agents at the very end of life. Alternatively, b can be interpreted

as the bequest motive, with b1/(1−γ) measuring the share of next-period total wealth, i.e.

the sum of financial Wt+1 and human capital V H
t+1 = ηt+1Ht+1, to be bequeathed. For

both interpretations, the age-dependent shadow price (i.e. Tobin’s-q) of health ηt+1 ≥ 0 is

determined endogenously and satisfies transversality restriction ηT = 0.
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Time variation Several elements concur to induce an age-dependent allocation {ct, It, `t},

for 0 < t ≤ Tm ≤ T . First, longevity is bounded above by T . Second, both risk exposures

to death λmt and illness λht increase with age. Third, wages wt are subject to exogenous time

variation. As will become apparent shortly, the induced time variation in the associated

continuation utility Vt(Wt, Ht) will generate age-dependency in the life valuation measures

calculated from the welfare function.

3 Optimal allocation

3.1 Solution method

The solution method relies on four building blocks. I first exploit static optimization between

labour and consumption choices to recast the agent’s problem in terms of total expenses (i.e.

consumption and the cost of leisure). Second, under the perfect markets assumption, I

invoke separation properties (e.g. Bodie et al., 1992; Hugonnier et al., 2013; Palacios, 2015;

Acemoglu and Autor, 2018) to solve the optimal human capital dynamics independently

from financial decisions. Third, the agent’s problem is recoded as an equivalent one where

the agent maximizes utility over total expenses subject to the dynamics for net total (i.e.

financial plus human wealth). Finally, the dynamic optimization for both human capital

and total expenses calculates the optimal policies by backward iteration starting at maximal

longevity T .

3.1.1 Optimal labour-consumption choices

A standard argument, applicable in our setting, establishes the well-known a-temporal

optimization equalizing the marginal rate of substitution between leisure and consumption
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U`,t/Uc,t to the wages wt to obtain:

`t =

[(
1− θ
θ

)
1

wt

] 1
σ

ct.

It follows that total spending on consumption and leisure c̃t, as well as felicity ut at the static

optimum can be recast as:

c̃t ≡ ct + wt`t = ctµ(wt) (5)

u(ct, `t) = c̃tν(wt),

where the wage- (and therefore age-) dependent loadings are:

µ(wt) ≡ 1 +

(
1− θ
θ

) 1
σ

w
1− 1

σ
t ≥ 0 (6a)

ν(wt) ≡ [θµ(wt)
σ]

1
1−σ ≥ 0. (6b)

Hence, 1− 1/µ(wt) represent the leisure share wt`t in total expenses c̃t. At high elasticity of

intra-temporal substitution 1/σ > 1, substitution effects outweigh income effects; an increase

in wages lowers µ(wt), thereby lowering the leisure share. Low elasticity 1/σ < 1 induce

opposite patterns, whereas 1/σ = 1 leads to exact cancellation of income and substitution

effects, resulting in constant (µ, ν) and consumption and leisure shares.

3.1.2 Separation between human capital and financial choices

Next, under perfect markets assumption, two claims can be sold on financial markets:
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1. a claim to the expected net present value of exogenous lifetime wages, net of fixed

medical expenses, independent of mortality risk, and over horizon t = 0, . . . , T :

V w
0 = E0

T∑
t=0

exp(−rt)(wt −m); (7)

where m = i− y is the excess medical expenses above fixed income. Observe that V w
t

encompasses the expected net present value of the unit of time endowment (a share `t

of which is spent on leisure and is accounted for in total expenses c̃t).

2. a claim to health benefits net of investment, independent of mortality risk, and over

finite horizon t = 0, . . . , T , and whose value V H
t = V H

t (Ht) satisfies:

V H
t = max

It
(BHt − It) + exp(−r)EtV

H
t+1, (8)

subject to health dynamics (3), which is solved by backward induction, independently

from the other allocation for (ct, `t). V
H
t corresponds to the shadow value of the human

capital, i.e. the expected net present value of its dividend stream BHt − It.

At the initial period t = 0, the agent then cashes-in those two claims that are added to

financial wealth Wt to obtain (non-stochastic) net total wealth Nt, and the corresponding

dynamics for the latter are adjusted accordingly. Regrouping our static optimization and

separation results imply that the original problem can be equivalently recast with Vt = Vt(Nt)

as follows:

Vt = max
c̃t

{
(1− β)(νtc̃t)

1−ε + β
[
stV

1−γ
t+1 + (1− st) b N1−γ

t+1

] 1−ε
1−γ
} 1

1−ε
(9a)
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where st is the on-period ahead survival probability in (1a), and subject to

N0 ≡ W0 + V w
0 + V H

0 (H0),

Nt+1 = [Nt − c̃t]R,
(9b)

Appendix C proves the separable health investment and total expenses solution coincides

with the direct solution method where perfect financial markets are abstracted from and

the optimal rules for It, c̃t are solved simultaneously under the assumption of actuarially-fair

insurance against health shock εht+1.

3.2 Optimal rules

Timing convention We will henceforth recode timing t in terms of maximal remaining

survival time before T , and refer to s = 1, 2, . . . as the number of remaining periods before

maximal longevity is reached, such that current period is t = T − s. To alleviate notation

we omit time-subscript for contemporary variables, use prime (′) for next-period variables,

and use s to emphasize feedback rules calculated s-periods from T .

3.2.1 Health investment

I first characterize the optimal solution for the separate health investment decision I, and

the associated value of the health stock V H .

Theorem 1 The optimal investment and corresponding value of human capital solving (8)

are:

Is(H) = κsH,

V H
s (H) = ηsH,
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where the loadings {κs, ηs}Ts=1 satisfy the following recursion:

κs =
[
ηs−1R

−1αA
] 1

1−α

ηs = B − κs + ηs−1R
−1
{
Aκαs + (1− δ)− [1− exp(−λh)]φ

}
with initial values (κ1, η1) = (0, B).

The age-dependent feedback rule κs crucially determines optimal health decumulation

(see eq. (20) below), whereas ηs corresponds to a shadow price, i.e. marginal and average

Tobin’s-q of the health capital H. Both κs, ηs explicitly account for benefits B, accumulation

technology A,α, δ as well as age-increasing sickness risk exposures λh, and consequences φ,

yet are independent of mortality λm.

3.2.2 Total expenses

Next, the health capital V H is added to financial and wage-related resources and the optimal

total expenses c̃ and value function are calculated as functions of the net total wealth N as

follows.

