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Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies
for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative
visual estimation of the hematopoietic and adipocytic components by hematopathologists, which
does not provide quantitative information on other stromal compartments. In this study, we
developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology
workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive
compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other)
and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual
adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We
calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images
obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia
or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity
estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was
capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal
for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score
and hematopathologist estimations were highly correlated (R?> = 0.92-0.98, intraclass correlation
coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively
confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0
performance was additionally tested for cellularity assessment of specimens prospectively collected
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from clinical routine diagnosis. After special consideration for the choice of the cellularity equation
in specimens with expanded stroma, performance was similar in this setting (R> = 0.86, n = 42).
Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for
BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore
novel biomarkers related to BM stromal components and may contribute to further validation of
future digitalized diagnostic hematopathology workstreams.

© 2022 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy
of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).

Introduction

The use of quantitative digital pathology is growing rapidly
because it enables an objective, robust, and automatic assessment
of stained slides to inform pathologists on diagnostic and prog-
nostic parameters.'® However, the implementation of digital pa-
thology comprises many challenges and gaps for translation
toward a clinical context, including difficulty integrating clinical
workflows within a user-friendly environment. Such integration
requires a joint effort from different stakeholders to assimilate the
current landscape of multiple separate applications into an inte-
grated image analysis platform and unified workflow compatible
with the diagnostic environment.">"’

In hematopathology, recent advances in digital and quantita-
tive pathology have renewed interest in developing faster and
more quantitative assessments of bone marrow (BM) trephine
biopsies, which are a key component in the diagnosis and follow-
up of hematologic and nonhematologic disorders.®!" BM biopsy
assessment informs on tissue architecture, such as cellularity,
necrosis, inflammation, cell lineages, metastatic spread, and
stromal modifications,’> with cellularity being a key factor
reflecting hematopoietic function. For instance, low cellularity
highlights a central defect in blood production (toxic, constitu-
tional, or idiopathic), whereas high cellularity can suggest a
neoplastic transformation.%!>"'® BM cellularity can be estimated
quantitatively (histomorphometry: point-counting) or semi-
quantitative (visual estimation).®!? It is defined as the relative
percentage of the area of the hematopoietic tissue within a BM
biopsy specimen and assessed on hematoxylin and eosin (H&E)-
stained slides.!%>1-?1 It can be either expressed as a percentage
of the total marrow space delimited by the endosteal surface®*%3
or as a percentage of the area occupied by the sum of the he-
matopoietic and adipocytic compartments,®'>19?425 which as-
sumes reciprocity of the hematopoietic and adipocytic
compartments within the BM space. Hence, when nonadipocytic
elements of the stroma constitute a significant compartment
within the BM, the 2 equations might conflict.

Indeed, blood vessels, nerve fibers, and nonadipocytic stro-
mal elements are, in most instances, in minority. Not being the
focus of the cellularity assessment, they tend to be neglected
when assessing H&E stains. Because these stromal elements are
affected in many disorders and different conditions (eg, osteo-
sclerosis, expanded stromal scenarios: fibrosis, edema, or gelat-
inous transformation),®'>!7!® quantitative efforts that focus
exclusively on the adipocytic component of the stroma may
limit our understanding of the prognostic parameters associated
with stromal remodeling in BM histopathology. For instance,
although the assessment of fibrosis is highly standardized,?®
very few studies have correlated the architectural characteris-
tics of the BM stroma with clinical outcomes in leukemia.?’=*° To
enable a more thorough assessment of the BM stroma, it is
important to remedy the lack of digital pathology tools that

enable the simultaneous tracking of the hematopoietic and
stromal BM compartments.

In particular, the historical definition of quantitative BM
cellularity assessment comes from the point-counting method,
which uses an eyepiece with a graticule. This method is labor
intensive, requires large biopsies, and is incompatible with clinical
routine. It was first adapted from the method of quantitative
morphologic tissue analysis of Chalkley®! by Hartsock et al?*
Three different categories were identified when counting with
this method: hematopoietic tissue, fat, and other structures. The %
cellularity is calculated by dividing the total number of hits on the
hematopoietic tissue by the sum of the counted hits on the fat and
hematopoietic tissues, expressed in percentages.’* The equivalent
visual estimate of cellularity used in clinical routine assessment
method is semiquantitative,? and for highly trained individuals, it
correlates with the point-counting method while being faster and
simpler.'??42533 However, it is still time consuming and semi-
quantitative and may underestimate cellularity.”> Several quanti-
tative digital pathology and deep learning methods have been
recently used to quantify BM cellularity and agreed with the gold
standard visual semiquantitative estimations.>*>’ Nevertheless,
they were tested only on selected retrospective training and
validation data sets focused on the hematopoietic compartment.
To further assess the overall heterogeneity of BM compartments,
we recently introduced the semiautomated MarrowQuant work-
flow and extensively validated it on mouse samples.>

In this study, we present MarrowQuant 2.0—an adapted
version of MarrowQuant for human BM assessment, implemented
as a QuPath script, thus allowing for a user-friendly application.>®
We have tested MarrowQuant 2.0 on H&E-stained images from
250 pathologic and nonpathologic BM samples. Our workflow
predicts and quantifies 4 major compartments: bone, hemato-
poietic cells, adipocytes, and the interstitial/microvasculature area
(IMV), and groups unassigned pixels into a fifth “other”
compartment that includes the expanded stromal compartment
(eg, stromal edema and fibrosis). We validated BM cellularity
scores in retrospective longitudinal BM trephine biopsies from
patients with acute myeloid leukemia (AML) or high-risk myelo-
dysplastic syndrome (MDS) and control orthopedic surgical bone
specimens, as well as in prospectively collected samples from
clinical routine diagnostics. In particular, we first validated the
predictions of the workflow on a training data set, then tested its
compatibility with clinical routine samples (test data set), and
finally applied the workflow to the most extreme context of BM
remodeling (experimental/validation data set), where we could
test the assumption of reciprocity implicit in the definition of BM
cellularity. Overall, we demonstrate that MarrowQuant 2.0 con-
stitutes a robust, objective, and accurate assessment of BM tissue
in a user-friendly platform, open source, and easy to access. Its use
may contribute to stromal biomarker discovery, to open up the
assessment of specific hematopathologic parameters in research
laboratories (with limited access to expert clinicians) and to
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homogenize BM cellularity assessments in multisite clinical trials.
Potential incorporation in digitalized clinical diagnostic pipelines
will face the complex regulatory challenges of pathologist plus
machine workstreams.*’

Materials and Methods
Clinical Samples

This study complied with the Declaration of Helsinki and the
local ethical authorities (CER-VD). Three independent sample data
sets (H&E-stained images from 250 BM specimens) were collected
as detailed further, to form the training, test, and experimental
sets from patients treated at the Lausanne University Hospital
(CHUV). Figure 1 describes the study design and sample
allocation.

Training Set

A retrospective set of 36 anonymous BM trephine biopsies was
selected from the Institute of Pathology biobank at CHUV. These
biopsies were collected for clinical purposes from patients un-
dergoing treatment for AML or MDS at diagnosis and different
times after induction chemotherapy and selected to reflect a range
of cellularity or BM remodeling. The samples were processed for

n =250 BM H&E
specimens

standard pathology diagnosis and analyzed blindly, as previously
described.®

Test Set

The test set consisted of 42 prospectively collected trephine
biopsies digitalized from all hematopathologic cases received in
2021 over a period of 2 weeks at the Institute of Pathology at
CHUV. Diagnostic category, seX, and age are tabulated in
Supplementary Table S1.

