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Abstract

We develop a new method to globally solve and estimate search and match-
ing models with aggregate shocks and heterogeneous agents. We characterize
general equilibrium as a high-dimensional partial differential equation with the
distribution as a state variable. We then use deep learning to solve the model
and estimate economic parameters using the simulated method of moments.
This allows us to study a wide class of search markets where the distribution
affects agent decisions and compute variables (e.g. wages and prices) that were
previously unattainable. In applications to labor search models, we show that
distribution feedback plays an important role in amplification and that posi-
tive assortative matching weakens in prolonged expansions, disproportionately
benefiting low-wage workers.
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1 Introduction

Heterogeneity in markets with search frictions is important for explaining economic
phenomena such as wage dispersion, sorting, job ladders, and asset liquidity (e.g. Bur-
dett and Mortensen (1998); Shimer and Smith (2000); Postel-Vinay and Robin (2002);
Duffie, Gârleanu, and Pedersen (2005)). These markets feature volatile distribution
dynamics over business cycles, during major crises, and in response to policy re-
forms (e.g. Moscarini and Postel-Vinay (2023); Chen, Cui, He, and Milbradt (2017)).
However, modeling equilibrium in these markets has proven technically challenging
because optimizing agents need to understand and forecast time-varying distributions.
To ensure tractability, many researchers have simplified the problem by limiting how
distributions impact agent decisions (e.g. the “block-recursive” equilibria in Lagos
and Rocheteau (2009), Menzio and Shi (2011), Lise and Robin (2017)1). Develop-
ments in the deep learning literature have opened up the possibility of relaxing these
restrictions. In this paper, we present a general formulation of heterogeneous agent
search and matching models with aggregate shocks as a collection of high dimensional
partial differential equations (PDEs) with the agent distribution explicitly as a state
variable. We then develop the first deep learning method for solving these models and
estimating economic parameters using the simulated method of moments. We use our
method to study three foundational models in labor and financial search that have
never been solved in their general form. This allows us to understand the interactions
between aggregate shocks and heterogeneity during crises and business cycles.

We focus on models with the following features. The economy is populated by
heterogeneous agents (e.g. workers or investors) and heterogeneous institutions (e.g.
firms or financial intermediaries) that can be matched or unmatched. Matches gen-
erate utility that depends upon the idiosyncratic agent and institution types and
an exogenous aggregate variable that follows a continuous time Markov chain. Un-
matched agents and institutions engage in random search to meet each other. Upon
meeting, they choose whether to accept the match and then bargain over the divi-
sion of the matching surplus. We show that the equilibrium for this economy can
be characterized recursively with a state space consisting of the exogenous aggregate
variable and the endogenous distribution of matches across types in the economy. The

1Following Menzio and Shi (2011) and Lise and Robin (2017), we call an equilibrium “block-
recursive” if the agents’ value and policy functions are independent of the endogenous distribution
of agents across their idiosyncratic states.
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match distribution impacts agent decisions because the opportunity cost of accepting
a match depends upon which other agents are looking for matches and which insti-
tutions are available to match. The equilibrium is then characterized by a “master”
PDE for the surplus function, which includes high dimensional derivatives capturing
the impact of distributional changes on surplus.

In Section 2, we propose a deep learning method for solving this class of PDEs and
estimating economic parameters using the simulated method of moments, which we
refer to as DeepSAM. To solve the model, we approximate the surplus function with
a neural network (NN) and then train the neural network parameters to minimize the
average loss in the PDE on a collection of sample points. We estimate the model using
the simulated method of moments by building on the state-of-the-art practices in the
deep learning literature. Instead of solving the model repeatedly across different eco-
nomic parameter values, we introduce these parameters as pseudo-state variables and
solve the resulting “extended master” equations using deep learning. This provides
an explicit solution to the problem over a large range of structural parameter values.
We then use this solution to build a surrogate model mapping structural parameters
to simulated moments that we utilize for estimation.

To our knowledge, we are the first to apply deep learning to study search and
matching models, which requires resolving a number of technical challenges. First,
unlike some Walrasian market models (e.g. Krusell and Smith (1998)), the distribu-
tion does not enter the agent optimization problem only through aggregate prices.
Instead, there is complicated feedback between the shape of the distribution and
agent decisions because agents need to forecast who they will meet. Second, the free
entry condition in search models typically requires solving a non-linear fixed point
problem at each training step. Third, the algorithm must be stabilized across unusu-
ally shaped surplus functions and the economic parameter space. We resolve these
problems by developing novel sampling techniques that help train the model in the
economically meaningful state space, deriving an explicit representation of the firm
distribution, and gradually introducing curvature into the solution algorithm.

We deploy our method in three search models that represent “canonical” environ-
ments in labor economics and finance. In each case, we relax assumptions previously
imposed for tractability and study the general environment.

In Section 3, we solve a labor market search model with two-sided heterogeneity
that has been extended to include aggregate crisis shocks. This model can be thought
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of as either the Shimer and Smith (2000) model with two-sided heterogeneity and
aggregate shocks, or as the Mortensen and Pissarides (1994) model with worker and
firm heterogeneity. Even though this environment is a key building block in the
literature, our method is the first to be able to solve the model without simplifying
assumptions. We verify the accuracy of our solution in several ways. In our full model
with aggregate shocks, we show that the average numerical error in the differential
equation is in the order of 10−7. In the simplified version of our model without
aggregate shocks that can be solved with traditional methods, we show the average
squared difference between our solution and the fixed point solution is in the order of
magnitude of 10−6.

We use our solution to study the role of distributional feedback during the COVID-
19 pandemic. We calibrate the model to include a crisis state that generates the het-
erogeneous employment decline across worker skill groups and firm industries occurred
during COVID, as estimated by Cajner, Crane, Decker, Grigsby, Hamins-Puertolas,
Hurst, Kurz, and Yildirmaz (2020). We then compute the impulse response following
a COVID shock and decompose the time path by comparing the results to the “re-
stricted” dynamics when agents make matching decisions under the “myopic” belief
that they are always at the ergodic employment distribution. We find that in the full
model unemployment falls approximately 30% faster during the recovery than in the
restricted model. This is because, in the full model, firms understand that COVID
disproportionately increases unemployment among low-skilled workers, which leads
them to forecast a higher opportunity cost of waiting for a high-skilled worker and so
offer jobs to a wider range of workers. We also consider a counterfactual crisis where
unemployment increases symmetrically across all agent types and show that for this
case the restricted dynamics closely approximate the full dynamics. This illustrates
that solving the model globally across the distribution is particularly important for
understanding large, asymmetric shocks.

In Section 4, we study a labor market with on-the-job search and endogenous sep-
aration. Our environment builds on the recent literature (e.g. Lise and Robin (2017)
and subsequent papers) but relaxes the assumptions commonly imposed to achieve
block recursivity. In particular, we allow workers to possess positive bargaining power
during both initial and on-the-job search meetings. We use our deep learning method
to estimate the model to match empirical moments of the US labor market. The
entire solution and estimation process takes approximately 5 hours, where the model
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is solved over the economic parameter space and simulated across 10,000 parame-
ter combinations to build the surrogate model deployed for the simulated method
of moments. Our estimated model finds support for the Okun (1973) hypothesis
that low-wage workers benefit disproportionately from longer expansions. This oc-
curs because there is counter-cyclical sorting in our model that is more pronounced as
expansions and recessions are prolonged. During an expansion (recession) high-type
workers become increasingly scarce (plentiful) so high-type firms become less (more)
picky in their job offers. Consequently, longer expansions lead to greater weakening
of positive assortative matching, which benefits low-skilled workers. This offers an
explanation for Okun’s hypothesis through the feedback between distribution changes
and acceptance decisions, a connection that is shut down in other models.

Our method allows us to study business cycle dynamics that have previously been
too difficult to examine. One important example is the dynamics of the wage distri-
bution. As pointed out by Lentz, Lise, and Robin (2017), even though the surplus
function is block recursive in the commonly used Lise and Robin (2017) framework,
the division of the surplus, i.e. the wage, is not. This means that wages necessarily
depend upon the distribution and so cannot be computed with traditional methods.
We use DeepSAM to overcome these challenges and solve for the high dimensional
wage function. Our solution finds that wages of low-skilled workers are more pro-
cyclical over the business cycle. We also use our method to revisit the implications of
the assumptions required to generate block-recursivity, e.g. that unemployed workers
have no bargaining power when meeting with firms. By solving the model over a wide
range of worker bargaining power values, we show that unemployment and vacancies
are more responsive to business cycle shocks when worker bargaining power is small,
indicating that the block recursive assumptions are quantitatively important.

In Section 5, we use DeepSAM to solve an over-the-counter (OTC) bond market
model with heterogeneous investors, different bond maturities, and aggregate default
risk. This can be thought of as an extension to Duffie, Gârleanu, and Pedersen (2005)
and Weill (2008) that expands investor and asset heterogeneity and allows for aggre-
gate risk. From a technical point of view, relative to the labor models in the earlier
sections, this model introduces type switching and asset trade. We use our model to
study how liquidity and institutional frictions impact bond prices at different maturi-
ties. We show that a financial crisis shock that increases the liquidity needs of hedge
funds and increases default risk has more impact on long-maturity bonds. This offers
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a search-theoretic rationale for the volatility of the term structure.

Literature Review. Over the past three decades, there have been major advances
in solving search and matching models with heterogeneity and aggregate risk. One
advance is the Bertrand competition model of wage setting introduced in Postel-
Vinay and Robin (2002) and deployed in many papers (e.g. Cahuc, Postel-Vinay, and
Robin (2006); Lise and Robin (2017)). Another is the directed search block recursive
structure introduced by Moen (1997); Menzio and Shi (2010, 2011). Both these
approaches impose contracting and entry assumptions that ensure agent decisions are
independent of the distribution of matches. Our paper relaxes these constraints and
solves a general class of models where the distribution may impact agents’ decisions.

Our labor market models (Sections 3 and 4) are connected to recent papers study-
ing business cycle dynamics in heterogeneous agent labor search models (e.g. Schaal
(2017); Mueller (2017); Krusell, Mukoyama, Rogerson, and Şahin (2017); Moscarini
and Postel-Vinay (2018); Engbom (2021); Fukui (2020); Baley, Figueiredo, and Ul-
bricht (2022); Alves (2022); Qiu (2023); Moscarini and Postel-Vinay (2023); Birinci,
Karahan, Mercan, and See (2024); Gregory, Menzio, and Wiczer (2024)). Our Deep-
SAM approach offers a way to expand the range of models used in this literature
by enriching agent heterogeneity, relaxing block recursivity, departing from perfect
foresight, studying non-linear crisis dynamics, and potentially other extensions. We
also show how to deploy deep learning to estimate these models at scale.

We are part of a growing literature using deep learning methods to solve eco-
nomic models and overcome the limitations of traditional solution techniques. These
papers have focused on solving heterogeneous agent macroeconomic models with in-
complete but Walrasian markets (e.g. Azinovic, Gaegauf, and Scheidegger (2022),
Maliar, Maliar, and Winant (2021), Han, Yang, and E (2021), Kahou, Fernández-
Villaverde, Perla, and Sood (2021), Fernández-Villaverde, Hurtado, and Nuno (2023),
Gopalakrishna (2021), Sauzet (2021), Huang (2022), Gu, Lauriere, Merkel, and Payne
(2023), Azinovic and Žemlička (2023), Duarte, Duarte, and Silva (2024), Huang
(2024), among others, see the recent review by Fernández-Villaverde, Nuno, and Perla
(2024)). Our contribution is to show how to undertake deep learning to solve search
and matching models, which are workhorse models for a large literature in macroeco-
nomics, monetary economics, and finance. What makes these models difficult to solve
compared to many competitive incomplete market models (e.g. Krusell and Smith
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(1998)) is that the shape of the distribution matters directly for the equilibrium. This
is because, as summarized in Table 1, the distribution impacts agents’ decisions via
the matching probability with other types rather than through aggregate prices. This
imposes greater challenges on how we develop our numerical and sampling schemes
to get an accurate solution.

Distribution How distribution affect agents’ decisions
HAM Asset wealth and income Via aggregate prices

SAM Type (productivity) of agents
in two sides of matching

Via matching process
with other types

Table 1: How distribution matters in heterogeneous agent models (HAM) vs search
and matching (SAM) models.

Our estimation approach builds on the idea of introducing structural parameters
as pseudo-state variables, first proposed by Norets (2012) and recently extended by
Chen, Didisheim, and Scheidegger (2023); Kase, Melosi, and Rottner (2024); Friedl,
Kübler, Scheidegger, and Usui (2023); Duarte and Fonseca (2024). Our PDE formu-
lation is related to the master equations in Bilal (2023); Alvarez, Lippi, and Sougani-
dis (2023). Finally, our training approach draws on the “Physics-informed neural
networks” (PINN) literature (e.g. Raissi, Perdikaris, and Karniadakis (2019)) in
computational science.

The paper is structured as follows. Section 2 describes our DeepSAM methodol-
ogy for solving and estimating a general class of search and matching models. Section
3 applies DeepSAM to solve a canonical labor market search model with two-sided
heterogeneity and aggregate shocks, and studies the impact of the COVID-19 shock.
Section 4 applies DeepSAM to estimate a model with on-the-job search and endoge-
nous separation. Section 5 applies DeepSAM to an over-the-counter bond market with
heterogeneous investors, bond maturities, and aggregate shocks. Section 6 concludes.

