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1 Introduction

Contests are a frequently employed method of providing incentives, with applications

ranging from promotion tournaments and sports competitions to R&D races and polit-

ical campaigns.1 There are concerns, however, that due to a contest’s dynamic nature,

incentives may become undermined by the so-called discouragement effect. As those con-

testants who have fallen behind face the extra effort required for catching up, they are

discouraged from continuing their fight. This, in turn, allows contestants who are in the

lead to reduce their efforts, resulting in the deterioration of incentives on aggregate.2

The consequences of the discouragement effect are far reaching and have been noted

for a broad variety of settings. In R&D races, an initial breakthrough may mute the

investment-incentives of rival firms thereby increasing the time the innovation requires

for completion (Fudenberg et al., 1983; Harris and Vickers, 1987; Judd et al., 2012). In

promotion tournaments, workers may slack off in response to the achievements of their

co-workers, putting under scrutiny the wide-spread use of interim performance evaluations

(Klein and Schmutzler, 2017) and feedback policies (Gershkov and Perry, 2009; Aoyagi,

2010; Ederer, 2010; Goltsman and Mukherjee, 2011). In presidential primaries, overall

campaign spending can become reduced and early voting in non-representative districts

can become decisive for the overall outcome of the election (Klumpp and Polborn, 2006).

Finally, in sports competitions, performance differences accumulated during earlier stages

may lead to a deterioration of suspense (Chan et al., 2009).

In this article, we argue that, besides its direct effect on a contestant’s intermediate

standing, a loss during an early stage may have an indirect, informational effect, with an

opposing, and so far overlooked influence on incentives. Our starting point is the observa-

1Further examples and a comprehensive overview can be found in Konrad (2009).
2Evidence for the discouragement effect has been reported by Malueg and Yates (2010),

Iqbal and Krumer (2019), and Mago et al. (2013) both for tennis and experimental data. Using a vast
data set on prediction contests, Lemus and Marshall (2021) find that competitors become more likely to
drop out of the competition when they start falling behind in a public leader-board.
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tion that, in many of the aforementioned applications, contestants are privately informed

about the, arguably, common value of the contest’s prize and, while intermediate out-

comes are observable, contestants cannot observe each others’ efforts. In such situations,

an early loss (win) represents good (bad) news about the contest’s prize, because the like-

lihood of a loss (win) is increasing (decreasing) in the opponent’s effort which correlates

with his information. For example, in an R&D race, an early breakthrough may be the

consequence of a large investment by a rival company whose market-research has revealed

a profitable future for the contested innovation.3

In the presence of private information, it is therefore a priori unclear whether dy-

namic incentives are subject to a discouragement effect or whether losers of early stages

are actually encouraged to exert larger efforts than their rivals. Moreover, the impli-

cations for aggregate incentives are no longer clear, because the discouragement effect

resulting from intermediate performance evaluations might be offset or even overcome by

an encouragement effect arising from the contestants’ ability to learn about their rival’s

information.

To shed light on these issues, in Section 2, we propose a stylized model of dynamic

competition with private information. In our model, two homogeneous contestants com-

pete in a best-of-three contest by exerting efforts with linear costs in three sequential

battles. We allow for a generic class of mappings between efforts and battle outcomes,

including the frequently employed (generalized) Tullock (1980) success function as a spe-

cial case. The winner of the overall contest obtains a prize whose (common) value is

uncertain, either one or zero.4 At the start of the contest, contestants receive private,

independent, and identically distributed signals, either good or bad, that are informative

about the contest’s prize. Contestants cannot observe their rival’s effort but may learn

3Although most of our analysis focuses on the pure common value component of a contest’s prize, the
possibility of heterogeneity in prize valuations is introduced in Section 7.

4An alternative but analogue formulation of our model considers the contest’s prize as certain, but
assumes that contestants face uncertainty about their (common) marginal costs of effort. For example,
R&D expenditures may depend on a common input (e.g. labor) whose price can be uncertain.
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from their observation of each battle’s outcome.

Our model owes its tractability to the assumption that the underlying information

structure is partially conclusive. In particular, we assume that, while conditional on the

prize being zero both a good and a bad signal can be observed, conditional on the prize

being one, only a good signal can be received. It follows that contestants will conclude

from the observation of a bad signal that the contest’s prize must be zero and that

it is optimal to refrain from exerting effort.5 The characterization of a Perfect Bayesian

equilibrium is thus reduced to the description of the contestants’ effort choices, conditional

on the receipt of a good signal.

In Section 3 we consider two benchmarks: the static benchmark, in which contestants

choose efforts for all battles simultaneously rather than sequentially; and the public in-

formation benchmark where signals are observed publicly rather than privately. We show

that in both benchmarks, the expected sum of efforts, aggregated over all contestants and

battles, is independent of the signals’ informativeness, given by the likelihood of receiving

a bad signal when the prize is zero. This is reassuring as it implies that, in our dynamic

contest with private information, any dependence of aggregate incentives on the signals’

informativeness must have its origin in the contestants’ learning about their rival’s signal.

Moreover, a comparison of the two benchmarks allows us to confirm the existence of a

discouragement effect and to associate the corresponding loss in aggregate incentives, with

the individual battles’ rate of rent dissipation.

We begin our characterization of Perfect Bayesian equilibrium in the dynamic contest

with private information in Section 4, with a focus on the gap between the leader’s and

the follower’s efforts in the intermediate battle. We show that, in accordance with the

aforementioned intuition, this gap is reduced relative to the public information benchmark.

Moreover, when the battles’ rate of rent dissipation is sufficiently low, the follower’s effort

5This information structure is called the “bad news” model in the literature on strategic experimenta-
tion (e.g. Keller and Rady, 2015; Bonatti and Hörner, 2017). As an alternative, we discuss the so called
“good news” model, in our Conclusions.
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may even exceed the leader’s, making it less likely that the contest is decided after two

rather than three battles. In empirical studies, contests that are decided within a few

battles have been interpreted as evidence for the discouragement effect. Our finding, that

in the presence of private information, discouragement is countered by encouragement

means that long-lasting fights must not necessarily be an indication for the absence of the

discouragement effect.6

Our two main results are presented in Section 5 and are concerned with the effect

of private information on aggregate incentives. First, we show that, in the dynamic

contest with private signals, expected aggregate effort is strictly larger than in the public

information benchmark, independently of the signals’ informativeness. This finding is

surprising as it contrasts with well known results about common value auctions where

the linkage principle implies that, expected revenue is maximized when all information

is made publicly available (Milgrom and Weber, 1982). Although, in our setting, private

information causes a winner’s curse familiar from auction theory, the encouragement effect

leads to an overall gain in aggregate incentives. Private information raises aggregate

incentives as it helps to level the playing field in situations where some contestants have

established a lead over others. Naturally, because efforts are costly, a direct implication

of this result is that asymmetric information is harmful from the contestants’ perspective,

i.e. asymmetric information leads to “fighting for lemons”.

Second, we show that aggregate incentives in the dynamic contest can be even higher

than in the static benchmark. This happens when the encouragement effect is strong

relative to the discouragement effect, which is the case when the rate of rent dissipation

is low. Our result shows that the common wisdom, that incentives are reduced by the

dynamic nature of competition (e.g. Klumpp and Polborn, 2006), must not hold in con-

6 Ferrall and Smith (1999) argue that in basketball-, hockey-, and baseball-playoffs “a simple model in
which players do not give up [...] best explains the outcome of the championship series.“ Similarly, Zizzo
(2002) denotes the lack of evidence for discouragement in experimental patent race data as “a puzzle
from the perspective of patent race theory.”
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tests that are subject to private information. Dynamic competition can improve upon

static competition because the encouragement that contestants derive from learning can

overcome the discouragement that arises from intermediate performance evaluations.

In Section 6 we relate our work to a nascent literature on information design in con-

tests by characterizing the contest’s optimal (partly-conclusive) information structure.7

We show that aggregate effort is maximized when the players’ signal is neither fully in-

formative nor fully uninformative, and that the optimal signal quality is increasing in the

likelihood with which the contest’s prize has no value. A direct implication of this result

is that improving contestants’ information may deteriorate dynamic incentives, especially

when contestants are “optimistic” about the contest’s prospects.

Finally, in Section 7, we extend our model by allowing contestants to have heteroge-

neous valuations of the contest’s prize. A valid concern is that the encouragement effect,

although beneficial for aggregate incentives, may have a negative effect on a contest’s se-

lective efficiency. In particular, when a low-valuing contestant is more likely to be lagging

behind, narrowing the gap between a leader’s and a follower’s effort may have an adverse

effect on the likelihood with which a high-valuing contestant will claim the contest’s prize.

We argue that this intuition is incomplete and show that, instead, private information

can have a positive effect not only on aggregate incentives but also on a contest’s selective

efficiency.