Experimental/Validation Set

The validation set consisted of 2 cohorts of CHUV specimens:
longitudinal follow-up of AML or high-risk MDS trephine biopsies
collected for diagnostic purposes and BM specimens collected
from the spongy bone in the femoral head or neck of age-matched
patients who underwent elective surgical hip replacement. In
total, H&E-stained slides from 125 BM specimens were digitalized
from 28 patients with AML or high-risk MDS (mean age + stan-
dard deviation = 55 + 11 years at diagnosis, sex-balanced) at 4
different time points: diagnosis, the peak of aplasia (days 17-21
postinduction chemotherapy with 7 + 3 cytrabine and ida/dau-
norubicine as in the HOVON/SAKK 132 control arm *!, or C2 with
FLAG =+ Ida, or C2 by 5-azatidine for 2 frail patients), hematopoietic
recovery after the first cycle of induction chemotherapy (RC1), and
hematopoietic recovery after the second cycle of induction

A,

n = 235 from iliac crest
trephine biopsies

Training Set Test set

n =36

diagnosis

n = 42 from routine clinical

A, Y

Experimental/validation set (n=172)

n =15 from age-
matched control
from femoral BM specimens

n = 157 longitudinal BM
leukemic specimens

|

All used (n = 36)
for inter&intra
agreement measurements
with 4 pathologists

n=13 used for
error quantification [«

All used (n = 42) for
agreement measurements
with clinical reference
and reciprocity assessment

All used (n = 157) for intra &
inter agreement,
specificity & sensitivity
measurements with 4 pathologists

n=12 used for
confusion matrix

n=14 used for / n = 7 from n=1
Stardist training CMML patient
n =7 from n=1
n = 2 excluded > ALL-B patient
(not enough marrow & highly
hemorraghic samiples) n = 18 from n=2
> ALL-T patients

All used for longitudinal BM remodeling
evaluation and adipocyte size <
distribution measurements

n = 79 fit within one of the chosen
timepoints: Dx, A, RC1, RC2. | <

n =125 fromn = 28
AML/high-riskMDS patients

Figure 1.

Study design and image data sets. A, peak of aplasia; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BM, bone marrow; CMML, chronic myelomonocytic
leukemia; Dx, diagnosis; H&E, hematoxylin and eosin; MDS, myelodysplastic syndrome; RC1, hematologic recovery after first cycle of induction; RC2, hematologic recovery after

second cycle of induction.
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chemotherapy (RC2) (Fig. 1). For age-matched control cases, H&E-
stained BM samples were obtained from 15 patients who under-
went an elective hip replacement surgery (n = 15, mean age +
standard deviation = 57 + 13 years, sex-balanced). All patients
signed a specific consent for the reuse of biological samples and
clinical data in the context of our study. Trephine biopsies were
collected, routinely processed, and H&E-stained between 2017
and 2021 but scanned synchronously in 2020 and 2022, reflecting
a gradient in H&E contrast associated with the sample age.

MarrowQuant 2.0 Workflow

The workflow is summarized in Figure 2 and Supplementary
Figure S1 and detailed further. MarrowQuant 2.0 was imple-
mented as a script for the freely available and open-source QuPath
software.>® The code is accessible on GitHub (see Code and Data
Availability section).

Image Acquisition and Preprocessing

For the training, test, and experimental set specimens, the
H&E-stained slides were scanned at the Institute of Pathology at
CHUV using a NanoZoomer S60 40x objective to generate .ndpi
files, with the exception of the H&E-stained slides from the con-
trol specimens, which were scanned with an Olympus VS120 slide
scanner using a UPLSAPO 20x/0.75 objective to generate .vsi files.
Both file formats were loaded into a project in QuPath0.3.2 using
the BioFormats extension for annotation and MarrowQuant 2.0 for
quantification. Once the images were inserted within a QuPath
project, the user performed a white color balance selection and 3
annotations (Supplementary Video S1). In brief, the user first
annotates the tissue boundaries, which correspond to the regions
of interest (ROIs) to be quantified by MarrowQuant 2.0. Then, the
user selects both a background reference (white space) and the
artifact regions to be excluded from the quantification (ie, im-
prints of detached bone pieces, retraction artifacts, traces of large
blood vessels, or highly hemorrhagic regions). This step took, on
average, 2-3 minutes per trained user.

The annotations of the training and experimental sets were
performed independently by one expert in hematopathology
(L.D.L.) and by 2 individuals without any background in BM his-
topathology (R.S., S.B.). A first reminder was set to pop as a
warning window “If highly heterogenous marrow, seek expert
opinion to select ROL” The annotations of the test set were per-
formed by a senior hemopathology resident (C.R.C.) who also
participated in the cellularity assessment of the same samples
during the diagnostic pipeline at the Institute of Pathology at
CHUV.

MarrowQuant 2.0 for Human Tissue

The MarrowQuant workflow, implemented within QuPath
software, was first developed on murine bone H&E-stained im-
ages and adapted in this study to human BM quantification. In
brief, MarrowQuant 2.0 works by segmenting regions based on
color and texture compared with those of background.>® It pre-
dicts 5 mutually exclusive compartments as output areas for each
H&E-stained image in the following order: bone (mint blue mask),
hematopoietic cells (dark purple mask), interstitial and micro-
vasculature (pink mask), the later detecting red blood cells and
other small eosinophilic structures such as microvasculature, and
adipocyte ghosts (yellow mask) (Fig. 2 and Supplementary
Fig. S1). Marrow areas not recognized as any of the

abovementioned compartments are categorized as the “other”
mask. If the percentage of other compartment is >25%, an error
message is displayed to alert the user to manually check the image
or seek an expert opinion. This threshold was set based on
extensive quantifications of cases with stromal expansion, a
component classified as other (Supplementary Fig. S2E and
Fig. 3G-H). To calculate the relative contribution of each of the
marrow compartments, the “total marrow area (Ma.Ar),” which
includes 4 marrow compartments and excludes the bone mask
and artifacts, was used as the denominator (Ma.Ar = hematopoi-
etic area + adipocytic area + IMV area + other area). For the
percentage of bone compartment, the denominator is defined as
the full tissue boundary selected by the user after artifact
exclusion.

Bone Marrow Compartment Detection for Cellularity Calculation

For cellularity measurements, 2 separate calculations were
performed and embedded within the output of MarrowQuant 2.0
to consider the 2 alternative denominators described in the
literature: either the sum of the areas of the hematopoietic and
adipocytic compartments used as denominator (Eq. 1: cellularity
assessment score or simply cellularity) or the Ma.Ar used as the
denominator (Eq. 2: hematopoietic area ratio or simply %he-
matopoietic area). Equation 1 reflects the clinical, semi-
quantitative estimation that constitutes the most prevalent
working definition in hematopathology,'”-*4?>#> which assumes
reciprocity of the hematopoietic and adipocytic compartments.
Equation 2 reflects the bone morphometry definition of %he-
matopoietic marrow*® integrating Ma.Ar as the spaces of the
skeleton defined by endosteal surfaces.”>?>** Adiposity is defined
as the percentage of the Ma.Ar occupied by adipocytes (%Tt.Ad.Ar).
Nomenclature and abbreviations for Eqs. 1 and 2 and figures
follow recommendations of the International Bone Marrow
Adiposity Society?>:

Cellularity assessment score (Cellularity)

B hematopoietic area o_
~ (hematopoietic + adipocytic) area”

Hm Ar )
Hm.Ar + Tt.Ad Ar (

Hematopoietic area ratio (%Hematopoietic area)
__hematopoietic area,, Hm.Ar
"~ total marrow area”  Ma.Ar

(2)

MarrowQuant Validation: Pathologist Cellularity Assessment

For the training and experimental sets, 4 independent hema-
topathologists (reviewers 1-4) performed a retrospective visual
cellularity assessment based on the digitalized H&E-stained im-
ages as follows. Pathologists were blinded to the clinical data
associated with the patient samples. Electronic booklets were
generated for the pathologists to quickly score each BM specimen,
which contained an overview of the whole biopsy (4 x ) along with
two 20x images (0.22 um/pixel) for each trephine biopsy (n =
157+ 36 = 193 H&E-stained images) (Supplementary Fig. S3;
Fig. 2). For intraobserver variability, the same booklet, but with the
image order shuffled and relabeled, was sent to the same pa-
thologists to be scored after a washout period of 8 weeks.** For the
test set, the senior hematopathology resident (C.R.C.) first visually
performed cellularity assessment in the digitalized image. Then,
she annotated the image on QuPath and autonomously ran
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H&E BM image

Step 1
Manual Annotations:
Tissue Boundaries (TB)
Background (BG)
Artifact (Ar)
Step 2
Run MarrowQuant 2.0

Step 3: Substraction of
Artifact Area (T.Ar)
T.Ar=TB-Ar

l

Step 6: Bone Mask Substraction
% Bone= % BAITAr |

!

