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Abstract

Is it feasible to estimate firm-level markups with commonly available datasets? Common

methods to measure markups hinge on a production function estimation, but most datasets

do not contain data on the quantity that firms produce. We use a tractable analytical frame-

work, simulation from a quantitative model, and firm-level administrative production and

pricing data to study the biases in markup estimates that may arise as a result. While the

level of markup estimates from revenue data is biased, these estimates do correlate highly

with true markups. They also display similar correlations with variables such as profitability

and market share in our data. Finally, we show that imposing a Cobb-Douglas production

function or simplifying the production function estimation may reduce the informativeness

of markup estimates.
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1 Introduction

The markup of prices over marginal costs is a key variable in economics. In macroeconomics,

firm-level markups impact the efficiency of resource allocation, the aggregate labor wedge or

incentives to innovate, and they form a potential transmission channel of nominal shocks. In

industrial organization, firm-level markups are an important metric for market power, and they

are key to understand the welfare effects of regulations and (competition) policies. Recent evi-

dence (e.g. De Loecker et al. 2020) of a rise in both the level and the dispersion of markups has

furthermore caused markups to feature prominently in academic and policy debate.

While their economic importance is well-understood, it remains difficult to measure markups

in the data. Prices are only observed in a small number of datasets, while marginal costs are

rarely ever observed. To overcome this, much of recent empirical work relies on the markup

estimator in Hall (1986, 1988). Hall derives an expression for markups from the first-order con-

dition of cost-minimizing firms for a variable input. This is an input that firms set without ad-

justment costs or other intertemporal considerations, and for which the firm takes input prices

as given. He shows that a firm’s markup is the variable input’s output elasticity, multiplied by

the inverse of the input’s revenue share. For firms with a markup of 1, the output elasticity ex-

actly equals the revenue share. For firms with a greater markup, spending on the input as a

fraction of revenue falls short of the output elasticity.

Markups therefore seem straightforward to estimate with income statement data on revenue

and input spending, as long as the researcher knows the output elasticity of the variable in-

put. Practitioners obtain that elasticity from an estimation of the production function, using

techniques from the empirical industrial organization literature. These techniques typically

assume, however, that firms are price takers – an assumption that is particularly unfortunate

when estimating markups. A growing body of work therefore contests the assertion that pro-

duction functions and markups are accurately estimated with these commonly used methods.

In this paper we therefore ask whether it is feasible to estimate markups and production func-

tions when firms are price setters. We use a combination of theory, simulations and admin-

istrative micro data to address this question. Our purpose is twofold. First, we use a simple

analytical framework to derive closed-form expressions for the biases that arise in production

function and markup estimation when firms have market power. We particularly look at the

bias that arises when researchers use revenue rather than output when estimating the produc-

tion function. While output and revenue diverge when firms are price setters, most datasets

only contain the latter. Second, we use simulations and an empirical exercise to quantify the

resulting biases. Our simulations of a rich oligopolistic competition model allow us to scruti-

nize markup estimates in a setting where the true markup is known, while our firm-level price

and production data allow us to explore the correlation between markup estimates from data

on revenue and markup estimates from data on output.
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Following De Loecker and Warzynski (2012), we estimate production function elasticities us-

ing the Ackerberg et al. (2015) two-stage GMM procedure. The procedure involves a first-stage

regression to purge firm output of measurement error and transitory productivity shocks, fol-

lowed by a second stage that identifies the production function by imposing structure on the

productivity process to identify the true parameters. The latter is needed because productivity

affects outputs and inputs, biasing a least squares estimation (e.g. Klette and Griliches 1996).

We focus on two prominent critiques of this commonly used methodology to estimate produc-

tion functions and markups in settings when firms have market power. The first critique we

study is that researchers often use revenue data as a measure of output to estimate production

functions. Price-setting firms must reduce prices when raising output, such that a production

function estimation with revenue as a proxy for output will understate actual output elastici-

ties. A long literature, following Klette and Griliches (1996), derives that this may cause a bias in

estimates of output elasticities. Bond et al. (2021) claim that this bias is severe enough to render

the estimated markups uninformative of true markups. The scarcity of firm-level pricing data

means that this critique has the potential to seriously limit future analysis of markups.

The second critique questions whether production functions can be estimated with the Acker-

berg et al. (2015) two-stage GMM procedure when firms are price setters. Doraszelski and

Jaumandreu (2020) show that in the first stage of the procedure, output can only be purged

from measurement error and idiosyncratic productivity shocks if researchers observe markups.

Given that the estimation of markups is the point of the exercise, this too suggests that firm-

level markup estimation along the method in Hall (1986) is not feasible.

While both of these critiques have merit, we show that it is largely feasible to estimate markups

and production functions. In an analytical framework, we first provide closed-form expressions

for the biases caused by both the use of revenue to measure output as well as the omission of

markups in the first-stage of the procedure. We then quantify these biases in two ways. We first

estimate the production function for simulated firms from an oligopolistic competition model

à la Atkeson and Burstein (2008) with endogenously heterogeneous markups. This enables us

to compare estimates of output elasticities and markups with their true values. We then com-

pare estimates of markups based on revenue and output from firm-level data on the universe

of French manufacturing firms with at least 20 employees. The dataset contains balance sheet

and income statement data for 2009 to 2019, as well as unit values of the products they sell. This

enables us to empirically correlate markups from data on revenue and from data on quantities.

In our analytical framework, when output is observed, we show that imperfect competition

can be a source of identification of the production function in the standard GMM procedure.

When revenue is used as a measure of quantity, we show that the resulting biased elasticity can

be used to recover information about the true markup. To be precise, revenue-based markup

estimates correlate positively with true markups, although their average level contains little
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information about the average of true markups. This is because the bias in the estimated pro-

duction function is an average of the demand elasticity across firms with the same production

function. These demand elasticities are, in some static oligopoly models, equal to the inverse

firm-level markup. It follows that, when firms have heterogeneous markups, the bias cannot

cancel out variation in firm-level markups, though it may cancel out their average. This con-

trasts with the claim in Bond et al. (2021) that revenue-based markups are uninformative about

true markups. We explain that this may hold on average, in the sense that the average revenue-

based markup is usually not informative of the true average markup. In general, the average

revenue-based markup can be higher or lower than the true average.

Our simulations show a strong correlation between true markups and estimated markups. In

a perfect scenario where the researcher has data on the firm’s output quantity and is able to

correctly purge for measurement errors, markups and production function elasticities are esti-

mated with precision. The correlation between estimated and true markups is 1, and both the

level and standard deviation of markups is correctly identified. These results are robust to not

controlling for markups in the first stage of the production function estimation, as we still find

a correlation between estimated and true markups of 1. Not accounting for measurement error

is more costly, with the correlation between estimated and true markups falling below 0.5.

In the more common scenario in which researchers lack data on prices and quantities, we still

find high correlations between estimated and true markups. In our preferred specification we

find a correlation of 0.80. When we calibrate our simulation’s model with standard parameter

values, revenue-based estimates of the markup slightly exceed their true value. We further show

that markup dispersion – both in the cross-section and over time – is well-estimated.

Our empirical results validate these findings. While we do not know the true markups in that

case, we do find moderately high correlations between markup estimates based on revenue and

quantity data. We find a 0.3 correlation between revenue and quantity-based markups in our

preferred specification, rising to 0.7 in first differences. We furthermore show that the regres-

sion coefficients relating estimated markups to profits, labor share and the market share are of

the same sign and order of magnitude, irrespective of the specification considered. Trends in

aggregate markups are also well-estimated with revenue data. Overall, we conclude that firm-

level estimates of the markup along Hall (1986)’s methodology are informative of true markups.

Our results do imply that researchers should give careful consideration to the suitability of their

data for the question at hand. When interested in the level of the markup, researchers need

quantity data. When interested in dispersion, such as variation across firms or trends over time,

revenue data may suffice. In additional results, we do note that assumptions on the functional

form of the production function should not be restrictive. In particular, we show that it can

be costly to assume a Cobb-Douglas production function when the true production function

is more complex. This assumption has recently become common, as Cobb-Douglas markup
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estimates are robust to biases in production function estimates up to a sector fixed effect.1

We show that Cobb-Douglas estimates typically capture the average of true markups, but mis-

measure their dispersion. Compared to the more flexible translog, which approximates any

production function and nests Cobb-Douglas as a special case, we find less dispersion in

markups in our simulations and French data. In a back-of-the-envelope exercise, we show that

the welfare costs of markup dispersion are overstated by 140% when assuming Cobb-Douglas.

Related literature Our paper builds on a significant literature that estimates production func-

tions. A simple regression of a set of (log) inputs on a firm’s (log) output does not identify the

production function elasticities because of unobserved differences in productivity across firms.

Productivity directly affects output and indirectly affects inputs, such that a least squares esti-

mation of a parametric production function is biased (e.g. Klette and Griliches 1996). Our

analysis, in the spirit of the seminal work by Olley and Pakes (1996) and Levinsohn and Petrin

(2003), uses a proxy regression to control unobservable productivity. In line with Ackerberg

et al. (2015), we use materials as a variable input to proxy for unobservable productivity. We

also closely relate to the literature – with Klette and Griliches (1996) as a seminal contribution

– on the biases that arise when using revenue data to measure output in a production function

estimation, although our focus is on markup estimation.

We focus on the feasibility of using estimates of production function elasticity to estimate

markups at the firm level. This technique was pioneered by De Loecker and Warzynski (2012) to

show that exporting firms have higher markups than do non-exporters. De Loecker et al. (2016)

extend their methodology to multi-product firms.2 De Loecker et al. (2020) apply the method-

ology to listed U.S. firms to show that estimated markups have increased sharply between 1980

and 2015, a result that has been confirmed for other countries by Díez et al. (2019) and that has

sparked a rich discussion on the feasibility of the De Loecker and Warzynski (2012) methodol-

ogy on accounting data (e.g., Traina 2018, Basu 2019, Syverson 2019). Baqaee and Farhi (2019)

note that the rise of markups is driven by a reallocation of activity towards high-markup firms,

in line with evidence of reallocation towards low-labor-share firms in Autor et al. (2020) and

Kehrig and Vincent (2021). Hershbein et al. (2021) and Morlacco (2019) note that markup esti-

mates are biased when firms have market power on the market for the flexible input.3

1If firms have the same production functions within sectors, an analysis of Cobb-Douglas log markups with
industry effects is unaffected by bias in production function estimates (e.g. Peters 2020, Crouzet and Eberly 2019,
Meier and Reinelt 2020). Cobb-Douglas is therefore frequently assumed in response to the Bond et al. (2021) critique.

2Because most datasets do not provide input allocations across products that firms produce, De Loecker et al.
(2016) estimate production functions at the product level using data on single-product firms. They then estimate
markups for multi-product firms with the estimated elasticities. We also rely on product-level data for prices and
quantities, but aggregate this to the firm level when estimating markups.

3Several recent papers deploy markup estimates using the De Loecker and Warzynski (2012) methodology in
specific applications. Burstein et al. (2020) show that markups in French data are either procyclical or countercyclical
depending on the level of aggregation that is considered. Meier and Reinelt (2020) add that markups become more
dispersed after monetary policy shocks, negatively affecting total factor productivity. Calligaris et al. (2018) find that
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Estimating the production function when firms have market power is particularly challenging.

As pointed out by Doraszelski and Jaumandreu (2019) and Brand (2019), one of the identifying

assumptions in the procedure by Ackerberg et al. (2015) is that the demand function by firms

is not affected by unobservables other than productivity.4 This is true for cases such as perfect

or monopolistic competition but not necessarily true for the case of oligopolistic competition.

We analyze the bias arising from improperly accounting for demand (and therefore markup)

heterogeneity in the estimation of the production function elasticities and markups.5

Our paper adds to the broader literature on the consequences of market power. Karabarbounis

and Neiman (2014) find that the share of labor has fallen in most advanced economies over

the last decades.6 Barkai (2020) adds that, when accounting for the falling costs of capital, the

capital share of income has also declined, leaving a rise in the profit share as the residual.7

Increasing markups have been linked to low investments and a lack of entry (e.g. Gutiérrez and

Philippon 2017, Eggertsson et al. 2021, Gutiérrez and Philippon 2022), low productivity growth

(e.g. Aghion et al. 2019, De Ridder 2019), and industry concentration (e.g. Grullon et al. 2019,

Autor et al. 2020). The effects of markup dispersion on welfare through misallocation have been

quantified in (e.g.) Baqaee and Farhi (2019), Edmond et al. (2018), and Peters (2020).8

Outline The remainder of this paper proceeds as follows. Section 2 explains how we measure

markups from the production function. Section 3 outlines our analytical framework, while Sec-

tion 4 introduces the data. Section 5 presents simulations; the empirical exercise is presented

in Section 6. Section 7 discusses Cobb-Douglas production functions, and Section 8 concludes.

2 From markups to production functions

Before discussing the conditions under which markups and production functions can be es-

timated, we explain how the two are related through the problem of a cost-minimizing firm.

Following Hall (1986, 1988), we derive an expression for markups under the assumption that

there exists an input that firms set statically, without intertemporal considerations; and that

markups have increased most in sectors with high digitization, a result confirmed at the firm level by De Ridder
(2019). Crouzet and Eberly (2019) find a relationship between markups and a firm’s intangible investment share.
Pasqualini (2021) applies the De Loecker et al. (2016) methodology to estimate markups in the banking sector.

4The bias arising from a violation of this assumption (in particular on correlations between markups and de-
mand determinants) is analyzed in Doraszelski and Jaumandreu (2020).

5Our estimation also requires sufficient variation in input prices for the variable input to allow separate identifi-
cation of the variable input and productivity (e.g. Blundell and Bond 2000, Gandhi et al. 2020).

6Gutiérrez and Piton (2020) note that, outside of the U.S., the decline in the labor share is driven by housing.
7Neiman and Vavra (2021) note that unmeasured inputs would also appear as a rise in profits from this calcula-

tion. Van Vlokhoven (2019) estimates the cost of capital in a regression framework.
8Cavenaile et al. (2019) note that the rise of markups also incentives firms to invest in R&D. Bornstein (2018)

shows that consumer demand has become less sensitive to price changes, a trend that might be driven by aging,
while Neiman and Vavra (2021) consumption baskets are increasingly narrow. Anderson et al. (2018) analyze how
markups vary over space and time and find significant differences in markups across regions.
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firms are price-takers for that input. Further assume that output Yit for firm i at time t obeys

Yit = Y (Vit,Kit,Ωit),

where Vit the static input, purchased at priceWt. Vector Kit contains all other inputs, while Ωit

is productivity. The cost-minimizing firm’s first-order condition for Vit solves

1

λit
=
∂Y (·)
∂Vit

1

Wt
,

where λit is a Lagrange multiplier which measures marginal costs. Hall (1986, 1988)’s markup

expression follows by multiplying both sides by the firm’s price Pit. The right-hand side can be

rewritten in terms of the output elasticity of Vit, multiplied by its inverse revenue share:

µit =

(
∂Y (·)
∂Vit

Vit
Yit

)
PitYit
WtVit

, (1)

where µit ≡ Pit/λit is the markup. The expression yields the familiar result that an input’s

output elasticity equals its revenue share if markups are 1, while revenue shares fall short of the

output elasticity when markups exceed 1. It follows that to estimate markups, the researcher

needs data on revenue and input spending from the income statement, as well as an estimate of

the output elasticity of Vit,αvit ≡ (∂Y (·)/∂Vit) · Vit/Yit. Estimating this elasticity under imperfect

competition is therefore a primary empirical challenge in the estimation of markups.

3 Estimating production functions under imperfect competition

We next outline how the output elasticity of Vit is estimated. We describe the production func-

tion estimation under imperfect competition, which is the natural setting when estimating

markups. We start from the ideal case where a researcher observes prices, such that output

can be measured by quantity. We then discuss the bias that arises when prices are unobserved.

3.1 The model

We start by deriving an estimator for the output elasticity in a model where output is log-linear

in a single input, while productivity is identically and independently distributed. This simplest

possible environment enables us to derive clear closed-form solutions. In the appendix we

show that our conclusions are robust to more realistic and less stringent assumptions.9

Consider an environment where firms produce their output Yit using one input Vit. Firms

are subject to total factor productivity shocks, denoted ωit in logs, that are unobserved by the

9Appendix A.3 extends the results by allowing for a translog production function (A.3.1), multiple inputs (A.3.2),
persistence in productivity (A.3.3), and all of these together (A.3.4).
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econometrician but observed by the firm. Output is further subject to shocks ηit, which are not

observed by either the econometrician or the firm. Shocks ηit capture measurement error and

white-noise productivity shocks that are only observed after production decisions are made.

Firms set Vit to minimize costs and share the Cobb-Douglas production function

yit = αvit + ωit + ηit, (2)

where lower caps denote log-deviations from the mean, and where the parameter α is the true

output elasticity of vit to be estimated.10 Note that we have not made assumptions about the

product market in which firms operate, and that we therefore allow for imperfect competition.

We assume that vit is static and variable: spending on the input is entirely determined within

the period and is not subject to any adjustment cost or other intertemporal constraints. We

further assume, for now, that ωit is independently and identically distributed (i.i.d.) across time

and firms. Since vit is a flexible input, we can use this input to compute markups, as explained

in Section 2. Denoting the firm’s price by Pit, true markups are given by µit = α(PitYit)/(WtVit).

3.2 Identification with price and quantity data

We first cover the estimation of α if revenue, prices – and therefore quantities – are observable.

Our estimator for α builds on the two-stage GMM estimator of Ackerberg et al. (2015) to ac-

commodate imperfect competition. The first stage purges the quantity of equation (2) of the

measurement error and unobserved productivity shocks ηit. The second stage estimates the

output elasticity α using an instrumental-variable generalized method of moments (IV-GMM).

We first focus in Section 3.2.1 on the second stage – as it performs the actual production func-

tion identification. We then introduce measurement errors and the first stage in Section 3.2.2.

3.2.1 Identification

In the absence of measurement error, the production function simplifies to yit = αvit + ωit. A

least-square regression of input vit on output yit will be biased, as the unobserved productivity

ωit (the residual in the regression) affects firms’ choice of vit. Following the literature, we can

construct an estimator to identify α by instrumenting vit by vit−1:

Definition 1 The instrumental variable GMM (IV-GMM) estimator α̂ ∈ R is such that the mo-

ment E [ω̂itvit−1] is equal to zero where ω̂it = yit − α̂vit = (α− α̂)vit + ωit .11

10To be precise, xit = logXit−E [logXit] whereE [logXit] is the limit of the empirical average across observations.
This normalization allows us to get rid of any constant in the production function and ensures ωit has mean zero.