Related literature

The discouragement effect has made its first appearance in the literature on R&D races,

where it can take the particularly severe form of ǫ-preemption (Fudenberg et al., 1983):

Even the smallest innovation advantage can obstruct the investment of rival firms. The

seminal model of Harris and Vickers (1987) takes the format of a best-of-N contest and

its battle-components are strategically equivalent to a Tullock contest when investments

7The existing literature on information design has mostly restricted attention to static contests. For
a detailed discussion of this literature see Section 6.
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are lump-sum (Baye and Hoppe, 2003). Our results thus apply and they suggest that, due

to the inherently uncertain value of innovation, the dynamic nature of R&D-competition

must not be an obstacle but can be a promoter of investment, because firms’ become en-

couraged by the success of their rivals. This finding resonates well with the idea of Choi

(1991) that a rival’s success may improve a firm’s belief in the feasibility of a contested in-

novation (see also Malueg and Tsutsui (1997) and Bimpikis et al. (2019)). An important

difference is that in our setting, information is private rather than public, which means

that the observation of progress increases the investment of some firm while decreasing

the investment of another.8

Our theory combines dynamic competition with private information and it thereby

contributes to two, mostly separate branches of the literature. The first branch in-

vestigates the role of information under static competition, where a different form of

discouragement may arise from potential differences in players’ abilities or their individ-

ual valuations of the prize. While for private-value environments (Morath and Münster,

2008; Dubey, 2013; Wasser, 2013; Fu et al., 2014; Serena, 2021), asymmetric information

is found to have a positive effect on aggregate incentives, in common-value settings, more

akin to ours, private information typically has a negative or no effect (Hurley and Shogren,

1998; Wärneryd, 2003; Einy et al., 2017). Our analysis of the static competition bench-

mark in Section 3 shows that, in our setting, information has an influence on incentives

only when competition is dynamic and, in the dynamic contest, the effect of private

information turns out to be positive.

The second branch of the contest literature typically abstracts from informational

issues and investigates incentives in dynamic settings. Konrad and Kovenock (2009) pro-

vide the seminal analysis of a best-of-N contest, with individual battles modeled as all-pay

auctions, where the rate of rent-dissipation and hence the discouragement effect are ex-

8With private information, learning may induce homogeneous investment-behavior from heterogeneous
firms (Moscarini and Squintani, 2010) and poorly informed firms may have an advantage due to the
possibility of learning from a better informed rival (Awaya and Krishna, 2021).
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treme. For more moderate rates of rent dissipation, the characterization of equilibrium

in a best-of-N contest has proven rather elusive. Ferrall and Smith (1999) determine a

mixed-strategy equilibrium when battles take the form of an additive tournament with

normally distributed noise and show, numerically, that the players’ likelihood to provide

positive effort falls towards zero when the contest reaches an asymmetric state. For stan-

dard Tullock-battles, a characterization of equilibrium for a best-of-N contest has been

obtained by Klumpp and Polborn (2006). They take the predicted discouragement as

an argument in favor of the sequential format of US presidential primaries, where efforts

consist of wasteful campaign spending.9 We contribute to this literature by providing a

characterization of equilibrium for generic tournaments with multiplicative noise, includ-

ing the Tullock specification as a special case.

The few articles that combine dynamic competition and incomplete information belong

to a growing literature about the desirability of intermediate performance feedback in la-

bor settings (Gershkov and Perry, 2009; Aoyagi, 2010; Ederer, 2010; Goltsman and Mukherjee,

2011) or cryptocurrency mining protocols (Ely et al., 2021).10 Informing players about

the outcome of intermediate battles can induce fierce competition when the contest is

close, but has a discouraging effect when large performance differences are revealed. As

our static competition benchmark is strategically equivalent to a situation where players

compete sequentially without knowledge of the individual battles’ outcomes, our theory

contributes to this literature. In particular, our results imply that, in the presence of

private information about the contest’s prize, intermediate performance feedback is detri-

9By introducing multiplicative biases into a best-of-three version of the Klumpp and Polborn (2006)
model, Barbieri and Serena (2018) show that aggregate effort can be increased by favoring the loser of
battle one, thereby extending the logic of leveling the playing field from a static to a dynamic setting.
While we share with Barbieri and Serena (2018) the finding that, in battle 2, efforts are maximal when
winning probabilities are equalized, in our setting, maximization of effort on aggregate requires the
playing field to be “unleveled”. Private information acts differently than a multiplicative bias because it
influences the players’ valuations rather than their probabilities of winning.

10Klein and Schmutzler (2017) provide a rationale for why competition amongst workers may take the
format of a best-of-N contest akin to our model. They show that aggregate effort is maximized when
no intermediate prizes are awarded and performance at every stage receives a positive weight in the
determination of the overall winner.
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mental when contestants are very poorly or very well informed but can improve incentives

when information is of moderate quality.

Finally, on a more abstract level, our results resonate well with the general idea that,

in strategic common-value settings, dynamics and private information, although detri-

mental when considered separately, can be beneficial when combined. For example, in a

preemption game, where players aim to be the first to invest when investment is lucrative

and not to invest at all when investment is wasteful, private information can be welfare

improving by counteracting the players preemption motive (Hopenhayn and Squintani,

2011; Bobtcheff et al., 2021). Similarly, in a strategic experimentation setting, where

players can learn from the experimentation of others, private information can mitigate

the players’ free-riding problem (Heidhues et al., 2015; Dong, 2016; Klein and Wagner,

2019). In our dynamic contest framework the incentive-improving role of private informa-

tion derives from the fact that battle outcomes induce competitors to update their beliefs

in opposite directions which helps to level the playing field.

2 Model

We consider two homogeneous, risk-neutral players engaged in a dynamic contest for a

single prize of common value. The prize can take two values, V ∈ {0, 1}, and we denote

by ω ∈ (0, 1) the likelihood that V = 0 and by E[V ] = 1 − ω the expected prize.11

The contest consists of three identical, consecutive battles and the prize is awarded to

the first player achieving a total number of two battle victories. In each battle t ∈

{1, 2, 3}, the two players i ∈ {1, 2} choose their efforts eit ≥ 0 simultaneously. Player

i’s performance in battle t is then determined by the product of his effort eit and an

individual noise component xit > 0. A player’s payoff equals his prize winnings minus his

effort costs aggregated over all battles, i.e. we abstract from discounting. The costs of

11While V = 1 is just a normalization, the assumption that the prize may have zero value greatly
simplifies our analysis, as will become clear below.
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effort are identical across players and battles and are assumed to be linear, i.e. C(eit) = eit.

With linear costs, expected aggregate effort in the static competition benchmark becomes

independent of the players’ information (see Section 3). This enables us to focus on

the effect of information on incentives that arises from the dynamic nature of competition

rather than the shape of the players’ cost functions. A discussion of the effects of extending

the contest to more than three battles is postponed until Section 8.

Competition. Each battle is won by the player with the highest performance, i.e. player

i wins battle t if and only if eitxit > ejtxjt or
xjt

xit
< eit

ejt
. Individual noise is distributed

identically and independently across battles and players. Denoting by H(.) the cumulative

distribution function of the ratio of individual noise yt =
xjt

xit
, player i’s probability of

winning battle t is thus given by H( eit
ejt
). As equilibrium will be fully determined by

the distribution of the ratio of individual noise, we make assumptions directly on the

corresponding probability density h = H ′.12 By symmetry, we have H(y) = 1 − H( 1
y
)

and differentiating both sides leads to yh(y) = 1
y
h( 1

y
). It follows that the function yh(y)

must have a minimum or a maximum at y = 1. We assume that yh(y) is unimodal and

converges to zero for y → 0, which guarantees that y = 1 constitutes a global maximum.13

In order to guarantee the existence of a pure-strategy equilibrium we also assume that h

is differentiable and strictly decreasing. Our distributional assumptions are summarized

as follows:

Assumption 1. The density h of the ratio of individual noise is continuously differen-

12Note that two different individual noise distributions, f and f̃ , can give rise to the same ratio
distribution h, even when f and f̃ differ in their “shape”. For example, the distribution of x1

x2

is given

by h(x1

x2

) = 1
(1+

x1

x2
)2

when x1, x2 are distributed according to f(xi) = exp(−xi) and when x1, x2 are

distributed according to f̃(xi) =
1
x2

i

exp(− 1
xi

), although f is monotone decreasing whereas f̃ has a unique

positive mode. It it therefore sensible to consider h as the primitive of our model and to make assumptions
about the shape of h rather than the shape of f .

13Hodges and Lehmann (1954) show that the distribution of the difference of two unimodal noise
distributions must itself be unimodal. Using this result, a straight forward logarithmic transforma-
tion shows that yh(y) must be unimodal when the underlying distribution of individual noise is uni-
modal. Unimodality is a common assumption in models where performance is additive in effort and noise
(Lazear and Rosen, 1981).
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tiable and strictly decreasing. Moreover, the function yh(y) is unimodal with limy→0 yh(y) =

0.

Example. A family of densities that satisfy our distributional assumptions is given by

h(d,r)(y) =
rΓ(2d

r
)

Γ(d
r
)2

y−d−1

(1 + y−r)2
d
r

. (1)

These ratio distributions arise when individual noise follows a generalized Gamma dis-

tribution f(d,r)(x) =
r

Γ(d
r
)
xd−1 exp(−xr) with parameters d, r > 0 (Malik, 1967). h(d,r) is

unimodal. It satisfies Assumption 1 if and only if d ≤ 1. Note that this family accom-

modates as special cases (d = r) the ratio distributions hr(y) =
ry−r−1

(1+y−r)2
generating the

most frequently employed (generalized) Tullock contest success function Hr(
e1
e2
) =

er
1

er
1
+ẽr

2

(Jia, 2008). Besides the Tullock function with parameter r ≤ 1, which originates when

individual noise follows an exponential (d = r = 1) or Weibull distribution (d = r < 1),

Assumption 1 allows individual noise to be Chi-distributed (r = 2, d < 1), Chi-squared-

distributed (r = 1, d < 1), or folded-normal distributed (r = 2, d = 1), to name just a

few.