Step 7: Output based on
Marrow Area (Ma.Ar)

Step 11: Other Mask

% Other=  14.65%
100-%Hm.Ar-%IMV-%Adip

« ¢

Step 8: Hematopoietic Mask

Hematopoietic Area Ratio
% Hematopoietic Area=

% Hm.Ar/Ma. Ar  16.64% * Optional run

“StarDist on Adipocytes”
Step 10: Adipocytes Mask

y % C/T"ularity= ) 22.5% Step 9: IMV Mask Nurb % ?«gip 57.33%
© Hm.Ar /(Hm +Tt.Ad).Ar umber of detections 128
> % IMV 11.38% Ad. number per um*2

D -

)

0.0004

)

i P
TR A
d e\ LA

Figure 2.
MarrowQuant 2.0 mask classification and compartment quantification logic. MarrowQuant 2.0 user-defined parameters set at the recommended values for human BM analysis

(minimum adipocyte size: 300 pm?, maximum adipocyte size: 2,500 pm?, minimum circularity: 0.3) (see Supplementary Methods). Percentages are indicated for quantification
of the example hematoxylin and eosin image shown. Color code: “bone” mask in mint blue, “hematopoietic cell” mask in dark purple, “IMV” mask in pink, “adipocytes” mask in
yellow, and “other” mask (overlayed in green for illustration purposes). If desired, batch run “Stardist for adipocytes” to obtain the adipocyte size distribution and color by size
segmentation. B.Ar, bone area; BM, bone marrow; BG, background; Hm.Ar, hematopoietic area; IMV, interstitial and microvasculature; Ma.Ar, marrow area; T.Ar, tissue area; TB,
tissue boundary; Tt.Ad.Ar, total adipocyte area.
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MarrowQuant 2.0 for quantification. For both validation and test
sets, the percent cellularity estimation was extracted from the
pathology report (consensus of 2-3 pathologists) for comparison.

From Adipocyte Area Mask to Individual Adipocyte Detection:
StarDist for Adipocytes

Segmentation of individual adipocyte ghosts with the Mar-
rowQuant 2.0 workflow alone was suboptimal to derive a precise
human adipocyte size distribution. For precise individual adipo-
cyte detection within QuPath, we added an additional step to the
workflow after training StarDist to recognize adipocytes. For this
purpose, 12 images covering a wide range of cellularity (<5%-95%)
were selected from the training and experimental sets. StarDist
training was performed on the manually annotated RGB images
after extraction from QuPath. Two additional images were used
for validation. Default StarDist parameters*5*” were used to create
the model (32 rays, grid factor of 2 x 2, learning rate = 0.0005).
Images were augmented by applying flips and rotations, adding
Gaussian noise and independent random intensity changes to the
R, G, and B channels. The training was performed for 400 epochs
on 256- x 256-pixel patches with a batch size of 4 (100 steps per
epoch). The Jupyter notebook is available on GitHub (see Code and
Data Availability section). After threshold optimization built in
StarDist, the model was evaluated using the validation images.
Then, StarDist for adipocytes was integrated within QuPath as
described in Supplementary Fig. S5. An additional code was
created to classify the size of each adipocyte and report size dis-
tribution for each image: very small (300-499 pm?), small (500-
899 um?), medium (900-1999 pm?), large (2000-3499 pm?), and
very large (>3500 pm?). The performance of StarDist for adipo-
cytes was assessed at different levels during the training process
(Fig. 4G-H and Supplementary Fig. S4).

Tissues were fixed for 2 hours at room temperature in 4%
paraformaldehyde and paraffin embedded. Dewaxed and rehy-
drated paraffin sections were pretreated in 10 mM Na citrate (pH
6.0) at 95°C for 20 minutes. Blocking was performed with 1% BSA
for 60 minutes. Primary antibodies used were as follows:
Perilipin-1 (rabbit- a-Perilipin-1, clone EPR3753(2), Abcam; dilu-
tion 1/200) and CD34 Class Il epitope (mouse a-CD34 Class II, clone
QBend10, DAKO; dilution 1/50). For immunohistochemistry,
chromogenic revelation was performed with ChromoMap DAB kit
(Roche Diagnostics), and sections were counterstained with Mayer
hematoxylin.

Statistical Analysis

All values quantified by MarrowQuant 2.0 are displayed as
mean =+ standard deviation. GraphPad Prism (version 9.3.0;
GraphPad La Jolla) was used for Student t test or 2-way ANOVA,
linear regression (Pearson correlation), and multiple comparison
tests were used for Figures 3-5 and Supplementary Figures S4-S8.
Statistical definition of outliers followed the Bonferroni outlier
test after verification that the data set is normally distributed
using D’Agostino-Pearson normality tests. A significance level of
.05 was set for all statistical tests. RStudio software (version
1.2.5001; 2013; R Core Team), with the following libraries: caret,
irr, pROC, and HandTill2001 was used for agreement analyses
(intraclass correlation [ICC], specificity, sensitivity, area under the
receiver operating characteristic [ROC] curve [AUC]). To build
multiple ROC curves, we used both multiclass macroaveraged AUC
function and the AUC metrics computed using the Hand-Till
method*® (Table 2 and Supplementary Fig. S6). The

intraobserver variability was calculated with the ICC using an F
test. In addition, the interobserver variability was calculated with
the ICC using a 2-way random effect model with an absolute
agreement. As recommended, ICC values <0.5 were categorized as
poor, 0.5-0.75 as moderate, 0.75-0.90 as good, and >0.9 as excel-
lent*® To assess the cellularity scoring of MarrowQuant 2.0,
specificity, sensitivity, and AUC tests were performed compared
with the clinical references, defined as the score extracted from
the pathology report, where sensitivity measures the true positive
rate and specificity measures the true negative rate. Cellularity
scores were categorized into 3 ranges: low cellularity (scores
<25%), as defined for severe aplastic anemia and other BM
insufficiency syndromes'®°%°!: medium cellularity (25%-50%);
and high cellularity (>50%), as applied in several studies for age-
adjusted cellularity assessment or myeloid malignancy evalua-
tion.”#?832 Our cellularity measurements (whether from the
pathologist scoring or MarrowQuant 2.0 output) are provided as
absolute values with no age adjustment.

Code and Data Availability

The codes for MarrowQuant2.0 and StarDist for adipocytes are
available on GitHub and Zenodo, along with a detailed tutorial to
install the 2 workflows within QuPath 0.3.2: https://github.com/
Naveiras-Lab/MarrowQuant2.0/blob/main/README.md; https://
zenodo.org/badge/latestdoi/525402383

Training set H&E-stained images (32 images of 36) are acces-
sible in the Image Data Resource database (Study idr0096, https://
idr.openmicroscopy.org/webclient/?show=project-2104 and
https://idr.openmicroscopy.org/webclient/?show=project-2103
in the experiment B section). Images from the experimental and
test data sets are available on request. See Supplementary Methods
for sample processing, histology, immunohistochemistry, code
parameter tuning, error quantification, and confusion matrix.

Results

Adaptation and Validation of MarrowQuant 2.0 for Human Bone
Marrow Specimens (Training Set)

Adapting our earlier work on MarrowQuant>2 for the analysis
of human BM specimens (Fig. 2) required most preset parameters
and classification thresholds to be modified and integrated within
the code to consider the larger human hematopoietic and adipo-
cyte cell size, larger average cell separation, and higher content of
interspersed red blood cells. A training set of H&E-stained images
spreading across the full range of BM cellularity was identified
(n = 36), and an error quantification analysis for BM compartment
prediction was performed as detailed in the Error Quantification
and Confusion Matrix Sections of the Supplementary Materials
and Supplementary Figures S2 and S3. In brief, the minimum
adipocyte size was validated through perilipin and CD34 immu-
nohistochemistry in contiguous sections to differentiate small
adipocyte ghosts from small vascular structures (Supplementary
Fig. S2A-D). Then, thresholds were adapted to minimize the
detection of false adipocytes, adipocyte nuclei, or megakaryocyte
misclassification. This includes images from extreme BM remod-
eling, such that manual correction did not provide significant
improvement compared with that of MarrowQuant 2.0 alone
(Supplementary Fig. S3A-C).