2 Methodology

In this section, we outline a general environment that nests models across the search
and matching literature. We introduce our deep learning method to solve the model.
Finally, we outline how to use neural networks to undertake efficient estimation to
match simulated moments (a deep learning based “simulated method of moments”).
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2.1 Environment

Setting: The economy is in continuous time with an infinite horizon. It is populated
by a continuum of infinitely lived, heterogeneous agents. A unit measure of agents are
workers indexed by type x ∈ X and a unit measure are firms indexed by type y ∈ Y .
We use workers and firms for notational convenience but we could equivalently label
the different agents as investors and financial dealers, or other market participants.
Workers are either employed (e) in a match or unmatched (u). Firms are either pro-
ducing (p) in a match or vacant (v). The distribution of matches between workers and
firms is endogenous and determined by agent decisions. All agents have a discount
rate ρ. The exogenous aggregate state of the economy is indexed by zt ∈ Z, which
follows a continuous time Markov chain with transition matrix Σ.

Match utility: If a worker is unmatched (unemployed), they get flow utility b. Workers
match with firms but not with each other. If a worker of type x is matched with a firm
of type y, then they generate transferable utility F (x, y, z),2 where F is increasing in
each variable and twice differentiable with uniformly bounded first partial derivatives
on X ×Y ×Z. Matches are destroyed at the exogenous rate δ(x, y, z) that potentially
depends upon the idiosyncratic type and the aggregate state.

Distributions: Let gw
t (x) denote the population measure function of workers and let

gf
t (y) denote the population measure function of firms. For expositional simplicity,

here we focus on the case with an exogenous and time-invariant gw and an entry
condition that determines gf

t .3 Formally, following Hagedorn et al. (2017), new firms
can enter the economy with a draw of y from the uniform distribution U(0, 1). They
pay a flow cost of c per period while operating in the economy. Let gt(x, y) denote
the measure function of matched workers and firms, ge

t (x) denote the measure func-
tion of matched workers, gu

t (x) denote the measure function of unmatched workers,
gp

t (y) denote the measure function of producing firms, and gv
t (y) denote the measure

function of vacant firms. The relationships between the functions are given in Table
2 below. With some abuse of terminology, we follow the literature and refer to g,

2Our method can also handle non-transferable utility. Code to solve Smith (2006) with aggregate
shocks is available upon request.

3Our method can also handle endogenous or time varying gw
t . For example, in Section 5, we solve

an over-the-counter model with investor-type switching.
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ge, gu, gp, gv, gw, and gf as the “distributions” in the economy even though they
are technically neither densities nor cumulative distribution functions. We define the
aggregate worker employment by Et :=

∫
ge

t (x)dx, aggregate worker unemployment
by Ut :=

∫
gu

t (x)dx, aggregate producing firms by Pt :=
∫
gp

t (y)dy, and aggregate
vacant firms by Vt :=

∫
gv

t (y)dy. Later we will show we can calculate all distribu-
tions from gt and z and so (zt, gt) is a sufficient aggregate state space for the economy.

Description Measure Function Conditional Density
Matches gt(x, y)
Employed workers ge

t (x) =
∫
gt(x, y)dy ge

t (x)/Et

Unemployed workers gu
t (x) = gw

t (x) − ge
t (x) gu

t (x)/Ut

Producing firms gp
t (y) =

∫
gt(x, y)dx gp

t (y)/Pt

Vacant firms gv
t (y) = gf

t (y) − gp
t (y) gv

t (y)/Vt

Table 2: Summary of distributions

Search and Matching Technology: Only and all unmatched workers engage in ran-
dom search. We generalize to include “on-the-job” search in Section 4. A function
m : R+ ×R+ → R+, (Ut,Vt) 7→ m(Ut,Vt) takes the current level of unemployment and
vacancies and generates meetings. The rate at which a worker meets a potential firm
is Mu

t := m(Ut,Vt)/Ut, while the rate at which a vacant firm meets a potential hire
is Mv

t := m(Ut,Vt)/Vt. The rate at which a worker meets any firm y ∈ Y ⊂ Y equals
Mu

t (
∫

Y (gv
t (y)/Vt)dy), where gv

t (y)/Vt is the firm density conditional on being vacant.
The rate at which a firm meets any worker x ∈ X ⊂ X equals Mv

t (
∫

X(gu
t (x)/Ut)dx,

where gu
t (y)/Ut is the worker density conditional on being unemployed.

Surplus division: We impose that, upon matching, agents negotiate according to a
generalized Nash Bargaining protocol so that workers get a fraction β of surplus and
firms get the remaining fraction 1 − β. The contract is implemented by providing a
flow “wage” w(x, y, z, g) to the worker and flow “profit” f(x, y, z) − w(x, y, z, g) to
the firm.

2.2 Recursive Characterization of Equilibrium

We now define and characterize a recursive equilibrium. The aggregate states are
(z, g), where z is the aggregate productivity and g is the measure function over
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matches. We guess (and later verify) that the law of motion for g takes the form4:

dgt(x, y) = µg(x, y, z, g)dt.

We denote agents’ belief about the evolution of the match measure g by µ̆g(x, y, z, g),
which equals to µg(x, y, z, g) in equilibrium.

2.2.1 Surplus Division

Let V u(x, z, g) denote the value of an unemployed worker of type x, V e(x, y, z, g)
denote the value of a worker of type x employed at a firm of type y, V v(y, z, g) denote
the value of a vacancy for firm y, and V p(x, y, z, g) denote the value of a producing
firm y employing a worker of type x. The surplus of a match is defined as:

S(x, y, z, g) := V p(x, y, z, g) − V v(y, z, g) + V e(x, y, z, g) − V u(x, z, g)

The Nash Bargaining protocol implies that the division of surplus is given by:

βS(x, y, z, g) = V e(x, y, z, g) − V u(x, z, g)

(1 − β)S(x, y, z, g) = V p(x, y, z, g) − V v(y, z, g)
(2.1)

which implicitly determine the wage w(x, y, z, g). Optimizing workers and firms ac-
cept the match when the surplus is positive so α is given by:

α(x, y, z, g) :=

 1, if S(x, y, z, g) > 0
0, otherwise

(2.2)

Following the literature, we assume that contract terms are indexed to the contracts of
new hires so that V e(x, y, z, g)−V u(x, z, g) is the same for all workers with a particular
(x, y) and V p(x, y, z, g) − V v(y, z, g) is the same for all firms with a particular (x, y).

4The evolution of g does not have a Poisson shock from the continuous time Markov chain process
for the exogenous aggregate state z because the change in z does not directly break up matches.
Instead, it changes agents decisions and so the rate of the change in g. For further discussion, see
Gu et al. (2023).
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2.2.2 Agent Hamilton-Jacobi-Bellman (HJB) Equations

Given beliefs and optimal decisions, the value functions V u, V e, V v, and V p satisfy
the Hamilton Jacobi Bellman (HJB) Equations:

ρV u(x, z, g) = b+ Mu
∫
α(x, ỹ, z, g)(V e(x, ỹ, z, g) − V u(x, z, g))g

v(ỹ)
V

dỹ

+
∑
ž ̸=z

λ(z, ž)(V u(x, ž, g) − V u(x, z, g)) + ⟨DgV
u, µ̆g⟩ (2.3)

ρV e(x, y, z, g) = w(x, y, z, g) − δ(x, y, z)(V u(x, z, g) − V e(x, y, z, g))

+
∑
ž ̸=z

λ(z, ž)(V e(x, y, ž, g) − V e(x, y, z, g)) + ⟨DgV
e, µ̆g⟩ (2.4)

ρV v(y, z, g) = − c+ Mv
∫
α(x̃, y, z, g)(V p(x̃, y, z, g) − V v(y, z, g))g

u(x̃)
U

dx̃

+
∑
ž ̸=z

λ(z, ž)(V v(y, ž, g) − V v(y, z, g)) + ⟨DgV
v, µ̆g⟩ (2.5)

ρV p(x, y, z, g) = F (x, y, z) − w(x, y, z, g) − δ(V v(y, z, g) − V p(x, y, z, g))

+
∑
ž ̸=z

λ(z, ž)(V p(x, y, ž, g) − V p(x, y, z, g)) + ⟨DgV
p, µ̆g⟩ (2.6)

where for j ∈ {u, e, v, p}, DgV
j is the Frechet derivative of V j with respect to the

measure function g,5 ⟨f(y), h(y)⟩ =
∫
f(y)h(y)dy is the inner product, and α is an

indicator function for the optimal match acceptance decision.
The HJB equation for unemployed agents can be interpreted in the following way.

The left-hand side of (2.3) is the flow value of being unemployed. On the right-hand-
side, the first term is the flow utility benefit, the second term is the meeting rate
multiplied by the expected gain in a meeting, the third term is the value function
shift when the exogenous aggregate state changes and the final term governs how the
value function is impacted by distribution changes. The other HJB equations have a
similar interpretation.

5The mean field game literature has studied the mathematical difficulties involved in defining a
Frechet derivative for HJB equations with an infinite dimensional state (Cardaliaguet et al. (2019)).
It has not been established whether these characterizations are appropriate for economic models.
However, our numerical examples will always work with a finite type space where the derivatives are
clearly defined.
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2.2.3 Match Distribution Evolution

Given the agent matching decisions, the measure function of matches evolves accord-
ing to:

dgt(x, y) = − δ(x, y, z)gt(x, y)dt+ Mu
t g

u
t (x)α(x, y, z, g)g

v
t (y)
Vt

dt

where the first term is the outflow from the breakup of matches and the second term is
the inflow from the creation of new matches. Given g, and the firm measure function
gf , we can recover the other measures from Table 2. So, the Kolmogorov Forward
Equation (KFE) for the match measure function can be expressed as:

dgt(x, y) = − δ(x, y, z)gt(x, y)dt+ m(Ut,Vt)
UtVt

αt(x, y)
(
gw(x) −

∫
gt(x, y)dy

)
×
(
gf (y) −

∫
gt(x, y)dx

)
dt = µg(x, y, z, g)dt.

(2.7)

2.2.4 Free Entry and the Firm Distribution

Like in Hagedorn et al. (2017), the firm measure function gf
t is determined by the

“free-entry” condition6:

0 = E[V v
t ] =

∫
V v(ỹ, z, g)dỹ. (2.8)

Combining the free-entry condition with equations (2.1) and (2.5) gives:

m(Ut,Vt)
Vt

= c∫ ∫
α(x̃, ỹ, zt, gt)gu

t (x̃)
Ut

(1 − β)S(x̃, ỹ, zt, gt)dx̃dỹ

where gu
t = gw

t −
∫
gt(x, y)dy and so the RHS can be computed from gt and St.

Conceptually, the matching rate depends upon the average surplus because new firms
enter the model until it is no longer profitable to do so. If the matching function
is homothetic in Ut and Vt (as is common in the literature), then we have m(zt,gt)

Vt
=

m̂
(

Vt

Ut

)
and so Vt can be solved for explicitly. Otherwise, we can deploy a non-linear

fixed point solver for Vt in the loop of our algorithm. Since firm y draws are uniformly
distributed, gf

t is then given by gf
t = Vt + Pt.

6As is common in the labor search literature, this makes gf
t a jump variable. Our approach could

be extended to consider alternative entry arrangements for which gf
t is a state variable.
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2.2.5 Equilibrium and Master Equation

Definition 1. A (recursive) equilibrium is a collection of functions {V u,V e,V v,V p,
w, α, gf} of the state variables (z, g) such that: (i) given beliefs about the evolution of
gt, (V u, V e, V v, V p, α) solve the HJB equations (2.3)-(2.6), (ii) the division of surplus
satisfies (2.1), (iii) gf satisfies the free entry condition (2.8), and (iv) agent beliefs
about the evolution of gt are consistent in the sense that µ̆g = µg, where µg is given
by equation (2.7).

After combining the HJB equations and imposing belief consistency, the equilib-
rium can be characterized by the “master equation” for the surplus:

0 = LSS =: −ρS(x, y, z, g) + F (x, y, z) + c− δ(x, y, z)S(x, y, z, g)

− (1 − β)m(z, g)
V(z, g)

∫
α(x̃, y, z, g)S(x̃, y, z, g) g

u(x̃)
U(z, g)dx̃

− b− β
m(z, g)
U(z, g)

∫
α(x, ỹ, z, g)S(x, ỹ, z, g) g

v(ỹ)
V(z, g)dỹ

+
∑
ž ̸=z

λ(z)(S(x, y, ž, g) − S(x, y, z, g)) + ⟨DgS(x, y, z, g), µg(x, y, z, g)⟩

(2.9)

where µg is given by (2.7), (U ,V , gu, gv) can be calculated by Table 2, gf is pinned
down by (2.8), and α is given by equation (2.2). Once we obtain S(x, y, z, g) and
α(x, y, z, g) by solving Equation (2.9), we can obtain {V u, V e, V v, V p, w} by solving
equations (2.3), (2.4), (2.5), (2.6) together with the surplus division equation (2.1).

2.2.6 Relation to Environments in Other Papers

Block recursivity: We can compare our set-up to well-known papers in the search lit-
erature with block recursive equilibria. Lise and Robin (2017) sets β = 0, introduces
a vacancy creation condition at each y, and assumes that all unmatched vacancies
will be destroyed each period. They show this implies that α and S do not depend
upon g7, i.e. α(x, y, z, g) = α(x, y, z) and S(x, y, z, g) = S(x, y, z), which means their
model is block-recursive in total surplus and acceptance decisions. In Appendix D.2,
we derive these results using our continuous time environment and notation. Menzio
and Shi (2011) introduces competitive search and free entry on one side of the market,
which also implies that the value functions and agent decisions do not depend upon

7They also introduce on-the-job search, which we compare to in Section 4.
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g. Our method allows us to relax the assumptions that lead to block recursivity and
study a wide class of models in which α and S can explicitly depend upon g.