Theorem 2 The optimal total expenditures and corresponding value function solving (9)

are:

c̃s(λ
m, N) = ωs(λ

m)N (10)

Vs(λ
m, N) = ψs(λ

m)N (11)
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where the loadings {ωs, ψs}Ts=1 satisfy the following recursion:

βs(λ
m) = β

{
s(λm)ψs−1(λm)1−γ + [1− s(λm)] b

} 1−ε
1−γ , (12a)

ωs(λ
m) =

(1− β)
1
ε ν

1−ε
ε

s

(1− β)
1
ε ν

1−ε
ε

s + βs(λm)
1
εR

1−ε
ε

(12b)

ψs(λ
m) =

{
(1− β) [νsωs(λ

m)]1−ε + βs(λ
m) [(1− ωs(λm))R]1−ε

} 1
1−ε (12c)

with initial value β1(λm) = βb
1−ε
1−γ , and where (µs, νs) are given in (6).

The time-varying βs in (12a) corrects the subjective discount applied on future wealth

N ′ for the time variation in death risk exposure s(λm), and for the importance of bequest

motives b. The age-dependent feedback rule ωs ∈ [0, 1] in (10) is the marginal (and average)

propensity to spend on total expenditures c̃ out of net total wealth N , whereas ψs is the

marginal (and average) value of the latter. All three depend nonlinearly on death risk

exposure λm. As will become clear shortly, the linearity of the continuation utility (11) will

nonetheless simplify the interpretation of the life valuation measures associated with changes

in λm.

4 Implications for life valuations

4.1 Hicksian Equivalent and Compensating Variations

The implications of the life cycle model for the valuations of human life are next derived.

In particular, I rely on the Hicksian Equivalent and Compensating Variations to calculate

the maximal willingness to pay and to accept compensation to prevent/accept permanent
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and constant detrimental modifications and to attain/forego beneficial changes in death risk

exposure.2

Definition 1 (EV and CV along optimal path) Consider a permanent, constant change

of magnitude ∆ ≥ −λm in base exposure to death risk λm. Then, given net total wealth N

and remaining time s to maximal longevity T , the Equivalent (ves) and Compensating (vcs)

Variations along the optimal path are the implicit solutions to the indifference conditions:

Vs(λ
m, N − ves) = Vs(λ

m + ∆, N) (13a)

Vs(λ
m + ∆, N − vcs) = Vs(λ

m, N) (13b)

where Vs is the continuation utility solved in (11).

Definition 1 adapts standard Hicksian variational analysis (e.g. Hanemann, 1991; Varian,

1984, p. 264) to our life valuation setting and evaluates the variations along the optimal life

cycle path generated by the indirect utility Vs. A number of characteristics can be derived.

First, the link between the two variations follows directly from standard principles:

vcs(∆, λ
m, N) = ves(−∆, λm + ∆, N)

i.e. the CV is equal to the EV evaluated at λm + ∆ for change equal to −∆. Second,

the links between the two Hicksian variation measures and the WTP’s, and WTA’s can be

deducted from (13). The Equivalent Variation (13a) takes current exposure λm as status-

quo to calculate maximal WTPs = ves to prevent detrimental change ∆ > 0 or minimal

WTAs = −ves to forego beneficial changes ∆ < 0. The Compensating Variation (13b)

instead takes altered exposure λm + ∆ as status-quo and computes the WTPs = vcs > 0 to

2See Murphy and Topel (2006) for a similar constant change perspective, and Jones-Lee et al. (2015) for
alternative one-shot, and proportional changes in death exposure.
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attain beneficial change ∆ < 0 and WTAs = −vcs to accept detrimental changes ∆ > 0:

WTPs(∆, λ
m, N) =


vcs, (∆, λ

m, N), for ∆ < 0 (attain benef. chg.)

ves(∆, λ
m, N), for ∆ > 0 (prevent detrim. chg.)

(14a)

WTAs(∆, λ
m, N) =


−ves(∆, λm, N), for ∆ < 0 (forego benef. chg.)

−vcs(∆, λm, N), for ∆ > 0 (accept detrim. chg.)

(14b)

It follows directly that both EV and CV in (13), and therefore that the WTP (14a) and

WTA (14b) are zero at base risk ∆ = 0.

Third, we can substitute ves(∆, λ
m, N) in (13a) and vcs(∆, λ

m, N) in (13b), take derivatives

with respect to change ∆ and re-arrange to obtain the marginal rate of substitution between

life and net total wealth as:

MRS(λm, N) ≡
−∂Vs(λm,N)

∂λm

∂Vs(λm,N)
∂N

=
∂ves(∆, λ

m, N)

∂∆

∣∣∣∣
∆=0

=
−∂vcs(∆, λm, N)

∂∆

∣∣∣∣
∆=0

. (15)

Hence, the shadow relative price of life, i.e. the required marginal change in net total wealth

to leave an agent indifferent to a marginal change in longevity is simply the slope of the

tangent of the EV (and negative of tangent slope for the CV) evaluated at base risk ∆ = 0.

Importantly, observe that all variational/willingness measures, as well as MRS account for

quality-of-life considerations. Indeed, the net total wealth Ns = N(Ws, Hs) in (9b) explicitly

incorporates the shadow value of the human capital stock Hs, as as such accounts for health-

related variations in V H
s in (8) caused by ageing and/or illness.

The indirect utility (11) is proportional to net total wealth, where all utilitarian effects

of mortality risk exposure are captured through the marginal utility of wealth ψs(λ
m). The

calculation of the EV and CV are therefore simplified and can be derived as:
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Proposition 1 (Equivalent and Compensating Variations) The Hicksian Equivalent

and Compensating variations along the optimal path are given as:

ves(∆, λ
m, N) =

[
1− ψs(λ

m + ∆)

ψs(λm)

]
N

and

vcs(∆, λ
m, N) =

[
1− ψs(λ

m)

ψs(λm + ∆)

]
N

where ψs is given in (12).

The proof follows directly by substituting continuation utility (11) in Hicksian variations (13)

and is therefore omitted.

Proposition 1 shows that both EV and CV are proportional to net total wealth. It further

reveals that the key determinant for life valuations is how continuation utility is affected by

∆. Indeed, rearranging (16) reveals that:

ves(∆, λ
m, N) = −Ψ(∆, λm)N,

vcs(∆, λ
m, N) =

(
Ψs(∆, λ

m)

1 + Ψ(∆, λm)

)
N,

where

Ψs(∆, λ
m) ≡ Vs(λ

m + ∆, N)− Vs(λm, N)

Vs(λm, N)
(17)

is the elasticity of the continuation utility Vs induced by infra-marginal change ∆ in base

mortality risk exposure λm. Clearly, preference for life implies that the elasticity is positive

for beneficial changes (∆ < 0) and negative for detrimental ones (∆ > 0).
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4.2 Additional life valuations

The two Hicksian variational measures in Proposition 1 can also be relied upon to calculate

closed-form expressions for additional life valuation measures.

