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Abstract

A critical question facing speculators contemplating to trade on private infor-

mation is whether their signal has already been priced in by the market. In our

model, speculators assess the novelty of their information based on recent price

movements, and market makers are aware that speculators might be trading on

stale news. An asymmetric response to past price movements ensues: after price

increases, buy volume—because it may result from stale news trading—has a lower

price impact than sell volume (and vice versa after price decreases). Consequently,

return skewness is negatively related to lagged returns. We find strong support

for these and other predictions using a comprehensive sample of US stocks.

JEL classification: G11, G14

Keywords: Strategic trading, learning from prices

∗Joël Peress is at INSEAD, Boulevard de Constance, 77300 Fontainebleau, France. Email:
joel.peress@insead.edu. Daniel Schmidt is at HEC Paris, 1 Rue de la Libération, 78350 Jouy-en-Josas,
France. Email: schmidt@hec.fr. We thank Dion Bongaerts, Thierry Foucault, Xavier Gabaix, Brett
Green, Johan Hombert, Augustin Landier, Jeongmin Lee (WFA discussant), Brandon Han (AFA dis-
cussant), Lin Peng (SFFS discussant), Shiyang Huang (EWFC discussant), Francesco Sangiorgi, Esad
Smajlbegovic, and seminar/conference participants at Aarhus University, Erasmus University, Frank-
furst School of Finance & Management brownbag, HEC Paris brownbag, the 2020 European Winter
Finance Conference, the 2020 Western Finance Association Meeting, the 2022 American Finance As-
sociation Meeting, and the 4th Shanghai Financial Forefront Symposium. All remaining errors are our
own.



1 Introduction

Asset prices reflect information. Yet, in a complex world it is seldom clear whether a

given piece of information is already reflected in the price or not. While there is a large

literature on information asymmetry, informed trading, and learning from prices (e.g.,

Grossman, 1976; Grossman and Stiglitz, 1980; Hellwig, 1980; Kyle, 1985), this type of

uncertainty is rarely captured in existing models. Indeed, almost all of the theoretical

literature on this subject relies on an arguably implausible degree of common knowl-

edge about the information structure faced by market participants. For example, it is

typically assumed that all market participants know what type of signals, if any, are

observed by all other market participants.1 In practice, however, uncertainty about

a stock is multidimensional and may depend on a variety of factors such as consumer

demand, competition, takeover opportunities, technological changes, regulation etc.

Given this complexity, it seems unrealistic that all investors know precisely how many

other investors have information about each and every one of these dimensions of uncer-

tainty. In other words, the assumption of complete knowledge of a stock’s information

environment—although common in the literature—is surely too restrictive.

This paper belongs to a nascent literature attempting to relax this restrictive com-

mon knowledge assumption. Prior work in this field has mostly looked at the asset

pricing implications of the uncertainty that results when uninformed investors are not

sure about the presence of informed investors (and thus about the importance of ad-

verse selection). In contrast, this paper focuses on the uncertainty faced by informed

investors about how informed they really are: do they possess genuinely novel informa-

tion—on which it would be profitable to trade—or do they possess stale information

that is already reflected in the price? Such type of uncertainty is very common. After
1For instance, in Grossman and Stiglitz (1980), investors are assumed to know both the exact

fraction of informed and uninformed investors as well as what the informed investors are informed
about (i.e., the fundamental is u = θ + ε and informed investors are assumed to know θ).
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all, prices can move for a myriad of reasons and it is difficult, nay impossible, for in-

vestors to know the precise extent to which a recent price move is driven by this or that

piece of information. Hence, when investors contemplate trading on a signal, they will

not know how many other investors have traded on this information before and thus

how novel their signal truly is. In this paper, we put forth a parsimonious trading model

in which investors face this type of uncertainty and describe the resulting equilibrium

implications.

Two key insights emerge from the model. The first insight concerns investors’ up-

dating and was first pointed out by Treynor and Ferguson (1985) (albeit not in an

equilibrium framework): investors rely on past price movements to assess the novelty

of their trading signals.2 To see the intuition for this, consider an investor that has

just unearthed positive information about a stock. Not knowing whether this informa-

tion is already reflected in the price or not, the investor looks at recent price changes

for guidance. If the stock price has just gone up, it is possible that other investors

have learned the same information before him, implying that his information is stale.

In contrast, if the stock price has gone down, the price movement must be explained

by some different information, and so the investor concludes that his information is

novel. These considerations lead the investor with positive news to trade more (less)

aggressively after recent price downturns (upturns).

The second insight involves market makers’ assessment of adverse selection risk and

is, to the best of our knowledge, new to the literature: after recent price increases (de-

creases), market makers consider positive (negative) order flow to be less informative,

because it could come from investors trading on stale news, and so moderate its price

impact. It follows that the skewness of returns depends negatively on lagged returns.

Indeed, after price increases, market makers lower prices more in response to sell or-

ders than they raise them in response to buy orders. Moreover, because speculators

might actually be trading on stale (positive) news, buy orders are more likely than sell
2Treynor and Ferguson (1985) make this point in defense of technical analysis. In their study, they

take prices as given and do not spell out the equilibrium implications of such behavior.
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orders after price increases. Both effects contribute to making returns more negatively

skewed. Conversely, returns are more positively skewed after price decreases, both be-

cause market makers raise prices more in response to buy orders than they reduce them

in response to sell orders, and because buy orders are less likely. Hence our model pre-

dicts that equilibrium prices, return skewness, and trading strategies are asymmetric

across buy and sell orders and depend on prior price movements. Our final implication

is that, by making investors reluctant to trade on their information, uncertainty about

what’s in the price reduces the information content of stock prices.

We argue that the type of asymmetric dependence which we describe here arises

naturally when there is uncertainty about what’s in the price, making it a distinct

“footprint” to look for in empirical data. Indeed, the literature to date has primarily

focused on two different sources of asymmetry in price impact. The first is dynamic

speculation (e.g., Llorente et al., 2002): when informed investors gradually establish

their positions, a string of orders in the same direction signals their presence, prompting

market makers to increase price impact. The second is inventory risk (e.g., Ho and Stoll,

1981; Madhavan and Smidt, 1993; Hendershott and Menkveld, 2014): when market

makers are loath to deviate from a given target inventory level, they require bigger

price concessions for accommodating orders that push their inventory further away from

target as compared to orders that allow them to move toward the target. In both cases,

buy (sell) orders that come after buy orders are associated with a larger (lower) price

impact. Our model makes the exact opposite prediction: buy orders that come after

prior buy orders are less informative (since they could come from speculators trading

on stale news), implying a lower price impact. In practice, all of these channels are

expected to co-exist. It is thus an empirical question whether our prediction regarding

uncertainty about what’s in the price prevails in the data.

We shed light on this question by examining an exhaustive sample of NYSE-traded

stocks from 1993 to 2014. Starting with skewness, we find that the daily skewness

of stock returns (estimated from intraday TAQ data) is negatively related to lagged
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returns, consistent with the model. This phenomenon is economically meaningful, as a

one-standard deviation (1-SD) increase in lagged returns decreases skewness by about

12% of a SD. Moreover, in contrast to alternative mechanisms (discussed below) that

rely on short sale constraints, this relationship holds for both positive and negative

lagged returns, and is insensitive to short selling costs (which proxy for the tightness

of short sale constraints). Turning to the price impact predictions, we compare price

impact costs on days with net-buying and net-selling activity as a function of past

returns. Using the Lee and Ready (1991) algorithm to infer trade direction, we compute

daily measures of trade imbalances from intraday TAQ data. We document that, on

days with net-buying activity, price impact costs (measured using four distinct proxies

that reflect adverse selection) are negatively related with past returns, while on days

with net-selling activity price impact costs are positively related with past returns.3 Put

differently, buys elicit a lower price impact when prior returns were positive, consistent

with market makers understanding that investors are potentially buying based on stale

news; for the same reason, sells elicit a lower price impact when prior returns were

negative. This phenomenon is again economically meaningful. For instance, a 1-SD

increase in lagged returns decreases (increases) price impact costs on days with a positive

(negative) trade imbalance by about 6% of a SD, thus driving a wedge between buy-

and sell-days of about 12% of a SD.

In our model, asymmetric patterns in skewness and price impact arise only when

there is uncertainty about what’s in the price. We therefore check whether our previous

findings weaken when uncertainty about what’s in the price is arguably lower. We report

two sets of results. First, we find that the asymmetric patterns in skewness and price

impact are considerably less pronounced immediately after earnings announcements,

when investors know better what information is already impounded in stock prices.
3Our four price impact measures are: i) a signed version of the Amihud (2002) illiquidity ratio,

named price impact costs, defined as the ratio of a stock’s daily return (adjusted for autocorrelation)
over its signed trade imbalance; ii) lambda, the slope coefficient from a regression of stock returns on
signed order flow over five-minute intervals; iii) quote-based price impact, the percentage change in the
mid-quote from before to five minutes after the transaction; iv) ln(Amihud), the standard Amihud
(2002) illiquidity ratio, defined as the logarithm of the stock’s absolute return divided by its dollar
volume.

5



Second, they are weaker for stocks for which more information is public; that is, for

larger stocks and stocks with more analyst coverage. These tests confirm that non-

public information—i.e., information whose degree of common knowledge is hard to

ascertain—plays a central role in the phenomena we document.

Finally, we assess the implication of the model for stock price informativeness. To do

so, we construct a cross-sectional measure of the extent of uncertainty about what’s in

the price based on the sensitivity of return skewness with respect to past returns—the

more negative this sensitivity, the higher the uncertainty. We then relate this mea-

sure to the information content of prices around earnings announcements. Following

Weller (2018), we construct a measure of stock price informativeness—called the price

jump ratio—defined as the fraction of the total earnings-related return change that

occurs at the announcement. The higher this measure, the less information has entered

stock prices before the announcement, indicating lower price informativeness. We find

that heightened uncertainty about what’s in the price is consistently associated with a

higher jump price ratio and thus with less informative stock prices. This confirms our

model prediction that investors concerned about the novelty of their signals trade more

cautiously and thereby slow down the capitalization of information into stock prices.

Overall, our results indicate that uncertainty about what’s in the price is a genuine

concern for investors. Indeed, we are not aware of any other theory that jointly explains:

1) why return skewness depends negatively on past price movements; 2) why price

impact costs depend on past price movements asymmetrically across buy and sell orders;

3) why the dependence of both return skewness and price impact costs is consistently

reduced after public announcements and for stocks in the limelight; and finally 4) why

stock price informativeness is negatively affected by this dependence.

Related literature. Our paper contributes primarily to the theoretical literature

on informed trading in financial markets, and more specifically, to the body of research

relaxing the assumption that investors’ information environment is common knowledge.

Prior work finds that under multidimensional uncertainty—such as when the proportion
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of informed traders is unknown—traders might ignore their own information or delay

acting on it, leading to herding (Avery and Zemsky (1998)) or to persistent mispricing

(Abreu and Brunnermeier, 2002; Abreu and Brunnermeier, 2003). More recently, Gao

et al. (2013), Banerjee and Green (2015), and Papadimitriou (2020) study traders who

are uncertain about the proportion of informed traders. In Banerjee and Green (2015)

in particular, learning about whether others are trading on informative signals or noise

leads to prices that react asymmetrically to news about fundamentals and hence to

returns that depend asymmetrically on lagged returns (as explained below, the asym-

metry is different from what is predicted by our model). In Easley and O’Hara (1992),

market makers are unsure whether speculators have observed a signal about the asset’s

fundamental. Importantly, the learning agents in all these papers are themselves un-

informed; hence, they cannot use their own signal realization in combination with the

price to update their beliefs about the information structure of the market. It is this

interplay between an investor’s own signal realization and recent price changes that

lies at the heart of our model. Another line of research (Blume et al., 1994; Schneider,

2009) studies investors’ use of trading volume data to learn about properties of other in-

vestors’ private signals (i.e., their precision or correlation with other investors’ signals).

In contrast, our focus is on how investors use (endogenous) past price movements to

determine the extent of their information advantage and their optimal trading intensity.

Our paper also relates to three other streams of research. The first is the literature

on “technical analysis” (e.g., Brown and Jennings, 1989; Grundy and McNichols, 1989;

Brunnermeier, 2005). In these models, past prices have an independent signal value that

is not subsumed by the current price, but the information structure remains common

knowledge. Investors are therefore not worried that their signals may be stale; they

simply use past prices to try to obtain a better estimate of the signal realizations

observed by other investors. In our model, in contrast, investors use them to update

on the probability that others have seen the same information before them (thereby

rendering their signal stale). Because this behavior is anticipated by market makers,
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prices respond asymmetrically to positive and negative order flow as a function of past

price movements. Saar (2001) makes a similar prediction in a model that preserves the

common knowledge assumption but relies instead on a set of portfolio constraints that

typically apply to mutual funds. Specifically, he assumes that informed investors cannot

borrow, sell short, nor underdiversify (i.e., concentrate holdings on only a few stocks).