Dimension reduction: For models with incomplete but Walrasian markets, Krusell
and Smith (1998) suggests replacing the distribution in the state space by its mean
(and potentially other low dimensional moments). This may be an effective approach
for some Walrasian market models because the distribution impacts agents’ decisions
by changing aggregate prices, which may primarily depend upon the low dimensional
moments of the distribution. By contrast, in a search model, the distribution impacts
agents’ decisions by changing the probability distribution over which agents they
meet. This ultimately enters the master equation on lines 3 and 4 of equation (2.9).
There are no obvious low-dimensional moments of the distribution that are sufficient
for evaluating these terms because we need to integrate across the surplus function,
weighted by the acceptance decision and the density of searching agents.

2.2.7 Model Extensions

In Section 4, we extend the model to incorporate endogenous separation and on-the-
job search with positive worker bargaining power. In Section 5, we extend the model
to incorporate type switching and asset trade in an over-the-counter market. Our so-
lution approach offers a foundation that can be used to study other important models
in the search and matching literature such as within-firm heterogeneity for large firms,
multi-dimensional sorting, non-transferable utility, and consumption-saving decisions.

2.3 Approximation with Finite Types

Our goal is to solve the master equation (2.9) numerically to obtain S(x, y, z, g) and
α(x, y, z, g). We can then solve for the value and wage functions using Equations
(2.1) to (2.6). Solving Equation (2.9) is difficult because the state space contains an
infinite dimensional variable, g, and so the master equation contains Frechet deriva-
tives with respect to g. To make progress on this problem, we approximate g on a
discretized type space so that equation (2.9) becomes a high, but finite-dimensional
partial differential equation that can be solved using deep learning.8

8There are alternative discretization approaches that could also be deployed (e.g. a projection
onto a finite set of basis functions). We choose to work with a finite type space because it generates
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Discrete type space and KFE: To represent g, we restrict the possible types to finite
collections: x ∈ X = {x1, . . . , xnx} and y ∈ Y = {y1, . . . , yny}. With some abuse of
notation, we let g

t
denote the vector of measures of matched agents at the points

(X ,Y), where gt,ij = gt(xi, yj) denotes g evaluated at type (xi, yj). We also let gw
t,i :=

gw
t (xi) and gf

t,j := gf
t (yj). The discretized aggregate state variables are: {z, g

t
}, the

aggregate productivity, and the vector of measures of agent matches. The Riemann
approximation to the KFE on the discretized type space is given by:

dgt,ij

dt
= µg(xi, yj, zt, gt

) = −δ(xi, yj, z)gt,ij +
m(zt, gt

)
U(zt, gt

)V(zt, gt
)α(xi, yj, zt, gt

)

×
(
gw

t,i − 1
ny

ny∑
k=1

gt,ik

)(
gf

t,j − 1
nx

nx∑
l=1

gt,lj

)
, ∀i ≤ nx, j ≤ ny

(2.10)

Master equation: The discretized Master equation for the Surplus is given by:

0 = LSS = −(ρ+ δ(x, y, z))S(x, y, z, g) + F (x, y, z) + c− b

− (1 − β)
m(z, g)

U(z, g)V(z, g)
1
nx

nx∑
k=1

α(xk, y, z, g)S(xk, y, z, g)gu
k

− β
m(z, g)

U(z, g)V(z, g)
1
ny

ny∑
l=1

α(x, yl, z, g)S(x, yl, z, g)gv
l

+
nx∑

k=1

ny∑
l=1

∂gkl
S(xk, yl, z, g)µg(xk, yl, z, g)

+
∑
ž ̸=z

λ(z)(S(x, y, ž, g) − S(x, y, z, g)), (2.11)

where µg is given by the discretized KFE (2.10), (U ,V , gu, gv) are calculated from
Table 2 (after appropriate discretization), gf comes from gf

t = Vt + Pt, and we
approximate α(x, y, z, g) by α(x, y, z, g) =

(
1 + e−ξS(x,y,z,g)

)−1
to ensure the differen-

tiability of the value function when there is a finite number of types.9 The differential
equations for the value functions, (2.3) to (2.6), have analogous discretized forms.

a very tractable approximation (2.10) to the KF equation.
9The “softened” α function can be interpreted as a logit choice model where utility shocks come

from an extreme value distribution with parameter ξ.
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2.4 The DeepSAM Method

In this section, we present the DeepSAM method for using deep learning to solve
and estimate the general class of search and matching models outlined in Subsections
2.1 to 2.3. We first present, for given structural parameters, how to solve the high
dimensional master equation (2.11). We then present how to estimate the model by
introducing structural parameters as pseudo-state variables in the neural network and
using a surrogate model to find the parameters that match simulated moments to the
empirical data.

2.4.1 Solution Algorithm for Given Structural Parameters

Let ω = (x, y, z, g) ∈ Ωω denote the state space. We approximate the surplus func-
tion, S, by a neural network, Ŝ : Ωω × ΩΘ → R, (ω,Θ) 7→ Ŝ(ω;Θ), of the form:

h(1) = ϕ(1)(W (1)ω + b(1)) . . .Hidden layer 1

h(2) = ϕ(2)(W (2)h(1) + b(2)) . . .Hidden layer 2
...

Ŝ = ϕ(H)(W (H)h(H−1) + b(H)) . . .Layer H, Surplus

where, using the terminology of the deep learning literature, H is the number of layers,
the length of vector h(i) is the number of neurons in layer i, ϕ(i) is the activation
function for layer i, and the collection Θ = (W 1, . . . ,W (H), b(1), . . . , b(H)) ∈ ΩΘ are
the parameters for the neural network.

Our goal is to find the parameters of the neural network to approximately solve
the master differential equation (2.11) globally across the state space.10 Our approach
is summarized in Algorithm 1. Essentially, we use stochastic gradient descent algo-
rithms or their variants to train the neural network to minimize the average loss in
the master equation on a collection of sample points. As with other neural network
approaches, there are many implementation details involved with these generic steps.
We discuss two: sampling and stability.

Procedure to construct the sample points Qn: It is trivial to sample across different
10We follow the computational economics literature and refer to our approach as a “global solu-

tion”, in contrast to “local solution” approaches which typically perturb around a steady state.
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Algorithm 1: Generic Solution Algorithm

1. Approximate the surplus function by the neural network (NN)
S(x, y, z, g) ≈ Ŝ(x, y, z, g;Θ) with parameters Θ.

2. Start with initial NN parameter guess Θ0.

3. At iteration n with NN parameter vector Θn:

(a) Generate K sample points, Qn =
{(
xk, yk, zk, {gij,k}i≤nx,j≤ny

)}
k≤K

.

(b) Calculate the average mean squared error of the surplus master equation
(2.11) on the sample points:

L (Θn, Qn) := 1
K

∑
k≤K

∣∣∣LSŜ
(
xk, yk, zk, {gij,k}i≤nx,j≤ny

)∣∣∣2

(c) Update NN parameters using stochastic gradient descent (SGD) or a
variant. For example by Θn+1 = Θn − ζn∇ΘL (Θn, Qn), for ζn > 0

(d) Repeat until L (Θn, Qn) ≤ ϵ with precision threshold ϵ.

4. Once S has converged, we can train neural network approximations to the
value and wage functions (V̂ u(x, z, g;Θu), V̂ e(x, y, z, g;Θe), V̂ v(y, z, g;Θv),
V̂ p(x, y, z, g;Θp), ŵ(x, y, z, g;Θw)) with NN parameters (Θu,Θe,Θv,Θp,Θw)
that solve the discretized versions of equations (2.1) to (2.6).

values of x, y, z because they are low dimensional. We can draw values of (x, y, z)
using a Latin hypercube sampler or a multinomial sampler on discretized grids. Sam-
pling across the discretized distribution (gi,j)i≤nx,j≤ny is more complicated because it
is high dimensional. We first solve the model at the steady state for the different
fixed values of z. We then draw distributions ((gij,k)i≤nx,j≤ny)k≤K that are perturbed
random combinations of the steady state distributions for the different z. This ap-
proach samples values of g that are likely to be similar to the ergodic distribution and
so increases the solution accuracy in regions of the state space that are economically
interesting. Once the error is small, we can use our current solution guess to simulate
the economy and then use the simulated distribution path as the sample points.

Algorithm stability: It is difficult to stabilize the algorithm when Ŝ(x, y, z, g;Θ) has
sharp curvature (e.g., at regions where agents are marginal about whether to accept
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a match or not). When these problems appear, we use the following “homotopy”-
style procedure. We start by solving the problem for economic parameters that give
low curvature in Ŝ. We then change parameters to move closer to the desired values
and retrain the neural network starting from the previous solution. We keep changing
parameters and retraining until we have reached a solution at the desired parameters.

2.4.2 Solution and Estimation

A key goal of quantitative macroeconomics is to estimate structural model parameters
so that the model generates output that is consistent with observed data moments.
Traditionally, this requires solving the model repeatedly for different parameter val-
ues, which can be computationally intensive. Deep learning based solution methods
offer an advantage for model estimation (e.g., Chen et al. (2023); Kase et al. (2024)).
By introducing economic parameters as pseudo-state variables in the neural network,
we can efficiently solve models simultaneously across both the state space and the
economic parameter space. We can then estimate the model parameters using the
method of simulated moments.

In this section, we outline our algorithm for solving and estimating the model.
Let Ψ ∈ ΩΨ denote the structural parameters that will be estimated (or calibrated
internally). Let φ̃ = (φ̃1, . . . , φ̃N) denote the N × 1 data moments that we want to
match. Let φ(Ψ) = (φ1(Ψ), . . . , φN(Ψ)) denote the corresponding model moments
for given structural parameters Ψ, that will be generated by simulating the model.
Our goal is to estimate the model by choosing parameters Ψ to solve:

Ψ̂ = arg min
Ψ

N∑
i=1

γi

(
φ̃i − φi(Ψ)

φ̃i

)2

, (2.12)

where {γi}i≤N are fixed weights.
The main computational challenge of estimation is to solve φi(Ψ) for many differ-

ent values of the structural parameters. We overcome this challenge by introducing Ψ

as a pseudo-state vector for the surplus function, and solving the resulting extended
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master equation, which in its discretized form is given by:

0 = LSS = −(ρ+ δ(x, y, z))S(x, y, z, g,Ψ) + F (xi, yj, z) + c− b

− (1 − β)
m(z, g)

U(z, g)V(z, g)
1
nx

nx∑
k=1

α(xk, y, z, g,Ψ)S(xk, y, z, g,Ψ)gu
i

− β
m(z, g)

U(z, g)V(z, g)
1
ny

ny∑
l=1

α(x, yl, z, g,Ψ)S(x, yl, z, g,Ψ)gv
j

+
nx∑

k=1

ny∑
l=1

∂gkl
S(xk, yl, z, g,Ψ)µg(xk, yl, z, g,Ψ)

+
∑
ž ̸=z

λ(z)(S(x, y, ž, g,Ψ) − S(x, y, z, g,Ψ)),

We approximate the extended surplus function S by a neural network Ŝ : Ωω × ΩΨ ×
ΩΘ → R, (ω,Ψ,Θ) 7→ Ŝ(ω,Ψ;Θ) and solve it in a similar way as for equation (2.11).
The main additional complexity is that the structural parameter vector Ψ is now
also part of the state space. This means that we need to sample from the parameter
space and expand the range of sampled distributions to incorporate the variation in
the parameter space. For the former, we draw economic parameters from a Latin
hypercube. For the latter, we first solve the model at the steady state for different
fixed values of z and economic parameters. Then, as before, we draw distributions
that are perturbed random combinations of these steady state distributions.

We then use the solution to the extended master equation to build a surrogate
model that maps economic parameters to simulated moments: Φ : ΩΨ × ΘΦ →
RN ,Ψ 7→ Φ(Ψ; ΘΦ). We do this by simulating the model under many different struc-
tural parameter vectors {Ψl}l (using parallelized processing) and computing the re-
sulting model moments {φ(Ψl) = (φ1(Ψl), . . . , φN(Ψl))}l. We then construct the
surrogate model by training an additional neural network to approximate the rela-
tionship Φ(Ψ) using the simulated data. With Φ(Ψ), we can obtain the estimated
parameters by solving the optimization problem (2.12). Our approach is summarized
in Algorithm 2.
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Algorithm 2: Generic Solution and Estimation Algorithm
1. Train the model across the state and structural parameter spaces:

(a) Approximate the surplus function by a neural network that includes the
economic parameters Ψ as inputs S(x, y, z, g,Ψ) ≈ Ŝ(x, y, z, g,Ψ;Θ).

(b) Train the neural network, as in Algorithm 1 but with the expanded
sampling scheme described in the text.

2. Compute a surrogate model mapping structural parameters to model moments
ΩΨ × ΩΦ : (Ψ,ΘΦ) 7→ Φ(Ψ; ΘΦ) and optimize over Φ to solve the distance
minimization problem (2.12).

3 Labor Market With Two-Sided Heterogeneity

In this section, we use our method to study a simple search and matching model
with two-sided heterogeneity and aggregate shocks. Conceptually, this model ex-
tends Shimer and Smith (2000) by incorporating aggregate shocks and Mortensen
and Pissarides (1994) by introducing worker and firm heterogeneity. Even though
this setup is a widely used building block in the literature, to our knowledge, we are
the first to solve this model without simplifying assumptions. The goal of this Section
is three-fold: first, we illustrate our DeepSAM solution method; second, we evaluate
its numerical performance, highlighting its accuracy and computational efficiency in
addressing high-dimensional problems even with highly non-linear crises dynamics;
lastly, we use the model to study the impact of the COVID-19 shock and show the im-
portance of distribution feedback in aggregate dynamics. We leave the demonstration
of our deep learning estimation approach to the richer setup in Section 4.