For validation, cellularity assessment (Eq. 1) constitutes the
only parameter with a clinical reference to which we can compare
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the performance of our algorithm. In clinical routine, cellularity is
visually estimated in a semiquantitative fashion by an expert
hemopathologist (reviewed in a previous study®). Cellularity
assessment by MarrowQuant 2.0 (Eq. 1) strongly correlated with
the mean cellularity assessment of the 4 independent pathologists
for the training set (Supplementary Fig. S4A) (n = 36, R* = 0.94). In
particular, MarrowQuant 2.0’s cellularity values fell within the
interobserver variability range, with maximal correlation at me-
dium and high cellularity values. More specifically, the ICC among
the 4 reviewer pathologists was 0.96 (95% confidence interval
[CI] = 0.94-0.98) and remained unchanged at 0.96 (95% CI: 0.92-
0.98) when MarrowQuant 2.0’s estimation was incorporated as a
fifth reviewer. The mean difference between the scores from
MarrowQuant 2.0 and the average of all reviewers was —0.55% +
7.6%. Thus, MarrowQuant 2.0’s cellularity assessment performed
equivalently to an additional pathologist, indicating noninferiority
compared with the clinical reference for the training set.

To compare the overall classification of MarrowQuant 2.0 with
that of manual mask classification as measured by the percent
true positive pixel classification (visual estimation by the user), we
generated a confusion matrix. The average true mask classification
rate was 0.86 (Supplementary Fig. S4B). The classification rate of
the bone, hematopoietic, and adipocytic classification masks was
excellent (0.99, 0.92, and 0.98, respectively). As for the IMV and
“other” classification masks, the classification rates were 0.69 and
0.72, respectively. When these 2 classification masks were mis-
classified, they were confused for one another but not classified as
either of the remaining 3 classification masks. The misclassifica-
tion seemed to arise from expanded stromal or highly hemor-
rhagic regions within the BM and, thus, did not affect overall
cellularity assessment (Eq. 1). In all, for the training set, Marrow-
Quant 2.0’s precision was validated through the classification rate
of both average masks across a wide cellularity range and through
cellularity assessment compared with that of the clinical
reference.

Testing Utility for Routine Clinical Diagnostic Samples and
Identifying the Main Source of Outliers (Test Set)

Next, we tested whether MarrowQuant 2.0 could be compat-
ible with the heterogeneity of samples encountered in clinical
routine and user-friendly enough to be used in this setting. Over
the course of 2 weeks, all hematopathologic cases that were
received for routine diagnostic evaluation at the University Hos-
pital were collected and the diagnostic pathology reports gener-
ated, whereas all H&E BM-stained BM slides were scanned as a
batch to generate digital images. Once digitalized, one of the
participating pathologists blindly re-scored all images using the
full digital image (pathologist digital score), annotated, and ran
MarrowQuant 2.0 for each image.

Initially, we found a strong correlation between the cellularity
assessment given by the pathologist on the digital image and
MarrowQuant 2.0 (R? = 0.89, n = 42, mean difference +0.85 + 9.9)
but then a correlation of only 0.7 (n = 42, mean difference +1.13 +
6.6) for MarrowQuant 2.0 when compared with the cellularity
assessment from the pathology report (Fig. 3A). To understand the
discrepancy between the pathology report evaluation and the
digital image evaluation when compared with the MarrowQuant
2.0 output (Fig. 3A), we searched for outliers. These belonged to 2
distinct categories: 3 heterogeneous marrow tissues (Fig. 3B-E)
and 1 case of myelofibrosis (Fig. 3F-G). The discrepancy in the
heterogeneous marrow subgroup was due to the pathologists’
selection of specific ROIs during diagnosis (Fig. 3E) as opposed to

the full digital image annotation on MarrowQuant 2.0 scoring
(Fig. 3B-D). In fact, during diagnosis, expert hematopathologists
excluded purely adipocytic BM areas corresponding to subcortical
marrow spaces, which are frequently hypocellular and may be
excluded in the assessment of cellularity as per International
Council for Standardization in Haematology guidelines’? (Fig. 3E).
The remaining outlier was a case of myelofibrosis, where Mar-
rowQuant 2.0 overestimated the cellularity because of stromal
expansion (MarrowQuant 2.0 score = 60.9%, pathology report =
25%, and pathologist digital image score = 40%) (Fig. 3F-G).
Indeed, pathologists confirmed that the cellularity score for this
outlier was estimated considering the fibrotic, expanded stromal
compartment as part of the denominator, instead of computing
exclusively the sum of the adipocytic and hematopoietic areas as
denominator. This adapted score corresponds to the alternative
cellularity definition (hematopoietic area ratio or ¥hematopoietic
area; Eq. 2), also accepted in hematopathology,®'%!9?42> which
uses the Ma.Ar as a denominator. MarrowQuant 2.0 quantification
of this myelofibrosis case using %hematopoietic area (Eq. 2) was
30.1%, falling within the range of intervariability between the
pathology report (25%) and the pathologists’ estimation of the re-
scored digital image (40%) (Fig. 3G), instead of the 60.9% Mar-
rowQuant 2.0 score predicted when using Eq. 1. Thus, we went
back to the outlier cases and re-annotated the heterogeneous BM
digital images by excluding empty marrow spaces and found
coherent scores and a higher correlation of MarrowQuant 2.0 with
the pathologist’s cellularity assessment (R?> = 0.86 for the pa-
thology report and R? = 0.92 for the re-scored digital image, n =
42) (Fig. 3H).

To diversify our cohort and verify the validity of the hemato-
poietic mask detection workflow in the context of lymphoid ag-
gregates, we selected a set of H&E-stained images from anonymous
patients with lymphoid disorders which associated to with
increased cellularity. We then tested the performance of Marrow-
Quant 2.0 on such cases, and found it to correctly assign lymphoid
and lymphoblastoid cells to the hematopoietic mask
(Supplementary Fig. S6A-I).

Overall, we could validate the good to excellent performance of
MarrowQuant 2.0 compared with the clinical reference, within
the user-friendly interface of QuPath, to assess BM cellularity in
routine diagnostic samples regardless of the underlying condition
assessed. The variety of cases emphasized the importance of
expert ROI selection and the challenges associated with the choice
of the denominator for BM cellularity assessment in cases of
expanded stroma (Eq. 1 vs Eq. 2). MarrowQuant 2.0 systematic
reporting of both equations is compatible with future prospective
analysis to determine the predictive value of either equation in
diagnostic hematopathology.

MarrowQuant 2.0 in an Extreme Bone Marrow Remodeling Context
(Experimental Set)

The denominator-dependent discrepancy identified for the
cellularity assessment of samples with stromal expansion
prompted us to experimentally test the assumption of reciprocity
for the hematopoietic and adipocytic marrow compartments,
which is implied within the working definition of cellularity (Eq.
1). To investigate the performance of MarrowQuant 2.0 in a full
range of cellularities and test the assumption of reciprocity, we
focused on patients receiving myeloablative chemotherapy, one of
the most extreme cases of BM remodeling and recovery.

We tested MarrowQuant 2.0 on H&E-stained BM images from
patients with AML and MDS (n = 28) at diagnosis and at 3 time
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Figure 3.