11In the above definition, the expectation operator E denotes the limit of the empirical average across observa-
tions. We therefore study the asymptotic properties of the GMM estimator, which allows us to keep the argument as
tractable as possible. Appendix A.1 derives the estimator for finite samples before deducing its asymptotic variance.
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It is straightforward to solve for α̂ in closed form by substituting ω̂it into the moment condition:

(α− α̂)E [vitvit−1] = 0, (3)

which uses the fact that that productivity ωit is orthogonal to vit−1, such that E [ωitvit−1] = 0. It

follows that as long as vit−1 is a relevant instrument for vit, that is E [vitvit−1] differs from zero,

the only solution is that α̂ = α. Our estimator α̂ converges to the true elasticity α.

What ensures that the lagged variable input is a relevant instrument? As we have assumed –

for now – that productivity is not persistent, autocorrelation in vit comes from other sources.12

The cost-minimizing firm’s first-order condition for vit summarizes the candidate drivers:

vit = (1− α)−1 (ωit +mcit − wt) . (4)

It follows that persistence in vit has to either come from persistence in the input price wt or

from log marginal costs mcit. Marginal costs equal Pit/µit, both of which are determined in

equilibrium by the demand system and the strategic interactions among firms. Hence any per-

sistence in output price or markups will contribute to persistence in the variable input and thus

to identification of the production function. Persistence in input prices wt is a source of per-

sistence in variable inputs regardless of the mode of competition, providing a further source of

identification of α (a point previously made by, e.g., Gandhi et al. 2020). We conclude that the

parameters of the production function in our simple framework are identified under imperfect

competition as long as there is persistent variation in markups, output prices or input prices.13

Appendix A.3 generalizes these basic identification results by allowing for translog production

functions, multiple inputs, persistence in productivity, and all of these combined.14 In Ap-

pendix A.1 we further derive the finite sample properties of the estimator and its asymptotic

variance.

12When we generalize our setup in Appendix A.3.3 (where productivity is assumed to be persistent, e.g. a linear
AR(1) process with persistence ρ), we show that the necessary condition for identification is to have autocorrelation
in ṽit = vit − ρvit−1. Persistence in productivity itself therefore does not aid identification.

13Note that this means that it is more straightforward to estimate the production function under imperfect com-
petition than under perfect competition. Under perfect competition (where marginal costs equal prices), persis-
tence in the variable input cannot come from the markup. If output prices are (e.g.) i.i.d., this means that the only
source of persistence is the input price. Gandhi et al. (2020) provide a detailed investigation of this argument.

14In Appendix A.3.3 we do note that under persistent productivity, the identification of the production function
parameters may only hold locally. In particular, we find that there are exactly two solutions to the GMM estimator
under persistent productivity. One solution gives the true value of the parameters, while the second solution is a
biased estimate of the true parameters. However, if Var[vit−1] is large compared to Var[ωit−1] and Var[ṽit], where
ṽit = vit − ρvit−1, then there exists a unique solution for α̂ and ρ̂. This means that, if there is enough variation in
the data, the parameters of the production function are globally identified. This is in line with a recent paper by
Ackerberg et al. (2020), which shows that the two-stage estimator might have two solutions, rendering traditional
numerical solvers unstable.

8



3.2.2 Adding the first stage

Thus far we have assumed that output is observed without measurement error and unobserved

productivity shocks ηit. We next describe the estimation of α if this assumption is eased. Prior

work pays specific attention to ηit, for two reasons. First, output measures in common datasets

contain significant measurement error. In our empirical analysis, for example, we measure

output by subtracting unit values from revenue, which are in turn obtained from surveys. As

we discuss below, this diminishes the precision of the production function estimation. Second,

the presence of ηit impedes the estimation of true productivity ωit regardless of the ωit process

and can even impede the production function estimation if ωit follows a non-linear dynamic

process. We discuss the importance of both of these issues under imperfect competition, and

demonstrate how a first-stage purging regression addresses these concerns.

Measurement error without a first-stage In the presence of measurement errors ηit, one can

still use the IV-GMM estimator in Definition 1 to estimate the production function. This is the

approach proposed by Blundell and Bond (2000). As long as the measurement error is uncor-

related with the firm’s inputs, it will only increase the standard error with which α is estimated.

In Appendix A.2 we show that the variance of the estimator is proportional to E
[
ω2
it

]
+ E

[
η2it
]

under this approach, while the estimator remains unbiased. The degree to which measure-

ment error is problematic therefore depends on the variance of ηit and the size of the sample

at hand. The residual from the production function estimation is the composite of ηit and ωit,

which means that researchers do lose the ability to observe true productivity in this case.

Measurement error can also impede consistency of the IV-GMM estimator if ωit is persistent

with non-linear autoregressive terms (Bond et al. 2021). With persistent productivity, the mo-

ment conditions of the IV-GMM estimator can be altered to consistently estimate α (Appendix

A.3.3). For a linear AR(1) process of ωit, the moment conditions are that lagged inputs vit−1 and

estimated productivity ω̂it are orthogonal to the residuals of the AR(1) process. For non-linear

processes (e.g. quadratic, cubic), in the absence of measurement error, the additional moment

conditions are that the higher-degree terms (e.g. ω̂2
it, ω̂

3
it) are orthogonal to the residual.

Measurement error, however, contaminates the productivity estimates ω̂it. This means that

moment conditions with, e.g., ω̂2
it, ω̂

3
it contain higher-order moments of the measurement error.

This prevents the moment conditions from holding at the true value of the output elasticity.15

15For example, a common empirical assumption is that the productivity process is well-approximated by ωit =
ρ1ωit−1 + ρ2ω

2
it−1 + ξit, where ξit are white-noise productivity shocks. In the presence of measurement error, the

moment conditions E[vit−1ξ̂it] = 0,E[ω̂it−1ξ̂it] = 0, and E[ω̂2
it−1ξ̂it] = 0, where ω̂it is defined as before while ξ̂it ≡

ω̂it − ρ̂1ω̂it−1 − ρ̂2ω̂2
it−1, will not suffice to estimate the production function. The source of the problem is the non-

linear moment condition E[ω̂2
it−1ξ̂it] = 0. To see this, consider the value of the moment at α̂ = α:

E[ω̂2ξ̂it] = E[(ωit + ηit + (α− α̂)vit)
2ξ̂it] = E[η2itξ̂it] 6= 0.
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It follows that the IV-GMM estimator does not estimate the production function parameters

unless productivity follows a linear (dynamic) process.

Purging measurement error with a first stage The combination of higher standard errors,

stringent assumptions on the dynamic process of ωit, and the loss of direct estimates for true

productivity ωit form a case to purge observed output from measurement error. Ackerberg et

al. (2015) do so in a first-stage regression for the case of perfect competition, we propose here

a procedure that – deviating minimally from theirs– can do so under imperfect competition.

The aim of the purging regression is to separate ηit andωit, using the fact that firms only observe

ωit when deciding the quantity of inputs that they wish to deploy. The idea is that the demand

for the variable input can therefore be expressed as a function of productivity: vit = v(ωit,Ξit),

where Ξit is a vector of all variables that determine vit other than productivity. Under the as-

sumption that vit rises monotonically in ωit, the demand function can be inverted, such that

ωit = v−1(vit,Ξit). In our framework, the production function can therefore be written as

yit = αvit + v−1(vit,Ξit) + ηit.

The fitted values of a non-parametric regression of yit on vit and Ξit therefore identify ηit. As

long as the researcher correctly specifies the variables that determine the demand for vit.

What variables are included in Ξit under imperfect competition? First-order condition (4)

shows that these variables are factor prices and log marginal costs. Using the fact that marginal

costs can be expressed in terms of prices and markups, observed output can be written as16

yit = vit − pit + logµit + wt + ηit. (5)

This means that the researcher must run a regression of output on the variable input, prices,

markups and time fixed-effects forwt in order to purge measurement error. Under perfect com-

petition, firms take prices as given and have log markups of 0.17 Hence, a first-stage regression

of output on vit and a time fixed-effect is sufficient to purge output of measurement error.18

Under imperfect competition this is not sufficient, because firms have heterogeneous markups.

As noted by Doraszelski and Jaumandreu (2020), the whole purpose of the exercise is to esti-

mate these. We propose resolving this by including controls for the markup in the first stage

16Note that the expression of the marginal cost MCit = Pit/µit in log deviation from its mean mcit is equal to
pit − logµit up to a constant E [logµit], which we include in the first stage.

17In the more general multi-input, non Cobb-Douglas case, the first-order condition of the cost-minimization
problem is not linear in inputs and cannot be inverted analytically. Nevertheless, the functional relationship be-
tween productivity and inputs, price and markups is well defined and can be approximated by a polynomial of
inputs.

18Under perfect competition, firms are price takers, which implies that markups equal to one and prices are
orthogonal to firms’ choices. The production function, after substituting the expression for productivity, reduces to
yit = vit + wt + ηit − pit. The last two terms are orthogonal to input usage, vit, and input price wt.
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of the procedure. Note that when doing so, we only need to know that there is a structural re-

lationship between markup and controls; we do not need to know the parameters that govern

this relationship. In our simulations and empirical sections, we assume that markups are de-

termined by a firm’s market share, which holds in a large set of models. We therefore include

prices and market shares as controls in the first stage of our baseline two-stage estimator.

In summary, we propose that researchers use a two-step procedure in order to estimate the pro-

duction function given by equation (2) under imperfect competition. First, quantity is purged

from measurement error in a regression of observed quantity, yit, on the variable input vit, the

output price pit, controls for the markup µit such as market share, and time fixed-effects for

wt. The fitted values of output, true quantity, are then used to construct moment E [ω̂itvit−1], a

function of α̂. A numerical solver can then find the α̂ that makes this moment equal to zero. As

discussed above, this value is an asymptotically consistent estimator of the true parameter α.

3.3 Identification with revenue data

We have thus far assumed that researchers observe the quantity that firms produce, with or

without measurement error. Most firm-level datasets do not contain such data and instead

only contain data on revenue. This section studies the bias in estimates of the output elasticity

that result from solely relying on revenue data causes, as well as the consequences of the bias

for the resulting markup estimates.

In our framework, we can derive the bias arising from the use of revenue as a measure of output.

Revenue is the product of quantity and price; rit = yit+pit gives revenue in log-deviations from

the mean. Inserting the production function (2) for yit yields

rit = yit + pit = αvit + ωit + pit,

where α remains the parameter of interest and where we abstract from measurement error to

focus on the bias caused by using revenue as a measure for output. The following definition

captures the IV-GMM estimator in Definition 1 when revenue is used in place of quantity.

Definition 2 (Revenue IV-GMM estimator) The estimator is α̂ ∈ R such that the moment

E[t̂fpritvit−1] is equal to zero where t̂fprit = pit + yit − α̂vit = (α− α̂)vit + pit + ωit.

Let us show that the revenue IV-GMM estimator is biased. Solving for the α̂ such that 0 =

E[t̂fpritvit−1] = (α − α̂)E [vitvit−1] + E [pitvit−1], yields the following unique solution as long as

the lagged variable input is a relevant instrument:

α̂ = α+
E [pitvit−1]

E [vitvit−1]
, (6)

It follows that the IV-GMM estimator delivers a biased estimate of the trueα if prices and lagged
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variable inputs are correlated. Using revenue rather than quantity to measure output creates

an omitted variable bias, because the revenue-production function has prices in the residual.

Under imperfect competition, it is probable that pit will correlate with lagged variable inputs,

such that E [pitvit−1] differs from zero.19 Note that there are no model-free constraints on ei-

ther the size or sign of the covariance. If firms face persistent aggregate demand shocks and

decreasing returns to scale, for example, positive shocks drive up marginal costs and prices,

causing a positive correlation between prices and lagged variable inputs. Conversely, firms with

downward-sloping demand curves reduce prices to sell additional output, causing a negative

correlation. The estimates of α can therefore be smaller, larger or equal to the true output elas-

ticity. Equally, the ensuing markup estimates may overstate, understate or equal true markups.

Revenue-based markups and oligopolies We next show that despite the bias from a non-

zero covariance E [pitvit−1], revenue-based markup estimates are still informative about true

markups. As we are interested in how the bias affects markups, we focus on the correlation

between prices and lagged inputs that is caused by the downward-sloping demand functions.

To do so, we add a demand side to our baseline framework. To keep assumptions minimal,

we assume a very general invertible demand system, where a firm’s demand depends on prices

of all firms. We abstract from aggregate shocks that alter price-quantity relationships across

periods. Hence we assume that the vector of quantities produced by all firms, Y = {Yit}, is a

function of the price vector P = {Pit} such that Y = Dt(P ). A log-linear approximation yields

pit = −
∑

jdijtyjt, (7)

where dijt is the cross-elasticity of firm i’s price with respect to firm j’s quantity.20 With this

demand system, we can write (6) as

α̂ = α

(
1−

∑
j

E[dijt(vjt+
ωjt

α
)vit−1]

E[vitvit−1]

)
.

It follows that the bias due to the use of revenue data is equal to one minus the weighted aver-

age of demand elasticities and cross-elasticities among the firms sharing the same production

function. This biased estimate of the production function can be used to estimate a firm-level

markup based on revenue data, µ̂Rit = α̂PitYitWtVit
. It follows that revenue-based markup equal:

µ̂Rit = µit

(
1−

∑
j

E[dijt(vjt+
ωjt

α
)vit−1]

E[vitvit−1]

)
,

19The correlation is zero in case there are no aggregate shocks and firms are atomistic price takers – but that
assumption is counterintuitive in contexts where markups are a variable of interest.

20In appendix A.4, we derive this approximation formally. We implicitly assume a static demand system, where
only current period quantities affect current prices.
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where we use the Hall (1986, 1988) formula to substitute for the true markup, µit = αPitYitWtVit
.

The revenue-based markups are equal to the true markups up to a constant. They have equal

variances, and the correlation between the (log) revenue markup and the (log) true markup is

equal to one.21

A special case: static oligopoly While the correlation between true markups and revenue-

based estimates of the markup is one, more assumptions are needed to understand the effect

of using revenue data on estimates of the various moments of the markup, such as dispersion

and average levels. In this section, we explore this for the simple special case in which firms play

a static oligopoly game in which dijt = 0 while diit 6= 0 and diit 6= djjt. Thus, the firm’s demand is

only determined by its own supply, and firms face heterogeneous price-elasticities of demand.

Formally, the demand system for this special case, which is the equivalent of equation (7), is

such that pit = −dityit where, with some abuse of notation, dit = diit. When firms maximize

profit under these assumptions, they will charge a markup µit = 1
1−dit over their marginal cost

while, as before, cost minimization yields µit = αPitYitWtVit
.

Under these assumptions, the IV-GMM estimator on revenue equals the output elasticity times

the average inverse markup among firms in the sample:22

α̂ = E
[
α(1− dit)

vitvit−1
E [vitvit−1]

]
= E

[
αµ−1it

vitvit−1
E [vitvit−1]

]
,

where the last equality uses the profit-maximizing condition. Note that the estimator is

also equal to the average of revenue elasticities among the firms sharing the same produc-

tion function. Indeed, the revenue elasticity of firm i at t, in this simple case, is given by
∂rit
∂vit

= ∂yit
∂vit

+ ∂pit
∂yit

∂yit
∂vit

= αµ−1it . It follows that whenever firms have heterogeneous revenue elas-

ticities, the IV-GMM estimator on revenue is not equal to the firm-level revenue elasticity.

Turning to the resultant markup estimates using the Hall (1986, 1988) formula, we have

µ̂Rit ≡ α̂
PitYit

P Vt Vit
= E

[
µ−1it

vitvit−1
E[vitvit−1]

]
µit. (8)

As in the previous case, the revenue-based markup estimates equal the true markups up to a

constant. For our simple demand system, this constant is equal to the weighted average of

inverse markup among firms sharing the same production function. It follows that, as soon

as there exist two firms i and j such that their markups are different µit 6= µjt, the estimated

revenue markup µ̂Rit is different from one for either firm.

21The result that revenue and quantity markups perfectly correlate depends on the Cobb-Douglas assumption
that output-elasticity is a constant. In Appendix A.5 we discuss what happens if the output elasticity is not constant
(in the more general case of a translog production function) and show that the main insights remain.

22Here we assumed that E [ditωitvit−1] = 0. This assumption is satisfied (for example) when, conditional on vit−1,
productivity ωit and demand elasticity dit are orthogonal. This assumption is also satisfied when conditional on dit,
ωit and vit−1 are orthogonal. This assumption is in place merely to clarify the argument.

13



Note that there is one case where revenue-based markup estimates do not contain any useful

information about true markups. This is when firms compete monopolistically and have iden-

tical price-elasticities of demand such that pit = −γyit. This assumption is satisfied by constant

elasticity of substitution (CES) preferences with atomistic firms if the aggregate price index is

fixed. Under these assumptions, the revenue estimator equals the revenue elasticity with re-

spect to the variable input α̂ = α(1− γ) = ∂yit
∂vit

(1 + ∂pit
∂yit

) = ∂rit
∂vit

. Both the revenue elasticity and

the true markup are equal across firms, where the latter is equal to (1 − γ)−1. It follows that

the revenue markup is equal to one µ̂Rit = (1 − γ)−1(1 − γ) = 1, as in Bond et al. (2021). When

markups are identical across firms sharing the same production function, revenue markups do

not contain any information on the true markup.23

If firms do not have homogeneous markups, however, estimates of the markup from revenue

data will generally not equal one. This is because in models with heterogeneous markups (e.g.

Atkeson and Burstein (2008), Kimball (1995) or Klenow and Willis (2016)), demand elasticities

differ across firms, while we estimate a single output elasticity of the variable input α. The key

intuition comes from the fact that when the production function is estimated for a set of firms,

the estimated elasticity equals an average revenue elasticity, which is not the same across firms.

Variation in revenue-based markup estimates therefore does reflect variation in true markups.

Average levels of revenue-based markups When it comes to the average level of the markup,

the bias arising from revenue data is also problematic. Given (8), we can write the average of

the revenue-based markup estimates as

E
[
µ̂Rit
]

= E
[
µ−1it

vitvit−1
E[vitvit−1]

]
E [µit] ,

which is equal to one up to a Jensen’s inequality.24 It follows that markup estimates based on

revenue data carry little information about the average true markups in this demand system.

It is clear that the average markup is not identified with revenue data. Meanwhile, analyses of

variation, such as trends over time or cross-sectional dispersion, can be performed well.

4 Data

We use administrative data on French manufacturing firms both to quantify our simulations

and to empirically analyse the properties of markup estimates. We combine two main datasets.

The FARE dataset (Fichier Approaché des Résultats d’Esane) provides a detailed balance sheet

23Another interesting/pathological case is when there is only one observation in the sample. Heuristically, as-
suming that the above formula remains valid, everything is as if the expectation operators dropped, leading to a
revenue markup of one.