Information. Our model captures situations in which contestants have private in-

formation about the (common) value of a contested prize, and, while unable to observe

their rival’s efforts, may learn about their rival’s information via their observation of a

battle’s outcome. For example, in an R&D race firms’ market research may generate

private information about the value of an invention, and, while information about the

rivals’ R&D spending is not available, firms may update their beliefs about their rival’s

market evaluation by observing its technological advancement. Similarly, in a labor tour-

nament, where efforts are commonly considered as unobservable, relative performance

feedback in form of a midterm review may inform employees about the value their rival

attaches to a promotion. In line with these examples, we thus assume that players’ efforts

are unobservable and that, prior to the first battle, each player obtains a private signal,

si ∈ {B,G}, that is informative about the value of V . Signals are independent draws
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from the same conditional probability distribution Prob(si|V ) specified by Table 1. The

Prob(si|V ) V = 0 V = 1
si = B σ 0
si = G 1− σ 1

Table 1: Information structure.

parameter σ ∈ (0, 1) measures the informativeness of the players’ signals. In particular,

for σ → 1 players become perfectly informed about the value of the prize, whereas for

σ → 0 signals become completely uninformative. Note that implicit in this formulation is

the assumption that a “bad” signal si = B is conclusive, as it can only be received when

V = 0. For example, workers competing for a promotion may learn that the position will

be filled with an outsider. This assumption, together with the fact that, in this state of

the world, the prize has zero value, greatly simplifies the analysis because it implies that

efforts must be zero upon the observation of a bad signal. Hence, our analysis can con-

centrate on the players’ behavior conditional on receiving a “good” signal, si = G. Our

results are robust to the introduction of pre-play communication if we assume that sig-

nals are non-verifiable. With non-verifiable signals, players have an incentive to claim to

have received a bad signal, independently of their true signal, making all communication

uninformative.14

Equilibrium. Our setting constitutes a dynamic Bayesian game, with players’ “types”

given by their signals. We use Perfect Bayesian equilibrium as our solution concept and

focus our analysis on symmetric equilibria in pure strategies. In our model, a symmetric,

pure-strategy Perfect Bayesian equilibrium – in the remainder simply denoted as “an

equilibrium” – can be described by a vector of efforts (e∗1, e
∗
L, e

∗
F , e

∗
3) which players exert

conditional on having observed a good signal. Here e∗1 and e∗3 denote a player’s efforts

during the first and the third battle, respectively, whereas e∗L and e∗F denote a player’s

effort in the intermediate battle depending on whether the player has become the leader

14With verifiable signals, private information would unravel, because only players with a good signal
have an incentive to conceal.
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(L) or follower (F) by winning or losing the previous battle. Note that a player’s effort

in the third battle is independent of the sequencing of past-outcomes (win-loss versus

loss-win) because in equilibrium the third battle can be reached only when both players

have observed a good signal, giving players identical beliefs about the value of the prize.15

3 Benchmarking

Before we start the analysis of our model it is instructive to consider as benchmarks the

cases where either competition is static rather than dynamic or signals are observable

publicly rather than privately.

3.1 Static competition

Suppose that, instead of sequentially, all three battles take place at the same time, once

players have received their private signals. Players must choose an effort level for each

battle simultaneously. By symmetry, players should distribute their efforts evenly across

battles. A player will choose a non-zero effort eS > 0 only when he received a good signal.

As a player wins the prize when he is victorious either in two or in three battles, and the

prize can have non-zero value only when also the rival’s signal was good, in equilibrium

eS must solve

eS ∈ argmax
e≥0

β1[H(
e

eS
)3 + 3H(

e

eS
)2(1−H(

e

eS
))]V G − 3e. (2)

Here we have denoted by

β1 ≡ Prob(sj = G|si = G) =
1− ω + ω(1− σ)2

1− ω + ω(1− σ)
, (3)

15In our model, Bayesian updating is greatly simplified by the fact that a player with a zero effort cannot
win against a player with a positive effort. While this property constitutes an implicit assumption of the
frequently employed Tullock model and seems a realistic feature of many settings (e.g. innovation requiring
investment), it distinguishes our framework from those models where effort and noise are substitutes
rather than complements (e.g. Lazear and Rosen, 1981).
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the player’s belief about the likelihood with which his rival has also received a good signal

and by

V G ≡ E[V |s1 = s2 = G] =
1− ω

1− ω + ω(1− σ)2
> E[V ] (4)

the expected value of the contest’s prize, conditional on both players’ signals being good.

Taking the first order condition of (2) and setting e = eS gives eS = 1
2
β1V

Gh(1) as the

unique candidate for a pure-strategy equilibrium.16 Summing efforts over both players

and all battles, and multiplying with the probability that si = G gives the corresponding

expected aggregate effort:

ES = min{3h(1), 1} · E[V ]. (5)

Note that this expression is independent of the quality σ of players’ information. Also

note that if signals were observed publicly rather than privately, then, conditional on

s1 = s2 = G both players would exert efforts e = 1
2
V Gh(1) and it follows from the fact

that Prob(s1 = s2 = G) = Prob(si = G)β1 that expected aggregate effort would be the

same as in (5). We summarize these findings in the following:

Lemma 1 (Benchmark: Static competition). When the contest is static rather than dy-

namic, aggregate incentives are independent of the contest’s information structure. In par-

ticular, expected aggregate effort is independent of σ and given by (5), no matter whether

signals are observed privately or publicly.

On the one hand, when signals are private, a player is more likely to exert positive

effort, because effort requires only his own signal to be good. On the other hand, the

observation of only one good signal leaves the player less optimistic about the prize’s

value, making players choose a lower effort level than when signals are public. When

16Note that the corresponding equilibrium payoff of each player is 1
2β1V

G[1 − 3h(1)], i.e. existence of
a pure-strategy equilibrium in the static contest requires h(1) < 1

3 . For larger values of h(1), equilibrium
must be in mixed strategies and, in analogy to Klumpp and Polborn (2006), equilibrium features full
rent-dissipation, i.e. expected aggregate effort must equal the expected prize E[V ] = 1− ω.
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cost functions are linear, both effects cancel out. Lemma 1 is therefore a consequence

of players having linear costs of effort and the reason why we assumed cost functions to

be linear in the first place. It implies that, in our setting, any dependence of aggregate

incentives on information must have its origin, not in the shape of the effort cost function,

but in the dynamic nature of competition.

3.2 Public signals

We now return to the dynamic model but suppose that, instead of being observed pri-

vately, both players’ signals are publicly available.17 If si = B for some i ∈ {1, 2}, both

players will exert zero effort because the contest’s prize is commonly known to have zero

value. If s1 = s2 = G, players’ expectations of the contest’s prize are given by V G .

In the Appendix, we determine the unique pure-strategy Subgame Perfect equilibrium

(eP1 , e
P
L , e

P
F , e

P
3 ), describing players’ effort levels conditional on s1 = s2 = G. Letting U3

denote a player’s continuation value of reaching battle 3, our characterization makes use

of the variable

ρ =
U3

V G − U3
=

1− 2h(1)

1 + 2h(1)
∈ (0, 1) (6)

representing the ratio of players’ valuations of winning battle 2. With the help of this vari-

able, the equilibrium can be expressed in closed form and we can formulate the following

result:

Lemma 2 (Benchmark: Public information). When signals are public rather than pri-

vate, players exert effort only upon observation of two good signals and there exists a

unique pure-strategy subgame perfect equilibrium (eP1 , e
P
L , e

P
F , e

P
3 ) where eP1 = [H(1

ρ
) −

2h(1)ρh(ρ)]h(1)V G, ePF = 1
1+ρ

h(1
ρ
)V G, ePL = 1

ρ
ePF , and eP3 = h(1)V G. Expected aggregate

effort is EP = {2h(1) + ρh(ρ)[1− 4h(1)2]}E[V ] and thus independent of the informative-

ness, σ, of players’ signals.

17An alternative benchmark has players observe only one and the same signal. Whether there are one
or two signals available has no influence on expected aggregate effort.
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Proof: See Appendix.

A comparison of expected aggregate effort EP with the static equivalent ES serves

as a measure of the severity of the discouragement effect. In the dynamic setting, the

follower becomes discouraged by the leader’s advantage in battle 2, leading to a reduction

of aggregate incentives. Indeed, for h(1) < 1
3
, the relative loss in incentives due to

discouragement is

∆Edis =
ES − EP

ES
=

1

3
− ρh(ρ)[

1

3
h(1)−1 − 4

3
h(1)] >

4

3
h(1)2, (7)

where we have used the fact that ρh(ρ) < h(1) by unimodality. Note that the lower bound

on the loss in incentives is increasing in h(1) and thus proportional to the rate of rent

dissipation of the final battle given by

R ≡ 1− 2U3

V G
= 2h(1). (8)

The larger the battles’ rate of rent dissipation, the greater the loss in aggregate incentives

due to the discouragement effect. This is intuitive, because when rent dissipation is high,

the additional cost of having to win an extra battle weighs heavily. Figure 1 depicts

∆Edis for the distribution hr generating Tullock’s contest success function where R = r
2
.

In the example, the incentive loss due to discouragement ranges up to 14 percent and is

monotonically increasing in Tullock’s parameter r, measuring the sensitivity with which

battle outcomes depend on players’ efforts.

4 The encouragement effect

In this section we begin our analysis of the dynamic contest with private signals. As before,

our information structure allows us to focus on the efforts that a player exerts after having

observed a good signal. After receiving a bad signal, a player knows the contest’s prize

to have no value, making zero effort his optimal choice. However, in comparison to the

benchmarks analyzed in the previous section, the analysis is complicated by the fact that
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Figure 1: Discouragement Effect: Relative loss in aggregate incentives, ∆Edis, as a
function of Tullock’s parameter r ∈ (0, 1]. In the example, the ratio of noise distribution

is given by hr(y) =
ry−r−1

(1+y−r)2
.

players must update their beliefs about their rival’s information based on their observation

of the contest’s history.