After the price increases (decreases), informed traders are more (less) likely to own the

stock—since they probably bought (sold) the stock on the past good (bad) news that

increased (decreased) the price; as a result, their buys (sells) are more constrained by

the diversification (short sale) constraint, reducing the information content of the buy

(sell) order flow. Our mechanism does not rely on portfolio or short sale constraints

(which are presumably less binding for informed traders such as hedge funds than for

mutual funds); instead it follows from a relaxation of the (arguably unrealistic) common

knowledge assumption. Empirically, we document that our findings are not driven by

short sale constraints.4

Second, our paper contributes to the literature on stock return skewness. While this

literature spans many aspects, our contribution is to shed light on the determinants of

individual stock return skewness, and more specifically, on how it depends on past price

movements. Prior research finds that return skewness is negatively related to lagged

returns (e.g., Harvey and Siddique, 2000; Chen et al., 2001), but is less clear on the

mechanism underlying this relationship. Prominent theories rely on the existence of

bubbles (which build up and eventually burst) or on the combination of differences

of opinions with short sale constraints (which temporarily prevent bearish information

from being fully incorporated into prices; Chen et al., 2001). While these theories ex-

plain why skewness is more negative after high past returns, they fail to account for the

symmetric phenomenon—which we find to be equally strong in the data—that skewness

is more positive after low past returns.5 Our model offers a parsimonious explanation
4Specifically, we find that the dependence of return skewness and price impact costs on past returns

does not strengthen when shorting fees (a proxy for the tightness of the constraint) are higher, see
Section 3.4 for a detailed discussion.

5One exception is Xu (2007), who presents a model in which short sale-constrained investors disagree
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for these patterns by merely requiring (fully rational) investors to be uncertain about

how informed they really are. To be clear, our intention in this paper is to highlight

that the dependence of skewness and price impact costs on past returns is multi-faceted,

rather than to dismiss alternative mechanisms. More work is needed to ascertain the

relative importance of each channel and the conditions under which they prevail.

Finally, our paper is also related to the empirical literature on stale news trading

(e.g., Huberman and Regev, 2001; Tetlock, 2011; Gilbert et al., 2012). While these

papers point to attention constraints or to an irrational overreaction to news, we ar-

gue that even sophisticated investors may find it difficult to judge the true value of a

privately-acquired signal and may end up trading on stale information. We explore the

ramifications of this idea in a model that is a entirely rational (apart from the usual

assumption about noise trading) and shed a first light on its empirical relevance.

The paper proceeds as follows. Section 2 describes a simple trading game and solves

it under different assumptions about the information structure, before discussing the

distinct predictions that result from uncertainty about what’s in the price. Section 3

presents empirical tests of of our model predictions regarding return skewness, price

impact costs, and stock price informativeness. Section 5 concludes.

2 Model

We develop a parsimonious model in which investors face uncertainty about what’s in

the price. We deliberately keep our model as simple as possible for ease of exposition.

2.1 Setup

There are three dates, denoted 0, 1, and 2; three categories of agents, namely market

makers, speculators (or insiders), and noise traders; and a single stock. The stock pays

on the precision of a publicly observed signal. We find no evidence that the return-skewness relationship
strengthens when shorting is more costly, contrary to what Xu (2007) implies. Moreover, his model
predicts that the relationship should be weaker after public news announcements. We find the opposite
in our data.
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a dividend of θ = θ1 + θ2 at date t = 2, where θ1 and θ2 are independent and both

pay off +σ or −σ with equal probability. Hence, θ is −2σ with probability 1/4, 0 with

probability 1/2, or +2σ with probability 1/4.

At dates t = 0 and t = 1, prices are set by competitive market makers (henceforth

M) as in Kyle (1985). At date t = 0, there are no speculators and no noise traders.

Market makers observe a part of the fundamental θm where m ∈ {1, 2} with equal

probability, and equate the price of the asset, p0, to their expectation of the dividend:

p0 = E(θ|θm) = θm. At date t = 1, a unit-mass of informed speculators (henceforth S)

with mean-variance utility and risk aversion parameter γ all observe the same part of

the fundamental θs where s ∈ {1, 2} with equal probability. They then submit market

orders conditional on the realization of their signal and the price at t = 0, p0 (that is,

θm).6 The variables m and s are drawn independently, implying that M and S observe

with equal probability the same part of the fundamental (m = s) or different parts

(m 6= s). At date t = 1, there are also noise traders who submit a random market

order, n, uniformly distributed over the interval [−1,+1]. Therefore, the total order

flow at date t = 1, ω1, consists of the orders of the speculators and of the noise traders.

We assume that speculators are sufficiently risk averse and/or that fundamental

uncertainty is high enough. This assumption ensures that the aggregate order flow at

t = 1 is not fully revealing (which would render the model uninteresting):

Assumption 1. Let γσ > 3.

Our way of modeling the stock dividend as being determined by two parts, θ1 and

θ2, captures in stylized fashion the idea that a stock’s fundamental value depends on

multiple sources uncertainty. Which bits and pieces are known to M and S, respectively,

and whether they know what the others know are central elements to the model. Figure

1 summarizes the model setup.
6The assumption that all speculators observe the same part of the fundamental is not crucial for

our argument. Indeed, the model’s main prediction about investors’ updating on the novelty of their
signal based on past price movements remains valid if one, for example, assumes that each speculator
i observes θsi with si ∈ {1, 2} being independent from m and sj for all speculators j 6= i.
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2.2 Benchmark: No uncertainty about what’s in the price

We describe a benchmark in which speculators face no uncertainty about what’s in the

price. We first assume that both speculators and market makers know which component

of the fundamental the other group observes. Then we assume that only market makers

face uncertainty about what’s in the price; that is, speculators know which component

market makers observe, but not vice versa.

2.2.1 Both m and s are common knowledge

We start by assuming that both M and S know m and s. That is, both M and S know

which part of the fundamental is observed by M at t = 0 and whether S have observed

the same part or not. Consider first the case m = s, meaning that both M and S know

the same part of the fundamental, θm = θs. S then have no information advantage over

M and thus refrain from trading (ω1 = n). Therefore, p0 = p1 = θm.

Next, suppose M and S observe different parts of the fundamental; that is, m 6= s.

In this case, M do not know the exact realization of θs, but they know that S have an

information advantage (since they also observe p0 = θm) they will trade on. M then try

to back out θs from the order flow. We conjecture that S trade in a symmetric fashion

and buy x(1) (sell −x(1)) with |x(1)| < 1 when they know θs = σ (θs = −σ). Hence, the

order flow is ω1 = x(1) + n if θs = σ, and ω1 = −x(1) + n if θs = −σ. If M observe

ω1 > −x(1) + 1 (ω1 < x(1) − 1), then they infer that θs = σ (θs = −σ). If instead

x(1) − 1 ≤ ω1 ≤ −x(1) + 1, then it is both possible that S bought or sold and M learn

nothing about θs. Accordingly, the equilibrium price is given by:

p1 =


θm + σ for − x(1) + 1 < ω1 ≤ x(1) + 1

θm for x(1) − 1 ≤ ω1 ≤ −x(1) + 1

θm − σ for − x(1) − 1 ≤ ω1 < x(1) − 1

Each speculator i from the set S chooses her order xi to maximize expected utility,
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taking the price function as given. Imposing rational expectations (i.e., xi = x(1) for all

i in S) on the first-order condition yields the following equilibrium condition:

x(1) =
E [θ − p1 | p0, θs]

γ V ar [θ − p1 | p0, θs]

Consider the case m 6= s and θs = σ (the case θs = −σ is symmetric). We

have E [θ − p1 | p0, θs = σ,m 6= s] = σ(1 − x(1)) and V ar [θ − p1 | p0, θs = σ,m 6= s] =

σ2x(1)(1 − x(1)). Plugging these expressions into the previous equation yields x(1) =√
1/(γσ). The following proposition summarizes the equilibrium.

Proposition 2. Assume that market makers M and speculators S know which part of

the fundamental is observed by M and S; that is, m and s are common knowledge. At

t = 0, M set p0 = θm. At t = 1:

• If m = s, then S refrain from trading, and M set p1 − p0 = 0.

• If m 6= s and θs = σ (θs = −σ), then S buy (sell) an amount x(1) (−x(1)) where

x(1) =
√
1/(γσ). M set the price change, p1 − p0, independently of the realization

of p0, according to:

p1 − p0 =


+σ for − x(1) + 1 < ω1 ≤ x(1) + 1

0 for x(1) − 1 ≤ ω1 ≤ −x(1) + 1

−σ for − x(1) − 1 ≤ ω1 < x(1) − 1

(1)

Intuitively, speculators S trade less aggressively (x(1) lower) when they are more

averse to risk (γ larger) and when the final payoff is more uncertain (σ larger). Note that

x(1) < 1 by Assumption 1, and hence the order flow ω1 = x(1)+n does not fully reveal θs,

implying that S derive positive expected utility from trading. The solution resembles

Vives (1995), who also models trading by a continuum of risk-averse speculators in

the presence of competitive market makers (but with normally-distributed payoff and

noise). The key feature of the equilibrium is that the price change, p1 − p0, does not
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depend on the lagged price p0; that is, a buy or sell order triggers a price change of the

same magnitude regardless of the lagged price.

2.2.2 Only m is common knowledge

We now assume that S knowm and s, but that M only knowm. In other words, both M

and S know which part of the fundamental is observed by M (and thus reflected in p0),

but only S know whether they observed the same part or not. In essence, this setting

features uncertainty for market makers about whether (better) informed speculators

are present or not.

If M and S observe the same part of the fundamental (i.e., m = s), then S have no

information advantage over M and thus refrain from trading (ω1 = n). If m 6= s, then

S have additional information about θ and are conjectured to buy (sell) an amount x(2)

(−x(2)) when θs = σ (θs = −σ). Market makers M do not know, however, which of these

cases has occurred and try to learn from the order flow. If M observe ω1 > 1 (ω1 < −1),

then they infer that θs = σ (θs = −σ). If −x(2) + 1 ≤ ω1 ≤ 1 (−1 ≤ ω1 < x(2) − 1),

then M know that S did not sell −x(2) (did not buy x(2)). In other words, M know that

either m = s (when S do not trade) or θs = σ (θs = −σ). The conditional expectation

of θs is then 1
3
σ (−1

3
σ) (see Appendix A.2). Finally, if x(2)−1 ≤ ω1 ≤ −x(2)+1, then M

learn nothing about θs. Therefore, the equilibrium price function is given by Equation

(2) below.

Given this price function, S choose the order size x that maximize their expected

utility. Consider the case when m 6= s and they know θs = σ (the case θs = −σ is

symmetric). In this case, S are expected to buy, implying that the order flow is drawn

at random from the interval [x(2) − 1, x(2) + 1]. It follows that (see Appendix A.2):

E(θ − p1|p0, θs = σ,m 6= s) = σ

(
1− 2

3
x(2)

)
V ar(θ − p1|p0, θs = σ,m 6= s) = σ2x(2)

(
5

9
− 4

9
x(2)

)

13



Plugging these expressions into the first-order condition for S’ profit maximization

problem and imposing rational expectations (i.e., xi = x(2) for all i in S) yields the

optimal order size x(2). The following proposition summarizes the resulting equilibrium.

Proposition 3. Assume that only m is common knowledge; that is, speculators S know

which part of the fundamental is observed by market makers M but not vice versa. At

t = 0, M set p0 = θm. At t = 1:

• If m = s, then S refrain from trading.

• If m 6= s and θs = σ (θs = −σ), then S buy (sell) an amount x(2) (−x(2)) , where

x(2) is defined in Appendix A.2.

Market makers M don’t know whether m = s or m 6= s and set the price change, p1−p0,

independently of the realization of p0, according to:

p1 − p0 =



+σ for 1 < ω1 ≤ x(2) + 1

+1
3
σ for − x(2) + 1 < ω1 ≤ 1

0 for x(2) − 1 ≤ ω1 ≤ −x(2) + 1

−1
3
σ for − 1 ≤ ω1 < x(2) − 1

−σ for − x(2) − 1 ≤ ω1 < −1

(2)

Proof. See Appendix A.2.

As before, the equilibrium trading aggressiveness, x(2), is decreasing in γ and σ.