Use of MarrowQuant 2.0 in a clinical diagnostic setting (test set). Digital hematoxylin and eosin (H&E) slides of 42 successive cases of diagnostic BM trephines biopsies were
reviewed by a senior hematopathology resident who double scored cellularity by visual evaluation and using MarrowQuant 2.0. (A) Correlation of %cellularity generated by
MarrowQuant with the clinical reference (%cellularity scoring extracted from the pathology report, green dots) or estimated by the reviewing pathologist by visual examination
of the digital image (purple dots) before MarrowQuant 2.0 assessment (H&E biopsies: n = 42 diagnosis cases [test set], R? [pathology report] = 0.7, R? [score of digital images
(live)] = 0.89). (B-E) Most outlier cases in (A) (n = 4 outliers) are explained by heterogeneous marrow (n = 3/4), of which an example is presented (B-E): (B) H&E image,
quantified by MarrowQuant 2.0 with either of 2 annotations considering either the full marrow full digital tissue (C-D) or the pathologist-selected ROI (E). (B) Before annotating
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points after intensive myeloablative chemotherapy, correspond-
ing to the peak of aplasia of the first chemotherapy cycle (A, days
17-21), the hematopoietic recovery after the first cycle of
chemotherapy (RC1, days 35-43), and the hematopoietic recovery
after the second cycle of chemotherapy (RC2), in addition to an
age-matched control group from hip replacement surgical bone
specimens (n = 15) (Fig. 4A). For all samples, MarrowQuant 2.0
calculated both %cellularity (Eq. 1) and %hematopoietic area (Eq.
2). The later equation is reported in this section to describe the
dataset because it does not assume reciprocity and allows for the
longitudinal assessment of the whole BM space in stacked plots.
As expected, we found significant predominance of the hemato-
poietic compartment at the diagnosis time point, when samples
were infiltrated by the hematopoietic malignancy (72.4% + 31% for
%cellularity and 60.1% + 22.8% for %hematopoietic area) (Fig. 4B-
D). Accordingly, the remaining BM compartments measured by
MarrowQuant 2.0 were significantly smaller in the diagnosis time
point samples than those of the age-matched control group: %
adiposity (18.3% + 23% vs 55.4% + 4%), adipocyte density (184 +
124 adipocytes/mm? vs 425 + 184 adipocytes/mm?), XIMV (6.6% +
2.5% vs 11.7% + 5.4%), and %Other (18.4% + 5.7% vs 14.3% + 3.4%)
(Fig. 4B, E, Fand Supplementary Fig. S5A). As expected, the reverse
scenario was observed at the peak of aplasia time point;both %
cellularity (12.2% + 10.2%) and %hematopoietic area (13.2% +
11.5%) (Fig. 4B-D) decreased significantly, whereas %adiposity
(55.8% + 22.6%), adipocyte density (504 + 210 adipocytes/mm?), %
IMV (12.2% + 4.9%) and %Other (25.6% + 12.3%) compartments
increased significantly when compared with those of the diag-
nostic samples. Surprisingly, no significant differences were
detected between the peak of aplasia and the hip replacement
control samples, likely reflecting the reported higher adipose
content of the femur than the iliac bone in human adults despite
their proximity.”> Compared with the aplasia time point, the he-
matopoietic compartment in the recovery time points signifi-
cantly increased in RC1 but not in RC2, whereas the %adiposity
significantly increased for RC2 but not for RC1 (RC1—% cellularity,
59% + 18.2%; %hematopoietic area, 42.7% + 25.7%; %adiposity,
35.1% + 17.3%; adipocyte density, 346 + 125 adipocytes/mm?;
RC2—%cellularity, 48% + 20.2%; %hematopoietic area, 35.9% +
16.8%; %adiposity, 38.9% + 19.5%; adipocyte density, 328 + 127
adipocytes/mm?). Overall, the measured average changes in this
longitudinal data set were consistent with hematopoietic pro-
genitor depletion at the peak of aplasia and relative hematopoietic
progenitor exhaustion on repeated chemotherapy cycles in pa-
tients with AML/high-risk MDS. This extensive remodeling sce-
nario enabled us to validate MarrowQuant 2.0 on H&E-stained
images with a wide cellularity.

Next, we measured the agreement of MarrowQuant 2.0 with
the clinical reference of visual cellularity assessment. We first
assessed the intraobserver variability among the 4 independent
reviewers after scoring the same set of training and validation
images at t = 0 and t = 8 weeks (washout period), and we
observed an excellent agreement among the 4 independent pa-
thologists, with the ICC ranging from 0.95 to 0.99 (Table 1). Then,

we tested the agreement between MarrowQuant 2.0 cellularity
assessment and all individual reviewer estimations and found an
excellent agreement (ICC = 0.96; 95% CI: 0.93-0.97) (Table 1).
Furthermore, compared with all reviewers’ average score, the ICC
was 0.978 (95% CI: 0.955-0.989). Thus, we conclude that Mar-
rowQuant 2.0 used by an expert performed at least equivalently in
cellularity measurements as the visual estimation by a pathologist
and that variability between individual pathologist reviewers did
not significantly affect our evaluation.

Furthermore, we tested whether MarrowQuant 2.0 performed
equally across different cellularity ranges when annotations were
performed by an expert (supervised). We performed specificity
and sensitivity analyses using the cellularity assessment reported
in the pathology report as the ground truth (Table 2). Specificity
(true negative rate) ranged between 0.89 and 1.0 and was highest
for the 2 extremes: low cellularity and high cellularity. Sensitivity
(true positive rate) ranged between 0.81 and 0.99. The lowest
sensitivity scores were for low cellularity specimens, which
included the cases with stromal expansion (Supplementary
Fig. S7). Overall, we could thus validate MarrowQuant 2.0’s
cellularity assessment as good to excellent when compared with
the clinical reference in a scenario of extreme BM remodeling
(experimental set) and identified low cellularity cases with stro-
mal expansion as the most problematic for high sensitivity.

Quantification of Adipocyte Size Distribution During Bone Marrow
Remodeling

In addition to quantifying the area of different BM compart-
ments using MarrowQuant 2.0, we were interested in quantifying
BM remodeling by tracking adipocyte size distribution. One lim-
itation of MarrowQuant is that adipocyte segmentation is based in
the Fiji/Image] analyze particle function,”*>> which calculates the
total adipocyte mask but cannot accurately detect individual
adipocyte size. To accurately segment individual adipocytes, we
developed an adaptation of the StarDist extension of QuPath
(https://github.com/qupath/qupath-extension-stardist), ~ which
segments and measures nuclei size as oval objects fitted within
polygons. We applied deep learning to train the model to recog-
nize BM adipocytes instead of nuclei. Our measurements of ac-
curacy and precision validated the use of StarDist for adipocyte
size detection (Fig. 4G and Supplementary Fig. S5C, D). Significant
differences were detected for the very small (300-499 um?) and
medium (900-1999 pm?) adipocyte categories, but not for the
small (500-899 um?), large (2000-3499 pm?), or very large (>3500
pm?) categories (Fig. 4H). In particular, we observed a significant
increase in the very small adipocytes at diagnosis (48.5% + 22.2%).
At RC2, the adipocyte size distribution became comparable with
that of the control group (RC2: 22.6% + 9.9%; control: 19.5% +
4.1%). For the medium adipocytes, a significant decrease was
seen at diagnosis (15.2% + 10.8%); then, the percentage was
restored at RC2 when compared with the control group (RC2:
30.3% + 6.6%; control: 31.8% + 3%). In conclusion, we validated

the image, a visual cellularity score of 30% was given for the full digital image and a 70% cellularity score was reported in the consensus pathology report. (D) MarrowQuant 2.0 %
cellularity (Eq. 1) was 29.56% when the full trephine was selected as ROI. (E) MarrowQuant 2.0 cellularity (Eq. 1) was 69% when adapting ROI to the pathologist selection. (F-G)
BM fibrosis as quantified by MarrowQuant 2.0 (expanded stroma). (F) H&E trephine biopsy of myelofibrosis case (remaining outlier n = 1/4 outliers in this test data set) and (G)
corresponding MarrowQuant 2.0 BM compartment assignation. (G) Cellularity score reported by the pathology report = 25%, by the senior hematopathology resident on the full
digital image = 40%, by MarrowQuant 2.0 (Eq. 1) = 60.9%, %hematopoietic area reported by MarrowQuant 2.0 (Eq. 2) = 30.1%. (H) Correlation of %cellularity generated by
MarrowQuant 2.0 (Eq. 1) with the clinical reference %cellularity score estimation as in the pathology report represented in (A) after correction of heterogeneous marrow, outliers
(red dots) by adoption of ROI selection to the pathologist-selected ROI. (H&E biopsies n = 42 diagnosis cases [test set], adapted R? [pathology report] = 0.86, adapted R? [score of

digital images (live)] = 0.92).
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Figure 4.