24Here we are making a similar assumption to the one in footnote 22.
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and income statement, while the EAP survey (Enquête Annuelle de Production) provides data on

both revenues and the quantities of products that firms ship, which we use to obtain a proxy for

prices. FARE covers the universe of non-financial French firms and originates from filings to the

tax administration (DGFiP). EAP is based on a product-level statistical survey by the statistical

office (INSEE) which exhaustively covers manufacturing firms with at least 20 employees or

revenue in excess of 5 million euros, and a representative sample of smaller firms.25

With the exception of prices, we obtain all variables for the production function estimation

from FARE. Revenue is a firm’s total sales (including exports),26 the wage bill (measured as the

sum of wages and social security payments), capital (measured by fixed tangible assets on the

balance sheet),27 expenditure on purchased services and expenditure on purchased materials.

Materials are defined as physical intermediate goods and raw materials that firms purchase

from others. We use NACE Rev. 2 industry codes and define industries j (at which firms have

the same production technologies) at the two-digit level. Market share is defined as the ratio of

the firm’s revenue over total revenue of all firms in FARE in the 5-digit industry in a given year.

We obtain data on prices from EAP. EAP is a product-level dataset detailing a firm’s revenue and

quantity produced across 10-digit industries.28 We define a product as the combination of a 10-

digit product code and a unit of account.29 We drop around one-third of firm-products without

quantity data. For each combination of a firm and a product we calculate a price as the ratio of

revenue over the quantity of the product sold. We then standardize this price by dividing it by

the revenue-weighted average price of the product across the entire sample.30 The firm’s price

in a year is then given by the sales-weighted average of standardized prices across the products

that it produces. We define quantity as the ratio of revenue over this price.

To deflate input variables we use two-digit industry deflators from EU-KLEMS.31 This is con-

sistent with the assumption that firms operate on competitive input markets with equal prices

across the two-digit level. Revenue is deflated with the gross output deflator, material inputs

25Smaller firms are re-sampled annually. Because our production function estimation requires lagged instru-
ments, small firms are not included unless they were randomly sampled for two consecutive years. Our data should
therefore be seen as exhaustive of manufacturing firms with at least 20 employees or 5 million euros in revenue.

26Data on domestic sales is also available separately, but because we do not have data on the fraction of inputs
that account for exports we cannot rely on data on domestic sales to estimate the production function.

27We do not rely on the perpetual inventory method because that would require a guess for the firm’s initial value
of capital. Because our data only cover 11 years, this would lead to a particularly large measurement error (see, e.g.,
Collard-Wexler and De Loecker 2020). Data on investments are furthermore missing from FARE in 2008. For 2009 to
2019, the correlation between balance sheet capital and estimates of capital from the perpetual inventory method
have a correlation of 0.92 to 0.99, depending on the assumed rate of depreciation.

28EAP separately reports data for various models of production based on the degree to which the producer is a
subcontractor or subcontracts production. We define revenue and quantities for a product as the sum of revenues
and quantities over all modes of production for a product in a given firm year.

29Examples of units of accounts are kilos, tons or pieces. We combine units of accounts and product codes, as
firms that use different units of accounts for the same product might produce relatively heterogeneous goods

30As a robustness check we standardize prices using the revenue-weighted average price at the 8-digit sector level.
The resulting firm-level prices have a 0.89 correlation with prices standardized at the 10-digit product level.

31At the time of writing, the most recent year for EU-KLEMS deflators is 2017. To deflate 2019 variables we ex-
trapolate the price index using the sector’s average inflation in other years.
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Table 1: Summary Statistics

Variable Mean St. Dev. Median 10th Pct. 90th Pct. Observations
Revenue 16,911 66,723 3,045 544 31,346 175,538
Quantity 14,845 62,121 1,891 236 27,458 175,538
Wage Bill 3,346 12,865 830 194 6,505 175,538
Capital 8,343 35,803 869 114 13,635 175,538
Purchased Materials 7,561 29,763 1,017 116 13,730 175,538
Purchased Services 4,253 22,880 755 120 7,388 175,538
Standardized Price 9.45 89.29 1.23 0.77 6.25 175,538

Note: Summary statistics for French manufacturing firms from 2009 to 2019. Data are obtained from FARE (balance sheet and
income statement variables) and EAP (normalized prices). Nominal values are deflated using two-digit EU-KLEMS deflators and
are expressed in thousands of 2010 euros. Quantity is measured as firm-deflated revenue. The dataset contains 26,143 unique
firms across 206 (19) sectors at the five (two) digit level. All variables are winsorized at their 1% tails.

and purchased services are deflated using the intermediate input deflator. Wages and the cap-

ital stock are deflated using the GDP deflator.

We drop firms with missing, zero or negative revenue, material purchases, service purchases,

wage bills or capital.32 We drop firms without price data in EAP, which restricts the sample to

manufacturing firms. We also drop firms with fewer than two employees, as the number of

single-employee firms has grown rapidly over our sample due to a regulatory change. To treat

for outliers in the remaining sample we winsorize sales, quantity, prices, material and service

inputs, and capital at the 1% level within two-digit industries. The resulting sample contains

157,277 firm-years for 26,143 unique firms across 206 five-digit sectors. Summary statistics are

provided in Table 1. Table 2 describes the two-digit sectors in our analysis.

5 Simulation

In this section we estimate production functions and markups in a setting where their true val-

ues are known. To do so, we estimate the production function for a set of simulated firms in

a rich macroeconomic model. Firms are heterogeneous in their productivity, the quantity of a

fixed input at their disposal, and therefore the market share that they achieve. Heterogeneous

market shares cause differences in markups across firms, determined endogenously as a con-

sequence of oligopolistic competition.

5.1 Model

We analyze a single sector. A sector is defined as a collection of firms that have the same struc-

tural parameters of their production function and that face the same prices on input markets.

32We calculate market share before restricting the sample.
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Table 2: Sectors (two-digit) in the EAP-FARE Dataset
Description NACE code Observations
Manufacturing of ...
... textiles 13 6,716
... wearing apparel 14 5,200
... leather and related products 15 2,256
... wood and products of wood and cork, except furniture 16 9,599
... paper and paper products 17 6,511
... printing and reproduction of recorded media 18 8,589
... chemicals and chemical products 20 8,498
... rubber and plastic products 22 17,939
... other non-metallic mineral products 23 13,850
... basic metals 24 4,471
... fabricated metal products, except machinery and equipment 25 26,693
... computer, electronic and optical products 26 6,401
... electrical equipment 27 7,575
... machinery and equipment n.e.c. 28 16,738
... motor vehicles, trailers and semi-trailers 29 5,493
... other transport equipment 30 889
... furniture 31 10,844
Other manufacturing 32 5,094
Repair and installation of machinery and equipment 33 12,182

Demand We choose a market structure that allows firms to have heterogeneous markups that

are determined by a combination of structural parameters and their market share. Following

Atkeson and Burstein (2008), we implement this by assuming that firms compete in a double-

nested CES demand system. The sector consists of a discrete number N markets, where a mar-

ket is defined as a group of firms that compete oligopolistically with one another. Output across

markets, which are indexed by h, is aggregated to the sector level along

Yt =

[
N∑
h=1

Y
σ−1

σ

ht

] σ

σ−1

, (9)

where σ denotes the elasticity of substitution across market-level goods. Market-level output

Yht is the aggregate of firm-level output across the Nh firms that operate in h along

Yht =

[
Nh∑
i=1

Y
ε−1

ε

iht

] ε

ε−1

, (10)

where Yiht denotes the output of firm i and where ε denotes the elasticity of substitution across

firm-level goods within a market. Following Atkeson and Burstein (2008), we assume that ε > σ,

reflecting that it is easier to substitute goods across firms than across markets. The double-

nested CES system gives rise to the standard demand function for firm i’s output:

Yiht =

(
Piht
Pht

)−ε
Yht, where Yht = P σhtDt, (11)
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where aggregate demand Dt is exogenous and where Pht is the usual CES market price index:

Pht =

(
Nh∑
i=1

P 1−ε
iht

) 1

1−ε

. (12)

The price-setting firm internalizes that Pht increases when it raises its own prices. Following

Burstein et al. (2020), we assume for tractability that firms do not internalize that it may induce

an increase in the aggregate demandDt. As such, we assume that firms behave as if markets are

atomistic (as in Atkeson and Burstein 2008), despite the actual setup featuring a finite number

of markets. Under Cournot competition, the resultant profit-maximizing markup reads as

µiht =
ε

ε− 1

(
1−

ε
σ − 1

ε− 1
siht

)−1
, (13)

where market share siht is defined as the firm’s share in market revenue:

siht =
PihtYiht
Ph(i)tYh(i)t

, (14)

where subscript h(i) indicates the market in which firm i operates.33 The firm’s markup ranges

from ε/(ε − 1) for a firm whose market share approaches zero to σ/(σ − 1) for a monopolist,

which is higher than the small firm’s markup, given the assumption that ε > σ.

Technology Firms produce using a variable input Viht and a fixed input Kiht, with log-inputs

respectively denoted by viht and kiht. The production function for log output yiht is translog:

yiht = ωit + γαviht + γ(1− α)kiht + γ
α(1− α)

2

φ− 1

φ

(
v2iht + k2iht − 2kihtviht

)
, (15)

where ωit is the log of (hicks-neutral) total factor productivity, γ measures the degree of re-

turns to scale, α determines the weight of the variable input in the production function, while

φ approximates the elasticity of substitution between the flexible and the fixed input. Our log

production function (15) is motivated by the following generalized constant elasticity of sub-

stitution production function:

Yiht = Ωiht

(
αV

φ−1

φ

iht + (1− α)K
φ−1

φ

iht

) φ

φ−1
γ

,

where Ωiht ≡ exp ωiht. In Appendix B we show that this production function converges to the

Cobb-Douglas production function as φ → 1 and that an approximation of the production

33Bertrand competition, where the firm’s first order condition takes prices rather than quantities as given, yields
a similar expression. See Atkeson and Burstein (2008), Grassi (2017), and Burstein et al. (2020) for an elaborate
discussion. For the purpose of these simulations we require that markups are determined by demand elasticities
and market share, which is is the case for both Cournot and Bertrand competition.
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function around φ = 1 yields translog function (15). We specify the production function with

a constant degree of homogeneity (γ) such that the model admits an analytical expression for

(size-dependent) marginal costs, facilitating the calculation of the equilibrium.

Equilibrium We consider the following partial equilibrium. Given an exogenous sequence

for variable input prices Wt, aggregate demand Dt, productivities ωiht and fixed factors kiht,

the equilibrium is defined as a sequence of markups µiht, prices Piht, log marginal costs mciht,

market shares siht, log variable inputs viht,and log outputs yiht and sector price indices Pht such

that output follows from demand function (11), sector price indices follow from (12), markups

are set along equation (13), market share is given by (14), prices are the product of marginal

costs and markups, variable inputs are in line with the firm’s first-order condition and marginal

costs follow from (15), for all i, h and t. Derivations are provided in Appendix B.

5.2 Calibration

We simulate the behavior of 1440 firms, which is the average number of firms in two-sector in-

dustries in the EAP data. We divide these firms into 180 markets and simulate the economy for

40 periods.34 There are 13 parameters, each of which we calibrate externally. The parameters

are summarized in Table 3. In calibrating the model, we are constrained by the fact that the

true values of many parameters (such as those of the production function and the productivity

process) are in fact the object of our empirical analysis. Our approach is therefore to assume

reasonable values in line with the literature as an example of a possible quantification.

There are two aggregate shocks: aggregate demand Dt and prices of the variable input Wt. We

assume both series follow a log-linear first-order autoregressive process with persistence ρPY
and ρW , respectively, with shocks ξPY ∼ N(0, σPY ) and ξW ∼ N(0, σW ). Fluctuations in ag-

gregate demand ensure that the relationship between output and market share vary over time.

Fluctuations in the price of the variable input ensure that firms’ lagged productivity and lagged

variable inputs are not co-linear after conditioning on the fixed inputs, which is needed to be

able to separately identify the productivity process and the production function parameters, as

discussed in Section 3. To calibrate the process for the price of the flexible inputs, we estimate

an autoregressive process for the price index of intermediate inputs from sector-level manu-

facturing data in EU-KLEMS. We run simple autoregressive regressions for the log of the index,

and find an autoregressive coefficient ρw of 0.87 at the two-digit sector level when controlling

for industry- and year fixed effects. Residuals have a standard deviation σw of 0.06.35 For aggre-

34Recall that markets define the level at which firms compete. By modeling many small markets rather than a
small number of large markets we reduce the computational complexity of the simulation. An appropriate calibra-
tion of the productivity process ensures that markets have realistic levels of concentration and markup dispersion.

35Appendix Table A2 presents AR(1) coefficients for various specifications, which suggest a narrow range of 0.86
to 0.90 for the AR(1) coefficient and 0.042 to 0.046 for the standard deviation of the shocks.
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Table 3: Parameter Calibration for Simulation

Parameters Value Description

α 0.4 Share of variable input
γ 0.8 Returns to scale
φ 1.1 Elasticity of substitution
σ 1.1 Demand elasticity across markets
ε 10 Demand elasticity across firms in a market
N , Nh 180, 8 Number of markets and firms per market
ρw, σw 0.87 , 0.06 AR(1) persistence and std. dev. of Wt

ρD, σD 0.78 , 0.19 AR(1) persistence and std. dev. of P−σt Yt
ρω, σω 0.70 , 0.10 AR(1) persistence and std. dev. of firm-level ωit
ρk, σk 0.66 , 0.66 AR(1) persistence and std. dev. of firm-level kit
σ̃η 0.095 std. dev. meas. error on output

gate demand Pt we estimate a similar autoregressive process, using the detrended sector-level

nominal value added as the dependent variable.36 We find a high degree of persistence in ag-

gregate demand, with a ρD of 0.78, while the residuals have a standard deviation of 0.19.

There are two sources of firm heterogeneity in the model: the firm’s log-endowment of the fixed

input kiht and the firm’s log-total factor productivity ωit. Both evolve exogenously through lin-

ear first-order autoregressive processes with persistence ρk and ρω, respectively, and are subject

to innovations ξk ∼ N(0, σk) and ξω ∼ N(0, σω). Both sources of firm heterogeneity are similar

in that firms with either higher productivities or higher values for the exogenous fixed input

have, ceteris paribus, greater output. They are different in that the fixed input is observable,

while productivity is not. To calibrate the persistence and volatility of the fixed factor, we run

autoregressive regressions on the log of capital in the EAP data. We find a persistence param-

eter ρk of 0.66 and a volatility of shocks σk of 0.66.37 A particular challenge is the estimation

of the persistence ρω and volatility σω of the productivity process. To obtain these empirically

requires knowledge of the parameters of the production function, which is the objective of our

analysis. We take the pragmatic approach of calibrating ρω and σω in line with common values

of the literature, and check that these values are in line with our findings in Section 4. We set ρω

to 0.6, in line with Decker et al. (2020), and set productivity volatility σω to 0.1.

When calibrating the production function, we think of purchased materials as viht and a com-

posite of all other factors as kiht. We calibrate α to 0.4 to match the average ratio of material

purchases over revenue in EAP-FARE, which is 0.38. We calibrate returns-to-scale parameter γ

to 0.8 in order to have modest decreasing returns to scale, in line with the estimate by Basu and

Fernald (1997). We assume an elasticity of substitution φ of 1.1, as purchased materials include

intermediate inputs from other firms, which can substitute for in-house production.

36We detrend P−σt Yt using nominal GDP to account both for trend increases in prices and for aggregate growth
in order to obtain a stationary nominal series. Results are similar when detrending with the GDP deflator.

37Appendix Table A3 presents the AR(1) estimates for capital.
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We introduce measurement error in observed quantity yiht, denoted by ηiht, after computing

the equilibrium. We assume that ηiht ∼ N(0, σyσ̃η), where σy is the standard deviation of true

output across all firm-years in the sector, and σ̃η is a scalar that determines the magnitude of

measurement error relative to the standard deviation of true output. We calibrate σ̃η to 0.095,

in line with the relative variance of output and fitted values of a regression of output on prices,

market share, time fixed effects and a third-degree polynomial in the firms’ inputs in EAP.

5.3 Results

5.3.1 Production function estimation

We now take the simulated firm-level data on revenue, output and inputs and use it to estimate

markups along the two-step iterative GMM procedure. We estimate various alternative speci-

fications of the procedure. To match the approaches typically followed in the literature, in all

specifications we make the assumption rat the researcher correctly assumes that the variable

input is viht. This is therefore also the variable that we use to calculate markups after estimating

the production function. The moment conditions are that the residual of the AR(1) process for

productivity, ξiht, is orthogonal to the lagged variable input and to the current fixed input.38

In order to establish that it is feasible to estimate the production function parameters and

markups in our setup, we first estimate a preferred specification. The preferred specification

has three components, each of which we deviate from in subsequent specifications. Firstly, we

estimate our preferred specification using quantity as the measure of a firm’s output; hence, we

assume that the researcher perfectly observes the prices that firms set. Secondly, we estimate

the preferred specification using a theoretically valid first-stage regression. As shown in Section

3, to correctly control for ωiht in the regression that purges measurement error ηiht, the control

variables must account for the log of marginal costs. To do so, we include as additional controls

both the log of the price and the firm’s market share in the first stage, where the latter is the

proxy for the markup.39 Combined with a third-order expansion of the inputs vit and kit, this

should allow us to identify the measurement error ηiht with reasonable precision. Thirdly, the

preferred specification estimates a production function of the translog form, in line with (15):

yiht = βvviht + βkkiht + βvvv
2
iht + βkkk

2
iht + βvkkihtviht + ωiht, (16)

where elasticities satisfy the following relations with the true production parameters (α, γ, η):

βv = γα, βk = γ(1− α), βvv = γ α(1−α)2
φ−1
φ , βkk = βvv, βvk = −2βvv.

38We add a constant to the second-stage auto-regressive productivity estimation, so that no constant needs to be
added to the production function itself. It is straightforward to show that estimating a constant in the production
function or estimating a constant in the AR process is equivalent.