Consider a player i ∈ {1, 2} with signal si = G in battle 3. Note that battle 3 can

be reached only when each player has lost one battle and that a player exerting positive

effort may loose a battle only when his rival also exerted positive effort. This means that

when reaching battle 3 after having exerted effort, player i can be certain that sj = G.

Hence, whether signals are observed privately or publicly makes no differences for battle

3, i.e. effort must be the same as in the Subgame Perfect equilibrium characterized by

Lemma 2:

e∗3 = h(1)V G. (9)

Moreover, a player’s continuation value from reaching battle 3, is thus as determined in

the proof of Lemma 2, i.e. U3 = [1
2
− h(1)]V G > 0. In battle 3, the players’ beliefs are

identical because the contest’s history is symmetric, in that it features one battle win for
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each player. In contrast, as we will see next, updating differs across players in battle 2,

because there exists a leader and a follower.

Assuming that the follower exerted effort in battle 1, in battle 2 he must conclude

from having lost the previous battle that his opponent has observed a good signal. Had

his opponent observed a bad signal he would have exerted zero effort and would not have

defeated him. In contrast to the follower, the leader does not know whether he won the

first battle because he was lucky or because his opponent failed to provide effort after

observation of a bad signal. Moreover, the distinction between these two cases depends

on the effort the leader has taken in battle 1. In particular, suppose the leader chose

effort e1 > 0 and the follower employed the equilibrium strategy of exerting effort e∗1

upon observation of a good signal and zero effort after observation of a bad signal. Then

the leader would have won the first battle with probability H( e1
e∗
1

) in the case where

sj = si = G, which occurs with likelihood 1−ω+ω(1−σ)2. In contrast, the leader would

have won with certainty in the case where sj = B 6= G = si, which occurs with likelihood

ωσ(1 − σ). Bayesian updating thus implies that from the viewpoint of the leader, the

likelihood with which the follower has observed a good signal is given by

Prob(sj = G|i = L, si = G) =
[1− ω + ω(1− σ)2]H( e1

e∗
1

)

[1− ω + ω(1− σ)2]H( e1
e∗
1

) + ωσ(1− σ)
≡ β2(e1). (10)

It is important to note that β2(e1) < β1, i.e. winning the first battle represents “bad news”

about the rival’s signal.18 In particular, in battle 2, the follower updates his belief about

his rival’s signal upwards to 1 > β1, whereas the leader updates his belief downwards to

β2(e1) < β1. In equilibrium, effort choices (e∗L, e
∗
F ) must satisfy:

e∗L ∈ argmax
eL≥0

β∗
2

[

U3 +H(
eL
e∗F

)(V G − U3)

]

− eL (11)

e∗F ∈ argmax
eF≥0

H(
eF
e∗L

)U3 − eF , (12)

18The fact that a deviation from e∗1 to e1 6= e∗1 influences the informativeness of the first battle’s
outcome must be taken into account in the determination of the equilibrium effort level e∗1 in Section 5.
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where we have abbreviated notation by letting

β∗
2 ≡ β2(e

∗
1) =

1− ω + ω(1− σ)2

1− ω + ω(1− σ)2 + 2ωσ(1− σ)
. (13)

By Assumption 1, the above objectives are concave and the corresponding first order

conditions lead to the equilibrium values

e∗F =
1

1 + ρ
β∗
2h(

β∗
2

ρ
)V G (14)

e∗L =
β∗
2

ρ
e∗F . (15)

An important feature of the equilibrium is that the ratio of the leader’s and the follower’s

efforts takes the following simple form:

e∗L
e∗F

=
β∗
2

ρ
. (16)

This means that information, in the form of the players’ signal quality, can be employed

to fine-tune the ratio of efforts and hence the winning probabilities in battle 2. In order

to formulate our first result, we define the following threshold:

R̂(ω) ≡ 2− ω − 2
√
1− ω

ω
. (17)

Proposition 1 (Encouragement Effect.). Private information increases the probability

that the follower catches up with the leader. In particular,
e∗
L

e∗
F

has U-shape with a minimum

at

σ = σ̂(ω) ≡ 1−
√
1− ω

ω
∈ (0, 1) (18)

and limσ→0
e∗L
e∗
F

= limσ→1
e∗L
e∗
F

=
ePL
eP
F

= 1
ρ
> 1. Moreover, if the rate of rent dissipation is

not too high, private information can make the follower more likely to win the second

battle than the leader. Formally, if R < R̂(ω) then
e∗L
e∗
F

< 1 for all σ ∈ (σ−, σ+) where

0 < σ− < σ̂(ω) < σ+ < 1.
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Proof: See Appendix.

The intuition for Proposition 1 is as follows. As argued above, the presence of private

information induces the leader and the follower to update their beliefs about their rival’s

signal in opposite directions. Since loosing the first battle represents positive news whereas

winning the first battle represents negative news about the rival’s signal, the follower

becomes more confident than the leader that the contest’s prize is of positive value. This

divergence of the players’ believes counteracts the fact that the leader is required to win

only one more battle whereas the follower is required to win twice. Private information

thus mitigates the discouragement effect, and, as the second part of the proposition shows,

can even encourage the follower to provide a larger effort than the leader.

5 Aggregate incentives

Our results in the previous section suggest that, in a dynamic contest, private information

may have a positive effect on incentives. By raising the probability that the final battle is

reached, and by balancing players’ valuations of winning the intermediate battle, private

information increases expected efforts in battles 2 and 3. However, to fully understand

how aggregate incentives vary with the players’ information, one has to consider how

these changes affect the players’ incentives to exert effort in battle 1. In the following, we

first complete our characterization of equilibrium by determining the players’ effort choice

e∗1, before comparing aggregate incentives with the benchmarks of public information and

static competition.

In battle 1, a player who observed a good signal believes that his rival observed a

good signal with probability β1. With probability β1 the rival will thus exert the equi-

librium effort e∗1 whereas with probability 1− β1 the rival’s effort will be zero. Denoting

the continuation values of the leader and the follower, conditional on the rival’s signal

s ∈ {G,B}, by Us
L and Us

F , respectively, the players’ equilibrium effort in battle 1 must
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therefore satisfy:

e∗1 ∈ argmax
e1>0

β1

{

H(
e1
e∗1
)UG

L (e1) + [1−H(
e1
e∗1
)]UG

F

}

+ (1− β1)U
B
L (e1)− e1. (19)

Here we have used the fact that, conditional on his opponent having observed a bad

signal, a player exerting a strictly positive effort must establish himself as the leader with

certainty.19 Moreover, it is important to note that the continuation values of becoming

the leader, depend on the player’s effort choice e1 through its influence on the player’s

belief β2(e1) in battle 2. A variation in e1 changes the belief the player must hold about

the rival’s signal after winning battle 1 and will thus lead him to adjust his effort eL in

battle 2 optimally. In the proof of Lemma 3 we can thus employ the envelope theorem

to show that the first-order condition that corresponds to (19) takes the following simple

form:

e∗1 = β1h(1)[U
G
L − UG

F ]. (20)

Comparing e∗1 with its public information analog eP1 = h(1)[UG
L −UG

F ] we see that private

information has two effects. It reduces battle 1 efforts by a factor β1 ∈ (0, 1) because a

player is more likely to win the contest when his rival’s signal is bad and the contest’s

prize has no value. However, in our setting, this so-called winner’s curse has no effect on

expected aggregate effort because with private signals a player exerts e∗1 when his own

signal is good whereas with public signals a player exerts eP1 only when both signals are

good and it holds that Prob(s1 = s2 = G) = β1Prob(si = G).

The second effect of private information is to influence the players’ continuation values

UG
L and UG

F .
20 More specifically, first period incentives depend on the players’ updated

beliefs β∗
2 via the difference in continuation values

UG
L − UG

F = H(
e∗L
e∗F

)V G − e∗L + e∗F = V G

[

H(
β∗
2

ρ
)− [

β∗
2

ρ
− 1]

1

1 + ρ
β∗
2h(

β∗
2

ρ
)

]

. (21)

19The possibility of a deviation to e1 = 0 must be checked separately, because in that case a player will
loose against a rival with a bad signal with probability 1

2 . See the proof of Lemma 3 for details.
20Note that in equilibrium, the continuation value UG

L
does not depend on e∗1 because for e1 = e∗1,

β2(e1) becomes equal to β∗
2 given by (13) which is independent of e∗1.
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Battle 1 incentives derive from the fact that an early success leads to the opportunity to

secure overall victory already in the intermediate battle, which happens with probability

H(
e∗L
e∗
F

) and comes at the expense of the effort differential e∗L − e∗F . Before we analyze the

effect of information on incentives in battle 1 and on aggregate in detail, the following

lemma summarizes our analysis and proves existence of equilibrium:

Lemma 3 (Equilibrium existence). In a symmetric, pure-strategy Perfect Bayesian equi-

librium, players exert effort only when their private signal is good and effort levels are

(e∗1, e
∗
L, e

∗
F , e

∗
3) given by (9), (14), (15), and (20). For the ratio distribution hr generat-

ing the Tullock contest success function, such an equilibrium exists and it is unique. For

general distributions satisfying Assumption 1, existence is guaranteed when players are

sufficiently informed or uninformed, i.e. when σ is sufficiently close to 1 or 0.

Proof: See Appendix.

5.1 Comparison with public information benchmark

To understand the effect of private information on aggregate incentives, it is instructive

to aggregate efforts over battles 1 and 3, before adding efforts in the intermediate battle.