MarrowQuant 2.0 quantification of hematoxylin and eosin (H&E) images from the experimental set (validation set) (BM remodeling). (A) Representative images of H&E images
collected from trephine biopsies of patients with AML/MDS who underwent chemotherapy (55 + 11 years, sex-balanced) (n = 126 longitudinal specimens from 28 patients) and
from bone fragments of age-matched and sex-matched control patients who underwent hip replacement surgery (57 + 13 years, sex-balanced) (n = 15 images from 15 patients).
BM H&E sections from 4 time points were collected (diagnosis [Dx], peak of aplasia, hematological recovery post first induction cycle [RC1], and hematological recovery post
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the use of StarDist for the measurement and allocation of BM
adipocyte size distribution. We found both the total area and
certain size ranges of BM adipocytes to be significantly and
longitudinally remodeled in patients with AML/high-risk MDS
after intensive chemotherapy.

Reciprocity: Assumption in the Working Definition of Cellularity

The lower sensitivity of MarrowQuant 2.0 for low cellularity
samples prompted us to evaluate the limits of reciprocity between
the hematopoietic and adipocytic BM compartments. We plotted
the adiposity (Tt.Ad.Ar %) versus hematopoietic area (Hm.Ar%) for
all images within the experimental set (Fig. 5A and
Supplementary Fig. S8A). The hematopoietic and adipocytic areas
presented a negative correlation for the 2 data sets (R = 0.74, n =
79 for experimental set), thus validating a general trend for reci-
procity. However, cases with stromal expansion, which could be
identified by MarrowQuant 2.0 through a threshold of “other”
compartment higher than 25% of the marrow area, clustered
outside of the regression line (red dots) and corresponded univ-
ocally to the discordant outliers on the %cellularity assessment by
the pathologist versus MarrowQuant 2.0 scoring. This is illustrated
in Figure 5B-E by the fact that a case of stromal edema post-
intensive chemotherapy was scored by the expert pathologists as
5% cellularity (blue column), versus 34% cellularity by Marrow-
Quant 2.0 (light purple column) when using Eq. 1. The %hemato-
poietic area (Eq. 2) calculated by MarrowQuant 2.0 was 10% (dark
purple column), which was closer to the pathologist’s estimate.
The overall concordance between %cellularity estimated by the
pathologist (blue column) and %hematopoietic area estimated by
MarrowQuant 2.0 (Eq. 2, dark purple column) is illustrated in
Fig. 5D for the full experimental data set. All stromal expansion
cases are outliers (red dots). The discordance between %cellularity
assessed by the pathologist versus by MarrowQuant 2.0 (Eq. 1)
was only statistically significant for the stromal expansion subset
(Fig. 5E). In conclusion, we found %hematopoietic area (Eq. 2) to
reflect more reliably the %cellularity estimated by the pathologist
clinical reference assessment in low cellularity BM and stromal
expansion cases, as opposed to the working definition (Eq. 1). For
high cellularity, Eq. 1 best aligned with the pathologist’s assess-
ment of %cellularity because the maximum values differ for Ma.Ar
(Eq. 2 denominator) and Eq. 1. Indeed, %hematopoietic area as
measured by Eq. 2 was capped on average at ~80% because the
IMV and other compartments occupied, on average, a minimum of
20% of the BM space. Therefore, we tested the use of Eq. 2 for low
cellularity samples and Eq. 1 for medium and high cellularity
samples in the experimental and test data sets (Fig. 5F-G). Once all
cases identified by MarrowQuant 2.0 as <25% cellularity (Eq. 1)
were corrected to use Eq. 2 for cellularity assessment, all stromal
expansion outlier cases (red dots) correlated with the clinical
reference for both experimental (Fig. 5G) and test sets (Fig. 5G). In
conclusion, and for best congruency with the clinical reference,
we found best results using Eq. 1 for cellularity assessment of

medium to high cellularity samples and Eq. 2 for the assessment of
low cellularity samples (Fig. 5H). Thus, the results of Eq. 1 and Eq. 2
are reported in the MarrowQuant 2.0 output, together with a
“recommended cellularity value,” which computes Eq. 2 for both
low cellularity (<25% hematopoietic area) and expanded stromal
cases (> 25% other mask), and Eq. 1 for all other cases.

Robustness of MarrowQuant 2.0

Finally, following the validation of MarrowQuant 2.0 on 2
retrospective data sets and 1 prospectively collected data set, we
tested its repeatability when used by experts (Fig. 5I) and its
reproducibility when used by nonexperts (Supplementary Fig. S9).
Four experts were asked to score the test data set on a fixed ROI
predefined by an expert user, which comprised either the totality
or a portion of the trephine biopsy judged as contributive for the
assessment of BM cellularity. Repeatedly running the Marrow-
Quant 2.0 workflow on this ROI generated the same cellularity
score regardless of how many times we ran the script (ICC = 1.00).
However, some variability was detected when comparing the
scoring across the 4 experts on the predefined ROI (ICC = 0.90;
95% CI: 0.84<ICC<0.94) (Fig. 5I). MarrowQuant 2.0 cellularity
scoring in the predefined ROI correlated with each of the 4 pa-
thologists (R> = 0.81-0.92) but correlated best with the cellularity
estimation derived from the average of the 4 pathologists (R* =
0.92; ICC = 0.90; 95% CI 0.85<ICC<0.94) (insert in Fig. 5I). Overall,
the repeatability of MarrowQuant 2.0 in a predefined ROI was
superior to that of the individual pathologists.

To further assess the robustness of the tool, we tested the
reproducibility of the results when 2 nonexpert users annotated
(ROI selection) and performed MarrowQuant 2.0 analysis for the
experimental set when compared with the outcome on annota-
tion by a hematopathology expert. Given the challenges identified
for heterogeneous marrow scoring (Fig. 3), nonexpert users were
prompted to exclude samples with heterogeneous marrow and
seek expert opinion. We found a strong correlation between
MarrowQuant 2.0’s cellularity estimation by the 2 nonexpert users
and the clinical reference, both when compared with the mean of
the 4 independent reviewers and when compared with the score
extracted from the pathology report (Supplementary Fig. S9A)
(R? = 0.95). We compared the 2 methods of annotation (expert vs
naive user) and observed an excellent agreement (ICC = 0.98; 95%
CI: 0.971-0.98) (Supplementary Table S2). However, we observed a
higher correlation with both the pathology report and the 4 expert
reviewers when MarrowQuant 2.0 was annotated by an expert
compared with nonexpert users (R> = 0.96 for pathology
report score, R> = 0.98 for average scoring of 4 reviewers)
(Supplementary Fig. S9B and Supplementary Table S2). Correla-
tion with the clinical reference was inferior when MarrowQuant
2.0 was annotated by nonexperts and when including the heter-
ogenous marrow samples (R?> = 0.96) (Supplementary Fig. S9C).
Overall, these results suggest that MarrowQuant 2.0 performs
very well when annotated by nonexpert users, but it performs

second induction cycle [RC2]). (B-F) MarrowQuant2.0 output (C) %cellularity and (D) shematopoietic area are highest at diagnosis and lowest at the peak of aplasia. A recovery is
observed after the first and second cycles of induction (each patient is assigned 1 color for tracking purposes) (n = 28 patients with AML patients; n = 15 control patients; *P <
.05, **P < .01, ****P < 0001 by multiple comparison test). (E) The %adiposity is lowest at diagnosis, reflecting the infiltration by leukemic cells. The highest adiposity is reached at
the peak of aplasia (n = 28 patients with AML; n = 15 control patients; **P < .01, by multiple comparison test). (F) The $IMV increases significantly at the peak of aplasia (n = 28
patients with AML; n = 15 control patients; *P < .05, **P < .01, ****P < ,0001 by multiple comparison test). (G) Adipocyte size distribution detection with an Al-based model
trained on adipocytes, called StarDist for adipocytes, on H&E BM image after the recovery after the first cycle of induction of chemotherapy in a age + gender. (H) %Adipocyte
(count) distribution by size category at 5 different time points as quantified by StarDist: very small: 300-499 pm?; small: 500-899 pm?; medium: 900-1999 pm?; large: 2000-
3499 um?; very large: above 3500 um? (n = 28 patients with AML/high-risk MDS; n = 15 control patients; *P < .05, **P < .01, by multiple comparison test).
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Figure 5.