39We do not include a polynomial of market share to control for non-linearities in the markup-market share
relationship because the correlation between market share and its square exceeds 0.99.
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Table 4: Estimated Translog Production Function Parameters

Quantity Revenue
Coefficients True Full Basic None Full Basic None

βv = αγ 0.32 0.32 0.32 0.38 0.39 0.39 0.47
(0.01) (0.011) (0.018) (0.013) (0.014) (0.021)

βk = (1− α)γ 0.48 0.47 0.47 0.45 0.28 0.28 0.25
(0.006) (0.006) (0.01) (0.007) (0.007) (0.011)

βvv = γ α(1−α)
2

φ−1
φ

0.009 0.01 0.008 0.021 0.021 0.02 0.036
(0.002) (0.002) (0.004) (0.003) (0.003) (0.004)

βkk = βvv 0.009 0.009 0.007 0.011 -0.001 -0.001 0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

βvk = −2βvv -0.017 -0.019 -0.016 -0.029 -0.026 -0.024 -0.039
(0.002) (0.002) (0.004) (0.003) (0.003) (0.004)

Implied avg. elasticity 0.309 0.312 0.31 0.324 0.32 0.319 0.334
(Std. dev.) (0.019) (0.021) (0.018) (0.042) (0.041) (0.04) (0.071)

Note: Estimated production-function coefficients for different specifications. The top panel presents production-function esti-
mates. The bottom panel presents elasticities of the variable input v on output (measured in terms of quantity or revenue). The
first column presents true values for comparison. Bootstrapped standard errors are in parentheses. Full, Basic and None describe
the specification of the first-stage regressions. Full first stages include a third-order expansion in the production-function inputs,
time fixed effects and additional controls for log price and market share. Basic first stages do not include the additional controls.
Columns headed None do not deploy a first stage and therefore estimate markups on output variables that include measurement
error ηiht.

Note that we do not impose these theoretical restrictions when estimating (16). We then con-

sider various ‘imperfect’ specifications of the two-stage GMM procedure and see how the pro-

duction function and markup estimates change.

5.3.2 Elasticity estimates and markups

The estimates of the translog production function parameters are presented in Table 4. Coef-

ficients in the column titled ‘True’ are directly calculated from the deep production function

parameters (α, γ, φ). The three subsequent columns present estimates of the production func-

tion where output is measured in quantities while the final three columns present estimates

where revenue is used. Bootstrapped standard errors are in parentheses.

The preferred specification is presented in the second column, where ‘Full’ indicates that the

first stage includes log price and market share controls. The estimates show that the preferred

specification is able to identify the parameters of the production successfully. All coefficients

are within one tenth of a decimal point of their true value. Bootstrapped standard errors are

generally small and coefficients are highly significant.40 The markups which arise from these

40Standard errors differ from zero because (1) the first stage approximates the implicit relationship between pro-
ductivity and inputs through a third-order polynomial and (2) market share proxies imperfectly for markups.
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Table 5: Overview - Translog Log Markup Estimates

Correlation ln µ̂iht Log Markup Moments
with true markup Mean St. Dev. Median IQR

True values 1.00 0.258 0.065 0.213 0.367

Quantity
Full first stage (preferred) 1.00 0.266 0.064 0.220 0.346
Basic first stage 1.00 0.263 0.067 0.218 0.370
No first stage 0.66 0.300 0.102 0.225 0.621

Revenue
Full first stage 0.69 0.286 0.108 0.206 0.713
Basic first stage 0.73 0.286 0.105 0.208 0.677
No first stage 0.40 0.312 0.201 0.184 1.543

Note: The first column presents correlations of estimated markups with true values. Full first stages include a third-order expansion
in production inputs and additional controls for log price and market share. Basic first stages do not include the additional controls.

production function estimates are summarized in the second row of Table 5. Results for the

preferred specification with a translog production function, quantity data and a full first stage

are closely in line with true markups. The estimated markups have a correlation of 1.00 with the

true markup, although the level and standard deviation of the markup are estimated with slight

error. This is in line with the modest differences between the true and estimated production

function parameters in Table 4.

Revenue versus quantity We next deviate from the preferred specification by using revenue

instead of quantity data to estimate the production function. In the fifth column of Table 4

we report a significantly higher estimate for βv, which increases from 0.32 to 0.39. The sixth

column, where the first-stage regression also does not control for price, finds an identical βv.

Conversely, the linear coefficient for the fixed input, βk, falls from 0.47 to 0.28. The increase in

βv might be surprising, because the revenue elasticity of an input should fall short of the quan-

tity elasticity when demand curves are sloping downward. Recall, however, the result in (6) that

revenue-based coefficients can be biased upwards, downwards or be unaffected, depending on

the correlation between prices and inputs. Only in the absence of time-fixed effects are the elas-

ticities biased downwards by the inverse average markup. Our simulated firms are subject to

aggregate demand shocks, which create a positive correlation between input usage and prices

under diminishing returns to scale. Indeed, prices have a 0.42 correlation with variable inputs

in the simulation. Controlling for time fixed effects, the correlation is negative - as expected.

The bottom panel of Table 5 compares markup estimates based on the revenue data. Average

markups are overestimated, in line with the overestimation of βv. We find that revenue-based

markups are highly informative of true markups, with a point correlation of 0.73 between the

preferred estimate and the revenue-based counterpart. These results confirm that the revenue-
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Figure 1: Distribution of Simulated (Log) Markup by Output Variable, First-Stage Specification
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Notes: The figure plots the distribution of simulated markups (in logs). Blue (solid) lines present markups estimated with a first
stage that includes price and market share controls. Green (dashed) lines present specifications that exclude price and market
share controls. Red (dash-dotted) lines present results from specifications without a first stage.

based estimates of the production function elasticities are not the revenue elasticities of an

input. If they were, Bond et al. (2021) show that the log markups should equal 0 and be unin-

formative of true markups. Rather, the revenue-based elasticities are biased estimates of out-

put elasticities of the inputs. This bias may cause the log-markup to average 0 up to a Jensen’s

inequality, or to have a further bias due to the presence of time effects such as demand shocks.

It is important to note that the bias in revenue-based markup estimates depends on the cali-

bration. Our baseline calibration is in line with prior work, and the high correlation between

revenue-based markup estimates and true markups is robust to many alternative calibrations.

As an example, Table A4 and A5 in Appendix C present markup estimates from a calibration

with higher returns to scale and higher material share. While revenue markups still correlate

well with true markups, the bias in their average level is negative rather than positive.

First stage In a second deviation from the preferred specification, we compare production

function estimates with different first stages. Results so far include a third-order expansion

of the inputs as well as additional control variables for price and market share. We next con-

sider a ‘basic’ first stage where we drop the control variables for price and market share. The

resulting first-stage specification is frequently used in markup estimations (e.g. De Loecker

and Warzynski 2012, De Loecker et al. 2020). We find similar estimates for the parameters in

the production function when using the basic first stage. The linear coefficients βv and βk are

unaffected for both quantity and revenue-based estimations, although all of the higher-order

terms are slightly underestimated. Looking at the correlation with the true (log) markup, Ta-

ble 5 shows that markups from the basic first stage again have a correlation of 1.00 with true

markups. The moments of the markup distribution are similar to the full-first-stage markups.
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Figure 2: Relationship between Variance of Measurement Error and Markup Correlations
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Notes: The figures plot the correlation between the true markups and estimates of the markups under different calibrations of ση ,
which measures the fraction of observed output that is due to unobserved productivity shocks or measurement error. The vertical
line is at the baseline calibration in the simulations. Blue (solid) and green (dashed) lines are estimates from the full and basic
first-stage estimations, respectively. Red (dash-dotted) lines do not purge for ηit in a first stage, as in Blundell and Bond (2000).

In contrast, we find that the accuracy of the production function estimates declines sharply

when no first stage is conducted. In this case, the production function estimation becomes a

simple IV-GMM estimation with lagged variable inputs used to instrument for current variable

inputs. The unidentified measurement error causes an overestimation of the output elasticity

of the variable input. This causes an overestimation of the average log markup in Table 5 and a

significant reduction (from 1 to 0.66) in the correlation between estimated and true markups.

Figure 4, which plots the kernel densities of the markup estimates, illustrates the poor perfor-

mance of the estimator without a first stage (red, dash-dotted). The variance of the estimates is

much larger than that of the full (solid-blue) and basic (green-dash) first-stage estimates.

The driver of the poor performance of the no-first-stage estimates is clear from Figure 2. It

presents the correlation between true markups and the various markup estimates, for vari-

ous calibrations of ση. In simulations without measurement error or transitory productivity

shocks (ση = 0), all estimators perform similarly and the quantity-based markups have per-

fect correlations with true markups. The performance of the no-first-stage estimates quickly

decays, however, as correlations approach zero when errors make up 15% of observed output

(ση = 0.15).

These results are in line with the predictions in Section 3. While estimates without a first stage

are unbiased, they come with greater variance. The simulations suggest that it is greatly prefer-

able to include a first stage to purge transitory productivity shocks and measurement errors,

even if one does not have good controls for the markup – as was the case in our basic first stage.
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Table 6: Correlations across Simulated Specifications - Log Markups

True Full - Q Full - R Basic - Q Basic - R None - Q None - R
Pearson Correlation

True 1.00 1.00 0.69 1.00 0.73 0.66 0.40
Full First Stage - Quantity 1.00 1.00 0.75 0.99 0.79 0.72 0.48
Full First Stage - Revenue 0.69 0.75 1.00 0.66 1.00 1.00 0.94
Basic First Stage - Quantity 1.00 0.99 0.66 1.00 0.70 0.62 0.36
Basic First Stage - Revenue 0.73 0.79 1.00 0.70 1.00 0.99 0.92
No First Stage - Quantity 0.66 0.72 1.00 0.62 0.99 1.00 0.95
No First Stage - Revenue 0.40 0.48 0.94 0.36 0.92 0.95 1.00

Spearman Rank Correlation
True 1.00 0.99 0.65 1.00 0.69 0.61 0.39
Full First Stage - Quantity 0.99 1.00 0.72 0.98 0.76 0.69 0.48
Full First Stage - Revenue 0.65 0.72 1.00 0.60 1.00 1.00 0.94
Basic First Stage - Quantity 1.00 0.98 0.60 1.00 0.64 0.56 0.33
Basic First Stage - Revenue 0.69 0.76 1.00 0.64 1.00 0.99 0.92
No First Stage - Quantity 0.61 0.69 1.00 0.56 0.99 1.00 0.96
No First Stage - Revenue 0.39 0.48 0.94 0.33 0.92 0.96 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log. Simulated data.

5.3.3 Markup Correlations

In the final analysis of the simulated data, we examine how markup estimates correlate across

specifications and with key variables such as profits and the labor share. Table 6 presents the

correlations of markups across markup specifications. The table shows that the correlations be-

tween specifications are generally high, and often of similar magnitudes as the correlation be-

tween markup estimates and the true markup. The correlation between the preferred estimate,

with quantity to measure output and the full first stage, and other markups from the two-stage

procedure, are at least 0.79. This is the case for both the Pearson and the rank correlations. Fig-

ure 3 provides a graphical illustration by means of a binned scatter plot between the preferred

specification and the most commonly used empirical specification, with revenue data and the

basic first stage. The right-hand figure, which plots the relationship between the markup esti-

mates in first-differences, confirms that these are tightly linked. Analysis that studies trends in

markups over time therefore seems particularly feasible with revenue-based markups.

Table 7 then runs a number of canonical regressions on the relationship between markups and

other variables. The idea is to check whether these regressions are qualitatively similar when

using different markup estimates. For each specifications s, we run the following

xit = χ(ln µ̂sit) + ϕi + ψt + εit, (17)

where respectively ϕi and ψt denote firm- and time fixed effects, and where xit denotes some

variable of interest. We estimate this regression using a firm’s profit rate (ratio of operating
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Table 7: Simulated Relation between Markup and Other Variables by Markup Specification

Quantity Revenue
True Full Basic None Full Basic None

Profit Rate 0.0196*** 0.0195*** 0.0198*** 0.0259*** 0.0260*** 0.0252*** 0.0344***
(0.00005) (0.00006) (0.00005) (0.00010) (0.00008) (0.00007) (0.00020)

R-squared 0.936 0.922 0.946 0.825 0.863 0.881 0.709

Materials Share -0.0196*** -0.0195*** -0.0198*** -0.0259*** -0.0260*** -0.0252*** -0.0344***
(0.00005) (0.00006) (0.00005) (0.00010) (0.00008) (0.00007) (0.00020)

R-squared 0.936 0.922 0.946 0.825 0.863 0.881 0.709

Market Share (%) 0.0614*** 0.0616*** 0.0615*** 0.0871*** 0.0855*** 0.0820*** 0.122***
(0.00008) (0.00008) (0.00007) (0.00016) (0.00013) (0.0001) (0.00055)

R-squared 0.997 0.995 0.996 0.940 0.965 0.976 0.808

Note: Each entry gives the OLS coefficient with the cursive variable as the dependent variable and the markup series in the column
header as the explanatory variable. The markup estimation’s first-stage regression includes a third-degree polynomial of inputs,
price and market share controls, and time fixed effects (“Full”), only the polynomial and time fixed effects (“Basic”) or no first stage
(“None”). All markups are expressed in logs, they are normalized to have standard deviation equal to 1, and they are computed on
simulated data. Firm-clustered standard errors in parentheses. *** denotes significance at the 1% level. All specifications include
time- and firm fixed effects. 63,624 observations.

profits over sales), material cost share (ratio of variable-input spending over sales), and market

share as dependent variables. We divide markup estimates by their standard deviations to ease

comparison of columns. The table confirms that all markup estimates do reasonably well at

retrieving the OLS coefficient χ from the true markup. The relationship is best estimated using

quantity-based markups and a first stage, and worst when not including a first stage.

Figure 3: Binned Scatter Plot for Simulated Quantity and Revenue-Based Markups

.1
.2

.3
.4

Q
ua

nt
ity

-B
as

ed
 M

ar
ku

p

0 .1 .2 .3 .4 .5
Revenue-Based Markup

(a) Log-Markups

-.1
5

-.1
-.0

5
0

.0
5

.1
Q

ua
nt

ity
-B

as
ed

 M
ar

ku
p 

(∆
)

-.2 -.1 0 .1 .2
Revenue-Based Markup (∆)

(b) Log-Differenced Markups

Notes: The figures plot the linear relationship and binned scatter plot between quantity-based markups (full first stage) and
revenue-based markups (basic first stage) in simulated data. Log-markups are used in figure (a), log-differenced markups in figure
(b). Regression coefficients for the linear fit are 0.48 and 0.61, respectively.
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6 Empirics

This section describes the results from the production function and markup estimation on the

French EAP-FARE manufacturing data. We start by assessing the elasticities of quantity and

revenue with respect to materials. We then compare the levels and dispersion of markups from

various specifications, and assess the correlation between the various markup estimates. Fi-

nally, we look at how estimated key relationships such as the markup-market share and the

markup-profit relationship depend on production function specifications.

6.1 Production Function Estimates

In line with our simulations, we estimate the production function in six specifications com-

prised of the combinations of quantity or revenue as output measures, and either the full first

stage (with price and market share controls), the basic first stage (with only the polynomial in

inputs), or an absent first stage. We assume that log output yit follows a translog production

function of the log inputs materials mit, the wage bill lit, capital kit and services oit:

yit = βmmit + βllit + βkkit + βooit +
∑

h∈{m,l,k,o}
∑

j∈{m,l,k,o}βhjhitjit, (18)

which we estimate for each two-digit sector. Following Burstein et al. (2020) we assume that

materials involve no adjustment costs and therefore correspond to the variable input viht in

Section 3.41 To estimate markups, we are therefore interested in the output elasticity:

αmit = βm + 2 · βmmmit + βmooit + βmllit + βmkkit.

Table 8 presents the estimated material elasticities αmit for each of our specifications. Specifi-

cations in the first three columns use quantity as the measure of output, while the final three

columns use revenue. Rows present averages for αmit within the two-digit sector for which the

production function was estimated, with standard deviations in parentheses.

Our preferred specification, which uses the full first stage and quantity data, yields an average

output elasticity of 0.62. In line with the notion that firms face downward-sloping demand

curves, we find that the revenue-based output elasticity of materials is usually lower than a

quantity-based one. For our preferred specification we find higher average elasticities than the

revenue-based counterpart in 18 out of 19 industries. On average, the quantity-based output

elasticity exceeds the revenue-based elasticity by 50%.

41This is more appropriate than assuming that labor is freely set, especially for France (e.g., Caselli et al. (2021).
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Table 8: Estimated Translog Material-Output Elasticity by Sector and Specification

Quantity Revenue
NACE Full Basic None Full Basic None
Avg. 0.62 0.53 0.57 0.42 0.42 0.42

(0.34) (0.22) (0.28) (0.13) (0.13) (0.14)
13 0.53 0.46 0.53 0.44 0.44 0.43

(0.18) (0.17) (0.2) (0.12) (0.13) (0.11)
14 0.69 0.57 0.66 0.40 0.40 0.41

(0.22) (0.18) (0.22) (0.11) (0.11) (0.12)
15 0.44 0.40 0.40 0.42 0.39 0.44

(0.12) (0.13) (0.10) (0.12) (0.12) (0.15)
16 0.59 0.54 0.59 0.49 0.49 0.48

(0.14) (0.15) (0.13) (0.12) (0.12) (0.14)
17 0.55 0.55 0.55 0.47 0.47 0.45

(0.15) (0.16) (0.16) (0.10) (0.10) (0.10)
18 0.37 0.37 0.35 0.31 0.31 0.30

(0.15) (0.16) (0.15) (0.09) (0.09) (0.10)
20 0.95 0.79 0.92 0.49 0.49 0.50

(0.38) (0.26) (0.37) (0.12) (0.11) (0.13)
22 0.62 0.55 0.62 0.47 0.47 0.46

(0.15) (0.15) (0.15) (0.11) (0.11) (0.11)
23 0.50 0.45 0.54 0.42 0.41 0.44

(0.12) (0.08) (0.12) (0.14) (0.13) (0.17)
24 0.65 0.71 0.65 0.45 0.45 0.45

(0.20) (0.15) (0.23) (0.17) (0.17) (0.20)
25 0.45 0.42 0.44 0.38 0.38 0.38

(0.21) (0.16) (0.18) (0.14) (0.14) (0.14)
26 1.15 0.65 1.03 0.42 0.42 0.40

(0.47) (0.32) (0.42) (0.09) (0.10) (0.10)
27 0.68 0.62 0.66 0.48 0.48 0.50

(0.27) (0.17) (0.23) (0.11) (0.11) (0.21)
28 0.97 0.56 0.51 0.47 0.48 0.48

(0.60) (0.11) (0.32) (0.10) (0.10) (0.09)
29 0.55 0.95 0.50 0.54 0.54 0.53

(0.23) (0.36) (0.20) (0.14) (0.13) (0.14)
31 1.07 0.70 0.85 0.40 0.40 0.39

(0.18) (0.11) (0.27) (0.09) (0.09) (0.09)
32 0.58 0.43 0.63 0.35 0.35 0.36

(0.22) (0.25) (0.21) (0.09) (0.10) (0.10)
33 0.28 0.33 0.30 0.33 0.32 0.33

(0.10) (0.09) (0.13) (0.11) (0.10) (0.11)

Note: The table presents estimated elasticities of materials on output (measured in terms of quantity or revenue) from the esti-
mation of translog production functions. The first-stage regression includes a third-degree polynomial of inputs, price and mar-
ket share controls, and time fixed effects (“Full”), only the polynomial and time fixed effects (“Basic”) or no first stage ("None").
Translog specifications have heterogeneous elasticities within industries, with standard deviations presented in brackets. Industry
codes refer to two-digit NACE codes. Industry names are provided in Table 2.
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Table 9: Overview - Log Markup Estimates

Mean St. Dev. Median 25th Pct. 75th Pct. Observations
Quantity data
Full first stage 0.39 0.50 0.36 0.17 0.65 157,485
Basic first stage 0.30 0.33 0.28 0.12 0.48 157,485
No first stage 0.33 0.45 0.32 0.15 0.56 157,485

Revenue data
Full first stage 0.11 0.17 0.10 0.01 0.21 157,485
Basic first stage 0.11 0.17 0.10 0.01 0.21 157,485
No first stage 0.10 0.21 0.10 0.00 0.20 157,485

Note: All markups are expressed in log. The first-stage regression includes a third-degree polynomial of inputs, price and market
share controls, and time fixed effects (“Full”), only the polynomial and time fixed effects (“Basic”) or no first stage ("None"). Data
for 2009-2019 from EAP-FARE.