4.2.1 Value of Statistical Life

The theoretical VSL is the marginal rate of substitution given by (15) and is therefore

independent from the EV or CV perspective. The empirical VSL commonly resorted to in

the literature is an infra-MRS approximation equal to the WTP or WTA value divided by

∆:

V SLps(λ
m, N) = lim

∆→0

WTPs(∆, λ
m, N)

∆
≈ WTPs(∆, λ

m, N)

∆

∣∣∣∣
∆ small

,

V SLas(λ
m, N) = lim

∆→0

WTAs(∆, λ
m, N)

∆
≈ WTAs(∆, λ

m, N)

∆

∣∣∣∣
∆ small

.

(18)

Typical practices set ∆ = 1/n where n is the size of the population under study; the VSL

can then be conveniently interpreted as the collective WTP to save one unidentified (i.e.

statistical) life in the group.

4.2.2 Gunpoint Value

The Gunpoint value is the maximal willingness to pay to prevent (GPV p
s ), or willingness

to accept compensation (GPV a
s ) for instantaneous, certain death corresponding to ∆ =∞.

Substituting in Proposition 1 reveals that:

GPV p
s = WTPs(∞, λm, N)

GPV a
s = WTAs(∞, λm, N)

(19)
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Both Gunpoint measures are useful in ex-ante instances where death is a certain outcome

under a specific action or inaction, such as in terminal care decisions, or in ex-post instances

where death has occurred, such as in wrongful death litigation.3

4.2.3 Graphical links EV, CV, MRS, VSL and GPV

The previous discussion allows for a graphical representation of the theoretical links between

the various life valuations in Figure 1. First, for monotone increasing and concave EV (in

green), the MRS in (15) is the slope of the blue tangent evaluated at ∆ = 0, and is also

equal to the negative of the slope of the tangent at the origin of the decreasing convex CV

(in brown). Equation (18) shows that both are equal to the theoretical VSL. The empirical

counterpart of the VSL is the slope of a green arc from the origin to a point on the EV at

infra-marginal change ∆0 for the WTP-based V SLp, whereas the negative of the slope of a

brown arc from origin to the CV is the WTA-based V SLa. From (19), the GPV p is maximal

WTP to avoid instantaneous and certain death, i.e. the upper bound of the EV, whereas

the GPV a is the minimal WTA to accept imminent death is the negative of the lower bound

of the CV.

5 Empirical strategy

The empirical strategy relies on a calibration of the model’s parameters to generate predicted

life cycles of a subset of key variables for which observable counterparts exist. Unfortunately,

no unique data set can be found for the variables to be matched. I therefore combine

several well-known databases over a common period under the assumption that they are

representative of US agents. The theoretical optimal rules and associated optimal dynamics

provide predictions for the life cycles of variables such as wealth, leisure, income, and health.

3See Jones-Lee (1974); Cook and Graham (1977); Weinstein et al. (1980); Eeckhoudt and Hammitt (2004);
Hugonnier et al. (2021b) for GPV-related definitions, applications and discussion.
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Since these depend on age only, so must their observable counterparts. Consequently,

observed life cycles must be computed taking into account the statics and the dynamics

in socio-economic variables to recover pure age-dependent effects.

5.1 Data

5.1.1 Health, sickness and mortality variables

Health and sickness intensities I rely on Panel Study on Income Dynamics (PSID)

to recover health-related data. More specifically, I use a panel ordered probit, with random

effects over the unbalanced household data for the period 2003-2019 to regress the polytomous

self-reported health status on socio-demographics,4 as well as on a fractional polynomial on

age. The associated score function,5 evaluated by age, is taken to represent the health

variable Ht, whereas the imputed marginal probability of being in the worst health state, by

age, is used as proxy for the sickness intensity λht .

Death intensity The Life Tables of the United States (Arias and Xu, 2020, Tab. 1)

report age-specific one-year survival probabilities st, from which the intensity λmt is directly

recovered as:

λmt = − ln(st).

Figure 2, panel a displays a continuous decline in health which accelerates after 70.

Unsurprisingly, the exposure to sickness risk (panel b) is larger in absolute terms, yet does

not increase as rapidly with age compared to death risk (panel c) which displays the familiar

exponential growth associated with ageing (Gompertz).

4More specifically, I use sex, gender, race, education and year dummies, as well as financial wealth as
regressors.

5The predicted score is scaled upwards to guarantee positive observed values for Ht, consistent with the
growth process in (3a).
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5.1.2 Financial and income variables

Wealth The PSID data is also resorted to for wealth. In particular, the latter is taken to

be the net financial and residential wealth of agents. Again, wealth is regressed on socio-

economic variables as well as a fractional polynomial in age, and accounting for random

effects.6 The fitted variables by age is our wealth variable Wt. Panel a in Figure 3 shows

the accumulation of wealth up to mid-70’s and slow de-cumulation afterwards. Summary

statistics for the PSID variables are provided in Table 1, panel a.

Hours, wages and income Labor market variables are taken from the American Time

Use Survey (ATUS) for the 2003-2019 period. Controlling for random effects, sex, occupation

and industrial sector, as well as year dummies, wages, hours and income are again regressed

on a fractional polynomial from which the fitted values by age are recovered. Average hourly

wages in Figure 3 panel b increase up to mid-life and slowly decline afterwards, whereas

panel c shows relatively constant hours up to mid-life and rapid decline after 55. Finally,

the salaried income in panel d shows similar inverted-U patterns. Summary statistics for the

ATUS variables are provided in Table 1, panel b.

5.2 Calibration strategy

Calculating the optimal dynamics The model’s deep parameters are calibrated so as

to match the joint lifetime dynamics of health, wealth and labor market variables along the

optimal path with their observable counterparts. This strategy involves four steps.

1. Given a set of parameters, the optimal recursions are solved for {κs, ηs}Ts=1 (Theorem 1)

as well as for {βs, ωs, ψs}Ts=1 (Theorem 2).

6I use year, sex, gender, race, and education dummies, as well as self-reported health as regressors.
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2. Relying on separability between financial- and health-related decisions, as well as

complete markets, the value of net wages {V w
t }

T
t0

is exogenous and calculated from

(7), while the human wealth
{
V H
t

}T
t0

is endogenous and calculated from Theorem 1.

3. For given initial financial wealth and health (W0, H0) set equal to their empirical

counterparts, we solve initial total wealth:

N0 = W0 + V w
0 + V H

0 (H0).

The predicted optimal paths for health and total wealth {Ht, Nt}Tt=0 are solved forward

for each t = T − s as:

E[H ′(H)] = H
{
Aκαs + (1− δ)− [1− exp(−λh)]φ

}
, (20)

N ′ = N(1− ωs)R. (21)

4. The associated optimal paths for total expenses, and continuation utility {c̃t, Vt} are

derived from Theorem 2. The corresponding expressions for the leisure share and

income can be calculated from the definitions of total expenses c̃t in (5) and µ(wt)

in (6a) as:

`t =
c̃t
wt

(
µ(wt)− 1

µ(wt)

)
,

Yt = wt(1− `t).