Reciprocity among the hematopoietic and adipocytic compartments within the BM quantified by MarrowQuant 2.0. (A) Reciprocity between the BM %hematopoietic area and %
adiposity compartments quantified by MarrowQuant2.0 (R? = 0.74, n = 79, H&E images from experimental set), cases with expanded stroma are highlighted in red. (B) H&E BM
biopsy of an expanded stroma case and (C) its corresponding MarrowQuant 2.0 classifications. (D) Comparison of equations: %hematopoietic area (Eq. 2) and %cellularity (Eq. 1)
across the 3 ranges of cellularity when compared with the clinical reference (n = 79, experimental set). (E) Quantification of the cases with expanded stroma (red dots, n = 5,
from experimental set). (F) Correlation of %cellularity (Eq. 1) generated by MarrowQuant 2.0 with the clinical reference %cellularity score estimation after correction of outliers
(red dots) associated with expanded stroma using %hematopoietic area (Eq. 2) (H&E biopsies n = 125 [experimental set], R> [average pathologists] = 0.984). (G) Correlation of %
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Table 1
Interclass and intraclass correlation coefficient for MarrowQuant 2.0 comparison
with pathologist estimation of cellularity

ICC (95% CI)

Intraobserver variability

Reviewer 1 0.989 (0.98-0.994)
Reviewer 2 0.967 (0.94-0.981)
Reviewer 3 0.972 (0.95-0.981)
Reviewer 4 0.949 (0.91-0.972)

Interobserver variability
Among reviewers

MQ2.0 expert annotation
All individual reviewers
Average score of reviewers

0.956 (0.934-0.972)

0.956 (0.935-0.973)
0.978 (0.955-0.989)

ICC, intraclass correlation coefficient.

Intraobserver (top) and interobserver (bottom) correlation for cellularity esti-
mation among the different reviewers after 1 round of MarrowQuant2.0 operated
by expert (n = 172 hematoxylin and eosin—stained images).

better when used by an expert. For non—heterogeneous BM
without stromal expansion, the correlation with the clinical
reference is still excellent when used by nonexpert users
(Supplementary Table S3).

Discussion

In this study, we present MarrowQuant 2.0, a new version of
the MarrowQuant workflow®® adapted and validated for BM
compartment segmentation of H&E-stained human BM speci-
mens. MarrowQuant 2.0 is implemented within QuPath 0.3.2, and
together with a specifically trained StarDist model, it segments the
BM images into 5 compartments (bone, hematopoietic, IMV, adi-
pocytic, and other). Together, they quantify both the areas of each
BM compartment and the individual BM adipocyte count and size
distribution. This semiautomated workflow relies on the user’s
input to define the ROIs and artifacts. Automatic selection of ROI is
not technically limiting for future versions of the workflow.
However, it would require consensus in the hematopathology
field for computer-logic compatible BM ROI selection/exclusion
criteria in defined hematologic pathologies. We have seen that
this is one of the most important sources of variability in Mar-
rowQuant 2.0 outputs and have, thus, preferred to give the user
control on ROI selection.

We counted on the %cellularity scoring to validate our tool
because cellularity assessment is the only BM parameter
measured by MarrowQuant that has an established clinical refer-
ence.'0193256-58 The assessment of cellularity in the diagnostic
pathology report or the average cellularity assessment of 4 pa-
thologists (interobserver agreement: ICC = 0.96) was used as the
ground truth. We found satisfactory performance when Marrow-
Quant 2.0 was used by a trained pathologist and once cases of
stromal expansion had been excluded (R? = 0.98; ICC = 0.96-0.98;
specificity, 0.89-1.0; sensitivity, 0.81-0.93; AUC = 0.98 for the
experimental set, n = 172 BM cases). Cases of stromal expansion
could be identified when setting an other mask threshold >25%.
Cellularity assessment in these cases was satisfactory (fell within
the interobserver variability) when the alternative %hematopoietic

area (Eq. 2) was used to determine cellularity, which uses Ma.Ar as
the denominator instead of the sum of the adipocytic and he-
matopoietic compartments. Overall, MarrowQuant 2.0 outliers are
not due to compartment misclassification but to the expansion of
the stromal compartment, which is not considered in Eq. 1. Limi-
tations in color contrast inherent to H&E stains prevented us from
defining a separate compartment for the expanded stroma, which
was thus classified as “other.” Nevertheless, MarrowQuant 2.0
displayed a satisfactory average mask classification rate of 0.86 for
all BM compartments in the confusion matrix for the training set,
with an excellent accuracy for the assignation of bone (99%), he-
matopoietic (92%), and adipocyte (98%) areas.

Our goal for MarrowQuant 2.0 was to make it accessible for
research applications and to test its compatibility with a clinical
setting. For the research scale, MarrowQuant 2.0 was able to
compartmentalize the BM space and provide cellularity mea-
surements independently of a pathologist or expert hema-
topathology supervision, (unsupervised/nonexpert annotation
performance—R* = 0.95; ICC = 0.93-0.95; specificity, 0.87-0.99;
sensitivity, 0.77-0.93; AUC 0.97 for the experimental set, n = 172
BM cases). However, the performance was even higher when used
by an expert pathologist. In a clinical diagnostic setting, the
MarrowQuant 2.0 workflow was compatible with integration as
an additional quantitative assessment (augmented pathologist)
(Fig. 6), thus abiding by the strategy proposed by the Swiss Digital
Pathology Consortium.”® Overall concordance in the clinical test
set was satisfactory for the use of Eq. 1 when excluding cases with
stromal expansion (R = 0.86-0.92). Based on our data and to best
approximate the visual cellularity assessment that constitutes
current clinical routine, we recommend the use of Eq. 2 for low
cellularity cases (<25%) and for cases of expanded stroma identi-
fied by an “other” area superior to 25%. Eq. 1 can be applied for all
other cases. The outputs of both Eq. 1 and Eq. 2 are systematically
reported by MarrowQuant 2.0., and our recommendation for the
choice of equation as discussed above is indicated in the “rec-
ommended cellularity value” output column. Future prospective
studies in diagnostic hematopathology should more broadly compare
this strategy for the choice of equation, and consider the appropriate
validation of MarrowQuant 2.0 in a clinical setting abiding by the
challenges associated with the implementation of digital pathology
tools, both from the regulatory perspective**—especially in an open-
source environment®’— and from the perspective of reproducibility
on future software updates.®!