3.1 Model Details and Parameters

Our environment is a special case of Section 2.1 with the following features. The
exogenous aggregate state z follows a three-state Markov chain, corresponding to ex-
pansion (zH), normal recession (zL), and major crisis (zD), the latter of which we
calibrate to the COVID-19 crisis but could also be interpreted as a depression shock.
The match output F (z, x, y) = Azf(x, y) and the separation rate δz(x, y) depend
upon the state z, where we use the notation that A and δ are indexed by a z subscript.
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Economic parameters: The calibrated economic parameters are presented in Table 7
in Appendix A. All parameters are calibrated at the annual frequency. For non-crisis
states, where possible, we take standard parameters from the literature. We calibrate
the matching efficiency κ to target an ergodic average unemployment rate of 6%. For
the crisis state, we calibrate the separation rate δD(x, y) across workers and firms to
match the observed peak declines in employment levels during the COVID-19 reces-
sion, as calculated in Cajner et al. (2020). Cajner et al. (2020) uses detailed data from
a major US payroll company to estimate the employment drop for workers in different
skill groups (corresponding to five groups in our model) and firms in different two-digit
NAICS industries (corresponding to 11 groups in our model) during the COVID-19
recession. These drops peaked in April 2020, about 0.2 years after the onset of the
pandemic in the US. As shown in Figure 1, we calibrate δD(x, y) such that the model’s
simulated declines in employment across worker and firm groups following a change
from the ergodic state to the crisis state zD for t = 0.2 years match the correspond-
ing empirical moments. The detailed values of δD(x, y) are provided in Appendix C.1.

(a) Calibration along worker dimension (b) Calibration along firm dimension

Figure 1: Calibrating δD(x, y) to match effect of COVID-19 shock on heterogeneous
workers and firms in Cajner et al. (2020).

Neural network parameters: We use a fully connected feed-forward network with 4
layers, 50 neurons per layer, and a tanh(·) activation function. We describe additional
details of the neural network approximation and sampling in Table 6 in Appendix A.
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3.2 Numerical Performance

Table 3 summarizes the numerical performance of the DeepSAM method. The nu-
merical loss and computational time for solving the model are reported in the first
column. We achieve small errors, on the order of O(10−6), across our sample. This
level of accuracy was reached within 4 hours and 20 minutes using an A100 GPU on
Google Colab, a platform accessible to all researchers. Notably, no existing method
has been able to solve our 58-dimensional PDE within such a timeframe. We discuss
the detailed numerical scheme and the numerical stability of the results in Appendix
C.3.11

Model with agg. shock Model without agg. shock
PDE Training Loss 2 × 10−6 3.9 × 10−6

MSE to Existing Solution No existing solution 5 × 10−6

Computational Time 4h 20min 57 min

Table 3: Numerical performance of DeepSAM for models with and without aggregate
shocks. Computations are performed on the A100 GPU at Google Colab.

(a) Model with aggregate shock: loss across
state space

(b) Model without aggregate shock:
difference from conventional solution

Figure 2: Numerical accuracy across state space.

We also depict the numerical accuracy visually. Figure 2a shows the mean squared
loss in the surplus master equation at a given distribution and exogenous aggregate

11The computation time varies with different calibrations. For example, if we set a relatively small
κ = 0.4, it only takes less than 30 minutes to solve the 58-dimensional PDE. That’s because the
high dimensional function approximated by neural networks is flatter in the curvature, which makes
it easier to “learn”.
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state realization. The loss is in the order of magnitude of 10−6 and not highly biased
to a particular part of the state space.

We further validate the DeepSAM method by solving a simpler, non-aggregate
shock version of the model for which there are conventional solution techniques that
can be used for comparison. We set (zt, δt) ≡ (z̄, δ̄) and use the fixed point approach
in Shimer and Smith (2000) and Hagedorn, Law, and Manovskii (2017) to solve for
the deterministic steady state (DSS) solution SDSS(x, y). We then use DeepSAM to
solve the 57-dimensional PDE for S(x, y, g) and compute the DeepSAM solution at
the DSS by: SDSS

DeepSAM(x, y) = S(x, y, g = gDSS). We define the squared difference of
the two methods for each (x, y) pair as ∥SDSS

DeepSAM(x, y) − SDSS
Conventional(x, y)∥2, where

the mean squared difference takes the average of the squared difference across all (x, y)
pairs. We report the average numerical performance in the second column of Table 3
and show the mean squared difference is of the order of 10−6. Furthermore, Figure 2b
plots the squared difference between the DeepSAM solution and conventional solution
at the DSS. The difference is in the order of magnitude of 10−5 across the state space.
Overall, we interpret our results in Table 3 and Figure 2 as evidence that our solution
method has high accuracy.

3.3 Distribution Feedback to Aggregate Dynamics

An advantage of our DeepSAM method is that it can be used to study non-linear
distributional dynamics in response to large aggregate shocks. This is because, even
with aggregate risk, we can explicitly solve for the agent acceptance policy, α, as a
function of the distribution and so can fully capture the feedback between distribution
changes and aggregate dynamics. This is particularly valuable when aggregate shocks
have asymmetric effects across the population, a phenomenon well-documented in a
large empirical literature, such as by Guvenen, Schulhofer-Wohl, Song, and Yogo
(2017). In this subsection, we illustrate these points by studying the recent COVID-
19 crisis and disentangling the role of distribution feedback.

As discussed above, we model the COVID-19 shock as a change to the disaster
state zD that lasts for t = 0.2 years, followed by the recovery phase with stochastic
aggregate shocks zt ∈ {zH , zL, zD}. Using our DeepSAM solution, we can simulate
the dynamics of the distribution gt with the Kolmogorov forward equation (2.10)
and compute aggregate dynamics for unemployment, employment, average wage, and
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other variables. The average path of employment change is plotted as the blue line
of Figure 3a. As targeted in the data, we see a sharp drop in employment until April
2020, followed by the recovery phase.

(a) After COVID shock (b) After counterfactual symmetric shock

Figure 3: Relative change of employment compared to the initial level after the
COVID-19 shock: full dynamics calculated with the KFE (2.10) vs “restricted” dy-
namics in which the decision of workers and firms are myopic to change in distribution
gt as in Equation (3.1). The left panel shows the dynamics after the true asymmetric
COVID-19 shock, while the right one corresponds to the counterfactual symmetric
shock.

To understand the contribution of distribution feedback to aggregate dynamics,
we decompose the impulse responses of employment into two channels:

(i) the change of employment when agents’ acceptance decision is always evaluated
at the long-run ergodic employment distribution, and

(ii) the additional change of employment when the acceptance function reacts to
the changing distribution of matches.

We refer to the former as the “restricted” dynamics for the experiment without the
additional feedback from the distribution to the acceptance function. Mathematically,
under the restricted dynamics, the distribution gR

t evolves according to:

dgR
t (x, y)
dt

= − δ(x, y, zt)gR
t (x, y) +

mt(zt, g
R
t

)
Ut(gR

t
)Vt(gR

t
)α(x, y, zt, g

ergodic)gu,R
t (x)gv,R

t (y) (3.1)

We plot the restricted dynamics with the dashed orange line of Figure 3a. Compared
to the full dynamics calculated with the KFE (2.10), the difference in Equation (3.1)
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is that agents make decisions assuming the distribution is always at the erdogic state.
Thus the gap between the full and restricted dynamics can be interpreted as the
contribution of distribution feedback to aggregate impulse responses.

From Figure 3a, we can see that distribution feedback accounts for approximately
30% of the change in employment dynamics during the recovery phase. When agents
make decisions based on the true distribution change, the aggregate employment
recovers faster than in the economy where agents ignore distribution changes. Under
the full dynamics, the economy recovers approximately 2/3 of the employment losses
by three months after the end of COVID-19, while under the restricted dynamics it
only recovers approximately 1/3 of the losses.

(a) gergodic(x, y) at ergodic state (b) gCOVID(x,y)−gergodic(x,y)
gergodic(x,y)

(c) α(x, y, gergodic) at ergodic state (d) α(x,y,gCOVID)−α(x,y,gergodic)
α(x,y,gergodic)

Figure 4: Distribution of matches and associated acceptance decision. Panels (a) and
(c): distribution and acceptance at ergodic steady state. Panels (b) and (d): relative
difference of distribution and acceptance at the end of the asymmetric COVID-19
shock, compared to the ergodic steady state.

To understand why distribution feedback is significant, in Figure 4 we plot how
the agents’ decision functions before and after the COVID-19 shock. The left panels
of Figure 4 depict the ergodic match distribution and the acceptance functions at
the ergodic match distribution. Evidently, the matching function exhibits positive
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assortative matching (PAM) in the sense that workers and firms tend to match with
counterparts with similar productivity levels. The right panels of Figure 4 depict the
change in the distribution and the matching function at the end of the COVID-19
recession. Matches are disproportionately destroyed at the lower ends of both the
worker and firm distributions. For high-type workers and firms, this decreases the
relative probability of finding a match with a high-type counterpart, namely gv(y)

V and
gu(x)

U decrease for large x and y. As a result, high-type workers and firms become less
“picky” and are more willing to accept matches with low types. This is reflected in
the increase in α for high x to low y pairs and low x to high y pairs. For low-type
workers and firms, the probability of finding a high-type match also decreases but
the probability a high-type will accept the match significantly increases. The net
result is that the two effects balance out and α for low x to low y matches stays
the approximately same. Collectively, these changes show that the COVID-19 shock
weakens positive assortative matching and speeds up the recovery.

To further explore the role of asymmetric shocks, we conduct a counterfactual
analysis with a disaster shock that has a symmetric impact across workers and firms
through the separation rate, namely δ̃D(x, y) ≡ δ̃D for all x, y. We calibrate δ̃D

such that the shock generates the same aggregate employment rate as our calibrated
δD(x, y) at the peak of the COVID-19 recession. We plot the full and restricted
dynamics of the economy after this counterfactual “symmetric” shock in Figure 3b. In
this case, the trajectories of the “restricted” dynamics and the full solution are closely
aligned, implying that the distribution feedback is small when aggregate shocks affect
workers and firms symmetrically.

These findings underscore the significance of distribution feedback on aggregate
dynamics in the labor market, particularly when workers and firms have hetero-
geneous exposure to large aggregate shocks. They also suggest that policy design
should account for the asymmetric nature of shocks and the heterogeneous effects of
the policies themselves. For example, the design of unemployment insurance should
consider feedback from the distribution changes to fully understand its implications
and efficacy.
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4 On-The-Job Search (OTJS) and Business Cycles

In this section, we study business cycle shocks in a labor market with endogenous
job-to-job and job-to-unemployment transitions. Conceptually, the model extends
Lise and Robin (2017) by giving workers non-zero bargaining power, allowing for
on-the-job bargaining beyond Bertrand competition, and generalizing the free entry
condition, all of which are changes that break “block-recursivity”. We estimate the
model using the deep learning based simulated method of moments outlined in Section
2.4.2. We use the estimated model to study how the business cycle impacts wages and
employment for workers and firms with different skill levels, the full analysis of which
has previously been unattainable. We find support for the Okun (1973) hypothesis
that low-wage workers benefit disproportionately from longer expansions.

4.1 Environment Changes to Section 3.1

Search and matching: All workers now engage in random search. The matching func-
tion becomes m(Wt,Vt) where Wt := Ut +ϕEt denotes the total mass of searchers and
ϕ is the exogenous relative search intensity of employed workers. The probabilities
that an unemployed or an employed worker meets a potential employer are given by
Mu

t = m(Wt,Vt)
Wt

and Me
t = ϕm(Wt,Vt)

Wt
, while the probability that a vacant firm meets

a potential hire is Mv
t = m(Wt,Vt)

Vt
. Conditional on a firm meeting a worker, the prob-

abilities that the worker is unemployed or employed are defined as Cu = U
U+ϕE and

Ce = ϕE
U+ϕE respectively. So, the probability for a firm to meet an unemployed worker

x ∈ X is MvCu

∫
X gu(x)dx and the probability for a firm to meet an employed worker

x ∈ X is MvCu

∫
X ge(x)dx.

Bargaining between unemployed workers and firms: As before, the surplus of a match
between an unemployed worker and a vacant firm is defined as Su

t (x, y) := V p
t (x, y) −

V v
t (y) + V e

t (x, y) − V u
t (x) and the division of surplus is given by generalized Nash

bargaining: βSu
t (x, y) = V e

t (x, y) − V u
t (x) and (1 − β)Su

t (x, y) = V p
t (x, y) − V v

t (y).

Bargaining on the job: If a worker in match (x, y) moves to another firm with produc-
tivity ỹ, then the worker gets β share of the incremental surplus St(x, ỹ) − St(x, y),
the new firm gets 1 − β share of the incremental surplus, and the incumbent firm
keeps their surplus (1 − β)St(x, y). Conceptually, this is a model where the incum-
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bent firm cannot be made worse off by the move (e.g. because they have a veto over
worker moves), which makes this setup both technically and economically appealing.12

Endogenous separation: In addition to allowing workers to search, we also allow
matches to break up endogenously. If a worker decides to leave a match, then they
return to unemployment at the rate η.

4.2 Equilibrium

Agent HJB equations: As before, the aggregate state variables are (z, g), where z is
the aggregate productivity and g is the measure function of matches. Let µ̆g(x, y, z, g)
denote the agents’ belief about the law of motion for the distribution g. Unemployed
workers once again have an HJB equation for V u given by:

ρV u(x, z, g) = b+ Mu
∫
α(x, ỹ, z, g)(V e(x, ỹ, z, g) − V u(x, z, g))g

v(ỹ)
V

dỹ

+
∑
ž ̸=z

λ(z, ž)(V u(x, ž, g) − V u(x, z, g)) + ⟨DgV
u, µ̆g⟩

where α is an indicator function for whether workers and firms accept the match,
which under generalized Nash Bargaining is again given by (2.2).