Hence, S trade less aggressively when they are more risk averse or when the stock’s

payoff is more uncertain. Importantly, the price change, p1−p0, again does not depend

on the lagged price p0. As we shall see, this is no longer the case when speculators face

uncertainty about what’s in the price.

We briefly compare this version of the model to Banerjee and Green (2015), who

also solve a rational expectation equilibrium model in which there is uncertainty about

whether informed traders are present or not. One key difference is that here prices are
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set by competitive market makers, whereas Banerjee and Green (2015) rely on market-

clearing by risk-averse investors. Since in Banerjee and Green (2015) the asset is in

positive supply, prices reflect a risk premium and an asymmetry emerges: both high and

low price signals lead investors to update upward the probability that informed traders

are present and thus command a larger price discount, which attenuates (resp. amplifies)

the market response to positive (resp. negative) news. Market makers are risk-neutral

in our model, so there is no such risk discount effect and the price function remains

symmetric despite the uncertainty about whether there are informed traders. Instead,

as we will see next, there emerges another type of asymmetry (whose nature changes

with p0) when there is uncertainty about what’s in the price.

2.3 Uncertainty about what’s in the price: Neither m nor s are

common knowledge

We now tackle the case of interest—that is, the case in which speculators face uncer-

tainty about whether their trading signals are already reflected in the price. Specifically,

we assume that M know m and S know s, but neither group knows which part of the

fundamental was observed by the other. That is, as in the model solution discussed in

Section 2.2.2, M do not know whether S observed the same part of the fundamental or

not, but now this uncertainty also extends to S. As a result, when S’ signal coincides

with the signal observed by M as revealed by the t = 0 price (θm = θs), then S are un-

sure whether they observed the same part of the fundamental or whether they actually

observed the other part and it just happens that this news goes in the same direction.

When θm 6= θs, however, then S infer that m 6= s and they understand that they have

truly novel information.

To solve for the trading equilibrium, we conjecture that S buy (sell) an amount x(3)

(−x(3)) when θm 6= θs and that they buy (sell) an amount y(3) (−y(3)) when θm = θs

with x(3) ≥ y(3). Consider the case θm = σ. Given the conjecture, M expect S to either

buy y(3) (when θs = σ) or sell −x(3) (when θs = −σ). If −x(3) + 1 < ω1 ≤ y(3) + 1,
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then M infer that S bought y. Their expectation of the component of θ that they

do not observe is then 1
3
σ (see Appendix A.3), resulting in a price of σ + 1

3
σ = 4

3
σ.

If −x(3) − 1 ≤ ω1 < y(3) − 1, then M know that S sold x(3). Their expectation of

the component of θ that they do not observe is therefore −σ and so the price equals

σ − σ = 0. If y(3) − 1 ≤ ω1 ≤ −x(3) + 1, then it is both possible that S bought or sold;

thus M learn nothing from the order flow and maintain the price at σ, the realization

of their signal θm. As a result, the price function is given by Equation (3) below. For

the case θm = −σ, the logic is reversed. S either buy x(3) or sell −y(3), and M draw

analogous inferences from the order flow, leading to the price function (4).

The crucial feature of these price functions is their asymmetry: market makers

anticipate that sell volume after a price increase is a more informative signal about the

stock’s fundamental compared to buy volume. The reason is that sell volume after a

price increase indicates that speculators trade on genuine new information, whereas buy

volume can also come from speculators trading on stale information (i.e., information

already reflected in p0). Hence, price impact is larger for sell (buy) volume after recent

price increases (decreases).

We now solve for the equilibrium trading quantities, x(3) and y(3). Consider the case

θm = −σ (as usual, the case θm = σ is symmetric), which is revealed to investors S by

the t = 0 price. When θs = σ, an investor i in set S expects the other investors in S

to buy an amount x(3), resulting in an order flow drawn at random from the interval

[x(3) − 1, x(3) + 1]. The investor then calculates (see Appendix A.3):

E(θ − p1|θm = −σ, θs = σ) = = σ

(
1−

x(3) + y(3)
2

)
V ar(θ − p1|θm = −σ, θs = σ) = σ2

(
1−

x(3) + y(3)
2

)
x(3) + y(3)

2

When θs = −σ, investors expect other investors in S to sell an amount −y(3), resulting

in an order flow drawn at random from the interval [−y(3) − 1,−y(3) + 1]. The investor
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then calculates (see Appendix A.3):

E(θ − p1|θm = −σ, θs = −σ) = −1

3
σ

(
1−

x(3) + y(3)
2

)
V ar(θ − p1|θm = −σ, θs = −σ) =

1

9
σ2

(
8 +

x(3) + y(3)
2

(
1−

x(3) + y(3)
2

))

Investors first-order condition together with requiring rational expectations for the two

cases θs = σ and θs = −σ (i.e., xi = x(3) in the former case and xi = y(3) in the latter)

yields a system of two equations in x(3) and y(3). The following proposition summarizes

the resulting equilibrium.

Proposition 4. Assume that neither m nor s are common knowledge. At t = 0, market

makers M set p0 = θm. At t = 1:

• If θm 6= θs and θs = σ (θs = −σ), then speculators S buy (sell) an amount x(3)

(−x(3)), where x(3) is defined in Appendix A.3.

• If θm = θs and θs = σ (θs = −σ), then S buy (sell) an amount y(3) (−y(3)), where

y(3) =
2−γσx2

(3)

γσx(3)
≤ x(3).

The price change, p1 − p0, depends on the realization of p0 = θm as follows:

• If θm = +σ, then

p1 − p0 =



1
3
σ for − x(3) + 1 < ω1 ≤ y(3) + 1

0 for y(3) − 1 ≤ ω1 ≤ −x(3) + 1

−σ for − x(3) − 1 ≤ ω1 < y(3) − 1

(3)

• If θm = −σ, then

p1 − p0 =


+σ for − y(3) + 1 < ω1 ≤ x(3) + 1

0 for x(3) − 1 ≤ ω1 ≤ −y(3) + 1

−1
3
σ for − y(3) − 1 ≤ ω1 < x(3) − 1

(4)
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Proof. See Appendix A.3.

Both x(3) and y(3) are decreasing in γ and σ; that is, as in the previous cases,

speculators trade more cautiously when they are more risk averse or when the stock’s

payoff is more uncertain. Moreover, since x(3) ≥ y(3) in equilibrium, investors trade

more aggressively on their information when they are sure that it is novel as compared

to the case when they are worried that market makers could have seen it first.

2.4 Comparison of equilibria

We now compare the equilibrium outcomes for the different degrees of common knowl-

edge that we analyzed previously. For ease of reference, we refer to these equilibria as

follows: the case with m and s being common knowledge (Section 2.2.1) is denoted by

(1), the case with only m being common knowledge (Section 2.2.2) with (2), and the

case of interest with neither m nor s being common knowledge (Section 2.3) with (3).

We highlight that only equilibrium (3) displays uncertainty about what’s in the price.

We begin by comparing the price functions that obtain in the three equilibria.

Corollary 5. In equilibria (1) and (2), price impact costs for buys and sells are sym-

metric and do not depend on the previous price update. In equilibrium (3)—i.e., under

uncertainty about what’s in the price—price impact costs are asymmetric and depend

on the previous price update: after a price increase (decrease), price impact costs for

buys (sells) are reduced, while those for sells (buys) are increased.

This corollary highlights the key distinguishing feature of the model with uncertainty

about what’s in the price: price impact costs differ for buys and sells as a function of

past price movements, as illustrated in Figure 2. Intuitively, when buy (sell) volume

follows a recent price uptick (downtick), market makers assign a positive probability to

the possibility that speculators are trading on stale news and therefore charge a lower

price impact.
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The asymmetric price impact of Corollary 5 naturally leads to return skewness, with

a sign that depends on the prior price change, as described next.7

Corollary 6. In equilibria (1) and (2), return skewness is unrelated to the lagged return.

In equilibrium (3)—i.e., under uncertainty about what’s in the price—return skewness

is negatively related to the lagged return.

After price increases (decreases), market makers update prices more aggressively

in response to incoming sell (buy) orders than to incoming buy (sell) orders, resulting

in negatively (positively) skewed returns. Moreover, after price increases (decreases),

speculators are more likely to buy (sell) as they may be trading on positive (negative)

stale news. This further contributes to negatively (positively) skewed returns after price

increases (decreases).

Finally, we examine the price informativeness for the three different equilibria. We

define price informativeness as PI ≡ V ar (E (θ|p1, p0)).8 The higher this measure,

the more information prices contain, which lowers the residual uncertainty faced by

investors and—to the extent that prices convey information to real decision makers

(see e.g. Luo, 2005; Chen et al., 2007; Foucault and Fresard, 2012; Dessaint et al.,

2018)—promotes real efficiency.

Corollary 7. The price informativeness in equilibria (1), (2), and (3) is as follows:

PI(1) = σ2

(
1 +

1

2
x(1)

)
PI(2) = σ2

(
1 +

1

3
x(2)

)
PI(3) = σ2

(
1 +

1

6

(
x(3) + y(3)

))

Moreover, we have PI(3) < PI(2) and PI(3) < PI(1) (whereas the comparison between

7Our prediction on the skewness of price changes, p1 − p0, can be expressed using the skewness of
returns, (p1− p0)/p0, since we compare prices across buy and sell orders starting from the same initial
price, p0.

8Alternatively, price informativeness can be defined as E (V ar (θ|p1, p0)). The definitions are equiva-
lent and related through the Law of Total Variance: E (V ar (θ|p1, p0)) = V ar (θ)−V ar (E (θ|p1, p0)) =
2σ2 − V ar (E (θ|p1, p0)).
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PI(1) and PI(2) depends on the parameters).

The corollary shows that uncertainty about what’s in the price unambiguously re-

duces price informativeness. There are two opposing effects that bear on price infor-

mativeness. On the one hand, when speculators are worried about whether their signal

is stale, they trade less aggressively and thus impound less information into the price.

On the other hand, compared to the case in which both speculators and market mak-

ers know s, speculators trade slightly more aggressively when they are sure that their

signal is novel (i.e., when the signal goes against the most recent price change). This sec-

ond effect is indirect and comes from lower price impact costs since—with uncertainty

about what’s in the price—market makers expect a less informative order flow on aver-

age. Overall, the direct effect outweighs the indirect one and so price informativeness

decreases.

2.5 Discussion of model assumptions

Our model is deliberately kept as simple as possible. Nonetheless, we conjecture that

the main intuition is robust to alternative assumptions.

First, we have assumed that market makers observe a part of the fundamental and

set p0 equal to their signal. This is just a convenient short cut. A more elaborate model

would have different groups of speculators observing different or the same signals, and

trading at different points in time. Such a model yields similar insights. The price

at t = 0 reflects the signals of speculators trading in that period. As in our model,

speculators arriving at t = 1 would then compare their signal realizations with p0 in

order to assess whether other speculators have already traded on the same signal before

them.

Second, regarding the model’s distributional assumptions, the two pieces of the

fundamental value, θ1 and θ2, are assumed to follow binary distributions. This renders

speculators’ inference particularly simple: when their signal is “high” and the price is

“low,” speculators infer that the signal must be novel; when speculators’ signal is “high”
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and the price is “high” as well, then speculators are unsure about whether their signal

is novel or stale. This intuition carries over naturally to continuous random variables

provided we add some noise to the price. To see this, suppose that θ1 and θ2 are drawn

from continuous distributions and that the price at t = 0 reflects market makers’ signal

with noise.9 This noise might stem from market makers observing a noisy signal of

θs or from trading for reasons unrelated to the stock’s fundamentals such as inventory

concerns.10 As before, speculators arriving at t = 1 compare their signal with p0. If the

distributions from which θ1, θ2, and noise n are drawn satisfy the monotone likelihood

ratio property (as is the case for example with normal distributions), then speculators’

inference depends monotonically on the distance between θs and p0: the larger this

distance, the more likely it is that their signal is novel. Our key model prediction about

asymmetric price impact costs is expected to go through in this setup.