The estimated elasticities depend only modestly on the specification of the first stage. Notably,

we only find minor differences between the (average) estimated elasticities between the spec-

ification with the full first stage and the specification with no first stage at all. This means that

the first-stage purging of the production function estimation procedure has only modest ef-

fect on the output used for the production function estimation. The columns with the “basic”

first stage that omits price or market share controls seem to have a slight downward bias in the

estimated coefficients when using quantity to measure output.42

The results in Table 8 show that industries differ significantly in the elasticity of output with

respect to materials. Industries with low elasticities include NACE industry 33 (repairs) while

those with high elasticities include NACE industry 31 (manufacturing of furniture) and 28 (ma-

chinery and equipment). The standard deviations furthermore show that there is sizable het-

erogeneity in elasticities across firms within industries.

6.2 Markups

We next compute markups along the Hall (1986, 1988) equation using the estimated firm-level

elasticities. In the remaining analysis we focus on the log of markups. To treat for outliers, we

trim the bottom and top of the distribution at the 1.5% level for each specification. To facilitate

comparison, we focus on the non-trimmed sample. This leaves 157,485 firm-year observations.

6.2.1 Levels and Distribution

Summary statistics are provided in Table 9. A clear pattern emerges from the table. First, the

table shows that markups estimated from revenue data are consistently lower than markups

42The bias is negligible when using revenue to measure output. This is expected because, when using revenue,
prices should be added to the right-hand side of the first stage equation. In the full-first stage, prices enter with a
coefficient of -1 (see equation 5), and therefore cancel out.
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Figure 4: Distribution of (Log) Markup by Output Variable and First-Stage Specification
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Notes: The figure plots the distribution of markups (in logs). Blue lines present markups estimated with a first stage that includes
price and market share controls. Green lines present specifications that exclude price and market share controls. Red lines present
results from specifications without a first stage.

estimated from quantity data. Average revenue-based markups are around 0.11 in logs and

close to one in levels, in line with the bias described in Section 3.3 and in Bond et al. (2021).

The average of the log markup of the preferred specification, translog in quantity with the full

first stage, is 0.39.

A second pattern in Table 9 is that the distributions of markups across first-stage specifications

are reasonably similar when holding the output variable constant. Most published moments

are within 10 log-points of each other. An illustration of how similar these distributions are

is provided in Figure 4. It plots the full (blue-solid), basic (green-dashed) and no (red-dash-

dotted) first-stage specifications. The left figure plots the kernel densities for quantity, while

the right figure plots them for revenue. There are some differences for quantity-based markup

estimates, which match the downward bias in the elasticity estimates for the “basic” first stage.

The distributions are overall similar in terms of mean, median and standard deviation. It there-

fore seems that the choice of the output variable has a much larger effect on the estimated

markups than the exact specification of the first stage.

6.2.2 Correlations across Markup Estimates

The correlation between markups from various specifications is presented in Table 10. The

top panel presents the Pearson correlations over the entire sample. Correlations are generally

lower than in the simulations. This is expected, as the data include multiple sectors, while

the simulation contains a single sector. Nevertheless, we find consistently positive correlations

across the specifications. Like before, these correlations are particularly strong when compar-

ing markups with production functions that use the same output variable. For quantity, for
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Table 10: Correlations across Specifications - Log Markups

Full - Q Full - R Basic - Q Basic - R None - Q None - R
Pearson Correlations

Full first stage - Quantity data 1.00 0.28 0.60 0.29 0.67 0.28
Full first stage - Revenue data 0.28 1.00 0.43 0.98 0.31 0.74
Basic first stage - Quantity data 0.60 0.43 1.00 0.46 0.58 0.31
Basic first stage - Revenue data 0.29 0.98 0.46 1.00 0.32 0.73
No first stage - Quantity data 0.67 0.31 0.58 0.32 1.00 0.22
No first stage - Revenue data 0.28 0.74 0.31 0.73 0.22 1.00

Spearman Rank Correlations
Full first stage - Quantity data 1.00 0.33 0.71 0.34 0.81 0.33
Full first stage - Revenue data 0.33 1.00 0.49 0.99 0.37 0.86
Basic first stage - Quantity data 0.71 0.49 1.00 0.51 0.73 0.41
Basic first stage - Revenue data 0.34 0.99 0.51 1.00 0.38 0.84
No first stage - Quantity data 0.81 0.37 0.73 0.38 1.00 0.32
No first stage - Revenue data 0.33 0.86 0.41 0.84 0.32 1.00

Spearman Rank Correlations - Within Sectors
Full first stage - Quantity data 1.00 0.50 0.74 0.50 0.76 0.52
Full first stage - Revenue data 0.50 1.00 0.62 0.99 0.51 0.86
Basic first stage - Quantity data 0.74 0.62 1.00 0.63 0.75 0.54
Basic first stage - Revenue data 0.50 0.99 0.63 1.00 0.52 0.86
No first stage - Quantity data 0.76 0.51 0.75 0.52 1.00 0.46
No first stage - Revenue data 0.52 0.86 0.54 0.86 0.46 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log. Data for 2009-2019 from EAP-FARE.

example, the correlation between markups estimated using the full first stage and no first stage

is 0.67 for quantity-based markups, and 0.74 for revenue-based markups. The correlation be-

tween markups from full-first-stage quantity and basic-first-stage estimations is now 0.60.

We next calculate Spearman rank correlations, in the middle panel of Table 10. This tests

whether alternative production function estimations preserve the rank of the markup esti-

mates. Without exception, the Spearman correlations exceed the Pearson correlations. The

correlation between quantity-based full- and basic-first-stage markup estimates rises to 0.71,

while the revenue-quantity markup correlation rises to 0.33. This means that analyses relying

more on markup rank than on dispersion are more likely to be robust to flaws in the produc-

tion function estimation. When we additionally control for sector fixed effects, the revenue-

quantity correlation rises to 0.50. While that is lower than correlations within the same output

variable, it still suggests that revenue-based markups are informative about true markups.

A further illustration of the clear relationship between quantity and revenue-based markup es-

timates is provided in Figure 5. It contains a binned scatter plot that relates these in log-levels

(left) and log-differences (right). Both show an excellent linear fit between both series, with the

linear fit approaching a 45-degree line when markups are analyzed in first-differences. Table

11 expands on this by showing that there is generally a high correlation between markups from

various specifications. The table finds a strong correlation in first differences between translog
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Table 11: Correlations across Specifications for Log-Differenced Markups

Full - Q Full - R Basic - Q Basic - R None - Q None - R
Pearson Correlations

Full first stage - Quantity data 1.00 0.44 0.51 0.45 0.43 0.42
Full first stage - Revenue data 0.44 1.00 0.65 0.99 0.52 0.78
Basic first stage - Quantity data 0.51 0.65 1.00 0.68 0.58 0.53
Basic first stage - Revenue data 0.45 0.99 0.68 1.00 0.54 0.77
No first stage - Quantity data 0.43 0.52 0.58 0.54 1.00 0.41
No first stage - Revenue data 0.42 0.78 0.53 0.77 0.41 1.00

Spearman Rank Correlations
Full first stage - Quantity data 1.00 0.68 0.81 0.68 0.77 0.71
Full first stage - Revenue data 0.68 1.00 0.81 0.99 0.76 0.91
Basic first stage - Quantity data 0.81 0.81 1.00 0.82 0.85 0.77
Basic first stage - Revenue data 0.68 0.99 0.82 1.00 0.78 0.91
No first stage - Quantity data 0.77 0.76 0.85 0.78 1.00 0.72
No first stage - Revenue data 0.71 0.91 0.77 0.91 0.72 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log difference. Data for 2009-2019 from EAP-FARE.

markups estimated with revenue and quantity-based markups, with the preferred specifica-

tions displaying a Pearson and Spearman correlation of 0.44 and 0.68, respectively.43

Figure 5: Binned Scatter Plot for Relationship between Quantity and Revenue-Based Markups
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Notes: The figures plot the binned scatter plot between quantity-based markups (full first stage) and revenue-based markups
(basic first stage). Log-markups are used in figure (a), log-diff. markups in figure (b). Regression coefficients for the linear fit are
0.80 and 0.97, respectively.

43The first-differenced correlations are unaffected by sector fixed effects.
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Figure 6: Aggregate Markups
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Notes: The figures plot the aggregate markup based on quantity data (blue-solid) and revenue data (green-dashed). The left figure
plots the level of both estimates, while the right figure is an index where the aggregate markup in each year is divided by the level
in 2010. Aggregate markups are the harmonic average of firm-level markups, weighted by sales share.

6.2.3 Aggregate Markups

In the next analysis, we scrutinize the implications of our firm-level markup estimates for the

behavior of the aggregate markup. We define the aggregate markup as the sales-weighted har-

monic average of the firm-level markup:

Mt ≡
(∑

i∈Itsitµ
−1
it

)−1
,

where It is the set of firms in the data at time t, while sit denotes firm i’s share in aggregate sales

at time t. In a broad set of models, this harmonic average determines the distortion in factor

prices from market power (Grassi 2017, Edmond et al. 2018, Burstein et al. 2020).

We calculate the aggregate markup for the quantity-based markups, using the full first stage,

as well as the revenue-based markups, using the basic first stage. Figure 6 plots the results.

The left figure, which plotsMt, confirm that the revenue-based markup estimates are sizably

smaller than the quantity-based markups. Aggregate revenue-based markups average around

1.1, while aggregate quantity-based markups average around 1.5. The right figure, however,

which plotsMt/M2010, again shows that the revenue-based markup estimates preserve useful

information about quantity markups. The figure shows that adjusted for the average, revenue-

based markups follow similar aggregate movements as quantity-based markups. Both of the

estimates show a decline around the Eurocrisis in 2011 and 2012, followed by an upward trend

from 2013. In Appendix Figure A1, we show that aggregate markup estimates from revenue and

quantity data also track each other closely at the sector level.
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Table 12: Relation between Markup and Explanatory Variables by Markup Specification

Quantity Revenue
Full Basic None Full Basic None

Profit rate χ 0.0514*** 0.0937*** 0.0764*** 0.0944*** 0.0972*** 0.0662***
(0.00194) (0.00338) (0.00286) (0.00264) (0.00254) (0.00279)

R-squared 0.091 0.239 0.155 0.447 0.456 0.236

Labor share χ -0.0145*** -0.0316*** -0.0346*** -0.0291*** -0.0286*** -0.0253***
(0.000921) (0.00123) (0.00130) (0.000701) (0.000646) (0.00111)

R-squared 0.021 0.068 0.078 0.104 0.096 0.084

Material share χ -0.0298*** -0.0543*** -0.0314*** -0.0602*** -0.0636*** -0.0393***
(0.00142) (0.00251) (0.00167) (0.00212) (0.00212) (0.00184)

R-squared 0.071 0.181 0.063 0.408 0.436 0.187

Market share (%) χ 0.0134*** 0.0282*** 0.0330*** 0.0234*** 0.0217*** 0.0193***
(0.00259) (0.00368) (0.00327) (0.00347) (0.00325) (0.00268)

R-squared 0.005 0.006 0.007 0.006 0.006 0.006

Note: Each entry gives the OLS estimate using the cursive variable as the dependent variable and the markup series in the column
header as the regressor. Markup estimates use a first-stage regression with a third-degree polynomial of inputs, price and market
share controls, and time fixed effects (“Full”), only the polynomial and time effects (“Basic”) or no first stage (“None”). Markups
are expressed in logs and standardized to have a unit standard deviation. Markups are winsorized at 1.5% tails. Firm-clustered
standard errors in parentheses. **, *** denote significance at the 5, 1% level. Data for 2009-2019 from EAP-FARE. All regressions
include time & firm fixed effects. Observations: 157,277.

6.2.4 Correlations of Markup Estimates and Other Variables

Next we assess whether relationships between markups and key variables depend on the

markup specification. To do so, we estimate the same regressions as on the simulated data

along (17). We estimate this regression using a firm’s profit rate (defined as the ratio of operat-

ing profits over sales), labor share (defined as the ratio of its wagebill over sales), material cost

share (defined as the ratio of materials purchased over sales), and market share (defined as its

share in revenue at the 5-digit sector level) as dependent variables. Our aim is not to causally

estimate the relationship between these variables and markups, but rather to see how the cor-

relation between these variables and markups depends on how the markup was estimated.

Results are presented in Table 12. Each row presents regression coefficients for a particular

explanatory variable (described in italics), while each column contains results for a specific

markup specification. Before describing differences across specifications, note that all rela-

tionships in the table run in the expected direction. Firms with higher markup estimates are

more profitable, have lower labor shares, lower material shares, and greater market shares. This

is the case irrespective of whether revenue or quantity data was used to estimate the production

function elasticities, and the relationships are all significant at the 1% level. Looking more care-

fully at the specifications, we see that estimated βs do differ across specifications, both when

changes are made to the first stage or when quantity or revenue is used. The estimated βs tend

to be smaller for quantity-based markups than for revenue-based markups. This is in line with
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the finding in Table 9 that there is more dispersion in the quantity-based markup estimates; a

higher variance of the markup mechanically reduces the estimated βs holding everything else

equal. Overall, however, the results in Table 12 suggest that relationships between markups and

key relationships are qualitatively robust to using imperfect first-stage regressions or revenue-

based markup estimates. This further supports our derivation in Section 3 that these estimates

contain useful information about a firm’s true markup.

7 Alternative: assuming a Cobb-Douglas production function

In our final analysis, we discuss the validity of a common remedy to difficulties in markup esti-

mation: assuming a Cobb-Douglas production function. Because all firms in an industry share

the same output elasticities, markups under Cobb-Douglas are pinned down by the inverse rev-

enue share of vit up to a sector fixed effect. This makes the markup estimates robust to biases

in production function estimation. Actual production functions are likely not of Cobb-Douglas

form, however, as evidenced by the variation in within-sector output elasticities (see Table 8).

Below we study the implications of assuming a Cobb-Douglas production function in that case.

7.1 Analytical results

To structure the analysis, we return to the analytical framework in Section 3, where output is

produced with the single (variable) input vit. In line with our simulations and empirical analy-

sis we assume that the true production function is translog, i.e., yit = αvit + βv2it. Under these

assumptions, the IV-GMM estimator from Definition 1 is misspecified. A researcher that esti-

mates a Cobb-Douglas production function would erroneously assume that the output elastic-

ity of vit does not vary with vit. The misspecified GMM estimator is:

Definition 3 (Misspecified GMM estimator) the GMM estimator is α̂ ∈ R such that the moment

E
[
ω̂Mis
it vit−1

]
is equal to zero, where ω̂Mis

it = yit − α̂vit = (α− α̂)vit + βv2it + ωit .

The productivity estimate that is used in the moment condition, ω̂Mis
it , is the sum of true pro-

ductivity and an additional term that differs from zero under translog (β 6= 0). The unique

solution to the estimator – as long as vit−1 is indeed a relevant instrument for vit – is given by

α̂ = α+ β
E[v2itvit−1]

E[vitvit−1]
.

It follows that the Cobb-Douglas estimate of the output elasticity suffers from a bias from

the omitted variable v2it. This bias contaminates the resulting markup estimates µ̂Miss
it ≡

36



Table 13: Estimated Cobb-Douglas Material-Output Elasticity by Sector and Specification

Quantity Revenue
NACE Full Basic None Full Basic None

All (average) 0.50 0.46 0.46 0.44 0.70 0.34
13 0.28 0.13 0.28 0.14 0.14 0.25
14 0.31 0.20 0.30 0.34 0.02 0.02
15 0.25 0.20 0.22 0.09 0.09 0.11
16 0.56 0.50 0.55 0.51 0.51 0.46
17 0.41 0.41 0.42 0.54 0.55 0.36
18 0.30 0.29 0.29 1.04 0.02 0.22
20 0.36 0.19 0.36 0.65 0.64 0.32
22 0.57 0.54 0.56 0.44 3.38 0.43
23 0.50 0.45 0.51 0.38 0.38 0.37
24 0.65 0.76 0.65 0.60 0.60 0.44
25 0.41 0.42 0.40 0.38 0.38 0.35
26 0.64 1.00 0.61 0.29 0.29 0.29
27 0.44 0.45 0.44 0.72 0.73 0.38
28 0.28 0.66 0.33 0.35 0.35 0.35
29 1.42 0.74 0.22 0.50 0.50 0.45
31 1.08 0.66 1.04 0.39 0.39 0.36
32 0.38 0.31 0.44 0.17 0.17 0.23
33 0.33 0.35 0.33 0.31 0.31 0.30

Note: The table presents estimated output elasticities of materials from the estimation of Cobb-Douglas production functions. The
first-stage regression includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”),
only the polynomial and time fixed effects (“Basic”) or no first stage ("None"). Translog elasticities are given in Table 8.

α̂(PitYit)/(WitVit). The true markup is µit = (α+ 2βvit) (PitYit)/(WitVit), which means that

µ̂Miss
it

µit
=
α+ β E[v2itvit−1]

E[vitvit−1]

α+ 2βvit
. (19)

As the true output elasticity of vit varies under a translog production function, the correlation

between true markups and the mismeasured Cobb-Douglas markups will not equal one. Tak-

ing logs and averages, we can see that the Cobb-Douglas markup estimates do preserve infor-

mation about the average of true markups. The average (log) estimated markup is equal to the

average true markup up to a Jensen’s inequality:

E
[
log(µ̂Miss

it )
]

= E [logµit] + log

(
α+ βE

[
vit

vitvit−1
E[vitvit−1]

])
− E [log(α+ 2βvit)] .