5. Given net total Nt, and the human capital components V w
t , V

H
t , the financial wealth

Wt along the optimal path can be recovered as:

Wt = Nt − V w
t − V H

t .
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Calibrated parameters The calibrated parameters reported in Table 2 are chosen to

minimize the distance between observed and predicted life cycles for health Ht, hours nt =

1− `t, labor income Yt, and financial wealth Wt.

First, by exploiting the separation properties between health-related and financial deci-

sions, the health production parameters in panel a are selected to reproduce the observed

life cycle dynamics of health (Figure 2, panel a, scaled upwards for positive values) via

its predicted optimal path (20). The parameters are indicative of significant diminishing

returns to investment (α = 0.75), non-negligible depreciation (δ = 1.75%), and consequential

additional depreciation through illness (φ = 3.50%).

Second, in panel b, all nominal variables expressed in dollars are scaled by a factor of

10−3. The risk-free discount rate is set at 5%. The parameters m = i−y, and B are obtained

by regressing income net of medical expenses (both from PSID data) on a constant and the

health level H.

Third, the preference parameters in panel c are obtained by minimizing a weighted sum

of squares of residuals between observed and predicted LC’s for wealth, hours and income.

The consumption share θ = 0.45, is set at a realistic value, and σ = 0.8164 is indicative

of strong intra-temporal substitutability 1/σ between consumption and leisure. Similarly,

the parameter ε = 0.5009 shows high elasticity of inter-temporal substitution 1/ε between

current consumption and the certainty equivalent of future utility. The risk aversion γ =

3.5382 and discount rate ρ = 0.0438 are both set at realistic values. Finally, the bequest

motive b is indicative of low bequests motives,7

Fit adequacy Contrasting the observed and predicted life cycles in Figure 4 reveals that

the model performs reasonably well in reproducing the data. First, both the level, and rate

of decline in health are precisely matched and remain within confidence bounds in panel a.

7More precisely, the agent expects to bequest on average b1/(1−γ)E(Nt) = 3, 279$.
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Similarly, the level, accumulation and de-cumulation phases of financial wealth are precisely

predicted in panel b. The model tends to under-predict observed hours, and labor income

for younger, and older agents in panels c, and d yet both levels and timing of declines

are correctly predicted. The excessive adjustments in hours worked is likely related to the

absence of labor market frictions in the model, such as statutory number of hours.

Predicted net total wealth and continuation utility Figure 5 plots the predicted net

total wealth Nt calculated from the recursion (21). First, the level is considerably higher

than financial wealth, confirming the importance of human assets. Second, the decline in

the value of human capital V w
t and V H

t dominates the accumulation of financial wealth

Wt, resulting in a decline in total resources Nt. Finally, the continuous drop in net total

wealth Nt, combined with declining marginal utility ψt jointly lead to a monotonous in the

continuation utility Vt = ψtNt in Figure 6 . Put differently, the metric against which changes

in longevity are valued is falling throughout the life cycle under the combined influences of

diminishing resources and falling marginal value of total wealth.

6 Empirical estimates life valuations

6.1 Methodology

The Hicksian EV and CV measures as well as their WTP, WTA implications are calculated

from the LC model for each change ∆ in the death risk intensity λm, and along the optimal

path for each age t. To isolate the former, it will also be useful to consider survival-weighted

population averages that are computed for any variable Xt as follows

E(Xt) =
T−t∑
k=1

ft,t+kXt+k, where ft,t+k =

(
St,t+k
Lt

)
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where survival and longevity are given in (1). Equivalently, the density ft,t+k is the share of

total population of initial size Lt that is surviving at each age t+ k.

Second, the valuations can be calculated for permanent changes ∆ or in terms of as-

sociated changes in longevity. For the latter, I fix detrimental and beneficial changes in

expected remaining longevity Lt in (1c) and then compute the associated change ∆ in death

intensity λmt . Because the death intensity is age-dependent, and in light of the non-linearities

involved, this procedure must be repeated at all ages in our sample, while the detrimental

and beneficial changes must be calculated separately from one another. More specifically,

for base sequence λm = {λmt }
T−1
t=0 , I use (1a), (1b) and (1c) to compute the detrimental

λm+ = λm + ∆ and beneficial λm− = λm −∆ sequences such that,

Lt (λm)− Lt
(
λm+
)

= Lt
(
λm−
)
− Lt (λm) ∈ {6, 12, . . . , 36} months

The associated EV’s, CV’s, WTP’s and WTA’s are then calculated at each age, for each

decrease/increase in remaining longevity.

6.2 Effects of changes in mortality ∆

The figures plotting the effects of changes ∆ are regrouped in Appendix B.3.

Mortality elasticity Figure 7 plots elasticity of the continuation utility Ψt(∆, λ
m, N)

with respect to mortality given by (17) in function of change ∆, at ages t = 25 (in blue),

and t = 65 (in red), as well as the survival-weighted population average (in black). This

elasticity is decreasing and convex in change ∆. Consistent with preference for life, it is

positive for beneficial changes ∆ < 0, whereas it is negative for detrimental ones ∆ > 0.

Convexity implies that beneficial gains will have a comparatively more potent marginal effect

than detrimental ones of similar magnitude. Equivalently, the agent will benefit more from
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beneficial changes than suffer from detrimental changes in longevity. The combination of

a fixed terminal horizon T with age-increasing death risks λm implies that the remaining

effects on continuation utility are weaker, translating into a flatter profile at older age.

Hicksian variations and willingness measures Figure 8 plots the Hicksian EV vet (∆, λ
m)

(solid lines) and the CV vct (∆, λ
m) (dots) calculated from (16), at ages t = 25 (in blue), and

t = 65 (in red), as well as the survival-weighted population average (in black) for beneficial

(∆ < 0) and detrimental (∆ > 0) changes. From equations (14), the North quadrant

corresponds to a WTP to attain beneficial changes; the West quadrant corresponds to a WTA

to forego beneficial changes; the East quadrant measures the WTP to prevent detrimental

and the South quadrant measures the WTA to accept detrimental changes.

The results reveal that the EV is increasing and concave, whereas the CV is decreasing

and convex in ∆. The implications of functional differences between EV and CV are

twofold. Focusing first on horizontal differences highlights disparities between beneficial

and detrimental changes in mortality. They reveal that both WTP and WTA measures are

much larger in the gains (∆ < 0) than in the loss (∆ > 0) domain, confirming previous results

for the mortality elasticity Ψt in Figure 7. Second, vertical differences highlights differences

between buying (WTP) and selling (WTA) prices. They confirm standard variational results

linked to endowment effects that the latter outweigh the former. Indeed, the WTA to forego

is larger than the WTP to attain beneficial changes, while the WTA to accept is larger

than the WTP to prevent detrimental changes in longevity of similar magnitude. Next,

again consistent with Figure 7, ageing attenuates both levels and differences between the

two Hicksian measures by flattening the EV’s and CV’s, and therefore lowering both the

WTP’s and WTA’s for older agents.