The expected sum of players’ efforts in battle 1 is E∗
1 = 2Prob(s1 = G)e∗1. As battle 3

is reached only when both players observe a good signal and when the follower wins the

second battle, the expected sum of efforts in battle 3 is given by E∗
3 = 2Prob(s1 = s2 =

G)[1−H(
e∗
L

e∗
F

)]e∗3. Substituting efforts and using the fact that the contest’s expected prize

is E[V ] = Prob(s1 = s2 = G)V G = 1 − ω and the final battle’s rate of rent dissipation is

R = 2h(1), the expected sum of efforts in battles 1 and 3 can be expressed as follows:

E∗
1 + E∗

3 = R · E[V ]

{

1− 1

V G
(e∗L − e∗F )

}

. (22)

Note that effort aggregated over battles 1 and 3 is entirely determined by the difference

between the leader’s and the follower’s effort in the intermediate battle. Intuitively, a
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change in battle 2 efforts affects the likelihood that the last battle is reached [1−H(
e∗L
e∗
F

)]

by the same absolute amount as it influences the likelihood H(
e∗L
e∗
F

) that securing leadership

in battle 1 results in overall victory already in battle 2. In particular, any potential gain

in aggregate effort that is due to a higher likelihood of the final battle being reached is

exactly compensated by a loss in incentives due to a reduction of the benefits of becoming

the contest’s leader. E∗
1 +E∗

3 thus consists of a constant term and the contribution of the

effort differential e∗L − e∗F to battle 1 incentives. A decrease in e∗L − e∗F increases battle 1

incentives because it makes it less costly, in terms of future effort, to become the leader.

It remains to consider the expected sum of players’ efforts in battle 2. If s1 = s2 = G

then both leader and follower exert effort in battle 2, whereas for s1 = G, s2 = B or

s1 = B, s2 = G only the leader exerts effort. From

E∗
2 = (1− ω)

1 + ρ

ρ

e∗F
V G

= E[V ]
e∗L
e∗F

h(
e∗L
e∗F

) (23)

and the fact that yh(y) is unimodal with mode at y = 1 it follows that battle 2 incentives

are maximal when e∗L = e∗F , i.e. when “the playing field is leveled”. This result sounds

familiar from the literature on static contests. However, in our dynamic setting, leveling

the playing field in battle 2 has the additional effect of reducing the effort cost differential

e∗L − e∗F which, as we noted earlier, has a positive effect on the sum of efforts in battle 1

and 3.

Letting E∗(σ) = E∗
1 +E∗

2 +E∗
3 denote the expected sum of efforts, aggregated over all

players and battles, the above analysis leads to the following:

Proposition 2 (Private vs. Public Information). In the dynamic contest with private

signals, aggregate incentives are higher than in the public information benchmark. In

particular, if R ≥ R̂(ω) then E∗(σ) > EP for all σ ∈ (0, 1), while if R < R̂(ω) then

E∗(σ) > EP for all σ ∈ (0, σ−) ∪ (σ+, 1).

Proof: See Appendix.
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When the rate of rent dissipation is high, private information cannot level the playing

field in battle 2. In this case, the advantage of requiring only one rather than two battle

wins for overall victory is too large to be offset by the bad news about the contest’s prize

associated with a win in battle 1. Private information can then reduce the difference

between e∗L and e∗F but will never induce the follower to exert as much effort as the leader.

Because private information can only make the playing field more leveled, aggregate effort

is larger than in the public information benchmark, independently of the signals’ precision.

In contrast, if the rate of rent dissipation is low, then the encouragement effect can

overcome the discouragement effect and private signals can make the follower exert a

higher effort than the leader. In this case, information can happen to be “too asymmetric”

and only sufficiently informative or sufficiently uninformative signals are guaranteed to

increase aggregate incentives above the public information benchmark.

5.2 Comparison with static competition benchmark

Based on the insight of Proposition 2 that private information can be employed to in-

crease aggregate incentives, a natural question to ask if whether the corresponding gain in

incentives due to encouragement can be sufficient to overcome the discouragement effect

that is commonly associated with the dynamic nature of competition. More specifically,

we now investigate whether it is possible to choose the signals’ precision σ in a way that

increases aggregate effort in the dynamic competition with private signals, E∗(σ), beyond

the benchmark provided by static competition, ES. For this purpose, Figure 2 depicts

the ratio E∗(σ)
ES , together with the leader’s and the follower’s efforts for a Tullock contest

with parameter r = 2R = 1
4
. Note that E∗(σ)

ES reaches its maximum at a σ∗ for which the

encouragement effect outweighs the discouragement effect in that the follower exerts a

larger effort than the leader, i.e. e∗F (σ
∗) > e∗L(σ

∗). Also note that, in the example, at its

maximized value, expected aggregate effort is higher than in the static benchmark, i.e.

E∗(σ)
ES > 1. This contrasts with the common wisdom that the dynamic nature of compe-
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Figure 2: Dynamic Incentives with Private Signals: Efforts e∗L(σ) and e∗F (σ) in
battle 2 (upper panel), and expected effort aggregated over all battles, relative to the
static benchmark E∗(σ)/ES (lower panel), in dependence of the signals’ informativeness

σ. In the example, the ratio of noise distribution is given by hr(y) =
ry−r−1

(1+y−r)2
, with the

Tullock parameter set to r = 0.25, and the prior is assumed to be symmetric, i.e. ω = 1
2
.

tition must be harmful for incentives (e.g. Klumpp and Polborn, 2006). Our benchmark

analysis in Section 3 has confirmed that this intuition applies to our setting when players

are symmetrically informed about the contest’s prize. However, as shown by the example,

dynamics must not necessarily be harmful for incentives when players are endowed with

private information. When signals are private rather than public, the discouragement
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effect can be overcome by the encouragement effect, leading not only to an increase in the

incentives of a follower beyond the incentives of a leader but to an increase in aggregate

incentives beyond the static benchmark. In the Tullock example, this happens for all those

values of σ for which the follower’s effort exceeds the leader’s. For general distributions,

our assumptions do not guarantee that dynamic incentives exceed the static benchmark

for all such σ. However, the following result confirms that, whenever the follower can be

induced to exert higher effort than the leader for some σ, then at its maximized value,

aggregate effort must be higher than in the static benchmark.

Proposition 3 (Dynamic vs. Static Competition). If the rate of rent dissipation is not

too high, then the players’ signal quality can be chosen such that aggregate incentives are

strictly higher in the dynamic contest with private signals than in the static benchmark.

Formally, if R < R̂(ω), then there exist a σ∗ ∈ (0, 1) such that E∗(σ∗) > ES.

Proof: See Appendix.

To understand this result, remember that for low rates of rent dissipation, the discour-

agement effect can be compensated by the encouragement effect, and the follower can be

induced to exert the same effort as the leader. If σ is chosen such that
e∗L
e∗
F

= 1, then the

contest is equally likely to be decided after two or three battles. Hence, winning battle 1

has no effect beyond the resulting increase in the winner’s score. Incentives at every stage

of the dynamic contest thus become equal to static incentives, leading to E∗(σ) = ES.

Decreasing
e∗
L

e∗
F

marginally below 1 has a zero first-order effect on E∗
2 (because E∗

2 is maxi-

mized at
e∗
L

e∗
F

= 1) but a positive first-order effect on E∗
1 +E∗

3 , making aggregate incentives

in the dynamic contest strictly larger than in the static benchmark. At an intuitive level,

the static contest can be improved upon, because it forces players to invest in all three

battles even when two battles turn out to be decisive.
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6 Information design

In this section, we characterize the signal quality that maximizes aggregate incentives

in dependence of the contest’s rate of rent dissipation, R, and the contestants’ prior,

ω. While our results contribute to the nascent but growing literature on information

design in contests (discussed below), it is important to note that our assumption of partly

conclusive signals poses a restriction on the set of posteriors that can be induced.21 In

particular, besides the usual requirement of Bayes plausibility, posteriors must satisfy

Pr(V = 1|si = B) = 0.22 In our setting an “information structure” is therefore fully

determined by the posterior Pr(V = 1|si = G) = 1−ω
1−ω+ω(1−σ)

, parametrized by the signal

quality σ, and our following result characterizes the information structure that maximizes

aggregate incentives within the set of all such partially conclusive information structures:

Proposition 4 (Information design). In the dynamic contest with private signals, the

signal quality σ∗ that maximizes aggregate incentives, E∗(σ), depends on the contest’s

rate of rent dissipation, R = 2h(1) and the contestants’ prior ω = Prob(V = 0) as

follows:

• If R ≥ R̂(ω) then E∗(σ) has inverted U-shape. The optimal signal is σ∗ = σ̂ as

defined in (18) and it induces more effort from the leader than from the follower,

i.e. e∗L > e∗F . More pessimistic priors require more accurate information, i.e. σ̂(ω)

is strictly increasing with limω→0 σ̂(ω) =
1
2
and limω→1 σ̂(ω) = 1.

• If R < R̂(ω) then E∗(σ) is strictly increasing in (0, σ−] and strictly decreasing in

[σ+, 1). The optimal signal σ∗ ∈ (σ−, σ+) induces more effort from the follower than

from the leader, i.e. e∗F > e∗L.

21An alternative simplification of the information design problem can be achieved by assuming infor-
mation to be verifiable which allows to focus on the choice between disclosure and concealment (e.g.
Serena, 2021).

22In the seminal contribution of Kamenica and Gentzkow (2011) and related articles, the optimal in-
formation structure turns out to be partially conclusive, i.e. the restriction to such structures might be
less restrictive than it appears.
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The threshold R̂(ω) is strictly increasing with limω→0 R̂(ω) = 0 and limω→1 R̂(ω) = 1.

Proof: See Appendix.

Proposition 4 shows that, independently of the contest’s rate of rent dissipation and

the contestants’ prior, dynamic incentives are maximized when private information is

neither perfectly informative nor perfectly uninformative.