Third, trading on stale news occurs in our model despite all investors (speculators

and market makers) being rational. Indeed, we think of this as the key contribution

of our model: in a world with multidimensional uncertainty, even rational investors

are unsure what news is priced in and, hence, may end up trading on stale news. In

practice, some stale news trading may be due to (irrational) noise traders or feedback

traders/trend chasers (e.g., Barber and Odean, 2007; Tetlock, 2011). Since price impact

in our theory is caused by adverse selection, our model has nothing to say on the effect

of stale news trading on other sources of illiquidity, such as inventory or noise trader

risk (e.g., Grossman and Miller, 1988; Foucault et al., 2011; Hendershott and Menkveld,

2014; Peress and Schmidt, 2020).11 Still, its intuitions about price impact due to adverse

selection are robust to the the presence of naїve feedback traders. Indeed, investors who

indiscriminately buy (sell) the stock at t = 1 after observing a price increase (decrease)

at t = 0 do not affect our equilibrium price functions to the extent that they do not
9Without noise, when m 6= s and with continuous distributions, θm = θs is a zero-probability

event, implying that speculators at t = 1 know almost surely whether their signal is novel or stale (i.e.,
uncertainty about what’s in the price disappears).

10Alternatively, and as noted above, noise in the t = 0 price could come from another group of
speculators trading with noise traders at t = 0.

11In our empirical analysis below, we therefore focus on liquidity measures related to adverse selection
risk.
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change the informativeness of order flow.12

Finally, note that our assumption about speculators having mean-variance prefer-

ences can be replaced by speculators being risk neutral but facing position limits. In

that case, uncertainty about what’s in the price again causes price impact to be asym-

metric across buys and sells depending on θm (as in Proposition 3). The only difference

with respect to our current setup is that speculators’ trading aggressiveness is no longer

asymmetric but dictated by the position limit.

3 How important is uncertainty about what’s in the

price?

3.1 Testable hypotheses

In this section, we present a first evaluation of the relevance of uncertainty about

what’s in the price (UWIP). Specifically, we derive from Corollaries 5-7 in Section

2.4 distinct predictions that help assess whether UWIP is an actual concern for stock

market participants.

Our first two hypotheses follow from the asymmetry in equilibrium price functions

that arises when investors face UWIP (see Corollaries 5 and 6).

Hypothesis 1. Stock return skewness depends negatively on past returns.

Hypothesis 2. Price impact costs depend asymmetrically on past returns: they de-

crease in past returns for buys and increase in past returns for sells.

We further hypothesize that, at certain times and for certain stocks, it should be

easier for investors to understand what information is already reflected in the price; in

those instances, the dependence of return skewness on past returns and the asymmetry
12Specifically, if the amount of feedback trading could be perfectly anticipated by market makers,

Proposition 4 would remain unchanged except that the order flow would then be centered on this
amount of feedback trading (instead of zero). If the amount of feedback trading were uncertain, it
would essentially add noise to the order flow without altering the model’s key intuitions; namely that
speculators learn about the novelty of their signals from past price movements and market makers
take this into account by charging a higher price impact for order flow that goes against recent price
movements.
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for price impact costs should be weaker. For instance, immediately after earnings

announcements, investors understand that recent price movements are driven by the

public earnings news (i.e., in the language of our model, m is common knowledge),

making it easier for them to assess whether their own information is already priced

in. We therefore posit that UWIP, and the associated effects of past returns on return

skewness and price impact costs, are weaker after earnings announcements. In a similar

vein, large stocks and stocks with high analyst coverage have more transparent prices

and we thus expect them to exhibit a weaker dependence of return skewness and price

impact costs on past returns:

Hypothesis 1’. The dependence of return skewness on past returns weakens i) after

earnings announcements, and ii) for large stocks and stocks with high analyst coverage.

Hypothesis 2’. The asymmetric dependence of the price impact of buys and sells on

past returns weakens i) after earnings announcements, and ii) for stocks with more

transparent prices.

Our final hypothesis concerns stock price informativeness. As explained above,

when risk-averse investors face uncertainty about what’s in the price, they trade less

aggressively, thereby impounding less information into the price (Corollary 7). Hence,

we have the following prediction:

Hypothesis 3. More uncertainty about what’s in the price is associated with less

informative stock prices.

3.2 Data and methodology

Our sample comprises the union of the CRSP and TAQ databases for the 1993-2014

period. Throughout our analyses, we focus on common stocks (share codes 10 or 11)

and exclude penny stocks (closing price < $1). With regard to the TAQ data, we apply

the filters and adjustments described by Holden and Jacobsen (2014) for dealing with

withdrawn or canceled quotes, and we use their interpolated time technique to improve

the accuracy of mid-quote prices.
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We sign all TAQ trades using the Lee and Ready (1991) algorithm. To obtain signed

dollar volumes, we multiply the number of shares traded with the prevailing mid-quote

at the end of the 5-minute interval containing the trade. We then sum over all signed

dollar volumes to obtain the daily trade imbalance, which captures the net-buy or

net-sell activity by liquidity consumers (i.e., market order users) on a given date.

3.2.1 Skewness and price impact measures

We measure a stock’s daily return skewness as the realized daily skewness based on

intraday returns standardized by the realized variance:

skewnessit =

√
K
∑K

k=1

(
returnitk − returnit

)3[∑K
k=1

(
returnitk − returnit

)2]3/2 ,
where returnitk is the return (calculated from bid-ask midpoints) over 5-minute interval

k for stock i and day t, returnit is the return of stock i averaged over all 5-minute

intervals comprising day t, and K denotes the number of such intervals on day t.

Negative (positive) values indicate that the stock’s return distribution has a left tail

that is fatter (thinner) than the right tail.

We employ four different price impact measures that are designed to capture adverse

selection risk (as faced by the market makers in our model). The first three make use

of TAQ data and the last only requires CRSP. Our first measure is a signed version of

the Amihud (2002) illiquidity ratio. Specifically, we define the price impact costs for

stock i on day t as

price impactit =
returnit

trade imbalanceit
,

where the return in the numerator is adjusted for the autocorrelation in daily returns.13

The difference with the Amihud ratio is that we use the signed trade imbalance rather
13We find even stronger results if we don’t adjust returns for autocorrelation (available upon request).

The adjustment for autocorrelation is done as follows: for a daily return of stock i in month τ(t), we
run a regression of stock i’s return on lagged returns over the past one to five days, denoted by subscript
j, using the previous twelve month (τ − 12 to τ − 1) and record the autocorrelation coefficients β̂iτ(t)j .
The return adjusted for autocorrelation is defined as returnit −

∑5
j=1 β̂iτ(t)j × returnit−j .
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than trading volume in the denominator, and accordingly also use signed returns in the

numerator. This choice is motivated by our model, in which market makers set prices

after observing the net order flow (i.e., the trade imbalance). Intuitively, our measure

captures by how much the stock price increases (decreases) for one dollar of buying

(selling) volume, with higher values indicating higher price impact costs.

Our second adverse selection measure, lambda, is the slope coefficient from a regres-

sion of stock returns on signed order flow over five-minute intervals; it can be interpreted

as the cost of demanding a certain amount of liquidity over five minutes (see Hasbrouck,

2009). The third measure is quote-based price impact, defined as the dollar-weighted

daily average of the percentage change in the mid-quote from before to five minutes

after the transaction. Our last measure, Ln(Amihud), is the standard Amihud (2002)

illiquidity ratio, defined as the logarithm of the stock’s absolute return divided by its

dollar volume.14 Goyenko et al. (2009) show that it does a good job of capturing ad-

verse selection. We winsorize skewness and price impact measures, as well as other

continuous variables used in this study, at the 1% level on both sides.

3.2.2 Methodology

Our model’s key predictions are that a stock’s daily return skewness depends negatively

on past returns (H1) and that price impact costs for buys and sells depend asymmet-

rically on past returns: they decrease in past returns for buys and increase in past

returns for sells (H2). The model is agnostic about the horizon over which past returns

should be measured; they may be measured intraday, over one day, or over multiple

days. Accordingly, we consider in our empirical tests time windows spanning one, five,

and ten trading days (to which we refer as the “lookback window”).

Specifically, for skewness, we run the following regression:

skewnessit = αiτ + αt + β past returnit + γ Xit−1 + εit ,

14Because this ratio can be zero, we add a small constant (0.00000001) before taking logs. The
constant is chosen so as to make the Amihud ratio’s distribution closer to a normal. Our results are
robust to alternative choices for this constant, including dropping it altogether.

25



where skewnessit is the return skewness measured for stock i on trading day t, αiτ and αt

are stock-month and day fixed effects, past returnit is stock i’s return over the lookback

window (that is, on the prior trading day (t − 1), cumulated over the previous five

trading days (t− 5 to t− 1), or cumulated over the previous ten trading days (t− 10 to

t−1)), and Xit−1 is a vector of controls, which includes past turnover and past squared

return (as a proxy for volatility) measured over the same lookback window. Our theory

predicts β < 0.

For price impact, we run the following pair of regressions separately for days with

positive and negative net-buying activity:

price impactit = αiτ + αt + βb past returnit + γ Xit−1 + εit if trade imbalanceit > 0

price impactit = αiτ + αt + βs past returnit + γ Xit−1 + εit if trade imbalanceit < 0

where price impactit is one of our four price impact proxies. Our theory predicts βb < 0

and βs > 0. When the past return is simply the stock’s prior-day return, our price

impact regressions are potentially confounded by the negative autocorrelation of re-

turns (reversals) observed in individual stock return data. Indeed, a negative return

yesterday predicts a positive return today, which enters the numerator of the first of our

price impact measures. Since the denominator of this measure is by definition positive

(negative) in the sample of days with positive (negative) trade imbalance, one may

mechanically find βb < 0 and βs > 0. This is why we used autocorrelation-adjusted

returns in the construction of this price impact measure.

Note that, because our models are saturated with stock-month and date fixed effects,

we are controlling for stock-specific variations in skewness and illiquidity costs and for

any persistent firm characteristics (e.g., analyst coverage and market capitalization).

For price impact, for instance, our identification comes from the incremental effect of

past returns on price impact costs, separately for buys and sells, while controlling for

the average level of price impact costs for the stock in the same month and for the

average level of price impact costs across stocks on the same day. In the paper, we
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carry out our tests with raw returns. In Internet Appendix 1.1, we show that our

results are robust to using Fama-French 3-factor alphas.

3.2.3 Descriptive statistics

Table 1 Panel (a) reports summary statistics for our dependent and independent vari-

ables in the overall sample. For better visibility, price impact costs, lambda, and quote-

based price impact are scaled by 106, 104, and 102, respectively. For instance, the median

of the price impact costs variable implies that a one million USD net buy would be ex-

pected to push up the price by 0.87%. For the quote-based price impact, the median is

slightly lower at 0.14%. The mean and median of our return skewness measure have

opposite signs, but are both close to zero. The table also shows the standard deviation

for each of our dependent and independent variables, which we use below to assess the

economic significance of our findings.

An old literature finds that the price impact for institutional block purchases is larger

than the price impact for block sales (Kraus and Stoll, 1972; Keim and Madhavan, 1996;

this empirical fact motivates the Saar, 2001, model). Table 1 Panel (b) reports that, for

three out of four price impact measures, the price impact is on average slightly higher

on days with net-selling activity, as compared to days with net-buying activity. Hence,

if anything, the price impact for sells is larger than the price impact for buys in our

(more recent) sample.

3.3 Baseline results

Table 2 shows the results of the skewness tests for the different lookback windows. Con-

sistent with hypothesis H1, we find a strong negative relation between return skewness

and past returns regardless of whether we focus on lagged 1-day returns (Column 1),

lagged 5-days returns (Column 4), or lagged 10-days returns (Column 7). The economic

magnitude of the effect is meaningful. For example, a 1-SD increase in lagged 10-days

returns decreases daily return skewness by about 12% (−3.16× 0.11/2.90) of its SD.

27



Earlier work documents that return skewness is negatively related to lagged returns

at low frequency (e.g., Harvey and Siddique, 2000; Chen et al., 2001) and attributes

this phenomenon to the gradual build-up and eventual burst of stock price bubbles

(Chen et al., 2001). Our results show that the skewness-return relationship also exists

at high frequency—where bubbles are a less plausible explanation—and that it is a

distinct phenomenon. Indeed, when we split the sample according to whether the past

return is negative or positive (confer Columns 2-3, 5-6, and 8-9), we find that the

negative skewness-return relationship is not confined to positive returns as the bubble

explanation posits. Instead, we find that this relationship is as (if not more) pronounced

after negative returns. While this fact is hard to reconcile with an explanation based

on bubbles, it naturally follows from our model.

Table 3 shows the results of the price impact tests. Each panel focuses on one

price impact measure. Regardless of whether we look at price impact costs (Panel (a)),

lambda (Panel (b)), quote-based price impact (Panel (c)), or ln(Amihud) (Panel (d))

and regardless of the lookback window, we consistently obtain results in line with the

model’s prediction: on days with a positive trade imbalance (net-buys), price impact is

significantly negatively related to past returns; whereas on days with a negative trade

imbalance (net-sells), price impact is significantly positively related to past returns. The

only exception occurs for the quote-based price impact at the 1-day lookback window,

for which the regression coefficient on the lagged return for net sells is negative (Panel

(c), Column 2), but the coefficient estimate and its statistical significance are an order

of magnitude smaller than for net buys (Panel (c), Column 1).