The previous results are confirmed in Figure 9 which converts the Hicksian EV’s and CV’s

into WTP and WTA measures using (14). The willingness to pay and to accept compensation
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for beneficial changes ∆ < 0 is increasing and convex in the size of |∆|. For detrimental

changes, ∆ > 0 the WTP and WTA are increasing and concave in ∆. Equivalently, the

two willingness measures are much higher for beneficial, than for detrimental changes in

death risk exposure. Second, the WTA-WTP gaps are positive and increasing in levels ∆.

Ageing lowers both the levels of and the differences between WTP’s and WTA’s, and between

detrimental and beneficial changes.

VSL Figure 10 plots the survival-weighted population average of the VSL calculated from (18)

for both WTP and WTA perspectives, in function of changes ∆, i.e. the slope of arc from

origin to the WTP or WTA. The results first confirm that the collective selling price E(V SLa)

(dots) is always larger than the buying price E(V SLp) (line), except at ∆ = 0 where the

two coincide.8 The latter corresponds to the theoretical Value of Statistical Life, i.e. the

MRS between life and wealth in (15), and is equal to 58.5 M$, which is in the upper range of

the estimates reported in the empirical VSL literature (e.g. Viscusi and Masterman, 2017).

Second, both VSL measures are decreasing and convex in ∆ confirming that the collective

WTP/WTA are much larger in the gains domain than in the loss domain.

6.3 Life cycles of life values

The figures related to the effects of age t are regrouped in Appendix B.4.

Hicksian willingness measures Figure 11 plots the life cycles of both the WTP’s (in

blue) and WTA’s (in red) for changes in expected longevity corresponding to ±12, 24 months.

First, the two willingnesses are unsurprisingly increasing in the changes in longevity. Second,

all values are decreasing in age. Third, consistent with previous results, the WTA measures

(selling price) are always larger than the WTP’s, (buying price) and both are larger for

8See also Guria et al. (2005) for much larger WTA-based empirical VSL estimates than their WTP-based
counterparts.
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beneficial gains, than for detrimental losses in longevity, yet the differences are attenuated

with age. Put differently, attaining one year additional longevity is valued more than losing

one year for most of the life cycle, except at older age when the two values tend to converge.

VSL Figure 12 plots the life cycle of the two VSL measures V SLpt , V SL
a
t calculated

from (18). Choosing a small ∆ = 1.0e − 05 ensures that both the WTP-based (line) and

WTA-based (dots) VSL’s coincide with one another and correspond to the theoretical VSL

estimate equal to the MRS in (15). First, the VSL are falling rapidly in age, except for elders

where the rate of decline is reduced. The ranges of values are consequently very large.

GPV Figure 13 plots the life cycle of the two Gunpoint measures GPV p
t , GPV

a
t computed

from (19). First, both the willingness to accept compensation for immediate and certain

death (dots) and to pay (line) to avoid death are falling in age. These patterns are consistent

with the declining continuation utility Vt which was identified in Figure 6. As the welfare from

remaining alive falls through the combined influences of falling total wealth Nt (Figure 5)

and falling marginal utility of wealth ψt, so does the WTP to prevent and WTA to accept

imminent death. Second, concavity of both WTP and WTA in the loss domain guarantees

that the WTA is finite and much larger than the WTP, consistent with some degree of

substitutability between wealth and own life.9 Again the difference between the two is

attenuated with ageing.

9Hanemann (1991, Prop. 2) shows that there exists no finite acceptable compensation in the absence
of substitutability between a given good and others, implying infinite WTA for immediate death. In our
setting, utility for bequests guarantees finite tradeoff between more bequeathed wealth and loss of life.
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7 Discussion

7.1 Comparative statics

Table 3 presents survival-weighted population averages for our baseline model (column 1),

and for alternative parametric choices (columns 2-5). The comparative statics are calculated

by re-computing the optimal life cycles of (Nt, ψt) at the alternative parametric set, and then

recalculating the implied life valuations (vet , v
c
t ) and (WTPt,WTAt) for beneficial increases,

and detrimental decreases in expected longevity of 6 to 36 months, as well as for the Gunpoint

and Statistical life values. Consistent with comparative statics principles, only one parameter

is modified at a time with others remaining at base values.

Bequest motive In column (2), I analyze the effects of bequests by increasing the intended

bequest equal to b1/(1−γ) via a 50% decrease in b. This results in two opposing forces with

respect to life valuations. On the one hand, agents wish to increase bequeathed resources,

resulting in an increase in net total wealth Nt from 2.74 M$ to 3.14 M$. On the other

hand, the utilitarian cost of dying is attenuated by leaving bequests, thereby reducing the

propensity to pay or to accept compensation for changes in longevity. The results confirm

that the latter is more important, leading to an overall decline in WTP’s, WTA’s, as well as

GPV and VSL.

Leisure motive In column (3), I analyze the effects of the utility for leisure by removing

its benefit in setting θ = σ = 1 in (4b). Consequently, the agent inelastically supplies her full

time endowment for work (nt = 1) and the absence of spending on leisure (wt`t = 0) implies

a decrease in total expenditures and an increase in total wealth from 2.74 M$ to 3.37 M$.

However, the fall in felicity from leisure activities implies a lower continuation utility and a

reduction in the WTP/WTA for life, as well as in VSL and GPV values.
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Impatience The effects of impatience are reported in column (4) where the subjective

discount rate ρ is increased by 50% from its calibrated value. As the agent discounts the

future more heavily, savings drops, resulting in a large decrease in net total wealth from

2.74 M$ to 1.38 M$. Heavier discounting also implies a much lower net present value of the

gains and costs associated with changes in longevity. Both effects of a higher ρ concur to

lower all life valuations.

Market imperfections The theoretical results depend crucially on a complete, perfect

markets assumption where any revenue stream can be sold at its expected net present value.

I relax this assumption in column (5) by assuming that only 50% of the human capital

wealth (V w
t , V

H
t ) can be collected by the agent because of market imperfections such as

taxes, information asymmetries, or markups. Unsurprisingly, net total (i.e. financial and

human) wealth falls sharply and so do life valuation measures.

7.2 Comparison with other estimates

Several reasons explain why the value of a statistical life estimates are larger than other

values found in the VSL literature. First, all WTP and WTA measures are based on the

net total wealth Nt, instead of financial resources Wt. As evidenced in Figure 5 this value

is much larger than financial wealth Wt. Indeed, it incorporates explicit corrections for the

shadow values of the time endowment V w
t of of the health capital stock V H

t . Moreover,

Nt is calculated under a perfect market assumption and therefore abstracts from borrowing

constraints or incomplete markets to calculate an agent’s net human and financial worth.