The variance of the misspecified markup is different from the true markup variance for two

reasons. First, the output elasticity is not constant across firms under a translog production

function. Second, the covariance between markup and the output elasticity can be non-zero:

Var
[
log(µ̂Miss

it )
]

= Var [logµit] + Var [log(α+ 2βvit)]− 2Cov [logµit, log(α+ 2βvit)] . (20)

The variance of the estimated markups can therefore be larger or smaller than the true variance.
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Table 14: Overview - Log Markup Estimates from Cobb-Douglas Production Functions

Mean St. Dev. Median 25th Pct. 75th Pct. Observations
Quantity data
Full first stage 0.25 0.57 0.19 -0.16 0.62 157,485
Basic first stage 0.17 0.60 0.20 -0.15 0.55 157,485
No first stage 0.19 0.56 0.15 -0.19 0.54 157,485

Revenue data
Full first stage 0.13 0.62 0.08 -0.23 0.46 157,485
Basic first stage 0.08 1.10 0.08 -0.32 0.54 157,485
No first stage -0.11 0.62 -0.09 -0.37 0.22 157,485

Note: All markups are expressed in log. The first-stage regression includes a third-degree polynomial of inputs, price and market
share controls, and time fixed effects (“Full”) or only the polynomial and fixed effects (“Basic”). Data for 2009-2019 from EAP-FARE.

7.2 Empirical results

Turning to the empirical analysis, we estimate a Cobb-Douglas production function on the

production data. Rather than the full translog production function (18), we now estimate

yit = βcdmmit + βcdl lit + βcdk kit + βcdo oit

by industry for the six specifications described above. Cobb-Douglas markups are then given

by the product of the estimated βcdm and the inverse revenue share of materials.

7.2.1 Production function and markup estimates

The estimates for elasticities βcdm are listed in Table 13. The average elasticities range from 0.34

to 0.70. As expected from the analytical derivations in Section 7.1, this is similar to the range

of average elasticities under translog (0.42 to 0.62). Compared to elasticities under translog,

the main difference is that the Cobb-Douglas elasticities are constant within sectors. While

the Cobb-Douglas elasticities do not match the average translog elasticities of each sector pre-

cisely, the rank of the estimates is well-maintained. Notice, however, that the within-sector

variation in output elasticities is substantial under translog. This means that non-linear pro-

duction function terms differ from zero; a Cobb-Douglas production function is misspecified.

Turning to the markup estimates, Table 14 provides summary statistics. These differ from their

translog counterparts (Table 9) in two ways. First, averages are somewhat lower, in line with

the lower output elasticities. Second, and perhaps more importantly, they differ strongly in

standard deviations and 75th/25th percentiles. For each specification, Cobb-Douglas markups

have higher standard deviations. The 25th percentile of log markups is also negative in all spec-

ifications. If these estimates are correct, a significant portion of firms is selling below marginal

costs. Most specifications also show higher 75th percentiles for markups. Overall, it is clear that
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Table 15: Correlations across Specifications - Cobb-Douglas Markups

Full - Q Full - R Basic - Q Basic - R None - Q None - R
Pearson Correlations

Full first stage - Quantity data 1.00 0.59 0.81 0.41 0.82 0.66
Full first stage - Revenue data 0.59 1.00 0.58 0.18 0.59 0.58
Basic first stage - Quantity data 0.81 0.58 1.00 0.43 0.77 0.72
Basic first stage - Revenue data 0.41 0.18 0.43 1.00 0.42 0.62
No first stage - Quantity data 0.82 0.59 0.77 0.42 1.00 0.67
No first stage - Revenue data 0.66 0.58 0.72 0.62 0.67 1.00

Spearman Rank Correlations
Full first stage - Quantity data 1.00 0.63 0.83 0.53 0.85 0.81
Full first stage - Revenue data 0.63 1.00 0.58 0.53 0.63 0.75
Basic first stage - Quantity data 0.83 0.58 1.00 0.50 0.79 0.82
Basic first stage - Revenue data 0.53 0.53 0.50 1.00 0.55 0.70
No first stage - Quantity data 0.85 0.63 0.79 0.55 1.00 0.82
No first stage - Revenue data 0.81 0.75 0.82 0.70 0.82 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log. Data for 2009-2019 from EAP-FARE.

Cobb-Douglas estimates are more dispersed in the French data.

To see what drives differences in dispersion, note that all variation in Cobb-Douglas markups

within sectors comes from the inverse material revenue share. The variance of log-markups is

Var
(

log µ̂cdit

)
= Var (pit + yit − pmt −mit) .

Conversely, because the translog production function admits firm-specific elasticities, we have

Var(log µ̂tlit) = Var (log α̂mit ) + Var (pit + yit − pmt −mit) + 2 · Cov (log α̂mit , pit + yit − pmt −mit) .

Hence, the lower dispersion of markups in the translog specification implies that there is a neg-

ative correlation between a firm’s revenue-over-materials share and the elasticity of its output

with respect to materials. In other words, firms that have relatively high revenue compared to

their spending on material inputs, on average have lower output elasticities of materials.

7.2.2 Markup Correlations

The correlation between Cobb-Douglas markups from various specifications is presented in

Table 15. The top panel presents Pearson correlations while the bottom panel presents the

rank correlations. The table generally shows high correlations across specifications. With few

exceptions, correlations exceed 0.5. Correlations are particularly high for markups based on the

same output variable. For quantity, for example, the correlation between markups estimated

using the full first stage and no first stage is 0.82. Correlations across output variables are lower.
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Table 16: Correlations between Translog and Cobb-Douglas-based Markup Estimates

Translog Markup Estimates
Full - Q Full - R Basic - Q Basic - R None - Q None - R

Pearson Correlations

C
o

b
b

-D
o

u
gl

as Full first stage - Quantity data 0.27 0.53 0.44 0.55 0.30 0.32
Full first stage - Revenue data 0.11 0.54 0.32 0.57 0.13 0.32
Basic first stage - Quantity data 0.21 0.48 0.31 0.51 0.14 0.28
Basic first stage - Revenue data 0.05 0.21 0.13 0.21 0.09 0.11
No first stage - Revenue data 0.34 0.55 0.33 0.57 0.38 0.34
No first stage - Revenue data 0.04 0.48 0.18 0.50 0.04 0.27

Pearson - first differences
∆ Cobb Douglas (any) 0.28 0.59 0.48 0.60 0.34 0.44

Spearman Rank Correlations

C
o

b
b

-D
o

u
gl

as Full first stage - Quantity data 0.28 0.59 0.48 0.60 0.34 0.44
Full first stage - Revenue data 0.20 0.61 0.44 0.64 0.23 0.46
Basic first stage - Quantity data 0.31 0.54 0.41 0.57 0.25 0.40
Basic first stage - Revenue data 0.14 0.36 0.28 0.37 0.20 0.25
No first stage - Quantity data 0.36 0.62 0.38 0.63 0.44 0.47
No first stage - Revenue data 0.15 0.68 0.32 0.69 0.17 0.52

Spearman Rank - first differences
∆ Cobb Douglas (any) 0.53 0.69 0.63 0.71 0.53 0.61

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log. Data for 2009-2019 from EAP-FARE.

The correlation between markups using the full first stage from quantity and revenue data,

for example, is 0.59. While that is lower than correlations within the same output variable, it

still shows that revenue-based markups are informative about true markups. Note that in first

differences, correlations across Cobb-Douglas markup estimates equal 1.

Table 16 shows that, while Cobb-Douglas markup estimates correlate well across specifications,

the correlation between Cobb-Douglas and translog-based estimates of the markup have lower

correlations. Correlations between Cobb-Douglas estimates from revenue data and translog

estimates on quantity data appear almost orthogonal. The binned scatter plot for the preferred

specification, with quantity data and the full first stage, confirm the poorer fit (Figure 7). While

correlations are higher when markups are studied in first-differences, they remain considerably

lower than the correlations across the various translog specifications.

7.3 Application: Costs of Markup Dispersion

The overstatement of markup dispersion in the Cobb-Douglas specifications is particularly im-

portant because researchers frequently assume a Cobb-Douglas production function to ‘pre-

vent’ having to estimate a production function: when studying log markups, by taking industry

fixed effects to correct for output elasticities researchers can analyze within-industry markup

dispersion simply from observing revenue and material expenditures. Our translog results
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Figure 7: Binned Scatter Plot for Relationship between Translog and Cobb-Douglas Markups
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Notes: The figures plot the linear relationship and binned scatter plot between translog markups and Cobb-Douglas markups
(both full first stage) Log-markups are used in figure (a), log-differenced markups in figure (b). Regression coefficients for the
linear fit are 0.32 and 0.38, respectively.

however, suggest that the Cobb-Douglas assumption is rejected in the French data. This is im-

portant for a number of applications - for example when analyzing the effect of heterogeneous

markups on allocative efficiency and productivity. The idea is that firms with higher markups

produce inefficiently little because they raise prices above marginal costs. As the Cobb-Douglas

production function estimates overstate the degree of markup dispersion, a researcher relying

on these estimates would therefore overstate the degree of misallocation in the economy.44

By how much a researcher would overstate the costs of markups when using Cobb-Douglas

estimates would depend on assumptions about the demand system. As a back-of-the-envelope

exercise, we perform the simple misallocation cost calculation in Peters (2020) for the case of

Table 17: Costs of Markup Dispersion by Production Function Estimate

St. Dev. of Log Markups Dispersion costs
Translog - Quantity 0.43 8.57%
Translog - Revenue 0.16 1.30%
Cobb-Douglas - Quantity 0.56 13.5%
Cobb-Douglas - Revenue 0.80 21.2%

Notes: Example calculation of how the costs of markup dispersion change when using alternative production function estimates
using the formula in Peters (2020). Data for the EAP-FARE sample (2009-2019). Dispersion costs are expressed as (1− M̃) · 100%.
Markups from quantity data are estimated using the full first stage that includes price as a control; markups from revenue data are
estimated using the basic first stage that does not include price as a control. All markups are trimmed.

44A researcher could equally underestimate the costs of markup dispersion in case the ratio of sales over material
spending is positively correlated with the output elasticity of materials. The point here is that the Cobb-Douglas
production function assumption is not without loss of generality.
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innovation-driven markup dispersion with a Cobb-Douglas aggregator. He shows that the ratio

of true aggregate productivity and productivity under allocative efficiency is given by

M̃ =
exp

(∑
i∈I ln µ−1i

)∑
i∈I µ

−1
i

,

where I denotes the set of all firms. The denominator and numerator are equal if firms have

homogeneous markups, such that aggregate productivity equals its efficient benchmark. Ta-

ble 17 presents the results. Assuming that the translog quantity markups are correct, the true

reduction in aggregate total factor productivity because of markup dispersion is 8.57%. A re-

searcher that would use Cobb-Douglas estimates from revenue data would measure the cost of

dispersion at 21.2% – an overstatement of 140%.

8 Conclusion

This paper provides an assessment of the validity of the ratio estimator of firm-level markups.

We start by deriving the conditions under which the commonly used two-stage iterative GMM

estimator is able to consistently estimate the parameters of the production function. Using an

analytical framework, we assess the feasibility of estimating markups from accounting data,

and derive the biases from not observing prices and markups when estimating a production

function. We confirm the insights we glean with simulations from a rich macro model and

empirical data on prices and production for French manufacturing firms.

We find that the use of revenue rather than quantity data to estimate production functions af-

fects the level of the estimated markups, but has only modest effects on dispersion. The corre-

lation between markups from quantity and revenue data ranges from 0.3 to 0.5 in log-levels and

0.7 in log-differences. The correlation between various markup estimates and variables such

as market share, profitability and the labor share is also similar across the use of revenue or

quantity data. We find significant improvement in estimates of the markups when production

functions are estimated with a first-stage purging regression, instead of with simple IV-GMM.

Practically, we conclude that if a researcher is faced with imperfect data, then it depends on

individual applications whether the analysis can proceed. Optimally, production functions for

markups should be estimated with quantity rather than revenue data. In the absence of data

on prices however, researchers that are interested in the dispersion or correlations of markups

should think twice before assuming a Cobb-Douglas production function. Conversely, in ap-

plications where researchers are interested in the average level of the markup, revenue data

may not be appropriate. Revenue data may be used to estimate trends of markups (as differ-

ences over time are a part of dispersion), provided the researcher is willing to assume that the

production function parameters do not change over time.
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A Theory Appendix

A.1 Finite Sample Estimator and its Asymptotic Variance

In this section we derive the estimator for a finite sample. We also use this derivation to com-

pute the asymptotic variance of the GMM estimator. First, let us define the estimator for a finite

sample.

Definition: The GMM estimator is α̂ such that
∑

i,t ω̂itvit−1 = 0 with ω̂it = yit − α̂vit = (α −
α̂)vit + ωit.

Second, to solve for the estimator, we need to find the value of α̂ such that
∑

i,t ω̂itvit−1 =

(α− α̂)
∑

i,t vitvit−1 +
∑

i,t ωitvit−1 = 0. As long as
∑

i,t vitvit−1 6= 0, the unique α̂ that solves this

equation is

α̂ = α+

∑
i,t ωitvit−1∑
i,t vitvit−1

whose limit is α when the sample size increases, given that E[ωitvit−1] = 0.

Finally, let us derive the asymptotic variance of the GMM estimator. Using the (finite sample)

expression of the estimator, we have

√
n(α̂− α) =

√
n 1
n

∑
i,t ωitvit−1

1
n

∑
i,t vitvit−1

.

By the (weak) law of large numbers, 1
n

∑
i,t vitvit−1

p−→ E[vitvit−1], and, by the central limit the-

orem,
√
n 1
n

∑
i,t ωitvit−1

d−→ N
(
0,E

[
ω2
itv

2
it−1
])

. The Slutsky theorem implies
√
n(α̂ − α)

d−→

N
(

0,
E[ω2

itv
2
it−1]

E[vitvit−1]2

)
; that is,

Var [α̂] ∼
E
[
ω2
it

]
E
[
v2it−1

]
√
nE[vitvit−1]2

.

A.2 With measurement errors

As in the baseline framework, assume that firms produce yit using the single variable input

vit while being subject to idiosyncratic productivity shocks ωit. Furthermore, assume that the

firms’ output is observed subject to measurement error, or equivalently, that unexpected pro-

ductivity shocks that occur after input vit is set. The measurement error is log-additive and

denoted by ηit. All firms produce along

yit = αvit + ωit + ηit,

where yit denotes observed output or output inclusive of the unexpected productivity shocks.

We assume that measurement errors at time t are independent of the past value of the variable
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input; that is, E [ηitvit−1] = 0. If the econometrician ignores the presence of these measurement

errors, the GMM estimator is defined as follows:

Definition 4 The GMM estimator is α̂ ∈ R such that the moment E
[
( ̂ωit + ηit)vit−1

]
is equal to

zero where ̂ωit + ηit = yit − α̂vit = (α− α̂)vit + ωit + ηit.

The GMM estimator is characterized by:

E
[
( ̂ωit + ηit)vit−1

]
= (α− α̂)E[vitvit−1] = 0,

where we use the fact that E [ω̂itvit−1] = 0. As was the case in the baseline framework, the GMM

estimator α̂ of the variable input’s output elasticity is equal to α as long as E[vitvit−1] 6= 0. The

estimator remains unbiased and identified as the additional measurement error only increases

the variance of the composite error term ωit + ηit in the production function. This point is

known and has been discussed, for example, in Blundell and Bond (2000).

If the single-stage GMM estimator is consistent, then why bother purging output from mea-

surement error? There are two advantages to purging. The first is that the increase in the vari-

ance of the composite error term ωit + ηit in the production function raises the standard errors

of the production function estimation. Indeed, a similar derivation to the one in Appendix A.1

yields that the asymptotic variance of estimator is

Var [α̂] ∼
E
[
v2it−1

]
nE[vitvit−1]2

(
E
[
ω2
it

]
+ E

[
η2it
])
,

which increases in measurement error variance. The second advantage is that purging allows

the econometrician to identify true productivity ωit, which is relevant in many applications.45

A.3 Extensions

We now show that the identification results of our estimator is robust to several extensions that

are common in practical applications. We study the case of the translog production function,

the case of several inputs, and the case of AR(1) productivity. We discuss the case with all of

these extensions together in the appendix.

A.3.1 Translog Production Function

We first ease the assumption that output is log-linear by replacing the Cobb-Douglas produc-

tion function with a translog specification:

yit = αvit + βv2it + ωit.

45A further benefit of purging output from measurement error is that it allows more sophisticated persistent
productivity processes than the linear AR(1).
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The other assumptions are unchanged. Our aim is to identify the parametersα and β, to be able

to calculate the size-dependent output elasticity of the variable input for the calculation of the

true markup µit = (α + 2βvit)(PitYit)/(WtVit). The least-squares estimation of the production

function suffers from the same bias as before, which we address by instrumenting vit and v2it by

their respective lags. Econometrically, estimating the more sophisticated translog production is

therefore simply akin to estimating a multivariate GMM regression with instrumental variables.

Formally, we define the estimator as:

Definition 5 The GMM estimator is a pair (α̂, β̂) such that E [ω̂itvit−1] = 0 and E
[
ω̂itv

2
it−1
]

= 0

where ω̂it = yit − α̂vit − β̂v2it = (α− α̂)vit + (β − β̂)v2it + ωit.

It is again straightforward to solve for the estimator (α̂, β̂) in our parsimonious setting. It in-

volves solving the system of linear equations implied by the moment conditions:

E [ω̂itvit−1] = 0
E
[
ω̂itv

2
it−1
]

= 0
⇐⇒ (α− α̂)E[vitvit−1] + (β − β̂)E[v2itvit−1] = 0

(α− α̂)E[vitv
2
it−1] + (β − β̂)E[v2itv

2
it−1] = 0

.

This system can be rewritten in matrix form with V (B − B̂) = 0 where

B − B̂ =

(
α− α̂
β − β̂

)
and V =

(
E[vitvit−1] E[v2itvit−1]
E[vitv

2
it−1] E[v2itv

2
it−1]

)
.

As long as the determinant of V is not zero, the GMM estimator on translog is identified and

asymptotically consistent such that α̂ = α and β̂ = β. This is the case as long as vit and its

square are not colinear and when the lagged values of vit and v2it are relevant instruments.

A.3.2 Several Inputs

In the next extension we assume that firms produce with two inputs, a variable input vit and

another input kit. We assume that the additional input is, in the terminology of the produc-

tion function literature, dynamic. This means that firms face adjustment costs and other inter-

temporal constraints when setting kit, which leads firms to choose kit before observing con-

temporaneous productivity. The production function in logs reads yit = αvit+βkit+ωit and we

are interested in estimating the parameters (α,β). Because kit is set before productivity is ob-

served, we only need to instrument the variable input with its lag. The estimation is therefore

akin to a GMM regression with one endogenous and one exogenous variable. The estimator

can be defined as follows:

Definition 6 The GMM estimator is a pair (α̂, β̂) such that E [ω̂itvit−1] = 0 and E [ω̂itkit−1] = 0,

where ω̂it = yit − α̂vit − β̂kit = (α− α̂)vit + (β − β̂)kit + ωit.