Employed workers now choose whether to accept matches from other firms and
whether to leave their jobs, which leads to the HJB equation for V e:

ρV e(x, y, z, g) = (δ(x, y, z) + ηαb(x, y, z, g))(V u(x, z, g) − V e(x, y, z, g))

+ w(x, y, z, g) + Me
∫
αe(x, y, ỹ, z, g)β(S(x, ỹ, z, g) − S(x, y, z, g))g

v(ỹ)
V

dỹ

+
∑
ž ̸=z

λ(z, ž)(V e(x, ž, g) − V e(x, z, g)) + ⟨DgV
e, µ̆g⟩

where αb and αe are indicator functions for whether a worker or firm chooses to break
12Our assumption that workers get a share β of incremental surplus from on-the-job transitions

is different to Lise and Robin (2017), which imposes that workers get (i) no surplus when moving
from unemployment to employment and (ii) the outcome of Bertrand competition between firms
when moving from one job to another. Technically, our setup allows us to relax the β = 0 restriction
in Lise and Robin (2017) while still allowing the problem to be characterized recursively without
needing to add match history as a state variable. We also believe our setup makes economic sense
because it ensures that the worker has similar bargaining power in all their matches.
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up the match and whether workers and firms both accept an on-the-job match. Under
generalized Nash Bargaining, these satisfy:

αb(x, ỹ) :=

 1, if S(x, ỹ, z, g) < 0
0, otherwise

αe(x, y, ỹ, z, g) :=

 1, if S(x, ỹ, z, g) ≥ S(x, y, z, g) and S(x, ỹ, z, g) ≥ 0
0, otherwise

Vacant firms can now hire both unemployed workers and employed workers, which
leads to the HJB equation for V v:

ρV v(y, z, g) = −c+ MvCu
∫
α(x̃, y, z, g)(V p(x̃, y, z, g) − V v(y, z, g))g

u(x̃)
U

dx̃

+ MvCe
∫ ∫

αp(y, x̃, ỹ, z, g)(1 − β)(S(x̃, y, z, g) − S(x̃, ỹ, z, g))gm(x̃, ỹ)
E

dx̃dỹ

+
∑
ž ̸=z

λ(z, ž)(V v(y, ž, g) − V v(y, z, g)) + ⟨DgV
v, µ̆g⟩

where αp is an indicator function for whether a firm and an employed worker accept
a match. This is given by the analogous function to αe:

αp(y, x̃, ỹ, z, g) :=

 1, if S(x̃, y, z, g) ≥ S(x̃, ỹ, z, g) and S(x̃, y, z, g) ≥ 0
0, otherwise

Finally, producing firms can now endogenously break up matches, which leads to
the HJB equation for V p:

ρV p(x, y, z, g) = (δ(x, y, z) + ηαb(x, y, z, g))(V v(x, z, g) − V p(x, y, z, g))

+ F (x, y, z) − w(x, y, z, g) +
∑
ž ̸=z

λ(z, ž)(V p(x, y, ž, g) − V p(x, y, z, g)) + ⟨DgV
p, µ̆g⟩

Equilibrium: In Appendix D.1, we complete the equilibrium characterization by spec-
ifying the KFE and the surplus master equation (the OTJS analogs of (2.7) and (2.9)).

4.3 Deep Learning-Based Estimation

We estimate the parameters {β, κ, c, b, δ} (respectively the worker bargaining power,
scale factor in the meeting function, entry cost, unemployment benefit, and exogenous
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separation rate) to match the ergodic unemployment rate, vacancy rate, employment-
to-employment transition rate, unemployment-to-employment transition rate, and
employment-to-unemployment transition rate, denoted by E[U ], E[V ], E[EE], E[UE],
E[EU ] respectively, in the US data. The other parameters are taken from the liter-
ature and outlined in Table 8 in Appendix A. We discretize workers into seven pro-
ductivity types (nx = 7) and firms into eight productivity types (ny = 8), which is
sufficiently fine to match the empirical regularities in the data.

Parameter Interpretation Value Fitted moment Data Model
β Surplus division factor 0.727 E[U ] 0.058 0.058
κ Scale for meeting function 15.88 E[V ] 0.037 0.037
c Entry cost 9.46 E[EE] 0.025 0.026
b Worker unemployment benefit 0.03 E[UE] 0.468 0.431
δ Separation rates 0.02 E[EU ] 0.025 0.026

Table 4: Estimated Parameters and Targeted Moments.

We undertake the deep learning based estimation outlined in Section 2.4.2. The
estimated parameters, the data moments, and the model moments are shown in Table
4. The target moments are taken from Lise and Robin (2017) and the transition
flow moments (including expected rate of employment-to-employment, employment-
to-unemployment, and unemployment-to-employment transitions) are presented as
monthly values to match with the original paper.13 Evidently, we are able to get a
close match to all five moments. To help illustrate this visually, Figure 5 shows the
surrogate neural network mapping Φ(Ψ) from economic parameters to the aggregate
moment loss for the dimensions β and κ (holding the other parameters fixed at their
optimal values). This illustrates part of the curvature in the surrogate function that
allows DeepSAM to find the optimal parameters.

The computational times for each step of the estimation, as well as the associated
numerical losses, are shown in Table 5. The entire solution and estimation process
takes 5 hours and 5 minutes, where the model is solved over the economic parameter
space and simulated across 10,000 parameter combinations to build the surrogate
model deployed for the simulated method of moments. For reference, solving the
problem for given structural parameter values, which is a 59-dimensional PDE, will
take 55 minutes. To our knowledge, it’s infeasible to solve and estimate such a high-

13Lise and Robin (2017) use the BLS data 1951:I–2012:IV to construct most of the moments,
except for EE transition which is constructed with the CPS data 1994:I–2011:III.
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dimensional problem within such a time frame using other approaches. Furthermore,
the full estimation only takes 5 hours and 5 minutes, making our method practically
useful for quantitative analysis.

Solution Given
the Value of
Structural
Parameters

Solution with
Structural

Parameters as
Pseudo-states

Training
Surrogate

Model

Simulated
Method of
Moments

Entire
Estimation

MSE Loss 1.97 × 10−6 4.8 × 10−6 6.13 × 10−7 1.24 × 10−4 -

Time 55min 4h 1min 1h 3min 1.4min 5h 5min

Table 5: Training loss and computational time for solving vs estimating the model.
Computations are performed on the A100 GPU at Google Colab.

Figure 5: Target moments: E[U ],E[V ]. Parameters: matching efficiency κ, worker
bargaining power β.

4.4 Dynamics of the Distribution Over Business Cycles

We use our estimated model to study how the business cycle impacts different workers
and firms. We start by studying the cyclicality of wages across worker-firm matches
(i.e. the variation in the division of surplus). We then study the cyclicality of em-
ployment across worker-firm matches (i.e. the variation along the extensive margin).
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We find support for the hypothesis proposed by Okun (1973) that longer expansions
disproportionally improve labor market outcomes for low-wage workers.

4.4.1 Dynamics of the Wage Distribution

A well-known difficulty in the heterogeneous agent random search literature is that
“block-recursive” models cannot solve for wage dynamics. This is because the surplus
division does not inherit the block recursive property of total surplus. As Lentz, Lise,
and Robin (2017) write: “wages cannot be solved for exactly, indeed one needs to solve
for a fixed point in worker values where the distribution of workers across jobs is a state
variable.” By contrast, our DeepSAM method can solve for wage dynamics because
it solves for the surplus function explicitly as a function of the match distribution.

(a) IRF to positive shocks (b) IRF to negative shocks

Figure 6: Wage change after aggregate shocks. Low, middle, and high types refer to
the lowest, middle, and highest types in our nx = 7-type discretization for workers.

Figure 6 shows the wage change across the worker distribution following positive
or negative aggregate shocks that last for 5 years. Evidently, the wages of low-type
workers are more procyclical.

4.4.2 Dynamics of Employment: A Search-Theoretical Explanation for
Okun’s Hypothesis

We also use our solution to study employment dynamics across heterogeneous workers
and firms. Figure 7 shows the impulse responses for an economy that goes into
recession for half a year and then recovers to the high state. The left panel shows
that the low and high type workers experience a similar decline in unemployment for
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the first quarter of the expansion. However, in subsequent quarters, low-type workers
exhibit a more substantial decrease in unemployment. This demonstrates that low-
type workers disproportionately benefit from longer expansions, consistent with the
observations in Okun (1973).

Figure 7: Impulse Responses. Left panel: Change of unemployment Ut for different type
of workers. Low and high types refer to the lowest and highest types in our nx = 7-type
discretization. Right panel: Change in the ratio of “non-PAM pairs” to “PAM pairs”.

In our model, Okun’s hypothesis is generated through the impact of distribution
dynamics on positive assortative matching (PAM, or positive sorting) during expan-
sions of varying durations. To see this, consider the right panel of Figure 7, which
depicts the ratio of “non-PAM pairs” to “PAM pairs”. A matched pair (x, y) is called a
“PAM pair” if |x−y| ≤ 1

2 , and otherwise called a “non-PAM” pair. PAM pairs can be
interpreted as worker-firm combinations with similar relative levels of idiosyncratic
types. Evidently, the ratio of non-PAM to PAM pairs decreases during recessions
and increases during expansions. This indicates that sorting is countercyclical, which
aligns with the literature (e.g. Lise and Robin (2017)). More interestingly, assortative
matching weakens further as expansions lengthen. This is because high-type workers
become increasingly scarce during expansions so high-type firms become less picky.
This leads to a progressive weakening of positive assortative matching over time,
which disproportionately benefits low-type workers in prolonged expansions and so
generates the patterns predicted by Okun. In other words, the distributional changes,
which increase the relative employment of high and low type workers, determine the
worker types who will benefit most from an additional period of economic expansion.
Therefore, our model captures Okun’s hypothesis just through the feedback between
distribution changes and agent matching.
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Due to its policy relevance, Okun’s hypothesis has attracted recent attention. Ex-
isting literature (e.g. Alves and Violante (2023)) introduces complex model elements
such as human capital and skill accumulation to explain Okun’s observation. Inter-
estingly, we can generate similar model predictions with a simpler model setup that
drives dynamics through the interaction between distribution changes and acceptance
decisions. This offers a complementary story that potentially has different policy im-
plications. This is because, in our model, the decrease in low-skilled unemployment
during long booms results from the formation of “non-PAM” pairs, which are more
likely to dissolve during subsequent recessions (as in the right panel of Figure 7).

4.5 Revisiting “Block Recursivity” with On-the-job Search

With the DeepSAM method, we can solve heterogeneous agent random search models
with on-the-job search and endogenous separation without imposing the assumptions
needed to get block recursivity. A key assumption in Lise and Robin (2017) for
getting block recursivity is setting β = 0 so unemployed workers get zero surplus when
bargaining with a firm (see Appendix D.2). In Figure 8, we study how this restriction
impacts impulse response functions. Keeping all other structural parameters the
same, we vary β and plot the time paths for changes in the unemployment level
(Ut), the vacancy level (Vt), the total quantity of poaching, and the total hires from
unemployment in response to a 1.5% negative productivity shock that lasts for one
year and then subsequently reverts to the stochastic process for aggregate TFP.14

We find that aggregate unemployment, vacancies, poaching, and hiring from un-
employment all become more sensitive to aggregate shocks as β → 0. Under our
preferred estimation of β = 0.727, a 1.5% productivity shock leads to an increase in
the unemployment rate of about 0.9%. By contrast, a block recursive setup predicts
a more substantial 2.2% increase in the unemployment rate. This is because firm
posting is more elastic when firms get the entire surplus from matches with unem-
ployed workers, as shown in the upper right panel in Figure 8. We interpret these
observations as evidence that the assumptions required to establish block recursivity
are quantitatively important and place implicit restrictions on model estimation.

14The total quantity of poaching is defined as ϕ m(Wt,Vt)
WtVt

∫ ∫ ∫
αe

t (x, ỹ, y)gv
t (y)gt(x, ỹ)dỹdxdy. The

total quantity of hires from unemployment is defined as m(Wt,Vt)
WtVt

∫ ∫
αt(x, y)gu

t (x)gv
t (y)dxdy.
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Figure 8: IRF following negative TFP Shock with different β’s. After one year, the
plots show the average time path across 1000 simulations. E2E and U2E are the
employment-to-employment and unemployment-to-employment transition rates.

5 Over-the-Counter Financial Markets

In this final section, we consider financial crises in an over-the-counter (OTC) bond
market with search and matching frictions. The model can be thought of as an
extension to Duffie, Gârleanu, and Pedersen (2005) and Weill (2008) that expands
the investor and asset heterogeneity and incorporates aggregate shocks.15 We model
bond duration explicitly and discuss how investor composition influences the emergent
yield curve and bond market responses to financial crises. From a technical point of
view, relative to the labor market models in Sections 3 and 4, this section introduces
idiosyncratic type switching and asset trade.

5.1 Environment

Setting: Time is continuous with an infinite horizon. The economy has a collection
of assets, indexed by k ∈ {1, . . . , K}, which we interpret as bonds. Each asset k

15To ensure tractability, Duffie, Gârleanu, and Pedersen (2005) restricts the model to two types
of investors and one type of asset. Weill (2008) expands the set of investors and assets but simplifies
trading between agents who have different assets and does not include aggregate shocks.
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has positive net supply sk, pays a flow dividend δ > 0 each period and one good at
maturity, and matures at the rate 1/τk (implying an average maturity of τk).

Investors and preferences: The economy is populated by a unit-mass continuum of
infinitely-lived and risk-neutral investors indexed by j ∈ {1, . . . , J}. Investors are
heterogeneous in their discount rates and asset holding costs, which can be different
types of asset market participants such as pension funds, hedge funds, or dealers.
Investors of type j discount the future at rate ρj > 0. An investor gets a marginal
utility of 1 from a non-storable numeraire good. In order to make payments, investors
are endowed with a technology that instantly produces numeraire goods, at a unit
marginal cost. An investor can hold either zero or one share of at most one type of
asset. When investor j holds asset k, they get flow utility δ − ψ(j, k), where ψ(j, k)
is a “holding cost” that reflects institutional constraints. Investors are subject to
independent idiosyncratic shocks of switching between types that follow a continuous
time Markov chain. Let λi,j denote the rate of switching from type i to j and let Λ
denote the matrix of switching rates.