The diagnostic or prognostic value of BM cellularity, adiposity,
and adipocyte size quantification at the histopathology level has
been confirmed in recent studies for MDS, acute lymphoblastic
leukemia, AML, and obesity.!>?82%62.63 |n the case of extreme BM
remodeling upon intensive chemotherapy for patients with AML/
high-risk MDS, MarrowQuant 2.0 found a strong reciprocity
(negative correlation) between the hematopoietic and adipocytic
compartments (R? = 0.68, n = 42 in test set; R> = 0.74, n = 79 in
experimental/validation set), matching previous quantitative
validations in murine BM.>®64 In addition, we adapted the deep
learning based StarDist extension as an additional workflow
within QuPath0.3.2, which can be run in parallel to MarrowQuant
2.0 to provide individual adipocyte segmentation and thus
adipocyte size distribution measurements and size-based color
coding. This analysis constitutes, to our knowledge, the first

cellularity generated by MarrowQuant 2.0 (Eq. 1) with the clinical reference %cellularity score estimation in the test data set after correction of outliers (red dots) associated with
myelofibrosis using %hematopoietic area (Eq. 2) (H&E biopsies n = 42 [test set], R? [pathology report] = 0.90, R? [digital image] = 0.93). (H) Cellularity measurement as suggested
for the digital pathology analysis, classified per cellularity category (low cellularity x < 25%, medium cellularity 25 < x < 50%, and aged-corrected high cellularity x > 50%).
Average patient age = 57 + 9 years. Hm.Ar, hematopoietic area; Ma.Area, marrow area; Ad.Ar, adipocytic area. (I) Correlation of %cellularity generated by MarrowQuant 2.0 with
the scoring performed on a preselected ROI by 4 expert reviewers on the validation data set (n = 125, R? = 0.92 [average pathologists] with ICC = 0.90).
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Sensitivity, specificity, and area under the ROC curve (AUC) for cellularity estimation in the experimental set

Sensitivity Specificity Macroaveraged AUC AUC (according to
Hand-Till method)
Low cellularity <25% 0.81 0.93 0.98 0.91
Medium Cellularity 25 < x < 50% 0.88 0.89
High cellularity > 50% 0.99 1

n = 172 hematoxylin and eosin—stained images when the selection of ROI was performed by an expert hematopathologist; MarrowQuant 2.0 was operated by an expert.

dedicated method to automatically segment adipocyte size dis-
tribution at diagnosis and follow-up of patients with AML/high-
risk MDS when compared with those of age-matched control
patients. We found very small—sized and medium-sized adipo-
cytes to longitudinally remodel after myeloablative chemo-
therapy, whereas the proportion of other BM adipocyte subsets
(large and very large) remains unchanged. Our observations
highlight the plasticity of the BM and the specificity of distinct BM
adipocyte subsets to undergo size remodelation. This observation
fits with previous work by Lu et al,> who underlined that very
small adipocytes at AML diagnosis correlate with poor prognosis,
and with the current understanding that at least 2 populations of
BM adipocytes coexist (regulated or labile and constitutive or
stable subsets) with differential capacity for remodeling.®> We
conclude from this analysis that the incorporation of the quanti-
tative stromal remodeling parameters provided by MarrowQuant
2.0 and StarDist in experimental hematopathology could be useful
to investigate novel diagnostic or prognostic markers in clinical
scenarios of intense BM remodeling, including myeloid malig-
nancies, aplastic anemia, BM insufficiency syndromes, and he-
matopoietic progenitor transplantation or other advanced cellular
therapies.

Contrasting the performance of MarrowQuant 2.0 to the results
of previous studies and existing algorithms or tools, we found that
our results are either comparable or provide an improvement to
previous work (reviewed in Supplementary Table S4). Direct
comparison was not possible as these algorithms, unlike Mar-
rowQuant 2.0, are not open source. The closest approach was
recently proposed by van Eekelen et al,** who developed a deep
learning approach to automatically detect compartments within
the BM compared with the visual estimation of 2 hematopathol-
ogists (ICC = 0.78, n = 109). The advantage of our study is that it
integrates MarrowQuant 2.0 within the user-friendly platform of
QuPath and that we validated our approach in the extreme cases
of low and high cellularity (range from below 5%-100% cellularity
in our study compared with 20% to 80% cellularity range in the
study by van Eekelen et al**). Similarly, Hagiya et al®’ used the
HALO imaging algorithm to compare automatic cellularity mea-
surements with visual estimation by 3 pathologists (ICC = 0.81,
n = 165), and Kim et al’® used nuclear counts to assess the
cellularity against visual scoring (R*> = 0.816, n = 325). Our study
used not only the visual estimation of independent reviewers for
validation but also the scoring extracted from the diagnostic pa-
thology report. When compared with these studies, we observed a
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Figure 6.

Report to Pathologist

Proposal for MarrowQuant 2.0 potential integration within a digital pathologist plus machine hematopathology workstream. BG, background; LIS, laboratory information system.
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higher agreement between the pathology report cellularity scores
and MarrowQuant 2.0’s cellularity assessment in both nonexpert
and expert annotations, suggesting that our approach may pro-
vide a more accurate evaluation for the diagnostic pipeline.

Moreover, our algorithm performed similarly to the results
reported for the fully automated algorithm developed by Nielsen
et al®” for cellularity assessment, which agreed well with hema-
topathologists (ICC = 0.80, n = 8). However, their training set was
based on 8 BM H&E-stained slides only to fully segment the BM
tissue into either red (hematopoietic) or yellow (adipocytic)
marrow to generate a heatmap with gradients of cellularity
scorings. Compared with our much larger data sets and greater
diversity of classification categories, MarrowQuant 2.0 out-
performs the previously cited tools in simultaneous segmentation
of the full BM space into 5 mutually exclusive BM compartments
and overall accuracy of cellularity assessment. Moreover, Briick
et al’° used convolutional neural networks, QuPath, and a multi-
regression model to extract and quantify morphologic features
from BM biopsies of patients with MDS and MDS/myeloprolifer-
ative neoplasms. Their main focus was the correlation with clinical
data to build predictive models. Their work relied on the pixel
classification power of QuPath to extract the hematopoietic
compartment and adipocytes, with the bone plus stroma as a joint
entity. Unlike Briick et al,>° the approach used by MarrowQuant
2.0 segments bone and stroma as 2 separate compartments and
identifies a separate IMV compartment, thus allowing for com-
parison of the 2 competing definitions of BM cellularity.

Our study faces some limitations. First, it is a semiautomatic
workflow: the user must annotate the ROIs, artifacts, and back-
ground. This adds 2-3 minutes of hands-on annotation per image,
in addition to the 1-2 min needed to have the full H&E-stained
image quantified by MarrowQuant 2.0. However, we strategically
kept the semiautomated feature because it gives the user control
over the ROI selection, especially in cases where the BM tissue is
heterogeneous or significantly modified by stromal expansion.
The highly user-friendly and interactive interface offered by
QuPath allows for rapid custom annotation of tissues and the
exclusion of artifacts that should not be counted in the quantifi-
cation. Second, it is important to note that we used a 25% low
cellularity cutoff for sensitivity and specificity analyses. This value
is routinely used as the diagnostic cutoff in the context of BM
insufficiency and severe aplastic anemia.'”!®°%>! However, others
have used a 30%-40% in the context of myeloid malignancies.>**>
Finally, MarrowQuant 2.0 classification, based on color and texture
thresholding, has the disadvantage of misclassifying parts of the
megakaryocyte cytoplasm as IMV or bone. Our training and
experimental sets did not contain samples with a high number of
megakaryocytes, leading to a nonsignificant misclassification
(Supplementary Fig. S3). The algorithm should be used with
caution in clinical scenarios where megakaryocyte hyperplasia is
expected, including myeloproliferative syndromes. Future ver-
sions of the algorithm, which will incorporate deep learning and
machine learning,>*®® are under development to overcome this
problem.

In conclusion, MarrowQuant 2.0 is, to our knowledge, the first
robust workflow to simultaneously segment the full BM space in
human H&E-stained images into the hematopoietic compartment
and 4 stromal compartments (bone, IMV, adipocytic, and other
areas). When coupled with StarDist on adipocytes, it automatically
provides an adipocyte size classification and distribution for the
whole BM biopsy in the user-friendly environment of QuPath.
Other applications could be focused on the quantification of bone
to total marrow area in the context of osteopenia and osteo-
sclerosis associated to hematologic disorders. We expect our

approach may be useful both to support quantitative BM cellu-
larity and stromal compartment assessment in biomarker dis-
covery for the diagnostic setting and to either provide a novel tool
for research laboratories with limited access to expert patholo-
gists or to homogenize BM cellularity assessments in clinical
research. Potential integration in future digital clinical diagnosis
pipelines should be determined by larger prospective studies and
by the challenging regulatory landscape of digital histopathology
in open-source digital environments.
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