RANDOMIZED LIMIT THEOREMS FOR STATIONARY PROCESSES

Youri Davydov

Lille University and St. Petersburg State University

Abstract

The report will review the latest results on limit theorems for randomized stationary processes. In his recent work [1], A. Tempelman proposed an interesting randomization procedure:

Let $X = \{X(t), t \in \mathbb{R}^m\}$, be a stationary random process, (T_n) be an increasing family of subsets of \mathbb{R}^m , $\{\tau_{n,i}, n = 1, 2, ...; i = 1, ..., k_n\}$ be independent random variables uniformly distributed on T_n which are also independent of X. Then a randomized process is understood as a triangular array

$$A_n = \{X(\tau_{n,i}), i = 1, ..., k_n\}, n = 1, 2, ...$$

It turns out that with such a randomization under minimal conditions on the original process (often only ergodicity is sufficient!), the main limit theorems (CLT, invariance principle, convergence of empirical processes,...) are valid for A_n .

The latter circumstance explains the interest and significance of this approach for statistical applications.

References

- A. Tempelman, Randomized multivariate central limit theorems for ergodic homogeneous random fields, Stochastic Processes and their Applications, 143 (2022), 89-105.
- [2] Yu. Davydov, A. Tempelman, Randomized multivariate central limit theorems for ergodic homogeneous random fields II. Reduction of the moment condition, (2022 January 22) https://arxiv.org/abs/2201.08981.