Financial crisis risk: The aggregate state in the economy is z ∈ {z1, . . . , zn}, which
follows a continuous time Markov process where ζz,z′ denotes the rate at which the
process switches from z to z′. We allow the aggregate state to affect agent switching
rates and haircuts. Formally, at state z, the switching rate from agent type i to agent
type j is given by λij(z). Changes to λij(z) impact the fraction of agents with low
or high holding costs so, as in Duffie, Gârleanu, and Pedersen (2005), we interpret
these shocks as changes to the “liquidity” or “institutional” constraints in the investor
population. In addition, at state z, asset k pays a fraction ϕ(k, z) of the coupon and
the principal. We interpret 1 − ϕ(k, z) > 1 as a “haircut” on the bond.

Primary market: When bonds mature, they are replaced by new bonds in the econ-
omy. We assume there is an exogenous primary market that allocates new bonds with
maturity τk to type j investors who are not holding assets at the rate ξj,k.

Distribution: An investor’s idiosyncratic state is made up of her type j ∈ {1, . . . , J}
and her ownership status for each asset k ∈ {1, . . . , K}. Hence the set of investor
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idiosyncratic states is:

A = {1n, 2n, . . . , Jn, 1o1, . . . , 1oK, 2o1, . . . 2oK, Jo1, . . . , JoK}

in which jn denotes an investor with type j who does not hold any asset, and jok

denotes an type-j investor holding an asset k. For each a ∈ A, let g(a) denote the
fraction of total investors that have state a and g = (g(a))a∈A denote the mass func-
tion. Relative to the labor model, the support of the distribution has been expanded
to account for type switching.

Meeting and Bargaining: The contact rate between investors with idiosyncratic states
a and b is: Ma,b = κa,bgagb. When agents with states a and b meet, they engage in
generalized Nash bargaining with bargaining power βa,b for the agent in state a.

5.2 Equilibrium

The aggregate states are (z, g). We denote the law of motion for the cross-sectional
idiosyncratic state distribution, g, by the form dgt(a) = µg(a, z, g)dt and agents’ belief
about the law of motion by µ̆g(a, z, g).

Trade and surplus division: Upon meeting, agents negotiate asset trades according to
a generalized Nash Bargaining protocol. Let V n(in, z, g) denote the value function for
an investor of type i without an asset, and let V o(iok, z, g) denote the value function
for an investor of type i with an asset. If a type-i agent holding asset k meets a type-j
agent without an asset, the total surplus from asset trade is:

S(iok, jn, z, g) = V n(in, z, g) − V o(iok, z, g) + V o(jok, z, g) − V n(jn, z, g)

The generalized Nash bargaining protocol implies that, if agents trade, the price paid
for the asset, pk(in, jok, z, g), solves:

∆Vi[ok→n] + pk(in, jok, z, g) = βiok,jnS(iok, jn, z, g)

∆Vj[n→ok] − pk(in, jok, z, g) = (1 − βiok,jn)S(iok, jn, z, g)

where ∆Vi[ok→n](z, g) := V n(in, z, g)−V o(iok, z, g) and ∆Vj[n→ok](z, g) := V o(jok, z, g)−
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V n(jn, z, g). This implies that agents choose to trade if the surplus is positive.
Similarly, if a type-i agent holding asset k meets a type-j agent holding asset l,

then the total surplus if the investors exchange assets is:

S(iok, jol, z, g) = V o(iol, z, g) − V o(iok, z, g) + V o(jok, z, g) − V o(jol, z, g)

Once again, the agents trade if the surplus is positive and the generalized Nash
bargaining protocol implies that the net transfer between the agents ∆pk,l satisfies:

∆Vi[ok→ol] + ∆pk,l(iol, jok, z, g) = βiok,jolS(iok, jol, z, g)

∆Vj[ol→ok] − ∆pk,l(iol, jok, z, g) = (1 − βiok,jol)S(iok, jol, z, g).

Hamilton-Jacobi-Bellman Equations: Given their belief µ̃, the value function for a
non-owner with type i satisfies the following HJB equation:

ρiV
n(in, g, z) =

∑
a

κin,aα(in, a, g, z)βin,aS(in, a, z, g) (5.1)

+
∑

k

ξi,k(V o(iok, g, z) − V n(in, g, z)) +
∑
j ̸=i

λi,j(z)(V n(jn, g, z) − V n(in, g, z))

+
∑
z′
ζz,z′(V n(in, g, z′) − V n(in, g, z)) +

∑
a∈A

∂gaV
n(in, g, z)µ̆g(a, z)

where α(in, jok, g, z) is an indicator function for whether the trade is accepted upon
matching, which in equilibrium occurs if the surplus from the trade is positive S(in, jok, g, z) >
0. Likewise, the value function for an investor of type i holding asset k, V o(iok, g, z),
is given by the following HJB equation:

ρiV
o(iok, g, z) = δϕ(k, z) − ψ(i, k) + 1

τk

(V n(in, g, z) + ϕ(k, z) − V o(iok, g, z)) (5.2)

+
∑

a

κiok,aα(iok, a, g, z)gaβiok,aS(iok, a, g, z) +
∑
a∈A

∂gaV
o(iok, g, z)µ̆g(a, z)

+
∑
j ̸=i

λi,j(z)(V o(jok, g, z) − V o(iok, g, z)) +
∑
z′
ζz,z′(V o(iok, g, z′) − V o(iok, g, z)).

Kolmogorov Forward Equation: The law of motion for the distribution of non-owner
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states and owner states are given respectively by:

dgin

dt
= µg(in, z, g) =

∑
j ̸=i

λj,i(z)gjn +
∑
j ̸=i

∑
k

κjn,iokgjngiokα(jn, iok, g, z) (5.3)

−
∑
j ̸=i

λi,j(z)gin −
∑
j ̸=i

∑
k

κin,jokgingjokα(in, jok, g, z) +
∑

k

1
τk

giok −
∑

k

ξi,kgin

dgiok

dt
= µg(iok, z, g) =

∑
j ̸=i

λj,i(z)gjok −
∑
j ̸=i

κjn,iokgjngiokα(jn, iok, g, z)

+
∑
j ̸=i

κin,jokgingjokα(in, jok, g, z) −
∑
j ̸=i

∑
l ̸=k

κiok,jolgiokgjolα(iok, jol, g, z)

+
∑
j ̸=i

∑
l ̸=k

κiol,jokgiolgjokα(iol, jok, g, z) −
∑
j ̸=i

λi,j(z)giok − 1
τk

giok + ξi,kgin (5.4)

In equilibrium, the flows from assets maturing are equal to the flows from new assets
being created so: ∑i ξi,kgin = 1

τk

∑
i giok =: 1

τk
sk.

Master equation: Unlike in Section 2.2.5, we cannot characterize equilibrium in the
OTC market using a differential equation for surplus. Instead, we solve the two
HJB equations (5.1) and (5.2) combined with belief consistency µ̃g = µg and the KF
equations (5.3) and (5.4). To solve the problem with the DeepSAM method, we use
neural networks to parameterize V n(in, g, z) and V o(iok, g, z), and solve the problem
to minimize the weighted loss of equations (5.1) and (5.2) on the sampling data.

5.3 Endogenous Yield Curve and Financial Crises

We calibrate the model with four types of investors: {D, C, U , P}, where type D are
dealers in the primary bond market, type C are liquidity constrained hedge funds,
type U are unconstrained hedge funds, and type P are pension/insurance funds with a
long investment horizon. This is reflected in their holding costs. On the asset side, we
have four types of bonds with maturities τ = 0.25, 1, 5, 10 years. Unconstrained hedge
funds have no holding cost while liquidity-constrained hedge funds have a holding cost
of 0.02 across all assets. Pension/insurance funds face holding costs of 0.02 for short
maturity bonds (τ1 = 0.25, 1.0), 0.01 for bonds with τ = 5.0, and no holding cost for
long term bonds τ = 10.0. We interpret this as reflecting regulatory constraints or
financial frictions that encourage pension/insurance funds to hold long-term bonds.

We consider three aggregate states: good, normal, and bad, where the bad state
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is interpreted as a financial crisis. We impose that the dealers and pension/insurance
funds have constant types over time. By contrast, hedge funds switch from type U to
C (i.e. become liquidity constrained) at the rate 0.3 in the good aggregate state, 0.5
in the normal aggregate state, and 0.7 in the crisis aggregate state. In all aggregate
states, they switch from type C to U (i.e. become unconstrained) at the rate 0.1.
We calibrate other parameters so that the ergodic yield curve matches the average
high-grade corporate yield curve over the past 50 years documented by Payne and
Szőke (2024) and the haircut rates in the crisis state to match Chen, Cui, He, and
Milbradt (2017). We explain the calibration in more detail in Appendix E.

Figure 9a shows the ergodic mean bond yields as a function of maturity at the
ergodic steady state of our economy. Evidently, longer maturity bonds have higher
yields indicating an upward sloping yield curve. This shape reflects relative investor
willingness to hold short and long maturity bonds in the economy. Hedge funds
prefer to hold short-maturity bonds because they are worried that they will end up
stuck with long-maturity bonds if they become liquidity-constrained. By contrast, the
pension/insurance fund prefers to hold long-maturity bonds. Under our calibration,
it is the first effect that dominates and so the yield curve is upward-sloping.

(a) Ergodic Yield Curve (b) IRF of Yield to Maturity by Bond

Figure 9: Yield curve at ergodic steady state and impulse responses. Plot (b) shows the
proportional bond yield change compared to the ergodic yield at each maturity following a
one-year recession. To calculate the figures, we simulate 3000 paths and calculate the mean.

We use our model to examine the impact of a financial crisis in our OTC bond
market. Specifically, the economy starts at the ergodic mean, then moves to the bad
“financial crisis” state zB for one year, and then follows the stochastic zt process.
Figure 9b shows the impulse responses for bond yields following the shock. For
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(a) Ergodic Distribution gergodic (b) Change after Crisis g(zB)−gergodic

gergodic

Figure 10: Distribution response to a crisis shock.

the short-maturity bonds, the yields move very little whereas the yields of long-
maturity bonds increase significantly. Figure 10b shows the change in the distribution
of investors (relative to the ergodic mean in Figure 10a) when the economy stays in the
crisis state for a long time. Evidently, the crisis increases the likelihood that a hedge
fund becomes constrained and so increases the proportion of liquidity-constrained
hedge funds. This heightens hedge fund concern that they will end up stuck with
long-maturity bonds while liquidity-constrained. Consequently, the relative demand
for long-term bonds falls during the crisis leading to the relatively large yield increase
for long-term bonds in Figure 9b.

Although our OTC model is highly stylized, it illustrates DeepSAM’s potential for
connecting different asset pricing literatures. By incorporating aggregate crisis risk,
institutional heterogeneity, and bond maturities into Duffie et al. (2005), our model
introduces default risk premia and term premia into the original OTC model with
liquidity premia. This connects OTC models to both traditional bond default models
and yield curve models with institutional investors (e.g. Vayanos and Vila (2021))
where, similar to our model, it is the variation in institutional willingness to hold the
asset that generates the yield curve. We make these connections while maintaining
endogenous trading patterns in our OTC market. That is, agent preferences lead to
bonds with particular maturities endogenously emerging as being more or less actively
traded and having more of less volatile yields. Ultimately, we believe DeepSAM opens
up the possibility to study how a wide range of risks are priced in OTC environments.
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6 Conclusion

In this paper, we developed a new method for globally solving and estimating search
and matching models with aggregate shocks and heterogeneous agents. This allows
us to study dynamics in models where agent decisions depend upon the distribu-
tion so the model is not “block-recursive”. We believe our methodology is a major
breakthrough in the literature of search and matching models and will open up many
potential applications in the labor, finance, and spatial literature.
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Online Appendix

A Details of the Models

Parameter Value Parameter Value
Number of layers 4 Final learning rate 10−5

Neurons per layer 50 Initial sample size per epoch 256
Activation function tanh(·) Final sample size per epoch 512
Initial learning rate 10−4 Convergence threshold 10−6

Table 6: Neural Network Parameters of the Labor Search Model in Section 3

Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Interest rate
ξ Extreme value for α choice 2.0

f(x, y) Production for match (x, y) 0.6 + 0.4
(√

x + √
y
)2 Hagedorn et al. (2017)

β Surplus division factor 0.72 Shimer (2005)
m(U , V) Matching function κUνV1−ν Hagedorn et al. (2017)

ν Elasticity in meeting function 0.5 Hagedorn et al. (2017)
κ Scale for meeting function 5.4 Unemployment rate
b Worker unemployment benefit 0.5 Shimer (2005)
c Entry cost 4.86 Steady state V/U = 1

Steady State:
z̄ Steady state TFP 1 Shimer (2005)
δ̄ Steady state separation rate 0.2 BLS job tenure 5 years

Exogenous Aggregate Shock Process:
AD, AL, AH TFP levels 0.985, 0.985, 1.015 Lise and Robin (2017)

δL, δH Separation rates 0.18, 0.22 Shimer (2005)
δD(x, y) TFP and separation at crisis state See Appendix C.1 Match Cajner et al. (2020)

λz Poisson transition probability See Appendix C.1 Shimer (2005)
nx Discretization of worker types 5 Match Cajner et al. (2020)
ny Discretization of firm types 11 Match Cajner et al. (2020)

Table 7: Economic Parameters of the Labor Search Model in Section 3.
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Parameter Interpretation Value
ρ Discount rate 0.05
ξ, ξe Extreme value for α and αe choices 2.5, 0.02
f(x, y) Production for match (x, y) 0.6 + 0.4

(√
x+ √

y
)2

m(U ,V) Matching function κUνV1−ν

ν Elasticity in meeting function 0.5
ϕ Relative intensity 0.075

AL, AH TFP levels 0.985, 1.015
λz Poisson transition probability 0.08
nx Discretization of worker types 7
ny Discretization of firm types 8

Table 8: Externally Calibrated Parameters of the OJS Model in Section 4.