Results are highly statistically significant and appear to grow stronger with the

length of the lookback window. For instance, a 1-SD increase in the lagged 1-day

return decreases (increases) the price impact costs on days with a positive (negative)

net trade imbalance by about 5% of its SD, thus driving a wedge between the price

impact costs on buy- and sell-days of about 10% of its SD. The wedge equals about

12% of a SD for the 10-days lookback window. A similar pattern is observable for
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the lambda and the quote-based price impact measures, although the magnitudes are

weaker. These results indicate that uncertainty about what’s in the price is not only a

short-term concern for market participants but one that extends over many days.

We emphasize that we control in our regressions for stock-specific trends in liq-

uidity by including stock-month fixed effects.15 Moreover, our comprehensive panel

dataset—covering all NYSE stocks for a 12-year period—yields strong statistical power

as indicated by the large t-statistics (despite of double-clustering standard errors by

stock and date). In conclusion, the results in Table 3 strongly support hypothesis H2.

3.4 Cross-sectional results

In this subsection, we conduct powerful auxiliary tests of our theory. If, as we argue,

the dependence of skewness and price impact on past returns is caused by uncertainty

about what’s in the price, then it should be less pronounced i) at times when this

uncertainty is lower, and ii) for stocks with lower information asymmetry (H1’ and

H2’). For brevity, we display here results for the 10-days lookback window.16

Our first test tracks stocks over time and investigates whether the asymmetric price

impact pattern weakens immediately after earnings announcements—when investors

know better what information is already reflected in stock prices. To implement this

test, we amend our skewness regression as follows:

skewnessit = αiτ + αt + β1 past returnit + β2 EAit + β3 past returnit × EAit + γ Xit−1 + εit ,

where EAit is a dummy variable that takes the value of one when stock i on date t had

an earnings announcement over the past 10 trading days.17 Likewise, we modify our
15In Internet Appendix 1.1, we further show that our results are robust to using Fama-French 3-factor

alphas instead of raw returns.
16In Internet Appendix 1.2, we report similar results for the 1-day and the 5-days lookback windows.
17We retrieve earnings announcement dates from I/B/E/S. Accordingly, we run this test only for

stocks with I/B/E/S data.
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price impact regressions as follows:

price impactit = αiτ + αt + βb1 past returnit + βb2 EAit + βb3 past returnit × EAit + γ Xit−1 + εit

if trade imbalanceit > 0

price impactit = αiτ + αt + βs1 past returnit + βs2 EAit + βs3 past returnit × EAit + γ Xit−1 + εit

if trade imbalanceit < 0

The variable past returnit×EAit denotes the interaction of the earnings announcement

dummy with the past return. All other variables and fixed effects are as in our baseline

regression. Based on our theory, we expect β1 < 0, βb1 < 0, and βs1 > 0, but β3 >

0, βb3 > 0, and βs3 < 0. In words, return skewness should be negatively related to

past returns, but this relation should be weakened just after earnings announcements.

Likewise, on buy-days (sell-days), price impact should be negatively (positively) related

to past returns, but less so just after earnings announcements.

Table 4 Panel (a) presents the results. For return skewness (Column 1), the coeffi-

cient estimate on past returns interacted with the earnings announcement dummy (β3)

is significantly positive, indicating that the negative effect of past returns on skewness

weakens after earnings announcements. In terms of magnitude, earnings announcements

reduce the skewness-return relation by more than one quarter (0.55/2.03 = 27%). Sim-

ilarly, price impact reacts asymmetrically to past returns on buy- and sell-days, but this

asymmetric reaction is strongly muted after earnings announcements. Indeed, β3 has

consistently the opposite sign of β1 and has a magnitude that, while lower than β1, re-

mains important. For instance, for price impact costs (Columns 2-3), the results indicate

that the effect of past returns on price impact is about a third lower (1.19/3.47 = 34%)

when an earnings announcement occurred over the previous 10 trading days.18

18This finding speaks against an alternative explanation whereby the negative relation between
return skewness and lagged returns stems from a combination of short sale constraints and disagreement
about the precision of public news (Xu, 2007). More specifically, in the Xu (2007) model, short sale-
constrained investors disagree on the precision of a publicly observed signal, leading to an overreaction
(underreaction) to positive (negative) realizations of that signal. As a consequence, return skewness
is positively correlated with contemporaneous returns, but negatively correlated with lagged returns.
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Our second set of tests exploits variations across stocks (and over time) in the

degree of uncertainty about what’s in the price. Specifically, we argue that investors

face less such uncertainty about stocks with more public scrutiny; i.e., larger stocks

and stocks with more analysts. The idea is that such stocks have a more transparent

public information environment, implying that the scope for information asymmetry

and thus UWIP is reduced. The tests are similar to the preceding ones, except that we

now interact past returns with market capitalization and analyst coverage, instead of

an earnings announcement dummy.19 The findings are reported in Table 4 Panel (b)

and Panel (c). They again lend support to our mechanism: the dependence of skewness

on past returns and the asymmetry in price impact on buy- and sell-days is reduced for

larger stocks and for stocks with more analyst coverage.

Finally, we test whether the dependence of skewness and price impact on past re-

turns is mediated by short sale constraints. We do so as prior explanations for this

dependence rely on short sale constraints (e.g., Saar, 2001; Hong and Stein, 2003; Xu,

2007). For instance, in Saar (2001), sells become relatively more informed after positive

past returns because the stock is then more likely to be held by informed mutual funds

(who bought the stock during the price run-up), implying that the short sale constraint

binds less. This leads to an asymmetry in price impact between buys and sells that

varies as a function of past returns. Similarly, in Hong and Stein (2003), short sale

constraints prevent the views of bearish investors from being incorporated into prices.

Their accumulated hidden information comes out during market declines, thus caus-

ing negative return skewness. In each case, short sale constraints are at the root of

the asymmetry—thus, according to these theories, asymmetries in skewness and price

impact should increase (decrease) as short sale constraints tighten (loosen).

To proxy for the tightness of short sale constraints, we use equity lending fees from

IHS Markit, the leading provider of such data.20 The higher the lending fee, the more

Under this explanation, one would have expected the return-skewness relation to be more pronounced
in the immediate aftermath of (public) earnings announcements. We find the opposite.

19As we measure market capitalization and analyst coverage at the end of the previous month, the
level effect of these variables is subsumed by the stock-month fixed effects.

20Our equity lending data spans the period from July 2006 to the end of our sample period.
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expensive it is to borrow the stock and thus the more constrained is short selling. We

then interact the stock’s past returns with its average lending fee over the previous

month. Table 4 Panel (d) shows the results. We find that short selling costs have no

bearing on the dependence of return skewness on past returns (Column 1). This is

inconsistent with the Hong and Stein (2003) and Xu (2007) explanations and suggests

that—at least at the daily frequency—the observed skewness-return relation is more

likely driven by a mechanism that does not rely on short sale constraints such as ours.

For price impact (Columns 2-9), we find that short sale constraints do not increase

the price impact asymmetry between buys and sells (as the interaction coefficients are

negative on both net-buy and net-sell days). In particular, the negative interaction

coefficients on net-sell days are inconsistent with the Saar (2001) model, as they imply

that short sale constraints weaken, rather than strengthen, the price impact of sells

observed after positive returns.21 This suggest that our results are not driven by short

sale constraints.

In summary, the results in this section are in strong agreement with hypotheses

H1 and H2, as well as with hypotheses H1’ and H2’, while being inconsistent with

alternative explanations relying on short sale constraints. They thus lend support to

the idea that UWIP is a real and important concern for investors.

3.5 Price informativeness

In this section, we test whether UWIP is associated with a lower stock price infor-

mativeness as predicted by hypothesis H3. We test this prediction in the context of

earnings announcements. Specifically, we measure the price jump around earnings an-

nouncement dates, and regress it on a self-constructed, model-implied, proxy for the
21We note that our baseline model cannot explain why we find a negative interaction coefficient

between short sale constraints and past returns. However, we suspect that an extended model with
short sale constraints can deliver this prediction. To see this, consider a version of our model in which
the t = 0 price reflects the trading by another group of informed investors. If these investors are short
sale constrained, t = 0 prices will be less informative and so less helpful for assessing the staleness of
a signal. Hence, when determining trading aggressiveness and price impact, market participants put
less weight on past returns.
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extent of uncertainty about what’s in the price.

We follow Weller (2018) and construct the price jump ratio as the fraction of

earnings-related information that is incorporated into the stock price prior to an earn-

ings announcement. The intuition behind this measure follows straight from models

of informed trading (e.g., Kyle, 1985; Back, 1992): the price drifts toward the post-

announcement asset value ahead of the announcement as investors trade on their private

information. Competition among informed traders accelerates this process, resulting in

even more information impounded into prices before the announcement (Holden and

Subrahmanyam, 1992). As such, the price jump ratio is a direct measure of the infor-

mation content of stock prices (Weller, 2018). In contrast, widely used measures such

as pricing error variance (Hasbrouck, 1993) or variance ratio tests (Lo and MacKinlay,

1988) only measure price efficiency (i.e., whether stock prices follow a random walk and

thus accurately reflect available public information) and are therefore not suitable for

our purpose.

We construct the price jump ratio as described in Weller (2018). Here, we provide

a brief summary of his approach and refer the reader to his paper for more detail.

We start from the sample of quarterly earnings announcements over the years 1995 to

2014. We estimate abnormal returns relative to the Fama and French (1992) three-

factor model using daily returns over a 365-calendar day window ending 90 days before

the earnings announcement. We retain the estimated factor loadings if at least 63 non-

missing return observations are available in the estimation window. Abnormal returns

around earnings announcements are then cumulated in event-time. Finally, the price

jump ratio for stock i and event date t is defined as:

jumpit =
CAR

(T−1,T+2)
it

CAR
(T−21,T+2)
it

A high price jump ratio corresponds to a large announcement-date jump relative to

the pre-announcement drift and thus indicates a low level of price informativeness. As

explained by Weller (2018), the price jump ratio is only meaningful for announcements
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with a sufficiently large information content. We therefore only retain announcement

events that satisfy ∣∣∣CAR(T−21,T+2)
it

∣∣∣ > √24σ̂it
where σ̂it is the stock’s daily return volatility calculated over trading days T − 42 to

T−22. In our final sample, the price jump ratio has a mean of 35%, suggesting that, for

the average announcement event, a significant fraction of the information enters prices

before the announcement date. This figure is in line with what is reported in Weller

(2018).

Our measure of uncertainty about what’s in the price builds on the key intuition

of our model: the more unsure speculators are about what’s in the price, the more

negative the dependence of return skewness on past returns. To capture this effect, we

run for each announcement event the following regression using one year of daily data

prior to the earnings announcement for the 10-day lookback window:22

return skewnessiτ = β0 + β1 past returniτ + εiτ .

The coefficient of interest, β1, captures the the sensitivity of return skewness with

respect to past returns. Our model predicts that β1 < 0 and hence a lower coefficient

estimate indicates more uncertainty about what’s in the price. Accordingly, we define

uwiprawit = −β̂1. To mitigate the effect of outliers, we winsorize uwiprawit (as well as

all other variables used in our regression below) at the 1% level on both sides. For

robustness, we define uwipdecit as the decile rank of uwiprawit ; i.e., uwipdecit takes on values

from one (lowest UWIP) to ten (highest UWIP) depending on the corresponding decile

of β̂1.

For our price informativeness tests, we regress the price jump ratio on our measure

of UWIP:

jumpit = αi + αt + β uwipit + γ Xit−1 + εit

22In Internet Appendix 1.3, we report consistent results for 1-day and 5-days lookback windows.
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where αi and αt are stock and date fixed effects, respectively, and Xit−1 is a vector

of pre-determined control variables comprising past turnover, return volatility, market

capitalization, and analyst coverage (all control variables are defined in the header of

Table 5 below).

Table 5 shows the results for uwipraw (Columns 1-3) and uwipdec (Columns 4-6),

respectively. Looking at Column (1), we find a significantly positive effect of uwipraw

on the price jump ratio, implying that uncertainty about what’s in the price is associ-

ated with a lower stock price informativeness as predicted by our model. In terms of

economic magnitude, a 1-SD increase (≈ 0.0032) in uwipraw increases the price jump

ratio by about 1.2 percentage points, or about 4% relative to its unconditional mean

(35%). Adding stock and industry-year fixed effects does not alter this picture: the co-

efficient estimate for uwipraw barely changes and remains highly statistically significant.