This contrasts with the findings of Zhang and Zhou (2016) who consider a static two-

player Tullock contest with linear costs in which one player’s valuation of the contest’s

prize is common knowledge whereas the other player’s valuation constitutes the player’s

private information. Using a Bayesian persuasion approach, they show that when, as

in our setup, valuations are binary, the information structure that maximizes expected

aggregate efforts is either full or no disclosure. They also show that partially revealing sig-

nals can become optimal when valuations can take more than two values. In our dynamic

setting, partially informative signals are optimal even for binary valuations, because the

encouragement effect can mitigate the discouragement effect only when information is

asymmetric, which is ruled out when signals are perfectly informative or perfectly unin-

formative.

Partially informative signals are also optimal in Antsygina and Teteryatnikova (2021)

who consider a two-player static all-pay auction with linear costs where both players’

valuations are binary and ex ante uncertain. They allow for information technologies that

send messages to players privately or publicly. They show that the optimal information

structure features private signals and induces symmetric beliefs. This structure reveals

the state whenever both players valuations are identical but employs noisy and correlated

signals when valuations differ. Intuitively, the designer tries to make players believe

that their valuations are likely to be equal, because effort is largest when valuations

are identical. As in our setting, information is thus used to “level the playing field”,

but the incentive-deteriorating heterogeneity emerges from exogenous differences in prize
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valuations rather than endogenous differences in intermediate performance. Other studies

reporting the optimality of private and partially informative signals include Chen (2021),

Kuang et al. (2019), and Melo-Ponce (2020) but all of them focus on static settings.

Finally, for high rates of rent dissipation, Proposition 4 identifies an inverse relation-

ship between the contestants’ prior expectations of the contested prize and the incentive-

maximizing accuracy of their private information. In fact, when the contest’s prize is

zero with near certainty, the optimal partially conclusive signal converges to the signal

that is perfectly revealing. The reason for this result is that for high rates of rent dissi-

pation, private information can improve the competitive balance between the leader and

the follower but cannot restore it completely. This means that the bad news of a win

should be made as bad a news as possible. To see that this requires the players’ signals

to be perfectly revealing in the limit, note that, for ω → 1, the leader’s updated belief

converges to β∗
2 →

1

2
(1−σ)2

1

2
(1−σ)2+σ(1−σ)

= 1−σ
1+σ

. The nominator represents the probability with

which, player i receives a good signal and wins the first battle, conditional on the other

player j having obtained a good signal sj = G whereas the denominator represents the

unconditional probability of the same event. The leader’s belief that the follower has

obtained a good signal and hence that the contest’s prize may have some value, in spite

of a zero value being so likely, is minimized when the signal’s quality is chosen as high as

possible.

7 Selective efficiency

In this section, we extend our analysis to allow for possible differences in the contestants’

prize valuations. This enables us to consider the effect of private information on the con-

test’s selective efficiency, i.e. the probability with which the contest’s prize is allocated

to the highest valuing contestant. Selective efficiency is a valid concern in light of our

result that, under dynamic competition, private information encourages contestants who
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lag behind (Proposition 1). As a low-valuation contestant is more likely to be lagging

behind than a high-valuation contestant, one may expect that private information has an

adverse effect on selective efficiency. However, as we show in this section, this intuition

is incomplete, as it neglects the fact that the intensity with which private information

improves a contestant’s chances also depends on the contestant’s valuation. More specifi-

cally, we identify conditions under which private information can have a positive effect on

selective efficiency and thus conclude that the gain in aggregate incentives from private

information identified in the previous section (Proposition 2) must not necessarily come

at the cost of a reduction in selective efficiency.

Selective efficiency is especially relevant in promotional contests where, besides the

provision of incentives, the selection of the most “able” candidate constitutes an im-

portant objective. In such settings, “ability” is commonly interpreted as the inverse of

a contestant’s marginal cost of effort. In this section, we thus introduce heterogeneity

by allowing contestants to differ in their constant marginal costs of effort but it should

be noted, that, because prizes and costs enter linearly into our model, our approach is

equivalent to allowing for differences in the contestants’ valuation of the contest’s prize.

We thus extend our model by assuming that costs of effort are C i(eit) = cieit and that

one contestant has a lower marginal cost than the other, i.e. we let ch

cl
≡ γ > 1. A

super-index will be used throughout the analysis to denote the contestants’ cost-types.

To keep our model tractable, we assume that contestants observe whether they are the

low-cost contestant l or the high-cost contestant h only after they have competed once by

exerting effort in the first battle.23 In some applications, such as promotion tournaments,

where workers are ignorant of their abilities relative to their rivals, this assumption may

be a reasonable starting point. In other settings, where abilities are known right from the

start, our subsequent results remain valid when ability differences are sufficiently small.

23When contestants are heterogeneous in battle 1 they will exert differing efforts, so that equilibrium
beliefs in battle 2 will depend on past efforts, which means that the model can no longer be solved
recursively.
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Selective efficiency, i.e. the probability that the low-cost (high-ability) contestant wins

the contest is given by

S ≡ 1

2
· [H(

elL
ehF

) +H(
ehF
elL

)H(
el3
eh3

)] +
1

2
·H(

elF
ehL

)H(
el3
eh3
). (24)

The two terms represent the cases where the low-cost type has won or lost the first battle,

respectively. Both cases are equally likely because, given our assumptions, contestants

will exert identical efforts in the first battle.

Efforts and expected payoffs in battle three are straightforward to calculate and given

by

el3 = γ · V
G

cl
h(γ) >

V G

cl
h(γ) = eh3 (25)

U l
3 = [H(γ)− γh(γ)]V G > [H(

1

γ
)− γh(γ)]V G = Uh

3 . (26)

In the second battle, we have to distinguish between two cases. If the low-cost contestant

has become the leader, equilibrium efforts must solve

elL ∈ argmax
e

U l
3 + β∗

2(V
G − U l

3)H(
e

ehF
)− cle (27)

ehF ∈ argmax
e

Uh
3H(

e

elL
)− che (28)

and it follows that

elL
ehF

= γβ∗
2

V G − U l
3

Uh
3

. (29)

If, instead, the high-cost contestant has become the leader, equilibrium efforts solve

ehL ∈ argmax
e

Uh
3 + β∗

2(V
G − Uh

3 )H(
e

elF
)− che (30)

elF ∈ argmax
e

U l
3H(

e

ehL
)− cle, (31)

and we get

elF
ehL

= γ
1

β∗
2

U l
3

V G − Uh
3

. (32)
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Substitution of (26), (29), and (32) into (24) gives a closed form expression for selective

efficiency S(γ, σ) in dependence of the contestants’ cost differential γ and their signals’

informativeness σ:

S(γ, σ) =
1

2
[H

(

β∗
2(σ)γ

V G − U l
3

Uh
3

)

H(
1

γ
) +H(γ)] +

1

2
H

(

γ

β∗
2(σ)

U l
3

V G − Uh
3

)

H(γ). (33)

We obtain the following result:

Proposition 5 (Selective Efficiency). Private information must not have a deteriorating

effect on a dynamic contest’s selective efficiency. In particular, for all γ > 1 and all

σ ∈ (0, σmax) ∪ (σmin, 1), selective efficiency S(γ, σ) is strictly larger than in the public

information benchmark.

Proof: See Appendix.

To understand the intuition for this result consider the effect of lowering the leader’s

equilibrium belief β∗
2 starting from its public information benchmark value β∗

2 = 1 via the

introduction of private information. Lowering the leader’s equilibrium belief raises the

likelihood with which the second battle is won by the lagging contestant. This decreases

selective efficiency when the low-cost contestant is in the lead but increases selective

efficiency when the low-cost contestant has fallen behind. From (33), the decrease in

selective efficiency is given by

∆S− =
1

2
γ
V G − U l

3

Uh
3

h(γ
V G − U l

3

Uh
3

)H(
1

γ
) (34)

whereas the corresponding increase in selective efficiency is

∆S+ =
1

2
γ

U l
3

V G − Uh
3

h(γ
U l
3

V G − Uh
3

)H(γ). (35)

In the Appendix we show that ∆S+ > ∆S−. Intuitively, the encouragement effect is

stronger for a lagging low-cost contestant than for a lagging high-cost contestant. When

the likelihood with which the low-cost contestant is lagging is (approximately) equal to

the likelihood that the high-cost contestant is lagging, the overall effect is thus an increase

in selective efficiency.

32



8 Discussion and conclusion

In this article, we have identified the encouragement effect as a novel aspect of dynamic

competition with private information. Before we summarize our main message, a discus-

sion of the model’s assumptions is in order. While our model has put few restrictions

on the “shape of competition” by allowing for rather generic contest success functions,

the assumed information structure and the focus on a best-of-three contest deserve some

comments.

To lend tractability to our model, we have assumed that a bad signal is conclusive,

in that it allows players to conclude that the contest’s prize has no value. As an alter-

native, one could consider a model with “good news” where players can conclude from

the observation of a good signal that the contest’s prize must be valuable. In strategic

experimentation settings, good news models (e.g. Keller et al., 2005) produce different

investment and learning dynamics than bad news models (e.g. Keller and Rady, 2015;

Bonatti and Hörner, 2017). Although a “bad news” model appears to be the most con-

servative in light of our result that private information improves incentives under dynamic

competition, a thorough investigation of dynamic incentives in a contest with good news

is important. Similar to strategic experimentation settings, good news may lead to novel

equilibrium features, whose analysis is beyond the scope of the present paper and is thus

left for future research.