B Appendix for the General Methodology

B.1 Master Equation with the Free Entry Condition

As in Section 2.2.4, the free entry condition is

0 =
∫
V v

t (ỹ)dỹ

Recall from (2.5) the HJB equation for a vacant institution with productivity y is

ρV v
t (y) = −c+ Mv

t

∫
α(x̃, y)g

u
t (x̃)
Ut

(1 − β)St(x̃, y)dx̃+ ∂tV
v

t (y)

Integrating and combining these equations, we have that:

ρ
∫
V v

t (ỹ)dỹ = − c+ Mv
t

∫ ∫
α(x̃, ỹ)g

u
t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ + ∂t

∫
V v

t (ỹ)dỹ

⇒ c = m(Ut,Vt)
Vt

∫ ∫
α(x̃, ỹ)g

u
t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ

⇒ m(Ut,Vt)
Vt

= c∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ
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Assume m(Ut,Vt) is homothetic16, then m(Ut,Vt)/(Vt) = m̂(Vt/Ut), we have:

Vt = Utm̂
−1

 c∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ

 (B.1)

where gu
t = gw

t −
∫
gt(x, y)dy and so the RHS can be computed from gt and St. Since

firm y draws are uniformly distributed, we have that gf
t is given by:

gf
t = Vt + Pt (B.2)

= Utm̂
−1
(

c∫ ∫
α(x̃, ỹ)(gu

t (x̃)/Ut)(1 − β)St(x̃, ỹ)dx̃dỹ

)
+
∫ ∫

gt(x, y)dydx

where Vt is from (B.1), Pt =
∫ ∫

gt(x, y)dydx, and Ut =
∫
(gw

t (x) −
∫
gt(x, y)dy). This

means that gf
t can be computed from gt and St, and

gv
t (y) = gf

t (y) − gp
t (y)

= Utm̂
−1
(

c∫ ∫
α(x̃, ỹ)(gu

t (x̃)/Ut)(1 − β)St(x̃, ỹ)dx̃dỹ

)
+
∫ ∫

gt(x, y)dydx

−
∫
gt(x, y)dx

The master equation for surplus:

ρSt(x, y) = ρ(V p
t (x, y) − V v

t (y) + V e
t (x, y) − V u

t (x))

= ft(x, y) − wt(x, y) − δ(1 − β)St(x, y) + ∂tV
p

t (x, y)

−
(

Mv
t

∫
α(x̃, y)g

u
t (x̃)
Ut

(1 − β)St(x̃, y)dx̃+ ∂tV
v

t (y)
)

+ wt(x, y) − βδSt(x, y) + ∂tV
e

t (x, y)

−
(
b+ Mu

t

∫
αt(x, ỹ)g

v
t (ỹ)
Vt

βSt(x, ỹ)dỹ + ∂tV
u

t (x)
)

= ft(x, y) − δSt(x, y) − Mv
t

∫
α(x̃, y)g

u
t (x̃)
Ut

(1 − β)St(x̃, y)dx̃

− b− Mu
t

∫
αt(x, ỹ)g

v
t (ỹ)
Vt

βSt(x, ỹ)dỹ + ∂tSt(x, y)

16For example, if m(U , V) = κUνV1−ν , then Mv
t = m(U , V)/V = m̂(Vt/Ut) = κ(U/V)ν and

Mu
t = m(U , V)/U = κ(V/U)1−ν .
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where:

Vt = Utm̂
−1

 c∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ


Mv

t = m(U ,V)/V = m̂(Vt/Ut) = κ(U/V)ν ,

Mu
t = m(U ,V)/U = κ(V/U)1−ν

gv
t (y) = gf

t (y) − gp
t (y) = Vt + Pt − gp

t (y)

= Utm̂
−1
(

c∫ ∫
α(x̃, ỹ)(gu

t (x̃)/Ut)(1 − β)St(x̃, ỹ)dx̃dỹ

)
+
∫ ∫

gt(x, y)dydx−
∫
gt(x, y)dx

The KF equation is in the same form as (2.7) with gf (y) and V coming from equation
(B.2).

B.2 PDEs for Solving Value and Wage Functions

In this subsection, we present the details of Algorithm 1 to solve for value and wage
functions after we obtained the solution of surplus and acceptance functions. Once
we have S(x, y, z, g) and α(x, y, z, g), we can then solve V u(x, z, g) and V v(x, z, g)
by solving the following equations:

0 = LV uV u = − ρV u(x, z, g) − c+ b

+ Mu(z, g) 1
ny

ny∑
j=1

α(x, yj, z, g)βS(x, yj, z, g) g
v(yj)

V (z, g)

+
nx∑
i=1

ny∑
j=1

∂gij
V u(x, y, z, g)µg(xi, yj, z, g)

+ λ(z)(V u(x, z̃, g) − V u(x, z, g)) (B.3)

0 = LV vV v = − ρV v(y, z, g)

+ Mv(z, g) 1
nx

nx∑
i=1

α(xi, y, z, g)(1 − β)S(xi, y, z, g) g
u(xi)

U(z, g)

+
nx∑
i=1

ny∑
j=1

∂gij
V v(x, y, z, g)µg(xi, yj, z, g)

+ λ(z)(V v(x, z̃, g) − V v(x, z, g)) (B.4)
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Equations (B.3) (B.4) are also high dimensional PDEs, and we use NN to parameterize
the value functions as V̂ u(x, z, g;Θu), V̂ v(y, z, g;Θv) with NN parameters Θu,Θv,
and solve them using deep learning similar to Steps 1-3 in Algorithm 1.

After solving V u(x, z, g) and V v(x, z, g), we can obtain V e(x, y, z, g) and V p(x, y, z, g)
directly with

V e(x, y, z, g) = βS(x, y, z, g) + V u(x, z, g)

V p(x, y, z, g) = (1 − β)S(x, y, z, g) + V v(y, z, g)

Finally, we calculate the wage from:

w(x, y, z, g) = ρ(1 − β)V u(x, z, g)

+ β(zf(x, y) +
nx∑
i=1

ny∑
j=1

∂gij
V p(x, y, z, g)µg(xi, yj, z, g) − ρV v(y, z, g))

+ (β − 1)
nx∑
i=1

ny∑
j=1

∂gij
V e(x, y, z, g)µg(xi, yj, z, g)

C Appendix For the Labor Search Model in Sec-
tion 3

C.1 Calibration Details

The Poisson transition rate for aggregate shocks across high, low, and disaster states
are:

λz =


− λHL λHD

λLH − λLD

λDH λDL −

 =


− 0.4 0.001
0.4 − 0.001

0.0995 0.0995 −


The calibrated separation rate across worker and firm types δD(x, y) =

5.2834 4.3853 3.7621 3.3420 3.0671 2.8927 2.7848 2.7191 2.6787 2.6534 2.6370
3.3734 2.5752 2.0345 1.6818 1.4614 1.3303 1.2565 1.2169 1.1963 1.1855 1.1794
2.6337 1.9001 1.4115 1.1002 0.9121 0.8058 0.7505 0.7245 0.7136 0.7094 0.7077
2.3878 1.6936 1.2358 0.9478 0.7773 0.6837 0.6374 0.6175 0.6106 0.6087 0.6084
2.3072 1.6352 1.1938 0.9178 0.7555 0.6676 0.6249 0.6072 0.6014 0.6001 0.6000
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We calibrate δD(x, y) to match the observed peak declines in employment levels
during the COVID-19 recession calculated in Cajner et al. (2020). Using detailed
data from a major US payroll company, Cajner et al. (2020, Figure 4) estimates
the employment drop of workers in different wage quintiles, which corresponds to
five worker groups in our calibration. They also estimate the employment drop for
15 two-digit NAICS industries (Cajner et al., 2020, Table 1). We use the industry-
level output and hours worked data from the Bureau of Labor Statistics (BLS)17 to
compute the labor productivity of each industry in 2020. We then consolidate smaller
industries to get 11 “composite” sectors, ensuring that after merging, these sectors
exhibit similar levels of sectoral output. These sectors are mapped into the 11 groups
of firms in our model. We calibrate δD(x, y) such that the model’s simulated declines
in employment for these heterogeneous groups match these empirical moments after
the disaster shock zD hits the ergodic state of the economy for t = 0.2 years.

C.2 Master equation and loss function for the model without
aggregate shocks

To verify the accuracy of the DeepSAM method, we apply it to solve a labor search
model without aggregate shocks, which can also be solved with a conventional nu-
merical method such as that in Hagedorn, Law, and Manovskii (2017). The master
equation and loss function for the Surplus is given by:

0 = LSS = −(ρ+ δ(x, y))S(x, y, g) + F (x, y) − b

− (1 − β)
m(g)

U(g)V(g)
1
nx

nx∑
i=1

α(xi, y, g)S(xi, y, g)gu(xi)

− β
m(g)

U(g)V(g)
1
ny

ny∑
j=1

α(x, yj, g)S(x, yj, g)gv(yj)

+
nx∑
i=1

ny∑
i=1

∂gij
S(x, y, g)µg(xi, yj, g)

17Data link https://www.bls.gov/productivity/tables/major-industry-total-factor-productivity-klems.
xlsx. Last accessed on September 23, 2024.
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in which

dgt(x, y)/dt = µg(x, y, g
t
) = −δ(x, y)gt(x, y) +

m(g
t
)

UtVt

α(x, y, g
t
)

×

gw(x) − 1
ny

ny∑
j=1

g
t
(x, yj)

(gf (y) − 1
nx

nx∑
i=1

g
t
(xi, y)

)

and α(x, y, g) is given by:

α(x, y, g) =
(
1 + e−ξS(x,y,g)

)−1
.

C.3 Numerical method and performance

C.3.1 Hyperparameters for the neural networks

Training loss, learning rate, and sample size. Figure 11 presents the value of
the loss function (2.11) along the training process. It takes 1.5 hours on an A100
GPU for the neural network to converge to a stable solution. The learning rate is
10−4 for the first 400,000 epoch, is 10−5 after that. Sample size: 256 in first 400k,
512 from after that. We use a cosine scheme to adjust the learning rate over time.

Figure 11: Loss function along training epochs
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D Additional Details For The On-The-Job Search
Model in Section 4

This Appendix completes the setup for the on-the-job search model in Section 4.

D.1 Equilibrium Description

Master Equation For Surplus: Under belief consistency, the differential equation for
the surplus is the following:

ρS(x, y, z, g) = ρ(V p(x, y, z, g) − V v(y, z, g) + V e(x, y, z, g) − V u(x, z, g))

= F (x, y, z, g) − w(x, y, z, g) − (δ + ηαb(x, y, z, g))(1 − β)S(x, y, z, g)

+ ⟨DgV
p, µg⟩ −

(
MvCu

∫
α(x̃, y, z, g)(1 − β)S(x̃, y, z, g)g

u(x̃)
U

dx̃+ ⟨DgV
v, µg⟩

+ MvCe
∫
αp(y, x̃, ỹ, z, g)g(x̃, ỹ)

E
(1 − β)(S(x̃, y, z, g) − S(x̃, ỹ, z, g))dx̃dỹ

)
+ w(x, y, z, g) + Me

∫
αe(x, y, ỹ, z, g)β(S(x, ỹ, z, g) − S(x, y))g

v(ỹ)
V

dỹ

− β(δ + ηαb(x, y, z, g))S(x, y, z, g) + ⟨DgV
e, µg⟩

−
(
b+ Mu

∫
α(x, ỹ, z, g)βS(x, ỹ, z, g)g

v(ỹ)
V

dỹ
)

= F (x, y, z) − (δ + ηαb(x, y, z, g))S(x, y, z, g) − b

− MvCu
∫
α(x̃, y, z, g)(1 − β)S(x̃, y, z, g)g

u(x̃)
U

dx̃

− MvCe
∫
αp(y, x̃, ỹ, z, g)g(x̃, ỹ, z, g)

E
(1 − β)(S(x̃, y, z, g) − S(x̃, ỹ, z, g))dx̃dỹ

+ Me
∫
αe(x, y, ỹ, z, g)β(S(x, ỹ, z, g) − S(x, y, z, g))g

v(ỹ)
V

dỹ

− Mu
∫
α(x, ỹ, z, g)βS(x, ỹ, z, g)g

v(ỹ)
V

dỹ

+ λ(z)(S(x, y, z̃, z, g) − S(x, y, z, g)) + ⟨DgS, µ
g⟩
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where:

α(x, ỹ, z, g) :=

 1, if S(x, ỹ, z, g) > 0
0, otherwise

αb(x, ỹ) :=

 1, if S(x, ỹ, z, g) < 0
0, otherwise

αe(x, y, ỹ, z, g) :=

 1, if S(x, ỹ, z, g) ≥ S(x, y, z, g) and S(x, ỹ, z, g) ≥ 0
0, otherwise

αp(y, x̃, ỹ, z, g) :=

 1, if S(x̃, y, z, g) ≥ S(x̃, ỹ, z, g) and S(x̃, y, z, g) ≥ 0
0, otherwise

Observe that:

MvCu

U
= m(W ,V)

WV
,

MvCe

E
= ϕ

m(W ,V)
WV

,

Me

V
= ϕ

m(W ,V)
WV

,
Mu

V
= m(W ,V)