Solving for the estimator (α̂, β̂) implies solving for the following system of equations, defined
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by the moment conditions:

E [ω̂itvit−1] = 0
E [ω̂itkit−1] = 0

⇐⇒ (α− α̂)E[vitvit−1] + (β − β̂)E[kitvit−1] = 0

(α− α̂)E[vitkit−1] + (β − β̂)E[kitkit−1] = 0
.

This system can be rewritten in matrix form, with V (B − B̂) = 0, where

B − B̂ =

(
α− α̂
β − β̂

)
and V =

(
E[vitvit−1] E[kitvit−1]
E[vitkit−1] E[kitkit−1]

)
.

Note that if the input kit is perfectly correlated with the variable inputs vit (and hence also

variable), the matrix V will not be of full rank leading to non-identification of the estimator

(α̂, β̂). However, if kit is not variable, it is thus not perfectly correlated with vit, which means

that the determinant of V can be different from zero. As long as the determinant of V is not

zero, the GMM estimator is identified and asymptotically consistent such that α̂ = α and β̂ = β.

A.3.3 Persistent Productivity

In the final extension we assume that total factor productivity follows a first-order autoregres-

sive (AR1) process in logs. The production function is still yit = αvit+ωit, while the productivity

process is ωit = ρωit−1+ξit. We would like to show the properties of GMM estimator (α̂, ρ̂) using

vit−1 and ω̂it−1 as an instrument for vit and ω̂it, where productivity is fitted based on a guess for

α, because the true level of productivity is unobserved. The estimator is now defined as

Definition 7 The GMM estimator is a pair (α̂, ρ̂) such that E
[
ξ̂itvit−1

]
= 0 and E

[
ξ̂itω̂it−1

]
= 0,

where ω̂it = yit − α̂vit = (α− α̂)vit + ωit and ξ̂it = ω̂it − ρ̂ω̂it−1 = ξit + (α− α̂)(vit − ρvit−1) + (ρ−
ρ̂)ωit−1 + (ρ− ρ̂)(α− α̂)vit−1.

In practice, this estimator is solved for iteratively. Because the fitted productivity ω̂it depends

on α, the econometrician iterates over potential output elasticities α̂ until the moment con-

ditions for both productivity and the variable input are satisfied. This is why De Loecker and

Warzynski (2012) label this procedure “iterative GMM”. The estimator, (α̂, ρ̂), is characterized

by the following system of equations defined by the moment conditions:

E
[
ξ̂itvit−1

]
= 0

E
[
ξ̂itω̂it−1

]
= 0

⇐⇒ (α− α̂)E [(vit − ρvit−1)vit−1] + (ρ− ρ̂)E [ωit−1vit−1] + (α− α̂)(ρ− ρ̂)E
[
v2it−1

]
= 0

(α− α̂)E [(vit − ρvit−1)ωit−1] + (ρ− ρ̂)E
[
ω2
it−1

]
+ (α− α̂)(ρ− ρ̂)E [vit−1ωit−1] = 0

(1)

In general, the above system of equations admits two solutions. One is the true solution with

α̂ = α and ρ̂ = ρ, while the other solution converges to (α, ρ) as variation in the data increases.

We leave the full and formal discussion of this case in Appendix A.3.3. To understand the
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essence of the argument consider the following proof sketch, when α̂ and ρ̂ are not too far from

α and ρ, respectively, the terms of the form (α̂ − α)(ρ̂ − ρ) are of second order. In this case, the

system characterizing the estimator (α̂, ρ̂) reduced locally to the matrix equation V (B − B̂) = 0

where

B − B̂ =

(
α− α̂
ρ− ρ̂

)
and V =

(
E[(vit − ρvit−1)vit−1] E[ωit−1vit−1]
E[(vit − ρvit−1)ωit−1] E[ω2

it−1]

)
.

As long as the determinant of V is not zero, the GMM estimator is locally identified and asymp-

totically consistent.
Below, we show that the GMM estimator is globally identified and asymptotically consistent
as long as there is enough variation in the data. The GMM estimator with AR(1) productivity
(Definition 7) is characterized by the system of equations

 E
[
ξ̂itvit−1

]
= 0

E
[
ξ̂itω̂it−1

]
= 0

⇐⇒

 E
[
ξ̂itvit−1

]
= 0

(α− α̂)E
[
ξ̂itvit−1

]
+ E

[
ξ̂itωit−1

]
= 0

⇐⇒

 E
[
ξ̂itvit−1

]
= 0

E
[
ξ̂itωit−1

]
= 0

⇐⇒

 E [ξitvit−1] + (α− α̂)E [(vit − ρvit−1)vit−1] + (ρ− ρ̂)E [ωit−1vit−1] + (α− α̂)(ρ− ρ̂)E
[
v2it−1

]
= 0

E [ξitωit−1] + (α− α̂)E [(vit − ρvit−1)ωit−1] + (ρ− ρ̂)E
[
ω2
it−1

]
+ (α− α̂)(ρ− ρ̂)E [vit−1ωit−1] = 0

⇐⇒
{

g + aX + bY + cXY = 0

h+ dX + eY + fXY = 0,

where X = α − α̂, Y = ρ − ρ̂, and, a = E [(vit − ρvit−1)vit−1], b = E [ωit−1vit−1], c = E
[
v2it−1

]
,

d = E [(vit − ρvit−1)ωit−1], e = E
[
ω2
it−1
]
, f = E [vit−1ωit−1] = b, g = E [ξitvit−1], h = E [ξitωit−1] .

Let us look at the asymptotic where g = 0 and h = 0. Assuming c 6= 0, we get

{
aX + bY + cXY = 0

dX + eY + fXY = 0
⇐⇒

{
X = 0

Y = 0
or

{
X = − bd−ae

cd−af
Y = bd−ae

ce−bf
if cd− af 6= 0 and ce− bf 6= 0.

It follows that there are two global solutions for the GMM estimator with AR(1):

 α̂ = α

ρ̂ = ρ
or


α̂ = α− bd−ae

cd−af = α−
√

Var[ωit−1]
Var[vit−1]

Corr(ṽit,vit−1)−Corr(ṽit,ωit−1)Corr(ωit−1,vit−1)
Corr(ṽit,ωit−1)−Corr(ṽit,vit−1)Corr(ωit−1,vit−1)

ρ̂ = ρ+ bd−ae
ce−bf = ρ+

√
Var[ṽit]

Var[vit−1]
Corr(ṽit,vit−1)−Corr(ṽit,ωit−1)Corr(ωit−1,vit−1)

1−Corr(ωit−1,vit−1)2

where ṽit ≡ vit−ρvit−1 = 1
1−α (ξit +mcit − ρmcit−1 + wt − ρwt−1).46 The GMM estimator admits

(exactly) two possible solutions. One solution provides the true value of the parameters, while

the second solution is unrelated to the true parameters. However, ifVar[vit−1] is large compared

to Var[ωit−1] and Var[ṽit] (that is, their ratio goes to infinity while keeping fixed the correlation

structure), then there is a unique solution for α̂ and ρ̂. To conclude, if there is enough variation

in the data, the GMM estimator is identified.

46Note that Corr(ṽit, ωit−1) = Corr(mcit − ρmcit−1 + wt − ρwt−1, ωit−1). Intuitively, if input price and marginal
cost (= Pit/µit) are uncorrelated with past value of productivity, this correlation will be equal to zero.
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A.3.4 Full Proof

In this appendix we study the production function estimator for an arbitrary number of inputs,

an arbitrary functional form (Cobb-Douglas or Translog) and an AR(1) productivity process.

Specifically, we assume the output of firm i at time t is such that yit = X ′itβ + ωit, where β ∈ RN

is a vector of parameters to be estimated, and, Xit ∈ RN is a vector of inputs that can con-

tain monomes and products of several inputs. This formulation nests the Cobb-Douglas and

Translog case. For example, a two-inputs, vit,mit translog production function is modeled by

Xit = (vit,mit, v
2
it,m

2
it, vitmit)

′ with parameters β = (βv, βm, βv2 , βm2 , βvm)′. We further assume

that the (log) productivity ωit follows an AR(1) process, that is, ωit = ρωit−1 + ξit. The GMM

based estimator that we study here is defined as follows:

Definition 8 The GMM estimator is β̂ ∈ RN and ρ̂ ∈ R such that the moments E
[
Xit−1ξ̂it

]
and

E
[
ω̂it−1ξ̂it

]
are equal to zero where ω̂it = yit −X ′itβ̂ = X ′it(β − β̂) + ωit and ξ̂it = ω̂it − ρ̂ω̂it−1 =

(Xit − ρXit−1)
′(β − β̂) +X ′it−1(β − β̂)(ρ− ρ̂) + ωit−1(ρ− ρ̂) + ξit

In the remainder of this appendix we study the condition under which the above estimator
admits solutions. To this end, let us study the following system of equations, which defined the
estimator and whose unknowns are β̂ and ρ̂: E

[
Xit−1ξ̂it

]
= 0

E
[
ω̂it−1ξ̂it

]
= E

[
Xit−1ξ̂it

]′
(β − β̂) + E

[
ωit−1ξ̂it

]
= 0

⇐⇒

 E
[
Xit−1ξ̂it

]
= 0

E
[
ωit−1ξ̂it

]
= 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
(β − β̂) + E [Xit−1X

′
it−1] (β − β̂)(ρ− ρ̂) + E [Xit−1ωit−1] (ρ− ρ̂) = 0

E
[
ωit−1X̃

′
it

]
(β − β̂) + E [ωit−1X

′
it−1] (β − β̂)(ρ− ρ̂) + E

[
ω2
it−1

]
(ρ− ρ̂) = 0

,

where we use E [Xit−1ξit] = 0 and E [ωit−1ξit] = 0, and, where we denote X̃it = Xit − ρXit−1.

Note that the first line of the above system of equations corresponds to N equations, while the

second line is just a scalar equation. We have N + 1 equations with unknown (β̂, ρ̂) ∈ RN+1. In

general, this system of equations has multiple solutions, as in the case of one input.

Heuristically, when (β̂, ρ̂) is not too far from the true value (β, ρ), the terms in (β − β̂)(ρ − ρ̂)
are of second order. Ignoring these terms leads to the following reduced system which ca be
written in matrix form: E

[
Xit−1X̃

′
it

]
(β − β̂) + E [Xit−1ωit−1] (ρ− ρ̂) = 0

E
[
ωit−1X̃

′
it

]
(β − β̂) + E

[
ω2
it−1

]
(ρ− ρ̂) = 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
E [Xit−1ωit−1]

E
[
ωit−1X̃

′
it

]
E
[
ω2
it−1

]
( β − β̂

ρ− ρ̂

)
= 0

which admits a unique solution (β̂, ρ̂) = (β, ρ) as long as the (N × N) matrix E
[
Xit−1X̃

′
it

]
E [Xit−1ωit−1]

E
[
ωit−1X̃

′
it

]
E
[
ω2
it−1

]
,

 is invertible. We conclude that the GMM estimator is locally iden-

tified and unbiased.
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A.4 Approximation of Demand System

In this appendix we show how to approximate the demand system specified by Y = D(P ) or

P = D−1(Y ). Note that both of these demand systems allows for differentiated goods across

firms. For the former case, let us define the function Dit(P ) such that Yit = Dit(P ). Around

some symmetric equilibrium, (P ∗0 , Y
∗
0 ), at the first-order, we have, for all i, t

yit = log Yit − log Y ∗0 ≈
∑
jt

∂ logDit

∂ logPjt
(logPjt − logP ∗0 ) =

∑
jt

Jijtpjt,

where the matrix whose element are Jijt is the Jacobian of the log of the demand D. Inverting

this system of equations yields that for all i, pit =
∑

jt dijtyjt, where dijt are the elements of

the inverse of the Jacobian matrix of the (log) demand D. For this case, when the demand is

specified by Y = D(P ), we need to assume that the Jacobian of logD is invertible.

For the case where the demand is given by the inverse demand directly, P = D−1(Y ), let us de-

fine the functionD−1it such that Pit = D−1it (Y ). A first-order approximation around a symmetric

equilibrium (P ∗0 , Y
∗
0 ) yields

pit = logPit − logP ∗0 ≈
∑
jt

∂ logD−1it
∂ log Yjt

(log Yjt − log Y ∗0 ) =
∑
jt

dijtyjt,

where, here, the dijt are the elements of the Jacobian matrix of the (log) inverse demand D−1.

These formulations are useful when deriving the markup of firms of static oligopolistic Cournot

or Bertrand competition. Under Bertrand (that is, when firms take other firm’s prices as given),

the profit of firm i at time t can be written as Πit = PitYit − Cit(Yit) = PitDit(P ) − Cit(Dit(P )),

where Cit(Yit) is the total cost of producing Yit units. Under Bertrand, firms maximize their

profit by setting their price Pit, while taking others’ price as given. The first-order condition of

this profit maximization problem yields that the markup is µit ≡ Pit
∂Cit
∂Yit

=

(
1 +

(
∂ logDit
∂ logPit

)−1)−1
.

Similarly, under Cournot competition, the profit of firm i at time t can be written as Πit =

PitYit−Cit(Yit) = D−1it (Y )Yit−Cit(Yit). Under Cournot, firms choose their quantity, taking other

firm’s quantity as given, which implies that the markup is µit ≡ Pit
∂Cit
∂Yit

=
(

1 + ∂ logD−1
it

∂ log Yit

)−1
. To

conclude, in most static oligopolistic competition models the firm-level markup can be written

as µit = (1 + diit)
−1.47

47Under Cournot, we always have µit = (1 + diit)
−1, while under Bertrand, we further need to assume that diit

the diagonal term of the Jacobian matrix of the (log) inverse demand D−1 is equal to
(
∂ logDit
∂ logPit

)−1

.
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A.5 Revenue Markup and Translog Production Function

We next compare markups from revenue and quantity production functions in a more general

framework with a translog production function. The main intuition remains valid: the bias of

the estimator on revenue Data are equal to the average demand elasticity among firms sharing

the same production function.

Assume that the production function is yit = αvit + βv2it + ωit, while we maintain the other as-

sumptions of our baseline framework. Let us study the bias implied by the use of revenue data

in place of quantity data. Following the same logic as above, the coefficients of the production

function estimated on revenue are such that(
α̂

β̂

)
=

(
α
β

)
+ V −1

(
E[pitvit−1]
E[pitv

2
it−1]

)
, with V =

(
E[vitvit−1] E[v2itvit−1]
E[vitv

2
it−1] E[v2itv

2
it−1]

)
.

As in the Cobb-Douglas case, these estimates are biased. The above equation is the translog

equivalent of equation (6) where the correlation of the instruments (lagged variable inputs and

lagged variable inputs squared) with the output price is the case of the bias.

In the case of a translog production function, the true markup is such that µit = (α +

2β log Vit)
PitYit
WtVit

, and, the revenue markup is thus µ̂Rit = α̂+2β̂ log Vit
α+2β log Vit

µit. As pointed out by Bond

et al. (2021) and as in the Cobb-Douglas case, if we assume homogeneous inverse demand

elasticities among firms in the sample (that is for all iwe have pit = −γyit), the revenue markup

is equal to one.48 However, in general the revenue markup is different from one and contains

information on the true markup. To see this formally, we assume again that inverse demand

elasticities are heterogeneous among firms, such that for all i by pit = −diityit where there is at

least one pair (i, j) such that diit 6= djjt. As above, the true markup is given by µit = (1− diit)−1.

In this heterogeneous inverse demand elasticity case, we have(
α̂

β̂

)
=
(
I − E

[
Xit−1X

′
it

]−1 E [diitXit−1X
′
it

])( α
β

)
,

where Xit is vector (vit, v
2
it−1)

′ and I is the identity matrix. Hence, revenue markups satisfy

µ̂R
it =

[
1− (α+ 2β log Vit)

−1

(
α

β

)′ (
E
[
diitXitX

′
it−1

]
E
[
XitX

′
it−1

]−1)( 1

2 log Vit

)]
(1− diit)−1. (2)

This markup is in general different from one for at least some firms. To see that clearly, let

us further assume that the inverse demand elasticities are independent of the variable input

usage and its square, such that, for any n,m ∈ N, E
[
diitv

n
itv

m
it−1
]

= E [diit]E
[
vnitv

m
it−1
]
.With these

48When pit = −γyit, the vector V −1

(
E[pitvit−1]
E[pitv

2
it−1]

)
= γ

(
α
β

)
and the revenue markup becomes µ̂Rit = (1 −

γ)α+2β log Vit
α+2β log Vit

(1− γ)−1 = 1.
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assumptions in place, one can show that α̂ = α(1− E [diit]) and β̂ = β(1− E [diit]). The revenue

markup is equal to µ̂Rit = (1 − E [diit])(1 − diit)−1 which is different from one since there exist

a pair (i, j) such that diit 6= djjt. As for the Cobb-Douglas case, the bias is determined by an

average of the inverse demand elasticities.

In the translog case, the average revenue markup is E
[
log µ̂Rit

]
= E [log(µit)]+E

[
log α̂+2β̂ log Vit

α+2β log Vit

]
.

Let us assume that the inverse demand elasticities are heterogeneous across firms in the sam-
ple. From equation (2), we can see that the average of the log revenue markup is equal to zero
up to a Jensen-like inequality:

E
[
log µ̂Rit

]
= −E [log(1− diit)]+E

[
log

(
1− (α+ 2β log Vit)

−1

(
α

β

)′ (
E
[
diitXitX

′
it−1

]
E
[
XitX

′
it−1

]−1
)( 1

2 log Vit

))]
.

When the inverse demand elasticities are homogeneous, ∀i, diit = γ, then the average log rev-

enue markup is exactly zero. The relationship between the average revenue and true markup

now depends on the distribution of the variable input log Vit and the extent of the bias in the

production function estimation. Importantly, the variance of the revenue markup is different

from the variance of the true markup and also depends on the distribution of inputs and the

covariance of input and the true markup. Finally, the correlation between the revenue and the

true markup is no longer equal to one. To gauge the information content of the revenue markup

under translog, we rely on the simulations.

B Derivation of the Translog Production Function

In this appendix we derive the translog approximation of the CES production function and

show that it nests the Cobb-Douglas production function. We specify a CES production func-

tion with homogeneity of degree γ:

Yiht = Ωiht

(
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

) η

η−1
γ
.