Columns 4-6 show that these findings are robust to using decile ranks instead of the

raw measure, implying that the results are not driven by outliers. Here, the magnitude

implies that moving from the 1st to the 10th decile of uwipraw increases the price jump

ratio by about 4% percentage points, or about 11% relative to its unconditional sample

mean. Overall, these results confirm hypothesis H3: uncertainty about what’s in the

price slows down the incorporation of fundamental information into prices and hurts

stock price informativeness.

4 Conclusion

This paper proposes a simple model in which speculators are unsure whether their

signals are stale (i.e., already priced in) or novel—and thus valuable to trade on. In

equilibrium, speculators assess the novelty of their signal by comparing it to the most

recent price movement and adjust their trading aggressiveness accordingly. Market

makers, in turn, anticipate that speculators may be trading on stale news. The resulting

price function is asymmetric: after price increases (decreases), market makers consider

incoming buy volume to be less (more) informative and thus charge a lower (higher)
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price impact compared to sell volume. As a results, return skewness is negatively related

to past price changes. Moreover, by making speculators reluctant to trade, uncertainty

about what’s in the price decreases stock price informativeness.

Using daily order flow data for a comprehensive panel of NYSE-traded stocks, we

find strong support for these predictions. Specifically, we document that (1) return

skewness is negatively associated with past returns and that (2) on days with a positive

(negative) trade imbalance, price impact costs are negatively (positively) related to past

stock returns. Moreover, we find that these dependencies are reduced after earnings

announcements and for stocks with a large market capitalization and a high analyst

coverage; i.e., when speculators know better whether their private signals are novel or

stale. Overall, our results strongly suggest that uncertainty about what’s in the price

is a common and widespread concern for stock market participants.
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Figure 1: Model setup
This figure summarizes the model setup. At t = 0, market makers M observe θm, where
m ∈ {1, 2} with equal probability, and set p0 = θm. At t = 1, speculators S observe θs,
where s ∈ {1, 2} with equal probability, and submit market order to maximize expected
utility. Market makers observe the net order flow, consisting of the sum of speculators’
market orders and noise trades, and set p1 = E(θ|θm, ω). At t = 2, the stock’s payoff
θ = θ1 + θ2 is realized and consumption takes place.

• M observe 
where	 ∈ 1,2

• M sets price:

t = 0 t = 1 t = 2

• S observe 
where	 ∈ 1,2

• S and noise traders submit
market orders, resulting 
in order flow 

• M update the price:
| ,

• is realized
• Consumption takes place

Figure 2: Equilibrium price function
This figure shows the equilibrium price function when speculators face uncertainty
about whether their trading signal is already in the price. In Panel A, we show the
price function for the case of prior positive news (θm = +σ). In Panel B, we show the
price function for prior negative news (θm = −σ).
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Table 1: Descriptive statistics
This table reports descriptive statistics. Panel (a) shows statistics for our dependent and independent
variables in the overall (stock-day) sample. Panels (b) and (c) show descriptive statistics separately for
days with positive net trade imbalance (net-buy subsample) and negative net trade imbalance (net-sell
subsample). Return skewness is defined as realized skewness standardized by realized variance of 5-min
relative price changes on a given day. Price impact costs is defined as the ratio of the (autocorrelation-
adjusted) return over the net trade imbalance. The measure is multiplied by 106 for better visibility.
Lambda is defined as the slope coefficient of regressing stock returns on signed order flow over five-
minute intervals. The measure is multiplied by 104 for better visibility. Quote-based price impact is
defined as the dollar-weighted average of the percentage change in the mid-quote from right before the
transaction to five minutes after the transaction. The measure is multiplied by 102 for better visibility.
Ln(Amihud) is the Amihud (2002) illiquidity ratio, defined as the logarithm of (a small constant plus)
the ratio of absolute return over dollar volume. Past X-day return is the cumulated raw return over
the previous X trading days. Past X-day turnover is the average share turnover over the previous X
trading days. Past X-day volatility is the average of squared raw return over the previous X trading
days. All dependent and independent variables are winsorized at the 1% level on both sides.

Mean Median Standard deviation

Dependent variables
Return skewness -0.0152 0.0309 2.8967
Price impact costs 0.6063 0.0087 5.8523
Lamdba 0.1413 0.0224 0.4777
Quote-based price impact 0.3966 0.1443 0.7834
Ln(Amihud) -16.9706 -17.8151 1.8021

Independent variables
Past 1-day return 0.0008 0.0000 0.0348
Past 5-days return 0.0045 0.0016 0.0752
Past 10-days return 0.0090 0.0051 0.1055
Past 1-day turnover 0.0068 0.0036 0.0095
Past 5-days turnover 0.0070 0.0040 0.0087
Past 10-days turnover 0.0070 0.0042 0.0084
Past 1-day volatility 0.0013 0.0002 0.0035
Past 5-days volatility 0.0015 0.0005 0.0029
Past 10-days volatility 0.0015 0.0006 0.0027

N 22,433,401

Panel (a): Descriptive statistics for overall sample
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Mean Median Standard deviation

Return skewness 0.4701 0.2214 2.6946
Price impact costs 0.5580 0.0045 5.8843
Lamdba 0.1281 0.0196 0.4549
Quote-based price impact 0.3762 0.1380 0.7472
Ln(Amihud) -17.1107 -17.9662 1.7354

N 11,061,604

Panel (b): Descriptive statistics for net buy-days

Panel (c): Descriptive statistics for net sell-days

Mean Median Standard deviation

Return skewness -0.4872 -0.1883 3.0063
Price impact costs 0.6534 0.0157 5.8208
Lamdba 0.1541 0.0259 0.4986
Quote-based price impact 0.4165 0.1514 0.8166
Ln(Amihud) -16.8343 -17.6305 1.8545

N 11,371,797
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Table 5: UWIP and Price Informativeness
This table reports results from regressing the price jump ratio as constructed in Weller (2018) (see
Section 3.5 for details) on our measure of uncertainty about what’s in the price (UWIP) and controls.
To construct UWIP , we run a regression of return skewness on lagged cumulated 10-day returns
over the 252 trading days preceding the earnings announcement. Our model with uncertainty about
what’s in the price predicts a negative regression coefficient (compare also Table 2); we therefore define
UWIP(raw) to be the (winsorized) estimated regression coefficient times minus one. UWIP(dec) is
defined as the decile rank of UWIP(raw). Ln(turnover) is the average share turnover over the 252
trading days preceding the earnings announcement. Return volatility is the standard deviation of raw
returns over the 252 trading days preceding the earnings announcement. Ln(mcap) is the (natural
logarithm of the) market capitalization at the beginning of the announcement quarter. Anal coverage
is the (natural logarithm of one plus) the number of analysts following the stock at the beginning of
the announcement quarter. Columns (1)-(3) show results using UWIP(raw) as the key independent
variable (with regression coefficients multiplied by 1, 000 for better visibility). Columns (4)-(6) show
results using UWIP(dec) as the key independent variable. All regressions contain day fixed effects;
Columns (1) and (4) contain industry fixed effects (based on the SIC-2 digit industry classification);
Columns (2), (3), (5), and (6) contain stock fixed effects, Columns (5) and (6) further include industry-
year fixed effects. t-statistics are based on standard errors adjusted for double-clustering by stock and
day. ∗∗∗, ∗∗ and ∗ indicate statistical significance at the 1%, 5% and 10% level, respectively.

Price jump ratio
(1) (2) (3) (4) (5) (6)

UWIP(raw) 3.8859*** 3.7381*** 3.7734***

(9.01) (7.50) (7.52)
UWIP(dec) 0.0040*** 0.0042*** 0.0042***

(8.61) (8.39) (8.28)
Ln(turnover) 0.0040** -0.0044** -0.0055** 0.0040** -0.0044** -0.0054**

(2.50) (-2.00) (-2.41) (2.56) (-1.98) (-2.38)
Return volatility -0.9124*** -0.2296** -0.0856 -0.9041*** -0.2190* -0.0769

(-9.44) (-2.01) (-0.73) (-9.36) (-1.92) (-0.66)
Ln(mktcap) 0.0002 0.0027 0.0061** 0.0002 0.0026 0.0059**

(0.17) (1.10) (2.35) (0.14) (1.03) (2.30)
AnalCov 0.0242*** 0.0256*** 0.0268*** 0.0245*** 0.0258*** 0.0270***

(9.26) (7.16) (7.39) (9.36) (7.23) (7.45)
Date FE Yes Yes Yes Yes Yes Yes
Industry FE Yes No No Yes No No
Stock FE No Yes Yes No Yes Yes
Industry*year FE No No Yes No No Yes
N 114,555 113,411 113,351 114,555 113,411 113,351
adj. R2 0.06 0.09 0.09 0.06 0.09 0.09
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A Appendix - Proofs

A.1 Proof of Proposition 2 - Both m and s are common knowledge

The main steps of the proof are in the text. Here, we display the calculations for the order size x(1)
when m 6= s (if m = s, then S do not trade). In that case, the price conjecture in Equation (1) leads
to the following:

• If m 6= s and θs = σ (which occurs with probability 1/2 × 1/2 = 1/4), then S buy x(1) shares
so ω1 = x(1) + n and

θ − p1 = (θm + σ)− p1 =


0 with proba. x(1)/4 (i.e., for− 2x(1) + 1 < n ≤ 1)

σ with proba. (1− x(1))/4 (i.e., for− 1 ≤ n ≤ −2x(1) + 1)

2σ with proba. 0 (i.e., for− 2x(1) − 1 ≤ n < −1)

As a result, E [θ − p1|p0, θs = σ,m 6= s] = σ(1 − x(1)) and V ar [θ − p1|p0, θs = σ,m 6= s] =
σ2x(1)(1 − x(1)). Plugging these expressions into the first-order condition for S’ profit max-
imization and imposing rational expectations (xi = x(1) for all i) yields:

x(1) =
E [θ − p1|p0, θs = σ,m 6= s]

γV ar [θ − p1|p0, θs = σ,m 6= s]
=

σ(1− x(1))
γσ2x(1)(1− x(1))

and hence x(1) =
√
1/(γσ).

• If m 6= s and θs = −σ (which occurs with probability 1/2× 1/2 = 1/4), then S sell x(1) shares
so ω1 = −x(1) + n and

θ − p1 = (θm − σ)− p1 =


−2σ with proba. 0 (i.e., for 1 < n ≤ 2x(1) + 1)

−σ with proba. (1− x(1))/4 (i.e., for2x(1) − 1 ≤ n ≤ +1)

0 with proba. x(1)/4 (i.e., for− 1 ≤ n < 2x(1) − 1)

Hence, E [θ − p1|p0, θs = −σ,m 6= s] = −σ(1 − x(1)) and V ar [θ − p1|p0, θs = −σ,m 6= s] =
σ2x(1)(1 − x(1)). Plugging these expressions into the first-order condition and imposing ra-
tional expectations (xi = x(1) for all i) yields:

−x(1) =
E [θ − p1|p0, θs = −σ,m 6= s]

γV ar [θ − p1|p0, θs = −σ,m 6= s]
=

−σ(1− x(1))
γσ2x(1)(1− x(1))

,

which yields again x(1) =
√
1/(γσ). Thus, the order size is identical for θs = +σ andθs = −σ,

which confirms our conjecture.

A.2 Proof of Proposition 3 - Only m is common knowledge

The main steps of proof are in the text. Here, we first display the calculations for Ms’ expectation
of θs conditional on observing an order flow −x(2) + 1 ≤ ω1 ≤ 1 (for other values of the order flow,
M either learn θs perfectly or nothing at all); in that case, M know that either m = s (and S do not
trade) or m 6= s and θs = σ (and S buy x(2)). The former occurs with a probability 1/2 and the latter
with a probability 1/2× 1/2 = 1/4. Hence, E(θs| − x(2) + 1 ≤ ω1 ≤ 1) = 1/2×0+1/4σ

1/2+1/4 = 1
3σ.