While our analysis has focused on a best-of-three contest, where the gap between the

leader and the follower can take only one value, we know from empirical studies that

the discouragement effect can become more pronounced when this gap is widened. As

a consequence, one would expect the discouragement effect to have a heavier toll on

incentives in contests with longer horizons. Given that, in equilibrium, players must

conclude that their rival’s signal must (also) be good as soon as they have lost a single

battle, our model maintains its tractability when extended to more than three battles.
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In a best-of-five Tullock contest, the effect of private information on aggregate incentives

turns out to be even more positive than in a best-of-three contest. More specifically, we

have confirmed numerically that the relative gain in incentives due to information being

private rather than public is larger in a best-of-five contest than in a best-of-three contest,

independently of the signals’ informativeness.

We thus conclude, that in a dynamic contest, private information about the contest’s

prize, must have a positive effect on aggregate incentives. Under private information,

the discouraging effect of falling behind is offset by the the encouraging effect of learning

about the rival’s information. As an important consequence, the common wisdom that

dynamics must be harmful for incentives, may not be correct. In the presence of private

information, aggregate incentives in a dynamic contest can be even greater than in the

static benchmark. This result contrasts with the existing literature on dynamic contests

that has mostly abstracted from the potential privacy of information and thus sheds a

new light on applications such as R&D competition, presidential primaries, and labor

tournaments.

Appendix

Proof of Lemma 2. Our characterization of the unique pure-strategy subgame perfect

equilibrium can restrict attention to first order conditions because our assumption that h

is decreasing guarantees the concavity of players’ objectives. Using backward induction,

in battle 3 equilibrium efforts must solve

eP3 = argmax
e3≥0

H(
e3
eP3

)VG − e3. (36)

Setting e3 = eP3 in the corresponding first order condition gives

eP3 = h(1)V G (37)
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and a player’s continuation payoff from reaching battle 3 is thus as follows:24

U3 = [
1

2
− h(1)]V G > 0. (38)

In battle 2, the leader and the follower differ in their valuation of winning. The follower’s

valuation of winning battle 2 is given by U3 whereas the leader’s valuation of winning

battle 2 is V G−U3 = [1
2
+h(1)]V G > U3. In a Subgame Perfect equilibrium (ePL , e

P
F ) must

therefore solve

ePL ∈ argmax
eL≥0

U3 + (V G − U3)H(
eL
ePF

)− eL (39)

ePF ∈ argmax
eF≥0

U3[1−H(
ePL
eF

)]− eF . (40)

The first order conditions following from (39) and (40) have a unique solution given

by

ePF =
1

1 + ρ
h(

1

ρ
)V G (41)

ePL =
1

ρ
ePF . (42)

The corresponding continuation payoffs from entering battle 2 as the leader or the follower

are

UG
L = U3 +H(

1

ρ
)(V G − U3)− ePL = U3 + [H(

1

ρ
)− ρh(ρ)](V G − U3) > U3 (43)

UG
F = H(ρ)U3 − ePF = [H(ρ)− ρh(ρ)]U3 > 0, (44)

where the inequalities follow from the fact that H(1
ρ
) > H(ρ) and because H(y) > yh(y)

for all y > 0 by Assumption 1 (see footnote 24). Finally, in battle 1 players’ have identical

valuations of winning, UG
L − UG

F , and choose their effort to solve

eP1 ∈ argmax
e1≥0

UG
F +H(

e1
eP1

)(UG
L − UG

F )− e1 (45)

24 Note that this payoff is positive because it follows from Assumption 1 that the function H(y)−yh(y)
is strictly increasing, converges to zero for y → 0, and equals 1

2 − h(1) for y = 1.
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leading to

eP1 = (UG
L − UG

F )h(1) = [H(
1

ρ
)− 2h(1)ρh(ρ)]h(1)V G > 0. (46)

The corresponding equilibrium payoff is strictly positive because each player can guarantee

himself a payoff of UG
F > 0 by choosing e1 = 0. Aggregating expected efforts over all three

battles and both players gives

EP = Prob(s1 = s2 = G)[2eP1 + ePL + ePF + 2H(ρ)eP3 ] (47)

= 2(1− ω){h(1) + ρh(ρ)[
1

2
− 2h(1)2]}

which is independent of σ.

Proof of Proposition 1. From

e∗L
e∗F

=
β∗
2

ρ
=

1

ρ

1− ω + ω(1− σ)2

1− ω + ω(1− σ)2 + 2ωσ(1− σ)
(48)

it follows that

lim
σ→0

e∗L
e∗F

= lim
σ→1

e∗L
e∗F

=
ePL
ePF

=
1

ρ
> 1. (49)

Moreover, the derivative

d

dσ
[
e∗L
e∗F

] =
1

ρ

2ω(2σ − 1− ωσ2)

(1− ωσ2)2
(50)

has a unique root in (0, 1) at σ = σ̂(ω) defined in (18), is negative for σ ∈ (0, σ̂(ω)) and

positive for σ ∈ (σ̂(ω), 1). Hence
e∗
L

e∗
F

has U-shape with a minimum at σ = σ̂(ω). Its

minimized value is

e∗L
e∗F

|σ=σ̂(ω) =
1

ρ

√
1− ω − (1− ω)

1−
√
1− ω

. (51)

Using the fact that ρ = 1−R
1+R

, it follows that
e∗L
e∗
F

< 1 for a non-empty interval (σ−, σ+) if

and only if

1

ρ

√
1− ω − (1− ω)

1−
√
1− ω

< 1 ⇔ R < R̂(ω). (52)

The thresholds σ− and σ+ are given by the solutions of the equation
e∗L
e∗
F

= 1.
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Proof of Lemma 3. We first show that the first order condition corresponding to the battle

1 objective in (19) takes the simple form in (20). For this purpose, note that we can

substitute continuation values UG
L (e1) and UB

L (e1) to rewrite the term β1H( e1
e∗
1

)UG
L (e1) +

(1− β1)U
B
L (e1) as

[β1H(
e1
e∗1
) + 1− β1]{β2(e1)[U3 +H(

eL(e1)

e∗F
)(V G − U3)]− eL(e1)}. (53)

Here we have made use of the fact that under Bayesian updating it holds that β2(e1) =
β1H(

e1
e∗
1

)

β1H(
e1
e∗
1

)+1−β1

. The term in parentheses equals the battle 2 objective of a player who

deviated in battle 1 by choosing e1 and happened to become the leader. More precisely,

such a player will choose

eL(e1) ∈ argmax
eL

β2(e1)[U3 +H(
eL
e∗F

)(V G − U3)]− eL (54)

in battle 2. Since eL(e1) maximizes the above objective, it follows from the envelope

theorem that the derivative with respect to e1 of the term in parentheses in (53) must be

zero. Hence, the derivative of the battle 1 objective in (19) with respect to e1 is given by

β1h(
e1
e1

∗
)
1

e∗1
[UG

L (e1)− UG
F ]− 1 (55)

and evaluation at e1 = e∗1 leads to the simple first order condition in (20). Together with

the analysis contained in Section 4, this shows that (e∗1, e
∗
L, e

∗
F , e

∗
3) defined by (9), (14),

(15), and (20), is the unique candidate for a symmetric pure-strategy Perfect Bayesian

equilibrium.

A comment is in order concerning the fact that the maximization program in (19)

restricts the players’ choice to strictly positive effort levels e1 > 0. We now show that a

deviation to e1 = 0 is dominated by a deviation to e1 = ǫ for ǫ > 0 sufficiently small, which

implies that neglecting the possibility of zero effort in (19) comes without loss of generality.

Treating the possibility of zero effort separately is necessary because Bayesian updating

in the case where e1 = 0 differs from Bayesian updating in the case where e1 > 0. More
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precisely, consider an equilibrium with e∗1 > 0, and suppose a player deviates to e1 = 0.

If the deviating player wins the first battle he learns that his rival must have received the

signal B. Instead, if the deviating player loses the first battle, he will update his belief

to β0
2 = β1

β1+
1

2
(1−β1)

and then choose an effort e0F ∈ argmaxeF β0
2H( eF

e∗
L

)U3 − eF . The payoff

from a deviation to zero effort in battle 1 is thus given by

U0
1 = β1[H(

e0F
e∗L

)U3 − e0F ]− (1− β1)
1

2
e0F . (56)

Instead, a deviation to e1 = ǫ gives the payoff

U ǫ
1 = β1{H(

ǫ

e∗1
)UG

L (ǫ) + [1−H(
ǫ

e∗1
)]UG

F }+ (1− β1)U
B
L (ǫ)− ǫ. (57)

After winning battle 1, a player who deviated from an equilibrium e∗1 > 0 by exerting

only a small effort in battle 1 must be nearly certain that his rival has observed a bad

signal. Formally, for ǫ → 0 it holds that β2(ǫ) → 0 and thus eL(ǫ) → 0. Hence, for ǫ → 0,

it holds that

U ǫ
1 → β1U

G
F = β1[H(

e∗F
e∗L

)U3 − e∗F ] ≥ U0
1 , (58)

and the inequality follows from the fact that e∗F ∈ argmaxeF H( eF
e∗
L

)U3 − eF . Intuitively,

although a player can achieve that a win in battle 1 reveals the rival’s signal perfectly by

choosing e1 = 0, the player can do even better because when choosing an infinitesimal

effort e1 = ǫ, the rival’s signal becomes revealed not only by a win (approximately) but

also by a loss in battle 1.