WV

and so the surplus equation becomes:

ρS(x, y, z, g) = F (x, y, z, g) − (δ + ηαb(x, y, z, g))S(x, y, z, g) − b

− (1 − β)m(W ,V)
WV

∫
α(x̃, y, z, g)S(x̃, y, z, g)gu(x̃)dx̃

− (1 − β)ϕm(W ,V)
WV

∫
αp(y, x̃, ỹ, z, g)g(x̃, ỹ)(S(x̃, y, z, g) − S(x̃, ỹ, z, g))dx̃dỹ

+ βϕ
m(W ,V)

WV

∫
αe(x, y, ỹ, z, g)(S(x, ỹ, z, g) − S(x, y, z, g))gv(ỹ)dỹ

− β
m(W ,V)

WV

∫
α(x, ỹ, z, g)S(x, ỹ, z, g)gv(ỹ)dỹ

+ λ(z)(S(x, y, z̃, z, g) − S(x, y, z, g)) + ⟨DgS, µ̃
g⟩
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Kolmogorov Forward Equation: The measure of matches evolves according to:

dgt(x, y) = − (δ + ηαb
t(x, y))gt(x, y)dt

− Me
t︸︷︷︸

Rate. e-worker
meets

∫
αe

t (x, y, ỹ)︸ ︷︷ ︸
Prob. accept

gv
t (ỹ)
Vt︸ ︷︷ ︸

Prob. meet ỹ

dỹ gt(x, y)︸ ︷︷ ︸
Mass at (x, y)︸ ︷︷ ︸

Mass accepting match

dt

+ Mu
t︸︷︷︸

Rate. u-worker
meets

αt(x, y)g
v
t (y)
Vt

gu
t (x)dt

+ Me
t

∫
αe

t (x, ỹ, y)g
v
t (y)
Vt

gt(x, ỹ)dỹdt

where this KFE has been written from the perspective of the workers (it can be
written equivalently from the point of view of the firms) and each term is written as:

(Prob. worker meets) × (Prob. acceptance) × (prob. y) × (mass of workers)

The first term on the RHS is the exit rate due to exogenous separations, the second
term is the exit rate due to workers finding better matches, the third term is new
matches from unemployed workers finding jobs, and the final term is employed workers
moving to (x, y). Observe that:

Me
t

Vt

= ϕ
m(Wt,Vt)

WtVt

Mu
t

Vt

= m(Wt,Vt)
WtVt

So, the KFE becomes:

dgt(x, y) = − (δ + ηαb
t(x, y))gt(x, y)dt− ϕ

m(Wt,Vt)
WtVt

gt(x, y)
∫
αe

t (x, y, ỹ)gv
t (ỹ)dỹdt

+ m(Wt,Vt)
WtVt

αt(x, y)gu
t (x)gv

t (y)dt

+ ϕ
m(Wt,Vt)

WtVt

∫
αe

t (x, ỹ, y)gv
t (y)gt(x, ỹ)dỹdt
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If we know the measure of matches, then we can recover the other distribution:

ge
t (x) =

∫
gt(x, y)dy, gu

t (x) = gw
t (x) −

∫
gt(x, y)dy,

gp
t (y) =

∫
gt(x, y)dx gv

t (y) = gf
t (y) −

∫
gt(x, y)dx,

Ut =
∫
gu

t (x)dx, Vt =
∫
gv

t (y)dy

Et =
∫
ge

t (x)dx, Pt =
∫
gp

t (y)dy

Discretization: For solving numerically, we discretize g and smooth α, αb, αe, and αp

in an analogous way to Subsection 2.3.

D.2 Relating to Block Recursivity as in Lise and Robin (2017)

In this section, we show what changes are required in our environment to get the
block recursive results in Lise and Robin (2017).

D.2.1 Environment

We make the following changes to the environment from subsection 3.1.

Setting: The economy is populated by a continuum of infinitely lived workers indexed
by ability x, and a continuum of firms indexed by technology y. The total measures
of workers and firms are fixed and normalized to 1 and their densities are given by
gw

t (x) and gf
t (y). However, now firms can post v job opportunities at exogenous cost

c(v). The aggregate state of the economy is indexed by zt. At the beginning of each
period, the aggregate state changes from z to z′ at Poisson rate π(z, z′).

Meeting Technology: The total effective search effort is Wt = Ut + ϕEt. Let vt(y)
denote the measure of type y job opportunities chosen by firm y. Let Vt =

∫
vt(y)dy

denote the aggregate number of job opportunities. The total measure of meetings at
time t is given by Mt = m(Wt, Vt). Define Mu

t := Mt/Wt as the rate at which an
unemployed searcher contacts a vacancy, and Me

t = ϕMu
t is the rate at which an

employed searcher contacts a vacancy in period t. Let Mv
t := Mt/Vt denote the rate

per unit of recruiting effort vt(y) that a firm contacts any searching worker.
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D.2.2 Value and Surplus Functions

Value of Unemployment: Let V u
t (x) denote the value of unemployment to a type

x worker at t. Let V e
0,t(x, y) be the value to a type x worker who is hired from

unemployment by a firm of type y. Lise and Robin (2017) assume the worker has
no bargaining power so V e

0,t(x, y) = Bt(x) for all y. So, the HJB equation for the
unemployed worker is:

ρV u
t (x) = b(x) + Mu

t

∫
αt(x, ỹ)(V e

0,t(x, ỹ) − V u
t (x))vt(ỹ)

Vt

dỹ + ∂tV
u

t (x)

= b(x) + ∂tV
u

t (x)

where αt(x, y) = 0.5. In recursive form, we have V u
t (x) = V u(x, zt) and so the HJB

equation becomes:

ρV u
t (x, zt) = b(x) +

∑
z′
π(z, z′)(V u(x, z) − V u(x, z))

Value and Surplus of a Match: Let Pt(x, y) denote the present value of a match (x, y),
including the continuation values to the worker and the firm upon separation (which
in our notation would be Pt(x, y) = V e

t (x, y) + V p
t (x, y).) Let P̃t(x, y, ỹ) denote the

value to the incumbent firm and the worker after the worker moves to a new firm of
type ỹ. Then, Pt(x, y) solves the HJB equation:

ρPt(x, y) = F (x, y, zt) + ϕMu
t

∫
αe

t (x, y, ỹ)(P̃t(x, y, ỹ) − Pt(x, y))vt(ỹ)
Vt

dỹ

+ (δ + ηαb(x, y))(V u
t (x) − Pt(x, y)) + ∂tPt(x, y)

If Pt(x, ỹ) > Pt(x, y), the worker moves and get the incumbent firm’s value. So, after
the move the incumbent firm has zero value and the incumbent worker has value
Pt(x, y), which implies

P̃t(x, y, ỹ) = 0 + Pt(x, y)

If Pt(x, ỹ) < Pt(x, y), the worker does not move and gets Pt(x, ỹ). This redistributes
surplus towards the worker but does not change the overall value to workers and firms
combined, which implies that P̃t(x, y, ỹ) = Pt(x, y).

57



In summary, the second term in the HJB equation is always zero, so we get:

ρPt(x, y) = F (x, y, zt) + (δ + ηαb(x, y))(V u
t (x) − Pt(x, y)) + ∂tPt(x, y)

Consider the surplus, which is defined as:

St(x, y) := Pt(x, y) − V v
t (y) − V u

t (x)

In Lise and Robin (2017), their free entry condition implies that V v
t (y) = 0 for all y,

so

St(x, y) = Pt(x, y) − V u
t (x)

Putting the HJBs together, we have

ρSt(x, y) = ρ(Pt(x, y) − V u
t (x)) (D.1)

= F (x, y, zt) + (δ + ηαb(x, y))(V u
t (x) − Pt(x, y)) + ∂tPt(x, y)

− b(x) − ∂tV
u

t (x)

= F (x, y, zt) − b(x) − (δ + ηαb(x, y))St(x, y) + ∂tSt(x, y)

Equation (D.1) does not depend upon g and so the surplus is “block recursive”—it
can be solved without knowing the distribution. This means that, in recursive form,
we have the surplus S(x, y, z) satisfies:

ρS(x, y, z) = F (x, y, z) − b(x) − (δ + ηαb(x, y))S(x, y, z)

+
∑

z̃

π(z, z̃)(S(x, y, z̃) − S(x, y, z))
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KFE: The distribution of matches evolves according to:

dgt(x, y) = − (δ + ηαb
t(x, y))gt(x, y)dt

− ϕ
m(Wt,Vt)

Wt

∫
αe

t (x, y, ỹ)g
v
t (ỹ)
Vt

dỹgt(x, y)dt

+ m(Wt,Vt)
Wt

αt(x, y)g
v
t (y)
Vt

gu
t (x)dt

+ ϕ
m(Wt,Vt)

Wt

∫
αe

t (x, ỹ, y)g
v
t (ỹ)
Vt

gt(x, ỹ)dỹdt

where the αt(x, y) are calculated from the surplus terms as in the main text.

Vacancies: Vacancies are pinned down by the cost of creation via:

c′[gv
t (y)] = Mv

tJ(y, z)

and where Mv
t = m(Wt,Vt)

Vt
and Vt =

∫
gv

t (y)dy and:

J(y, z) =
∫ gu

t (x̃)
Wt

αb(x̃, y, z)S(x̃, y, z)dx̃

+ ϕ
∫ ∫ g(x̃, ỹ)

Wt

αe(x̃, ỹ, y, z)(S(x̃, y, z) − S(x̃, ỹ, z))dx̃dỹ

E Additional Details For The OTC Model in Sec-
tion 5

E.1 Numerical Illustration

We now consider a calibration of the model that draws on Weill (2008), Chen et al.
(2017), Payne and Szőke (2024), and incorporates our agent and asset specification.

Economic parameters: We consider an environment with four types of agents: {D,
C, U , P}, where type D are interpreted as dealers in the primary bond market,
type C are interpreted as liquidity-constrained hedge funds, type U are unconstrained
hedge funds, and type P are pension/insurance funds with a long investment horizon.
Formally, the matrices for holding costs, ψ(i, τ), switching rates, λij(z), and primary
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market participation, ξ(i, τ), are given in Tables 9, 10, and 11 respectively. The dealer
agents (type D) are the only agents who are assigned assets in the primary market.
They do not get a net benefit from holding the asset but instead only from trading
the asset. The hedge funds randomly switch between getting net benefit from holding
any asset (type U) and getting net loss from holding all assets (type C). In this sense,
they face the risk of becoming “liquidity constrained” and highly incentivized to sell
assets. The pension/insurance funds face a penalty for holding short-maturity assets,
interpreted as a regulatory constraint on short-asset exposure.

Maturity (τ)
τ1 = 0.25 τ2 = 1.0 τ3 = 5 τ4 = 10

Agent Type (i)

D δϕ(1, z) δϕ(2, z) δϕ(3, z) δϕ(4, z)
C 0.02 0.02 0.02 0.02
U 0.0 0.0 0.0 0.0
P 0.02 0.02 0.01 0.00

Table 9: Holding costs: ψ(i, τ).

Agent Type (j)
D C U P

D

C 0.1
U 0.7
P

(a) λ(i, j) for z = zL.

Agent Type (j)
D C U P

D

C 0.1
U 0.5
P

(b) λ(i, j) for z = zM .

Agent Type (j)
D C U P

D

C 0.1
U 0.3
P

(c) λ(i, j) for z = zH .

Table 10: Switching rates λ(i, j) across different aggregate states.
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Maturity (τ)
τ1 = 0.25 τ2 = 1.0 τ3 = 5 τ4 = 10

Agent Type (i)

D ξ1 ξ2 ξ3 ξ4

C − − − −
U − − − −
P − − − −

Table 11: Primary market participation: ξ(i, τ).

We consider the following matching rates, which specify that agents can trade
more quickly with the dealers than with each other (following Chen et al. (2017)):

κa,b =



50, if (a, b) = (in, jok) and i, j ̸= A,
50, if (a, b) = (iok, jok) and i, j ̸= A,
75, if (a, b) = (in, Aok) and i ̸= A,
0, if (a, b) = (iok, Aol) and ∀i,
0, if (a, b) = (in, jn) and ∀i, j,

We impose that agents have equal bargaining power unless they match with a dealer,
in which case they have bargaining power 0.05 (following Weill (2008) and Chen et al.
(2017)):

βa,b =


0.5, if (a, b) = (in, jok) and i, j ̸= A,
0.5, if (a, b) = (iok, jol) and i, j ̸= A,
0.05, if (a, b) = (in, Aok) and i, j ̸= A,

The other economic parameters are listed in Table 12. We calibrate the model at
the annual frequency. Where possible, we take standard parameters from the litera-
ture.

Neural network parameters: We describe the details of the neural network approxima-
tion and sampling in Table 13. We use a fully connected feed-forward network with
8 layers, 100 neurons per layer, and a combination of GELU(·) activation functions.
The training loss is shown in Figure 12.
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Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Average short rate
δ Bond Coupon Rate 0.01

Aggregate State: z ∈ {zB, zN , zG}
ϕ(z) Coupon haircut (0.986, 0.991, 0.997) Chen et al. (2017)
π(z) Principal haircut (0.986, 0.991, 0.997) Chen et al. (2017)

ζN,B, ζN,G Transition rate: normal to bad/good 0.1 Crisis every 10 years
ζB,N , ζG,N Transition rate: bad/good to normal 0.5 Average crisis duration 2 years

Table 12: Economic Parameters.

Parameter Value
Number of layers 8
Neurons per layer 100
Activation function GELU(·)
Initial learning rate 10−4

Final learning rate 10−6

Initial sample size per epoch 256
Sample size per epoch 1024
Convergence threshold for target calibration 10−7

Table 13: Neural network parameters

Figure 12: Loss function along training epochs
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