Next, we display the calculations for the order size x(2) when m 6= s (if m = s, then S do not trade).
In that case, the price conjecture in Equation (2) leads to the following:
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• If m 6= s and θs = σ (which occurs with probability 1/2× 1/2 = 1/4), then ω1 = x(2) + n and

θ − p1 = (θm + σ)− p1 =



0 with proba. x(2)/8 (i.e., for 1− x(2) < n ≤ 1)
2
3σ with proba. x(2)/8 (i.e., for − 2x(2) + 1 < n ≤ 1− x(2))
σ with proba. (1− x(2))/4 (i.e., for − 1 ≤ n ≤ −2x(2) + 1)
4
3σ with proba. 0 (i.e., for − 1− x(2) ≤ n < −1)
2σ with proba. 0 (i.e., for − 2x(2) − 1 ≤ n < −x(2) − 1)

As a result, E [θ − p1|p0, θs = σ,m 6= s] = σ
(
1− 2

3x(2)
)
and V ar [θ − p1|p0, θs = σ,m 6= s] =

1
9σ

2x(2)(5− 4x(2)). Plugging these expressions into the first-order condition for S’ profit maxi-
mization and imposing rational expectations (xi = x(1) for all i) yields:

x(2) =
E [θ − p1|p0, θs = σ,m 6= s]

γV ar [θ − p1|p0, θs = σ,m 6= s]
=

σ
(
1− 2

3x(2)
)

γ 1
9σ

2x(2)(5− 4x(2))
.

Rearranging leads to the cubic equation:

9− 6x(2) − 5γσx2(2) + 4γσx3(2) = 0 (5)

• If m 6= s and θs = −σ (which occurs with probability 1/2 × 1/2 = 1/4), then ω1 = −x(2) + n
and

θ − p1 = (θm − σ)− p1 =



−2σ with proba. 0 (i.e., for 1 + x(2) < n ≤ 1)

− 4
3σ with proba. 0 (i.e., for 1 < n ≤ x(2) + 1)

−σ with proba. (1− x(2))/4 (i.e., for 2x(2) − 1 ≤ n ≤ 1)

− 2
3σ with proba. x(2)/8 (i.e., for − 1 + x(2) ≤ n < 2x(2) − 1)

0 with proba. x(2)/8 (i.e., for − 1 ≤ n < x(2) − 1)

Hence, E [θ − p1|p0, θs = −σ,m 6= s] = −σ
(
1− 2

3x(2)
)
and V ar [θ − p1|p0, θs = −σ,m 6= s] =

1
9σ

2x(2)(5− 4x(2)). Plugging these expressions into the first-order condition yields:

−x(2) =
E [θ − p1|p0, θs = −σ,m 6= s]

γV ar [θ − p1|p0, θs = −σ,m 6= s]
=

−σ
(
1− 2

3x(2)
)

γ 1
9σ

2x(2)(5− 4x(2))
,

which again leads to Equation 5. Therefore, the order size is identical for θs = +σ and θs = −σ,
which confirms our conjecture.

To prove the existence and unicity of x(2), let f(x) ≡ 9−6x−5γσx2+4γσx3. Given that f(0) = 9 > 0
and f(1) = 3 − γσ < 0 by Assumption 1, f admits at least one root over the interval [0,1]. Note
that, if Assumption 1 does not hold, i.e., if γσ < 3, then f admits no root over that interval, implying
that there is no equilibrium in which speculators’ trades are not fully revealing. To establish the
unicity of x, differentiate f and observe that f ′(x) = −6 − 10γσx + 12γσx2 admits 2 roots, x−/+ =

(5γσ±
√
25γ2σ2 + 72γσ)/12 where x− < 0 and x+ > 1 given Assumption 1. As a result, f ′ is negative

over the interval [0,1], implying that f is monotonically decreasing over that interval. We conclude
that f admits at most one root, x(2), over [0,1].

A.3 Proof of Proposition 4 - Neither m nor s are common knowledge

Recall that we conjecture that S buy (sell) an amount x(3) (−x(3)) when θm 6= θs and that they buy
(sell) an amount y(3) (−y(3)) when θm = θs with x(3) ≥ y(3). We label ¬m the component of the
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fundamental that is not observed by M; for instance, if m = 1 (i.e., M observe θm = θ1), then ¬m = 2
(i.e., M do not observe θ¬m = θ2).
The main steps of the proof are in the text. We first display the calculations for Ms’ expectation of
θ¬m. Suppose M observe θm = σ and an order flow −x(3) + 1 ≤ ω1 ≤ y(3) + 1. In that case, M infer
that S bought y(3) and hence that θs = σ. The configuration θm = θs = σ occurs either if m = s
(probability 1/2×1/2 = 1/4) or if m 6= s and θm = θs = σ (probability 1/2×1/2×1/2 = 1/8). Hence,
E(θ¬m|θm = σ,−x(3)+1 ≤ ω1 ≤ y(3)+1) = 1/4×0+1/8σ

1/4+1/8 = 1
3σ. Suppose M observe θm = σ and an order

flow −x(3)−1 ≤ ω1 ≤ y(3)−1. In that case, M infer that S sold x(3) and hence that θs = −σ. This tells
them that m 6= s and therefore that E(θ¬m|θm = σ,−x(3)− 1 ≤ ω1 ≤ y(3)− 1) = −σ. Finally, suppose
M observes an order flow y(3)− 1 ≤ ω1 ≤ 1−x(3). Then M learn that S could have sold x(3) or bought
y(3), and so cannot draw any inference on θs. In that case, E(θ¬m|θm = σ, y(3)−1 ≤ ω1 ≤ 1−x(3)) = 0.

The analysis is similar if θm = −σ. For example, E(θ¬m|θm = −σ,−y(3) − 1 ≤ ω1 ≤ x(3) − 1) = − 1
3σ.

Next, we display the calculations for the order sizes, x(3) and y(3). Denote z ≡ x(3)+y(3)
2 . The price

conjecture in Equations (3) and (4) lead to the following, starting with the case m = s:

• Case 1. If m = s, θm = θs = σ and θ¬m = σ (which occurs with probability 1/2× 1/2× 1/2 =
1/8), then S buy y(3) shares so ω1 = y(3) + n and

(θ, p1, θ − p1) =


(2σ, 43σ,

2
3σ) with proba. z/8 (i.e., for − x(3) + 1− y(3) < n ≤ 1)

(2σ, σ, σ) with proba. (1− z)/8 (i.e., for − 1 < n ≤ −x(3) + 1− y(3))
(2σ, 0, 2σ) with proba. 0 (i.e., for − x(3) − 1− y(3) < n ≤ −1)

• Case 2. If m = s, θm = θs = σ and θ¬m = −σ (which occurs with probability 1/2× 1/2× 1/2 =
1/8), then again S buy y(3) shares so ω1 = y(3) + n and

(θ, p1, θ − p1) =


(0, 43σ,−

4
3σ) with proba. z/8 (i.e., for − x(3) + 1− y(3) < n ≤ 1)

(0, σ,−σ) with proba. (1− z)/8 (i.e., for − 1 < n ≤ −x(3) + 1− y(3))
(0, 0, 0) with proba. 0 (i.e., for − x(3) − 1− y(3) < n ≤ −1)

• Case 3. If m = s, θm = θs = −σ and θ¬m = σ (which occurs with probability 1/2× 1/2× 1/2 =
1/8), then S sell y(3) shares so ω1 = −y(3) + n and

(θ, p1, θ − p1) =


(0, 0, 0) with proba. 0 (i.e., for 1 < n ≤ 1 + x(3) + y(3))

(0,−σ, σ) with proba. (1− z)/8 (i.e., for − 1 + x(3) + y(3) < n ≤ 1

(0,− 4
3σ,

4
3σ) with proba. z/8 (i.e., for − 1 < n ≤ −1 + x(3) + y(3))

• Case 4. Ifm = s, θm = θs = −σ and θ¬m = −σ (which occurs with probability 1/2×1/2×1/2 =
1/8), then again S sell y(3) shares so ω1 = −y(3) + n and

(θ, p1, θ − p1) =


(−2σ, 0,−2σ) with proba. z/8 (i.e., for 1 < n ≤ 1 + x(3) + y(3))

(−2σ,−σ,−σ) with proba. (1− z)/8 (i.e., for − 1 + x(3) + y(3) < n ≤ 1

(−2σ,− 4
3σ,−

2
3σ) with proba. 0 (i.e., for − 1 < n ≤ −1 + x(3) + y(3)

We consider next the case m 6= s:

• Case 5. If m 6= s,θm = σ and θs = σ (which occurs with probability 1/2 × 1/2 × 1/2 = 1/8),
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then S buy y(3) shares so ω1 = y(3) + n and

(θ, p1, θ − p1) =


(2σ, 43σ,

2
3σ) with proba. z/8 (i.e., for − x(3) + 1− y(3) < n ≤ 1)

(2σ, σ, σ) with proba. (1− z)/8 (i.e., for − 1 < n ≤ −x(3) + 1− y(3))
(2σ, 0, 2σ) with proba. 0 (i.e., for − x(3) − 1− y(3) < n ≤ −1)

• Case 6. If m 6= s,θm = σ and θs = −σ (which occurs with probability 1/2× 1/2× 1/2 = 1/8),
then S sell x(3) shares so ω1 = −x(3) + n and

(θ, p1, θ − p1) =


(0, 43σ,−

4
3σ) with proba. 0 (i.e., for 1 < n ≤ 1 + x(3) + y(3))

(0, σ,−σ) with proba. (1− z)/8 (i.e., for − 1 + x(3) + y(3) < n ≤ 1)

(0, 0, 0) with proba. z/8 (i.e., for − 1 < n ≤ −1 + x(3) + y(3))

• Case 7. If m 6= s, θm = −σ and θs = σ (which occurs with probability 1/2× 1/2× 1/2 = 1/8),
then S buy x(3) shares so ω1 = x(3) + n and

(θ, p1, θ − p1) =


(0, 0, 0) with proba. z/8 (i.e., for 1− x(3) − y(3) < n ≤ 1)

(0,−σ, σ) with proba. (1− z)/8 (i.e., for − 1 < n ≤ 1− x(3) − y(3))
(0,− 4

3σ,
4
3σ) with proba. 0 (i.e., for − 1− x(3) − y(3) < n ≤ −1)

• Case 8. If m 6= s, θm = −σ and θs = −σ (which occurs with probability 1/2×1/2×1/2 = 1/8),
then S sell y(3) shares so ω1 = −y(3) + n and

(θ, p1, θ−p1) =


(−2σ, 0,−2σ) with proba. z/8 (i.e., for 1 < n ≤ 1 + x(3) + y(3))

(−2σ,−σ,−σ) with proba. (1− z)/8 (i.e., for − 1 + x(3) + y(3) < n ≤ 1)

(−2σ,− 4
3σ,−

2
3σ) with proba. 0 (i.e., for − 1 < n ≤ −1 + x(3) + y(3))

Collecting the cases such that θm = θs = σ (cases 1, 2 and 5) leads to E [θ − p1|θm = σ, θs = σ] =

1
3σ (1− z) and V ar [θ − p1|θm = σ, θs = σ] = 1

9σ
2(8 + z − z2). Plugging these expressions into the

first-order condition for S’ profit maximization and imposing rational expectations (xi = x(3) and

yi = y(3) for all i) yields:

y(3) =
E [θ − p1|θm = σ, θs = σ]

γV ar [θ − p1|θm = σ, θs = σ]
=

1
3σ (1− z)

γ 1
9σ

2(8 + z − z2)
=

3 (1− z)
γσ (8 + z − z2)

.

Likewise, collecting the cases such that θm = θs = −σ (cases 3, 4 and 8) leads to E [θ − p1|θm = −σ, θs = −σ] =

− 1
3σ (1− z) and V ar [θ − p1|θm = σ, θs = σ] = 1

9σ
2(8 + z − z2). Plugging these expressions into the

first-order condition for S’ profit maximization and imposing rational expectations (xi = x(3) and

yi = y(3) for all i) yields:

−y(3) =
E [θ − p1|θm = σ, θs = σ]

γV ar [θ − p1|θm = σ, θs = σ]
=

− 1
3σ (1− z)

γ 1
9σ

2(8 + z − z2)
= − 3 (1− z)

γσ (8 + z − z2)
,

which is the same equation as in the case (θm = σ, θs = σ).

Collecting the cases such that θm = σ and θs = −σ (case 6) leads to E [θ − p1|θm = σ, θs = −σ] =

−σ (1− z) and V ar [θ − p1|θm = σ, θs = −σ] = σ2z(1 − z). Plugging these expressions into the first-
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order condition for S’ profit maximization and imposing rational expectations (xi = x(3) and yi = y(3)

for all i) yields:

−x(3) =
E [θ − p1|θm = σ, θs = −σ]

γV ar [θ − p1|θm = σ, θs = −σ]
=
−σ (1− z)
γσ2z(1− z)

= − 1

γσz
.