Market imperfections were previously shown to greatly reduce both the marginal and total

WTP and WTA measures. Third, the life valuations are recovered as shadow values of life

under a revealed preference perspective applied to life cycle patterns of health, wealth and

work/leisure choices. This perspective is unrelated to traditional VSL elicitation approaches
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such as the wages/fatality nexus which capture both the employer’s WTP and the worker’s

WTA for compensation against death risk exposure. There is no ex-ante reason why the two

measures should coincide.

The value of life estimates are more comparable with other theoretical models of life

valuations. Córdoba and Ripoll (2017) and Bommier et al. (2019) also resort to non-expected

utility LC settings and find lower estimates for the VSL. However, they abstract from the

shadow value of the agent’s health capital, thereby imposing that total wealth is equal

to financial wealth only. Both Gunpoint and Statistical life values found in Hugonnier et

al. (2021b) incorporate human wealth, yet their life values are lower than our estimates.

Their modelling approach is however different as it abstracts from ageing, bequests (b = 0),

and leisure (θ = 1). As seen earlier the omission of leisure lowers the utilitarian benefits

from living, resulting in lower life valuations. Moreover, Hugonnier et al. (2013, 2021b)

allow for subsistence consumption which cannot be pledged in life valuations and must be

deducted from Nt. Finally, they abstract from a finite upper bound T on longevity and

focus exclusively on WTP measures in the loss domain ∆ > 0 where they identify strongly

diminishing returns in the WTP function. The latter are likely related to the possibly

infinite life horizon which reduces the utility loss of (and therefore WTP to prevent) marginal

increases in death risk exposure compared to our finite lives setting.

7.3 Interpretation of life valuations

Longevity gains versus losses All our valuation results convey the same message. Con-

sistent with preference for life, the mortality gradient, i.e. the change in continuation utility

induced by ∆ is positive for beneficial changes and negative for detrimental ones. Crucially,

the welfare elasticity is decreasing and convex in mortality risk change. These properties

imply that the continuation utility benefit of more life always outweighs the utility cost of

more mortality for any given ∆ (Figure 7). This asymmetry explains functional differences
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between the EV and CV and rationalizes why the WTP/WTA are much larger for beneficial

than for detrimental changes of similar magnitude. It also induces well-known endowment

effects where the selling prices (WTA) are much larger than the buying prices (WTP).

Whereas the asymmetry between the life values suggest no diminishing returns in the gains

versus loss domain, they do not rule out diminishing marginal utility in the additional

mortality dimension. Indeed both WTP’s and WTA’s are concave in the loss domain.

Moreover, the limiting WTP’s to prevent and WTA’s to accept certain death are both

finite.

Ageing and life values All our results are consistent with ageing being associated with

(a) flatter Hicksian measures in the ∆ domain, and (b) continuous declines in life valuation

measures in the age domain. Both results entail much lower, and less reactive life values for

elders than for younger agents. Three reasons explain why this is the case. First, net total

wealth Nt is optimally falling throughout the life cycle (see Figure 5). Financial wealth-

poor, but health capital-rich young agents have much more human wealth (and therefore net

total capital Nt) to pledge than elders in order to attain/forego more life or to prevent/accept

shorter longevity. Second, the marginal utility of wealth is also falling with age (see Figure 5).

Combining falling wealth with falling marginal utility leads to falling continuation utility

of living (see Figure 6). Since this forward-looking welfare is the metric against which

changes in longevity are contrasted, the willingness to pay or accept compensation for both

beneficial and detrimental changes is lowered by ageing. This is especially apparent in the

Gunpoint value (see Figure 13) where falling continuation utility of living implies falling

WTP to prevent and WTA to accept certain and immediate death. Third, finite lives T

mechanically imply that permanent changes in death exposure are effective over a shorter

maximal horizon for elders than for young agents. The three effects of falling net total wealth

declining continuation utility, weakening effects of permanent changes in mortality concord
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to generate much higher WTP and WTA for younger adults who have both more net total

wealth (consisting primarily from human wealth) and more willingness to engage resources for

permanent changes that will have a longer-lasting impact, on a higher valued continuation

utility compared to elders. The results are consistent with ageing being associated with

accumulating stock of “lived life”; the willingness to protect the remaining accumulation or

to accept the end of accumulation decreases in age.
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A Tables

Table 1: Descriptive statistics

Variable Mean Median Std Min Max

a.PSID
Age 46.53 45.00 16.34 21.00 100.00
Wealth (K$) 243.47 185.73 164.79 −3.26 544.01
Health −0.06 −0.01 0.52 −2.62 0.59
Sick 0.04 0.03 0.04 0.01 0.43

b.ATUS
Age 49.72 48.00 16.40 21.00 85.00
Hours 36.09 38.93 5.53 21.56 40.33
Income($) 692.95 743.76 126.83 399.52 822.16
Wages ($) 17.87 18.58 2.02 10.82 19.84

Notes: a. PSID. Wealth: net financial and residential. Health: Score function from

panel multinomial probit on self-reported polytomous health status. Sickness: marginal

probability of reporting worst health outcome from panel multinomial probit on self-

reported polytomous health status. b. ATUS. Hours: spent working, per week. Income:

salaried income per week. Wages: per hour.

Table 2: Calibrated parameters

Parameter Value Parameter Value

a. Health
A 0.0080 α 0.7500
δ 0.0175 φ 0.0350

b. Scaling, income and wealth
scale 0.001 r 0.0500
B 13.3762 m = i− y −34.7817

c. Preferences
θ 0.4500 σ 0.8164
γ 3.5382 ε 0.5009
b 2.6e+ 07 ρ 0.0438
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B Figures

B.1 Theoretical life valuations

Figure 1: EV, CV, MRS, VSL and GPV

Notes: EV (resp. CV ) is Hicksian Equivalent (resp. Compensating) Variation for change

∆ in death risk intensity λm. MRS is slope (resp. negative slope) of tangent of EV (resp.

CV ) evaluated at origin; Both are equal to theoretical V SL. Empirical WTP- (resp.