Cobb-Douglas derivation The generalized CES production function nests the Cobb-Douglas

production function as η → 1. To see this, note that

ln yiht = ωiht +
η

η − 1
γln

[
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

]
.
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The limit of this function for η → 1 is

lim
η→1

ln yiht = ωiht + γ lim
η→1

ln
[
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

]
η−1
η

,

= ωiht + γ lim
η→1

V
η−1

η

iht ln Viht αη2 +K
η−1

η

iht ln Kiht
(1−α)
η2

1/η2
(
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

) ,
= ωiht + γ [ ln Vihtα+ ln Kiht(1− α)] ,

where the second step follows from l’Hopital’s rule. In levels, this yields the Cobb-Douglas

production function with returns to scale γ:

Yiht = Ωiht

(
V α
ihtK

1−α
iht

)γ
.

Translog derivation The function implies the translog production function (15) up to a first-

order approximation around η = 1. To see this, start from

ln yiht = ωiht +
η

η − 1
γ ln

[
α[Viht]

η−1

η + (1− α)[Kiht]
η−1

η

]
,

ln yiht = ωiht +
η

η − 1
γ ln

[
α[Viht]

η−1

η

(
1 +

(1− α)

α

[
Kiht

Viht

] η−1

η

)]
,

ln yiht = ωiht +
η

η − 1
γ ln

[
α[Viht]

η−1

η

]
+

η

η − 1
γ ln

[
1 +

1− α
α

(
Kiht

Viht

) η−1

η

]
.

Then moving the α back into the log term:

ln yiht = ωiht + γviht +
η

η − 1
γ ln

[
α+ (1− α)

(
Kiht

Viht

) η−1

η

]
.

Consider the final term. Rewriting yields

f(x) =
η

η − 1
γ ln

[
1 + (1− α)

((
Kiht

Viht

) η−1

η

− 1

)]
,

f(x) =
γ

x
ln [1 + (1− α) (Bx − 1)] ,

whereB = Kiht/Liht and x = (η−1)/η, such that our approximation is around x→ 0. Rewriting,
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we get

f(x) =
γ

x
ln [1 + (1− α) ((exp (x ln B)− 1)] ,

≈ γ

x
ln
[
1 + (1− α)

(
x ln B− x2[ ln B]2

2

)]
,

≈ γ

x

[
(1− α)

(
x ln B− x2[ ln B]2

2

)
− (1− α)2

2

(
x ln B− x2[ ln B]2

2

)2
]
.

Given that we are approximating the function up to a first order we remove higher order terms,

such that the final equation simplifies to

f(x) =
γ

x

[
(1− α)x ln B + α

1− α
2

x2[ln B]2
]
.

Hence, the first-order approximation of the generalized CES production function reads

yiht = ωiht + γ ln Viht + γ(1− α) ln
(
Kiht

Viht

)
+ γα

1− α
2

η − 1

η

[
ln
(
Kiht

Viht

)]2
.

Grouping terms and denoting x ≡ ln X:

yiht = ωiht + γαviht + γ(1− α)kiht + γα
1− α

2

η − 1

η

(
v2iht + k2iht − 2kihtviht

)
,

which is the translog production function (15) with homogeneity of degree γ.

Variable input demand We next derive the demand for the variable input for the translog

production function. The firms’ cost minimization problem involves minimizing costs WtViht

subject to the production function (15). Note that the output elasticity of the variable input is

∂yiht
∂viht

= γα

(
1 + [1− α]

η − 1

η
[viht − kiht]

)
,

such that the first order condition of the cost minimization problem is:

Wt = λiht
Yiht
Viht

γα

(
1 + [1− α]

η − 1

η
ln
[
Viht
Kiht

])
where λiht is the Lagrange multiplier. Inverting the first-order condition and inserting that

marginal costs MCiht equal λiht, we obtain (3).

Marginal costs As firms face an exogenous sequence of the fixed input Kiht, marginal costs

can be derived from the production function (15) and optimal demand for the variable input
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(3). Inserting the latter into the former, we get

yiht = ωiht + γα ln
[(

MCiht
Wt

)
γα

(
1− [1− α]

η − 1

η
ln
[
Kiht

Viht

])
Yiht

]
+ γ(1− α)kiht + γα

1− α
2

η − 1

η

[
ln
(
Kiht

Viht

)]2
.

Isolating log marginal costs on the left-and side yields (4).

For the calculation of the equilibrium, we use the fact that firms within the sector are subject to

the same sequence of factor prices. For a given price of a unit of the variable input Wt, the firm

solves the static cost-minimization problem by choosing optimal variable input demand. This

yields the first-order condition:

Viht =

(
MCiht
Wt

)
γα

(
1 + [1− α]

φ− 1

φ
ln
[
Viht
Kiht

])
Yiht, (3)

where, from inserting optimal variable demand into the production function, log marginal

costs mciht ≡ ln MCiht can be expressed as:

mciht = ln
[
Wt

γ
Y

1−αγ
αγ

iht Ω
− 1

αγ

iht K
α−1

α

iht

]
− ln

(
1 + [1− α]

φ− 1

φ
ln
[
Viht
Kiht

])
+

1− α
2

φ− 1

η

(
ln
[
Viht
Kiht

])2

.

(4)

C Additional Tables and Figures

Table A1: Estimation of AR(1) process for intermediate input prices
(1) (2) (3) (4)

Auto-regressive coefficient (ρw) 0.900*** 0.871*** 0.865*** 0.868***
(0.009) (0.011) (0.014) (0.014)

St. Dev. of shocks (σw) 0.046 0.042 0.042 0.045

Controls None Year F.E. Year F.E. & Ind. F.E. Time Pol. & Ind. F.E.
Observations 798 798 798 798
R-squared 0.922 0.936 0.918 0.908

Note: Results from auto-regressions for intermediate input price indices (log) at the two-digit level. Data from EU-KLEMS for
France, 1995-2016. Standard errors in parentheses. *, ** and *** denote statistical significance at the 10, 5 and 1% level,

respectively. Time Pol. refers to the inclusion of a third-degree polynomial for time as a control.
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Table A2: Estimation of AR(1) process for detrended nominal value added
(1) (2) (3) (4)

Auto-regressive coefficient (ρw) 0.999*** 1.001*** 0.677*** 0.708***
(0.00479) (0.00412) (0.0285) (0.0257)

St. Dev. of shocks (σw) 0.166 0.140 0.419 0.390

Controls None Year F.E. Year F.E. & Ind. F.E. Time Pol. & Ind. F.E.
Observations 798 798 798 798
R-squared 0.982 0.987 0.709 0.608

Note: Results from auto-regressions for nominal sector-level value added (log) at the two-digit level, detrended with nominal GDP.
Data from EU-KLEMS for France, 1995-2016. Standard errors in parentheses. *, ** and *** denote statistical significance at the 10,

5 and 1% level, respectively. Time Pol. refers to the inclusion of a third-degree polynomial for time as a control.

Table A3: Estimation of AR(1) process for fixed input using capital
(1) (2) (3) (4)

Auto-regressive coefficient (ρw) 0.988*** 0.656*** 0.656*** 0.651***
(0.000) (0.008) (008) (0.002)

St. Dev. of shocks (σw) 0.215 0.215 0.662 11.79

Controls None Year F.E. Year F.E. & Ind-Year F.E. & Firm. F.E. Firm F.E.
Observations 160,124 160,124 160,124 160,124
R-squared 0.987 0.490 0.490 0.493

Note: Results from auto-regressions for French firms using EAP-FARE data for 2009-2019. Data on 27,857 firms. Standard errors in
parentheses are clustered by firm. *, ** and *** denote statistical significance at the 10, 5 and 1% level, respectively. Industry fixed

effects are at the 5-digit level.
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Table A4: Estimated Translog production function parameters with alternative calibration

Quantity Revenue
Coefficients True Full Basic None Full Basic None

βv = αγ 0.77 0.75 0.73 0.3 0.73 0.7 0.73
(0.02) (0.018) (0.227) (0.016) (0.011) (0.059)

βk = (1− α)γ 0.33 0.34 0.37 0.65 0.2 0.23 0.21
(0.016) (0.015) (0.146) (0.013) (0.009) (0.036)

βvv = γ α(1−α)
2

φ−1
φ

0.011 0.007 0.004 -0.057 0.003 -0.001 0.001
(0.003) (0.003) (0.031) (0.002) (0.002) (0.008)

βkk = βvv 0.011 0.008 0.006 -0.016 0.001 -0.001 0.001
(0.002) (0.002) (0.011) (0.001) (0.001) (0.003)

βvk = −2βvv -0.021 -0.016 -0.01 0.068 -0.008 -0.002 -0.004
(0.004) (0.004) (0.039) (0.004) (0.002) (0.01)

Implied avg. elasticity 0.715 0.714 0.713 0.684 0.712 0.711 0.73
(Std. dev.) (0.024) (0.017) (0.01) (0.126) (0.008) (0.003) (0.003)

Note: Estimated production function coefficients for different specifications. The top panel presents production function esti-
mates. The alternative calibration sets returns to scale γ = 1.1 and variable input share α = 0.7, as well as demand elasticity
across firms within markets ε = 7 and demand elasticity across markets σ = 1.7 as in Burstein et al. (2020). The bottom panel
presents elasticities of the variable input v on output (measured in terms of quantity or revenue). Standard deviations are pre-
sented in brackets. The first column presents true values for comparison. Bootstrapped standard errors are in parentheses. Full,
Basic and None describe the specification of the first-stage regressions. Full first stages include a third-order expansion in the pro-
duction function inputs, time fixed effects and additional controls for log price and market share. Basic first stages do not include
the additional controls. Columns headed None do not deploy a first stage and therefore estimate markups on output variables that
include measurement error ηiht.

Table A5: Translog Log Markup Estimates with alternative calibration

Correlation ln µ̂iht Log Markup Moments
with true markup Mean St. Dev. Median IQR

True values 1.00 0.256 0.048 0.210 0.270

Quantity
Full first stage (preferred) 0.98 0.255 0.049 0.216 0.262
Basic first stage 0.93 0.254 0.053 0.221 0.272
No first stage 0.13 0.196 0.208 0.345 0.860

Revenue
Full first stage 0.91 0.253 0.054 0.222 0.279
Basic first stage 0.81 0.251 0.060 0.230 0.306
No first stage 0.84 0.277 0.058 0.253 0.266

Note: The alternative calibration sets returns to scale γ = 1.1 and variable input share α = 0.7, as well as demand elasticity across
firms within markets ε = 7 and demand elasticity across markets σ = 1.7 as in Burstein et al. (2020). The first column present
correlations of estimated markups with true values. Full first stages include a third-order expansion in production inputs and
additional controls for log price and market share. Basic first stages do not include the additional controls.
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Table A6: Change in Bias under Alternative Calibrations

Translog - Revenue (Full) CD - Quantity (Full)
Coefficients True Nk = 16 Nk = 8 Nk = 4 φ = 1.05 φ = 1.1 φ = 1.3

Production Function
βv = αγ 0.32 0.38 0.39 0.33 0.32 0.31 0.29

(-0.022) (-0.013) (-0.015) -0.003 -0.003 -0.002

βk = (1− α)γ 0.48 0.33 0.28 0.23 0.49 0.49 0.52
(-0.015) (-0.007) (-0.008) -0.001 -0.001 -0.001

βvv = γ α(1−α)
2

φ−1
φ

0.009 0.018 0.021 0.013
(-0.004) (-0.003) (-0.003)

βkk = βvv 0.009 0.003 -0.001 -0.009
(-0.002) (-0.001) (-0.001)

βvk = −2βvv -0.017 -0.023 -0.026 -0.018
(-0.005) (-0.003) (-0.003)

Implied avg. elasticity 0.298 0.306 0.32 0.306 0.32 0.31 0.29
(Std. dev.) (0.019) (0.035) (0.041) (0.028)

Note: Estimated production function coefficients for different specifications. The top panel presents production function esti-
mates. The bottom panel presents elasticity of the variable input v with respect to output (quantity or revenue depending on the
specification). The first column presents true values for comparison. Bootstrapped standard errors are in parentheses.

Table A7: Overview - Productivity and Log Markup Estimates on different specifications

Correlation Markup Moments (diff with true)
Markup Prod. Error Mean St. Dev. Median IQR

True 1.00 1.00 1.00 0.00 0.00 0.00 0.00

Translog - Revenue (Full FS)
Sector with Nk = 16 0.61 0.76 1.00 0.02 0.04 -0.01 0.45
Sector with Nk = 8 0.69 0.65 1.00 0.03 0.04 -0.01 0.35
Sector with Nk = 4 0.97 0.52 0.99 -0.04 0.01 -0.06 0.15

Cobb-Douglass - Quantity (Full FS)
Sector with φ = 1.05 0.93 1.00 1.00 0.01 0.02 0.02 0.06
Sector with φ = 1.1 0.82 0.99 1.00 0.02 0.04 0.04 0.16
Sector with φ = 1.3 0.57 0.94 1.00 0.04 0.18 0.10 0.66

Note: Table of moments of estimated productivity and markups. The first two columns present correlations of estimated produc-
tivity and markups with the true values. For Revenue TL Full and Quantity CD Full markup moments are reported as difference
with the true ones, since every sector has different markup values.
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Table A8: Correlations across Simulated Specifications - Log Markups

True Full - Q Full - R Basic - Q Basic - R None - Q None - R

Pearson Correlation Cobb-Douglas Production Function
True 1.00 0.82 0.82 0.82 0.82 0.82 0.82
Full First Stage - Quantity 0.82 1.00 1.00 1.00 1.00 1.00 1.00
Full First Stage - Revenue 0.82 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Quantity 0.82 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Revenue 0.82 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Quantity 0.82 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Revenue 0.82 1.00 1.00 1.00 1.00 1.00 1.00

Pearson Correlation Translog Production Function
True 1.00 1.00 0.69 1.00 0.73 0.66 0.40
Full First Stage - Quantity 1.00 1.00 0.75 0.99 0.79 0.72 0.48
Full First Stage - Revenue 0.69 0.75 1.00 0.66 1.00 1.00 0.94
Basic First Stage - Quantity 1.00 0.99 0.66 1.00 0.70 0.62 0.36
Basic First Stage - Revenue 0.73 0.79 1.00 0.70 1.00 0.99 0.92
No First Stage - Quantity 0.66 0.72 1.00 0.62 0.99 1.00 0.95
No First Stage - Revenue 0.40 0.48 0.94 0.36 0.92 0.95 1.00

Spearman Correlation Cobb-Douglas Production Function
True 1.00 0.76 0.76 0.76 0.76 0.76 0.76
Full First Stage - Quantity 0.76 1.00 1.00 1.00 1.00 1.00 1.00
Full First Stage - Revenue 0.76 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Quantity 0.76 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Revenue 0.76 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Quantity 0.76 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Revenue 0.76 1.00 1.00 1.00 1.00 1.00 1.00

Spearman Correlation Translog Production Function
True 1.00 0.99 0.65 1.00 0.69 0.61 0.39
Full First Stage - Quantity 0.99 1.00 0.72 0.98 0.76 0.69 0.48
Full First Stage - Revenue 0.65 0.72 1.00 0.60 1.00 1.00 0.94
Basic First Stage - Quantity 1.00 0.98 0.60 1.00 0.64 0.56 0.33
Basic First Stage - Revenue 0.69 0.76 1.00 0.64 1.00 0.99 0.92
No First Stage - Quantity 0.61 0.69 1.00 0.56 0.99 1.00 0.96
No First Stage - Revenue 0.39 0.48 0.94 0.33 0.92 0.96 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log. Simulated data.
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Table A9: Correlations across Simulated Specifications - Log-Differenced Markups

True Full - Q Full - R Basic - Q Basic - R None - Q None - R

Pearson Correlation Cobb-Douglas Production Function
True 1.00 0.89 0.89 0.89 0.89 0.89 0.89
Full First Stage - Quantity 0.89 1.00 1.00 1.00 1.00 1.00 1.00
Full First Stage - Revenue 0.89 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Quantity 0.89 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Revenue 0.89 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Quantity 0.89 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Revenue 0.89 1.00 1.00 1.00 1.00 1.00 1.00

Pearson Correlation Translog Production Function
True 1.00 1.00 0.80 1.00 0.83 0.78 0.49
Full First Stage - Quantity 1.00 1.00 0.83 0.99 0.86 0.81 0.54
Full First Stage - Revenue 0.80 0.83 1.00 0.78 1.00 1.00 0.91
Basic First Stage - Quantity 1.00 0.99 0.78 1.00 0.81 0.75 0.46
Basic First Stage - Revenue 0.83 0.86 1.00 0.81 1.00 0.99 0.89
No First Stage - Quantity 0.78 0.81 1.00 0.75 0.99 1.00 0.93
No First Stage - Revenue 0.49 0.54 0.91 0.46 0.89 0.93 1.00

Spearman Correlation Cobb-Douglas Production Function
True 1.00 0.86 0.86 0.86 0.86 0.86 0.86
Full First Stage - Quantity 0.86 1.00 1.00 1.00 1.00 1.00 1.00
Full First Stage - Revenue 0.86 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Quantity 0.86 1.00 1.00 1.00 1.00 1.00 1.00
Basic First Stage - Revenue 0.86 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Quantity 0.86 1.00 1.00 1.00 1.00 1.00 1.00
No First Stage - Revenue 0.86 1.00 1.00 1.00 1.00 1.00 1.00

Spearman Correlation Translog Production Function
True 1.00 1.00 0.79 1.00 0.82 0.76 0.52
Full First Stage - Quantity 1.00 1.00 0.83 0.99 0.85 0.80 0.57
Full First Stage - Revenue 0.79 0.83 1.00 0.76 1.00 1.00 0.92
Basic First Stage - Quantity 1.00 0.99 0.76 1.00 0.79 0.73 0.48
Basic First Stage - Revenue 0.82 0.85 1.00 0.79 1.00 0.99 0.90
No First Stage - Quantity 0.76 0.80 1.00 0.73 0.99 1.00 0.94
No First Stage - Revenue 0.52 0.57 0.92 0.48 0.90 0.94 1.00

Note: Each cell presents the pairwise correlation between the markup in the row and the column header. The first-stage regression
includes a third-degree polynomial of inputs, price and market share controls, and time fixed effects (“Full”), only the polynomial
and time fixed effects (“Basic”) or no first stage. All markups are expressed in log. Simulated data.
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Figure A1: Aggregate Markups - Sector Level
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Notes: The figures plot the aggregate markup based on quantity data (blue-solid) and revenue data (green-dashed). The plots are
an index where the aggregate markup in each year is divided by the level in 2010. Aggregate markups are the harmonic average of
firm-level markups, weighted by sales share. two-digit NACE code in brackets.
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Figure A1: Aggregate Markups - Sector Level (Continued)
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Notes: The figures plot the aggregate markup based on quantity data (blue-solid) and revenue data (green-dashed). The plots are
an index where the aggregate markup in each year is divided by the level in 2010. Aggregate markups are the harmonic average of
firm-level markups, weighted by sales share. Two-digit NACE code in brackets.
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