Finally, collecting the cases such that θm = −σ and θs = σ (case 7) leads to E [θ − p1|θm = −σ, θs = σ] =

σ (1− z) and V ar [θ − p1|θm = −σ, θs = σ] = σ2z(1−z). Plugging these expressions into the first-order

condition for S’ profit maximization and imposing rational expectations (xi = x(3) and yi = y(3) for

all i) yields:

x(3) =
E [θ − p1|θm = −σ, θs = σ]

γV ar [θ − p1|θm = −σ, θs = σ]
=

σ (1− z)
γσ2z(1− z)

=
1

γσz
,

which is the same equation as in the case (θm = σ, θs = −σ).

Gathering the different cases and substituting out z ≡ x(3)+y(3)
2 , investors’ first-order conditions yield

a system of two equations in x(3) and y(3):

x(3) =
1

γσ
x(3)+y(3)

2

y(3) =
3
(
1− x(3)+y(3)

2

)
γσ

(
8 +

x(3)+y(3)
2 −

(
x(3)+y(3)

2

)2)

The first equation implies that y(3) =
2−γσx2

(3)

γσx(3)
. Plugging this expression in the second equation and

rearranging leads to the quartic equation:

1− γσx(3) − 2γσ(1 + 4γσ)x2(3) + 2(γσ)2x3(3) + 4(γσ)3x4(3) = 0. (6)

The equilibrium is thus characterized by Equation (6), together with the requirement that x(3) ≥ y(3).

We show next that there exists a unique equilibrium.

Since y(3) =
2−γσx2

(3)

γσx(3)
, x(3) ≥ y(3) is equivalent to x ≥ 1/

√
γσ. Let g(x) ≡ 1− γσx− 2γσ(1+ 4γσ)x2 +

2(γσ)2x3+4(γσ)3x4. We show next that g admits exactly one root in the interval
[
1/
√
γσ, 1

]
, implying

that there exists a unique equilibrium. The second derivative of g, g”(x) = −4γσ(1+4γσ)+12(γσ)2x+
48(γσ)3x2, is a quadratic function which admits two roots: one root, (−1−

√
1 + 48(1 + 4γσ)/9)/(8γσ),

is negative and the other, x+ ≡ (−1+
√
1 + 48(1 + 4γσ)/9)/(8γσ), is between 0 and 1. It follows that

g”(x) ≤ 0 for x in [0, x+] and g”(x) ≥ 0 for x in [x+, 1], and so that g’ is decreasing over [0, x+]
and increasing over [x+, 1], where g′(x) = −γσ − 4γσ(1 + 4γσ)x+ 6(γσ)2x2 + 16(γσ)3x3. Given that
g’(0) = −γσ < 0 and g’(1) = γσ(−5−10γσ+16(γσ)2) = γσ(5(−1+(γσ)2)+10γσ(−1+γσ)+(γσ)2) > 0
(from Assumption 1, each term in brackets is positive), there exists a unique x∗ in [x+, 1] such that
g’(x) ≤ 0 for x in [0, x∗] and g’(x) ≥ 0 for [x∗, 1]. This implies in turn that g decreases over [0, x∗]
and increases over [x∗, 1]. Finally, observing that g(1/√γσ) < 0 and g(1) > 0, g admits a unique root,
x(3), in the interval

[
1/
√
γσ, 1

]
. Hence, there exists a unique equilibrium.

55



A.4 Corollary 7 - Price informativeness

1. Both m and s are common knowledge
When m and s are common knowledge, price informativeness is given by:

E (V ar (θ|p1, p0)) = Pr(m = s)E
(
(θ − p1)2 |m = s

)
+Pr(m 6= s)E

(
(θ − p1)2 |m 6= s

)
=

1

2
σ2 +

1

2
σ2(1− x(1))

= σ2

(
1− 1

2
x(1)

)
The ex-ante uncertainty is V ar(θ) = 2σ2. It follows that PI(1) ≡ V ar (E (θ|p1, p0)) = V ar(θ)−
E (V ar (θ|p1, p0)) = 2σ2−σ2

(
1− 1

2x(1)
)
= σ2

(
1 + 1

2x(1)
)
.When x = 0, half of this uncertainty

is resolved through the publication of θm in the t = 0 price. When x = 1, all the uncertainty is
resolved for the case m 6= s, while only half of the uncertainty is resolved for the case m = s.

2. Only m is common knowledge
When only m is common knowledge, price informativeness is given by:

E (V ar (θ|p1, p0)) = Pr(m = s)E
(
(θ − p1)2 |m = s

)
+Pr(m 6= s)E

(
(θ − p1)2 |m 6= s

)
=

1

2

 Pr(m = s, θs = σ)E
(
(θ − p1)2 |m = s, θs = σ

)
+Pr(m = s, θs = −σ)E

(
(θ − p1)2 |m = s, θs = −σ

) 
+
1

2

 Pr(m 6= s, θs = σ)E
(
(θ − p1)2 |m 6= s, θs = σ

)
+Pr(m 6= s, θs = −σ)E

(
(θ − p1)2 |m 6= s, θs = −σ

) 
=

1

2

[
1

2

((
2

3
σ

)2 x(2)

2
+ σ2(1− x(2)) +

(
4

3
σ

)2 x(2)

2

)
+

1

2

((
4

3
σ

)2 x(2)

2
+ σ2(1− x(2)) +

(
2

3
σ

)2 x(2)

2

)]

+
1

2

[
1

2

(
σ2(1− x(2)) +

(
2

3
σ

)2 x(2)

2

)
+

1

2

((
2

3
σ

)2 x(2)x

2
+ σ2(1− x(2))

)]

=
1

2

[((
2

3
σ

)2 x(2)

2
+ σ2(1− x(2)) +

(
4

3
σ

)2 x(2)

2

)]

+
1

2

[(
σ2(1− x(2)) +

(
2

3
σ

)2 x(2)

2

)]

=

(
2

3
σ

)2 x(2)

2
+ σ2(1− x(2)) +

1

2

(
4

3
σ

)2 x(2)

2

= σ2(1− x(2)) + x(2)σ
2 2

3

= σ2

(
1− 1

3
x(2)

)
Therefore PI(2) ≡ V ar (E (θ|p1, p0)) = V ar(θ) − E (V ar (θ|p1, p0)) = 2σ2 − σ2

(
1− 1

3x(2)
)
=

σ2
(
1 + 1

3x(2)
)
. As before, when x = 0, half of the total uncertainty is resolved through the

publication of θm in the t = 0 price. When x = 1, an additional one sixth ( 13σ
2/(2σ2) = 1

6 ) of
the total uncertainty is resolved through the trading by S.
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3. Neither m nor s are common knowledge
When neither m nor s are common knowledge, price informativeness is given by:

E (V ar (θ|p1, p0)) = Pr(m = s)E
(
(θ − p1)2 |m = s

)
+Pr(m 6= s)E

(
(θ − p1)2 |m 6= s

)

=
1

2


Pr(m = s, θs = σ, θ¬m = σ)E

(
(θ − p1)2 |m = s, θs = σ, θ¬m = σ

)
+Pr(m = s, θs = σ, θ¬m = −σ)E

(
(θ − p1)2 |m = s, θs = σ, θ¬m = −σ

)
+Pr(m = s, θs = −σ, θ¬m = σ)E

(
(θ − p1)2 |m = s, θs = −σ, θ¬m = σ

)
+Pr(m = s, θs = −σ, θ¬m = −σ)E

(
(θ − p1)2 |m = s, θs = −σ, θ¬m = −σ

)



+
1

2


Pr(m 6= s, θs = σ, θm = σ)E

(
(θ − p1)2 |m 6= s, θs = σ, θm = σ

)
+Pr(m 6= s, θs = σ, θm = −σ)E

(
(θ − p1)2 |m 6= s, θs = σ, θm = −σ

)
+Pr(m 6= s, θs = −σ, θm = σ)E

(
(θ − p1)2 |m 6= s, θs = −σ, θm = σ

)
+Pr(m 6= s, θs = −σ, θm = −σ)E

(
(θ − p1)2 |m 6= s, θs = −σ, θm = −σ

)


=

1

2

 1
4

((
2
3σ
)2 x+y

2 + σ2
(
1− x+y

2

))
+ 1

4

((
4
3σ
)2 x+y

2 + σ2
(
1− x+y

2

))
+ 1

4

((
2
3σ
)2 x+y

2 + σ2
(
1− x+y

2

))
+ 1

4

((
4
3σ
)2 x+y

2 + σ2
(
1− x+y

2

))


+
1

2

 1
4

((
2
3σ
)2 x+y

2 + σ2
(
1− x+y

2

))
+ 1

4

(
σ2
(
1− x+y

2

))
1
4

(
σ2
(
1− x+y

2

))
+ 1

4

((
2
3σ
)2 x+y

2 + σ2
(
1− x+y

2

))


=
1

2

[
1

2

((
2

3
σ

)2
x+ y

2
+ σ2

(
1− x+ y

2

))
+

1

2

((
4

3
σ

)2
x+ y

2
+ σ2

(
1− x+ y

2

))]

+
1

2

[
1

2

((
2

3
σ

)2
x+ y

2
+ σ2

(
1− x+ y

2

))
+

1

2

(
σ2

(
1− x+ y

2

))]

=
1

2

[
10

9
σ2x+ y

2
+ σ2

(
1− x+ y

2

)]
+
1

2

[
2

9
σ2x+ y

2
+ σ2

(
1− x+ y

2

)]
=

2

3
σ2x+ y

2
+ σ2

(
1− x+ y

2

)
= σ2

(
1− 1

3

x+ y

2

)
Hence PI(3) ≡ V ar (E (θ|p1, p0)) = V ar(θ) − E (V ar (θ|p1, p0)) = 2σ2 − σ2

(
1− 1

3
x+y
2

)
=

σ2
(
1 + 1

3
x+y
2

)
. As before, when x = y = 0, half of the total uncertainty is resolved through the

publication of θm in the t = 0 price. If x = y = 1 were possible, then total uncertainty would
be further reduced by one sixth.

Ranking of price informativeness
We show that PI(1) > PI(3). In the proof of Proposition 4, we establish that x(3) > 1/

√
γσ = x(1). This

inequality implies that 1/(γσx(3)) < 1/
√
γσ = x(1). Moreover, we show, also in the proof of Proposition

4, that (y(3)+x(3))/2 = 1/(γσx(3)). Combining both expressions leads to (y(3)+x(3))/2 < x(1) and so
to x(1) > (y(3)+x(3))/3. Hence, PI(1) > PI(3). Note also that y(3) = 2

γσx(3)
−x(3) < 2/

√
γσ−1/√γσ =

1/
√
γσ = x(1) so 0 < y(3) < x(1) < x(3) < 1.

We show next that PI(2) > PI(3). Given the expressions for PI(2) and PI(3), this inequality is
equivalent to x(3)+y(3)

2 < x(2). We employ again two results established in the proof of Proposition 4:
x(3)+y(3)

2 = 1
γσx(3)

and x(3) > 1/
√
γσ = x(1). They imply that x(3)+y(3)

2 < 1/
√
γσ = x(1), so it suffices
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to show that x(1) < x(2). To do so, we show that f(x(1)) > 0 where f is the decreasing function defined
in the proof of Proposition 2, of which x(2) is a root: f(x(1)) = 9 − 6x(1) − 5γσx2(1) + 4γσx3(1) =9 −
6(1/
√
γσ)− 5γσ(1/

√
γσ)2+4γσ(1/

√
γσ)3 = 4− 2/

√
γσ > 0 for γσ > 3. Hence, f(x(1)) > 0 = f(x(2)),

which in turn implies x(1) < x(2). Thus, PI(2) > PI(3).
Intuition
S are most aggressive in case (2) when m 6= s; that is, when they have an information advantage
but when market makers don’t know this. Intuitively, for market makers the order flow appears
less informative since unconditionally there is a 50% chance that it is pure noise (when m = s so
that speculators have no information advantage). The speculators respond to this by trading more
aggressively when they do have an information advantage (i.e., when m 6= s).
With uncertainty about what’s in the price (case (3)) and when θs 6= θm, speculators understand that
they have an information advantage (i.e., that it must be m 6= s) and thus trade almost as aggressively
as in case (2).23 When θs = θm , speculators are unsure whether their information is novel (i.e.,
m 6= s) or stale (i.e., m = s) and therefore trade less aggressively. Lastly, when both m and s are
common knowledge (case (1)), speculators’ trading aggressiveness when m 6= s lies between the ones
for θs 6= θm and θs = θm with uncertainty about what’s in the price.

23They trade slightly less aggressively because the equilibrium price function in case (3) entails a
larger price impact compared to the one in case (2).
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