WTA-) V SLp (resp. V SLa) is WTP- (resp. WTA-)based is slope (resp. negative slope)

of arc from origin to EV (resp. CV) evaluated at infra-marginal change ∆0. GPV p:

Maximum WTP to prevent instantaneous, certain death is upper bound on EV ; GPV a:

Minimum WTA to accept instantaneous, certain death is minus lower bound on CV .
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B.2 Data and fitted variables

Figure 2: Health, sickness, and mortality

Notes: Sources: Panels a, b: PSID and author’s calculations. Confidence bands

corresponding to ±2σ, where the standard error is taken from the longitudinal Probit

estimation. Panel c: Arias and Xu (2020) and author’s calculations.
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Figure 3: Wealth, hours, wages and income

Notes: Sources: Panel a: PSID and author’s calculations. Panels b, c and d: ATUS and

author’s calculations. Confidence bands corresponding to ±2σ, where the standard error

is taken from the longitudinal OLS estimation.
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Figure 4: Observed and predicted life cycles
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Figure 5: Financial, human and total wealth by age (in $)
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Figure 6: Continuation and marginal continuation utility by age
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Notes: Continuation utility (Vt) in blue, left-hand scale and marginal utility of net

total wealth (ψt) in red, right-hand scale. Calculated along optimal path at calibrated

parameters.
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B.3 Effects of changes ∆

Figure 7: Mortality elasticity of welfare by change in mortality risk
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Notes: Mortality elasticity of continuation utility Ψ(∆, λm, N) induced by change ∆ in

mortality exposure, at age t, and survival-weighted mean E(Ψt) for beneficial (∆ < 0)

and detrimental (∆) changes in base exposure λm. Calculated from (17) at calibrated

parameters.
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Figure 8: Hicksian EV and CV by change in mortality risk
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Notes: Hicksian EV: vet (∆, λ
m, N) (solid line) and CV: vct (∆, λ

m) (dots) at age t and

survival-weighted mean E(vet ),E(vct ) for beneficial (∆ < 0) and detrimental (∆) changes

in base exposure λm. Calculated from (16) at calibrated parameters.
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Figure 9: WTP and WTA by change in mortality risk (in $)
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m, N) (solid line) and to accept compensation:

WTAt(∆, λ
m, N) (dots) at age t, and survival-weighted mean E(WTPt),E(WTAt) for

beneficial (∆ < 0) and detrimental (∆) changes in base exposure λm at age t. Calculated

from (14) at calibrated parameters.
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Figure 10: VSL by change in mortality risk (in $)
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Notes: Survival-weighted mean Value of Statistical Life, from WTP: E(V SLpt (∆, λ
m, N)),

(solid line) and from WTA compensation E(V SLat (∆, λ
m, N)) (dots) for beneficial (∆ <

0) and detrimental (∆) changes in base exposure λm at age t. Calculated from (18) at

calibrated parameters.
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B.4 Effects of age

Figure 11: WTP and WTA by change in longevity and by age (in $)

20 30 40 50 60 70 80

Age

0

1

2

3

4

5

6

7

8

9
105

WTP(+12 mo.)
WTA(+12 mo.)
WTP (-12 mo.)
WTA(-12 mo.)
WTP(+24 mo.)
WTA(+24 mo.)
WTP (-24 mo.)
WTA(-24 mo.)

Notes: Willingness to pay WTPt(∆, λ
m, N) and to accept compensation

WTAt(∆, λ
m, N) for beneficial (∆ < 0) and detrimental (∆) changes in base
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Calculated from (14) at calibrated parameters.
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Figure 12: Value of Statistical Life by age (in $)
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Notes: Value of Statistical Life, from WTP V SLpt (∆, λ
m, N), and from WTA

compensation V SLat (∆, λ
m, N) for marginal change (∆) in base exposure λm at age t.

Calculated from (18) at calibrated parameters along optimal path for Nt.
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Figure 13: Gunpoint Value by age (in $)
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t. Calculated from (19) at calibrated parameters along optimal path for Nt.
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C Proofs

The following proofs are based on backward induction. As mentioned in the text, we refer to

s = 1, 2, . . . as the number of remaining periods before maximal longevity is reached, such

that current period is t = T − s. Time-subscript are omitted for contemporary variables,

with prime (′) used for next-period variables. We rely on s subscripts to emphasize feedback

rules s-periods from T .

In what follows, I make use of Contraction Mapping results applicable to homogeneous

problems to calculate optimal policies
{
Is(H), V H

s (H)
}T
s=1

and {c̃s(N), Vs(N)}Ts=1 where the

feedback rules to the respective state variables are solved backward in closed-form recursions.

Theorem 1. The optimal investment problem (8) can be rewritten as:

V H
s (H) = max

I
BH − I + exp(−r)

{
exp(−λh)V H

s−1(H ′+) +
[
1− exp(−λh)

]
V H
s−1(H ′−)

}
subject to

H ′+ = AIαH1−α + (1− δ)H

H ′− = AIαH1−α + (1− δ − φ)H

for t = T − s periods away from maximal longevity. The candidate solutions are:

Is(H) = κsH

V H
s (H) = ηsH

s = 1 Longevity being bounded leads trivially to Is = 0 and V H
s = BH; the initial loadings

are (κ1, η1) = (0, B).
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s = 2 Substituting the previous solution for s = 1 reveals that

V H
s = max

I
BH − I + exp(−r)ηs−1

{
AIαH1−α + (1− δ)H − [1− exp(−λh)]φH

}
with the solution to the FOC:

Is = [ηs−1 exp(−r)αA]
1

1−α︸ ︷︷ ︸
κs

H

substituting back in the objective function simplifies to:

V H
s =

[
B − κs + ηs−1 exp(−r)

{
Aκαs + (1− δ)− [1− exp(−λh)]φ

}]︸ ︷︷ ︸
ηs

H

s ≥ 3 It is readily verifiable that the solutions converge to the same form for the other

periods.

Regrouping terms shows that the sequence for the loadings {κs, ηs}Ts=1 are solved recursively

as stated and completes the proof. �

Theorem 2. The candidate solutions to the optimal expenses problem (9) are:

c̃s(N) = ωsN

Vs(N) = ψsN
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s = 1 Since longevity is bounded, sm = exp(−λm) = 0, leading to the following problem:

V (N) = max
c̃

{
(1− β)(νc̃1−ε) + β[b(N ′)1−γ]

1−ε
1−γ

} 1
1−ε

= max
c̃

(1− β)(νc̃1−ε) + (N ′)1−ε βb
1−ε
1−γ︸ ︷︷ ︸
β1


1

1−ε

subject to N ′ = (N − C̃)R. The solution to the FOC is:

c̃1(N) =

[
(1− β)

1
ε ν

1−ε
ε

(1− β)
1
ε ν

1−ε
ε + β

1
ε
1 R

1−ε
ε

]
︸ ︷︷ ︸

ω1

N

Substituting back into the objective function implies that:

V1(N) =
{

(1− β)(νω1)1−ε + β1 [(1− ω1)R]1−ε
} 1

1−ε︸ ︷︷ ︸
ψ1

N

s = 2 Noting that sm = exp(−λm) 6= 0 and using our previous solution simplifies the agent’s

problem to:

V = max
c̃

{
(1− β)(νc̃)1−ε + β

[
sm(ψ1N

′)1−γ + (1− sm) b (N ′)1−γ] 1−ε
1−γ
} 1

1−ε
,

= max
c̃

(1− β)(νc̃)1−ε + (N ′)1−ε β
[
smψ1−γ

1 + (1− sm) b
] 1−ε

1−γ︸ ︷︷ ︸
β2


1

1−ε

,

subject to N ′ = (N − C̃)R. The solution to the FOC is:

c̃2(N) =

[
(1− β)

1
ε ν

1−ε
ε

(1− β)
1
ε ν

1−ε
ε + β

1
ε
2 R

1−ε
ε

]
︸ ︷︷ ︸

ω2

N
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Substituting back into the objective function implies that:

V2(N) =
{

(1− β)(νω2)1−ε + β2 [(1− ω2)R]1−ε
} 1

1−ε︸ ︷︷ ︸
ψ2

N

s ≥ 3 It is readily verifiable that the solutions converge to the same form for the other

periods.

Regrouping terms shows that the sequence for the loadings {ωs, ψs}Ts=1 are solved recursively

as stated and completes the proof. �

Separability. I now formally show that health-related and financial decisions are separable,

i.e. that a joint optimization problem yields the same solutions as the ones obtained

under separability. First, the risk-averse agent will fully insure against health shocks εht+1

at actuarially-fair prices. Consequently, the problem can be recast as a deterministic one

with respect to morbidity, i.e. by setting εht+1 = 0,∀t, with insurance premium calculated

endogenously and deducted below from health capital value. Second, recast financial wealth

as W = W +V w to include the value of the time endowment. The agent’s problem can then

be written as:

V (W,H) = max
c̃,I

{
(1− β) (νc̃s)

1−ε + β
[
smV (W ′, H ′)1−γ + (1− sm)b(N ′)1−γ] 1−ε

1−γ
} 1

1−ε

subject to:

W ′ = [W +BH − I − c̃]R

H ′ = AIαH1−α + (1− δ)H

N ′ = W ′ + η′H ′.
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The candidate solutions are the following:

Vs(W,H) = Vs(N)

= ψsN = ψs(W + ηsH)

Is = κsH

c̃s = ωsN

where the age-dependent loadings {ψs, ηs, κs, ωs} are determined recursively.

s = 1 Observing that sm = 0 and by transversality η′ = η0 = 0 directly implies zero

investment, i.e. κ1 = I1 = 0. The agent’s problem simplifies to:

V (W,H) = max
c̃

(1− β) (νc̃s)
1−ε + βb

1−ε
1−γ︸ ︷︷ ︸
β1

[W +BH︸ ︷︷ ︸
N1

−c̃]R

1−ε
1

1−ε

The optimal consumption and continuation utility are characterized by:

c̃1(N1) =

[
(1− β)

1
ε ν

1−ε
ε

(1− β)
1
ε ν

1−ε
ε + β

1
ε
1 R

1−ε
ε

]
︸ ︷︷ ︸

ω1

N1

and

V1(W,H) = V1(N1) =
{

(1− β)(νω1)1−ε + β1 [(1− ω1)R]1−ε
} 1

1−ε︸ ︷︷ ︸
ψ1

N1

which is the same as under the separable problem, and establishes that the Tobin’s-q

in V H = η1H = BH.
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s = 2 The problem is:

V = max
c̃,I

{
(1− β)(νc̃)1−ε + β

[
sm(ψ1N

′)1−γ + (1− sm) b (N ′)1−γ] 1−ε
1−γ
} 1

1−ε
,

= max
c̃,I

(1− β)(νc̃)1−ε + (N ′)1−ε β
[
smψ1−γ

1 + (1− sm) b
] 1−ε

1−γ︸ ︷︷ ︸
β2


1

1−ε

,

subject to:

N ′ =
{

[W +BH − I − c̃] +R−1η1

[
AIαH1−α + (1− δ)H

]}
R

Solving for optimal investment reveals that

I2 =
(
R−1η1αA

) 1
1−α︸ ︷︷ ︸

κ2

H

V H
2 =

[
B − κ2 +R−1η1 (Aκα2 + (1− δ))

]︸ ︷︷ ︸
η2

H

N ′ =

W + V H
2︸ ︷︷ ︸

N2

−c̃

R
i.e. the optimal investment is independent of mortality risk. The optimal expenditures

choices solves:

V = max
c̃

{
(1− β)(νc̃)1−ε + β2(N ′)1−ε} 1

1−ε ,

The solution to the FOC is:

c̃2(N) =

[
(1− β)

1
ε ν

1−ε
ε

(1− β)
1
ε ν

1−ε
ε + β

1
ε
2 R

1−ε
ε

]
︸ ︷︷ ︸

ω2

N
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Substituting back into the objective function implies that:

V2(N) =
{

(1− β)(νω2)1−ε + β2 [(1− ω2)R]1−ε
} 1

1−ε︸ ︷︷ ︸
ψ2

N

s ≥ 3 It is readily verifiable that the solutions converge to the same form for the other

periods.

Health insurance The risk-averse agent purchases full insurance against health shocks

εhs−1 when sold at actuarially-fair prices. The insurance premium is the expected loss

in human capital value induced by morbidity:

πs =
[
1− exp(−λh)

]
∇V H

s , where

∇V H
s = V H

s (εhs = 1)− V H
s (εhs = 0)

= R−1ηs−1φH

subtracting the insurance premium πs from the shadow value V H
s and regrouping terms

establishes that the Tobin’s-q is:

ηs = B − κs + ηs−1R
−1
{
Aκαs + (1− δ)− [1− exp(−λh)]φ

}
which completes the proof that the separable and joint allocations coincide.

�

54



References

Acemoglu, Daron, and David Autor (2018) ‘Lectures in labor economics.’ Lecture notes,

MIT

Arias, Elizabeth, and Jiaquan Xu (2020) ‘United States life tables, 2019.’ National Vital

Statistics Report 68(7), 1–65

Bodie, Zvi, Robert C Merton, and William F Samuelson (1992) ‘Labor supply flexibility

and portfolio choice in a life cycle model.’ Journal of Economic Dynamics and Control

16(3-4), 427–449

Bommier, Antoine, Danier Harenberg, and François Le Grand (2019) ‘Recursive prefer-

ences, the value of life, and household finance.’ Working paper, Available at SSRN

https://ssrn.com/abstract=2867570, May

Conley, Bryan C. (1976) ‘The value of human life in the demand for safety.’ American

Economic Review 66(1), 45 – 55

Cook, Philip J., and Daniel A. Graham (1977) ‘The demand for insurance and protection:

The case of irreplaceable commodities.’ Quarterly Journal of Economics 91(1), 143 – 156
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