Finally, to prove existence of equilibrium it remains to consider second order condi-

tions. We first consider the case where the distribution of the ratio of noise is given by

hr =
ry−r−1

(1+y−r)2
generating the generalized Tullock contest success function with parameter

r. Nti (1999) shows that in a static Tullock contest a pure strategy equilibrium exists

if and only if r ≤ 1 + vr where v ∈ (0, 1] denotes the contestants’ ratio of valuations of

winning. Our contest is dynamic rather than static, but using continuation values we
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were able to write each battle in the form of a static Tullock contest. The contestants

have identical valuations of winning in battles 1 and 3, i.e. valuations differ only in battle

2 where v = U3

β∗

2
(V G−U3)

. v is minimized when signals are public, i.e. for β∗
2 = 1. Note

that in contrast to Nti (1999), our contest features imperfect information. However, be-

cause contestants exert zero efforts after observing a bad signal, the conditions for a pure

strategy Perfect Bayesian equilibrium are just an analogue of the equilibrium conditions

in Nti (1999). Since for hr we find U3 = (1
2
− r

4
)V G and V G − U3 = (1

2
+ r

4
)V G, a pure

strategy Perfect Bayesian equilibrium thus exists for all σ if and only if

r ≤ 1 + (
2− r

2 + r
)r. (59)

As this inequality is satisfied for all r ≤ 1 we have thus shown existence of equilibrium for

the family of Tullock contest success functions with parameters r ≤ 1. The equilibrium

is unique and can be determined in closed form as:

e∗3 =
rVG

4
(60)

e∗L =
rVG

4
β2(2 + r)χ (61)

e∗F =
rVG

4
(2− r)χ (62)

e∗1 =
rVG

4
β1χ{(β2

2 + r

2− r
)r + 1− r

4
[β2(2 + r)− 2 + r]} (63)

where we abbreviated notation by defining χ ≡ βr
2
(2+r)r(2−r)r

[βr
2
(2+r)r+(2−r)r ]2

.

While for the Tullock family, equilibrium existence is guaranteed for all σ ∈ [0, 1],

that is, independently of the informativeness of the contestants’ signals, for general dis-

tributions of the ratio of noise, existence is harder to establish. In the remainder of this

proof we show that, under the conditions of Assumption 1, an equilibrium exists when

contestants’ information is “sufficiently public”, that is when σ is sufficiently close to 0

or 1.

To see this, first note that the players’ objective in battle 3, given by (36), as well as

the leader’s and the follower’s objectives in battle 2, given by (11) and (12), are globally

39



concave because h = H ′ is assumed to be strictly decreasing. For the remaining battle

1, the second order condition which guarantees that e∗1 constitutes a maximizer can be

obtained by calculating the derivative of (55) with respect to e1 at e1 = e∗1. It is satisfied

if

h′(1)

β1h(1)
+ h(1)

dUG
L (e

∗
1)

de1
< 0 (64)

with UG
L − UG

F > 0 given by (21) and

UG
L (e1) = U3 +H(

eL(e1)

e∗F
)(V G − U3)− eL(e1), (65)

eL(e1) ∈ argmax
eL≥0

β2(e1)[U3 + (V G − U3)H(
eL
e∗F

)]− eL. (66)

We get

dUG
L (e

∗
1)

de1
= [h(

e∗L
e∗F

)(V G − U3)− 1]
deL(e

∗
1)

de1
=

1− β∗
2

β∗
2

deL(e
∗
1)

de1
(67)

where we have used the fact that e∗L solves the first order condition β∗
2h(

e∗
L

e∗
F

)(V G−U3) = 1.

As eL(e1) satisfies an analogue first order condition with β∗
2 substituted by β2(e1), we can

employ the Implicit Function Theorem to get

deL(e
∗
1)

de1
= −

h(
e∗
L

e∗
F

)e∗F

h′(
e∗
L

e∗
F

)β∗
2

dβ2(e
∗
1)

de1
(68)

Note from (10) that
dβ2(e∗1)

de1
is positive but tends to zero for σ → 0 and for σ → 1. As

β∗
2 → 1 in both cases, we can thus conclude from h′ < 0 that the second order condition

in (64) must be satisfied when σ is sufficiently close to 0 or 1.

Proof of Proposition 2. Consider

E∗ = E∗
1 + E∗

3 + E∗
2 = 2(1− ω)h(1)[1− 1

V G
(e∗L − e∗F )] + (1− ω)

e∗L
e∗F

h(
e∗L
e∗F

). (69)

Substitution of e∗F and e∗L from (14) and (15) gives

E∗ = 2(1− ω){h(1) + β∗
2

ρ
h(

β∗
2

ρ
)[
1

2
− β∗

2 − ρ

1 + ρ
h(1)]}. (70)
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From 1−ρ

1+ρ
= 2h(1) it follows that limβ∗

2
→1E

∗ = 2(1− ω){h(1) + ρh(ρ)[1
2
− 2h(1)2]} = EP

where we have used the fact that by symmetry 1
ρ
h(1

ρ
) = ρh(ρ). Defining the function

g(y) ≡ yh(y) and denoting its derivative by g′ we can write

1

2(1− ω)

dE∗

dβ∗
2

=
1

ρ
g′(

β∗
2

ρ
)[
1

2
− β∗

2 − ρ

1 + ρ
h(1)]− 1

1 + ρ
g(
β∗
2

ρ
)h(1). (71)

Note that it follows from β∗
2 ≤ 1 and from h(1) < 1

2
that

[
1

2
− β∗

2 − ρ

1 + ρ
h(1)] ≥ [

1

2
− 1− ρ

1 + ρ
h(1)] =

1

2
− 2h(1)2 > 0. (72)

As g(.) is unimodal with a mode at 1, it must therefore hold that dE∗

dβ∗

2

< 0 for all β∗
2 > ρ.

The Proposition then follows from the fact that β∗
2(σ) is U-shaped with limσ→0 β

∗
2 =

limσ→1 β
∗
2 = 1 and takes its minimum value minσ∈(0,1) β

∗
2 =

√
1−ω−(1−ω)

1−
√
1−ω

at σ = σ̂(ω) and

that this minimum value is smaller than ρ if and only if R < R̂(ω).

Proof of Proposition 3. Suppose that R < R̂(ω). Then according to the proof of Propo-

sition 2 it holds that dE∗

dβ∗

2

< 0 for all β∗
2 > ρ, or equivalently

e∗L
e∗
F

> 1, i.e. E∗ is strictly

increasing in σ for all σ ∈ (0, σ−] and strictly decreasing in σ for all σ ∈ [σ+, 1) where

0 < σ− < σ+ < 1 are the thresholds defined in the proof of Proposition 1. Hence, there

must exist a σ∗ ∈ (σ−, σ+) such that E∗(σ∗) > max(E∗(σ−), E
∗(σ+)). Note that, as

R < R̂(ω) implies that h(1) < 1
3
, we can write

E∗(σ)−ES =
1

2
[
β∗
2

ρ
h(

β∗
2

ρ
)− h(1)]− β∗

2

ρ
h(

β∗
2

ρ
)h(1)

β∗
2 − ρ

1 + ρ
. (73)

The result then follows from the fact that E∗(σ−) = E∗(σ+) = ES which holds because

by the definition of the thresholds, at σ = σ− and σ = σ+ it holds that e∗L = e∗F , or

equivalently β∗
2 = ρ.

Proof of Proposition 4. ForR ≥ R̂(ω), E∗(σ) inherits its shape from β∗
2(σ), because

dE∗

dβ∗

2

<

0 for β∗
2 > ρ ⇔ e∗L

e∗
F

> 1 and because the follower cannot be induced to exert higher effort

than the leader, independently of σ, as shown in the proof of Proposition 2. For R < R̂(ω),
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the proof of Proposition 3 has shown that E∗(σ) must be maximized at a σ∗ ∈ (σ−, σ+)

and since the thresholds σ− and σ+ are defined by the requirement that e∗L = e∗F , at

σ = σ∗ it must hold that e∗F > e∗L. It thus remains to consider the comparative statics:

dR̂

dω
=

2− ω − 2
√
1− ω

ω2
√
1− ω

> 0 (74)

because the nominator is increasing in ω for ω ∈ (0, 1) and converges to zero for ω → 0.

For the same reason it holds that

dσ̂

dω
=

2− ω − 2
√
1− ω

2ω2
√
1− ω

> 0. (75)

Proof of Proposition 5. Note first that γ > 1 implies that H(γ) > H( 1
γ
). Remember that

the function yh(y) is unimodal with a unique maximum at y = 1 and that yh(y) = 1
y
h( 1

y
).

As

V G − U l
3

Uh
3

= γ
H( 1

γ
) + γh(γ)

H( 1
γ
)− γh(γ)

> 1 (76)

it holds that γ
V G−U l

3

Uh
3

> 1 and it is thus sufficient for ∆S+ > ∆S− that

[γ
V G − U l

3

Uh
3

]−1 < γ
U l
3

V G − Uh
3

< γ
V G − U l

3

Uh
3

. (77)

The second inequality follows directly from

U l
3

V G − Uh
3

=
H(γ)− γh(γ)

H(γ) + γh(γ)
< 1. (78)

For the first inequality note that
U l
3

V G−Uh
3

>
Uh
3

V G−U l
3

if and only if

H(γ)− γh(γ)− [H(γ)− γh(γ)]2 > H(
1

γ
)− γh(γ)− [H(

1

γ
)− γh(γ)]2. (79)

This inequality is satisfied because the terms H(γ)−γh(γ) and H( 1
γ
)−γh(γ) lie between

zero and one and the former is closer to 1
2
than the latter. We have thus shown that

∆S+ > ∆S−, or more formally that

∂S

∂β∗
2

|β∗

2
=1 < 0. (80)
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Using private information to reduce the leader’s belief marginally below his belief β∗ = 1

in the public information benchmark has a positive effect on selective efficiency.
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