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Abstract

There are many situations where policymakers are primarily concerned with the availability
and accessibility of goods or services. Examples include electricity, food, housing, medi-
cal supplies, et cetera. In such cases, the social goal may be to maximize the number of
transactions, which we refer to as a maximal matching. This paper presents a mechanism
that implements this objective. The mechanism satisfies the incentive and participation
constraints, but requires external funding.
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“It is the greatest happiness of the greatest number that is the measure of right and wrong.”

(Bentham, 1776)

1 Introduction

Economics is often described as a social science that studies the production, distribution, and
consumption of wealth.! Throughout its history, a good number of criteria have been developed
to judge levels and distributions of welfare. Perhaps the most popular one is the so-called
utilitarian rule. Roughly speaking, this rule says that goods and services should be produced

and allocated in such a way that the combined utility of all agents involved is maximal.

The utilitarian rule has been criticized on many grounds, with the most common one being its
neglect regarding issues of distributive justice.? Indeed, abiding by this principle may result in
situations where most, if not all, wealth ends up in the hands of a few.? This can be particularly
problematic when the goods or services are considered ‘essential’ such as electricity, food, housing,
medical supplies, et cetera. In such cases, one can imagine policymakers to be more concerned
with the availability and accessibility of wealth rather than with its aggregate value. That is to
say, it may be preferred to have supplies produced and allocated in such a way that it serves as

many parties as possible.

To fix ideas, consider the following example of two families looking for a house. Suppose there
are two property owners, each of whom has an apartment available for sale. The apartments are
virtually identical, but the costs of selling the place differ. After attending the open house, both
families learn their valuation for the accommodation. Table 1 gives an overview of the valuations

(v) and costs (¢), which can be thought of as reservation prices. Family 1 values either apartment

U1 | V2
10| 5
C1 | C2
2 6

Table 1: A market with 2 consumers and 2 producers.

1Definitions along these lines date back to A Treatise on Political Economy; or the Production, Distribution,
and Consumption of Wealth by Jean-Baptiste Say (1803). For a detailed discussion, see Backhouse and Medema
(2009).

2See, e.g., Feldman (1987), Mandler (1999) and, more recently, Graafland (2022).

3 As vividly formulated by Nozick (1974, p. 41): “Utilitarian theory is embarrassed by the possibility of utility
monsters who get enormously greater gains in utility from any sacrifice of others than these others lose. For,
unacceptably, the theory seems to require that we all be sacrificed in the monster’s maw, in order to increase
total utility.”
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at 10, whereas family 2 values both at 5. The homeowners’ costs are 2 and 6, respectively. Note
that if the policymaker’s goal is to maximize total surplus, it would like owner 1 to sell to family
1. This, however, implies that family 2 is left empty-handed, because owner 2’s minimum price
(c2 = 6) exceeds this family’s valuation (ve = 5). In this scenario, total surplus is 10 — 2 = 8.
Yet, if the policymaker’s goal is to have housing for as many people as possible, then it would
like owner 1 to trade with family 2 and owner 2 to sell to family 1. This yields a total surplus of

(10 —6) + (5 — 2) = 7 and a maximal number of matches, namely 2.

In this paper, we suppose that the social goal is to maximize the number of buyer-seller matches.*
We coin such a matching-maximizing outcome a mazimal matching. It is assumed that participa-
tion is voluntary, i.e., neither consumers nor producers can be forced to engage in a transaction.
What makes this problem challenging is that costs and valuations are private information. Fol-
lowing the above example, a family’s actual valuation for a house is unknown to the owner as
well as to competing buyers. Similarly, an owner often has a pretty good idea about the (oppor-
tunity) cost of selling his property, but that information is typically not available to any of the
other market players. Moreover, both buyers and sellers are likely to pursue goals other than
maximizing the total number of deals between them. This raises the question of whether one
can design a mechanism that achieves a maximal matching. In what follows, we show that the

answer to this question is affirmative.

We start our analysis by introducing an algorithm that enables the identification of a maximal
matching. More specifically, as will become clear in the ensuing analysis, it selects the optimal
matching-maximizing outcome in the sense that it yields the maximal matching with the highest
total surplus. We then proceed by considering implementability. The key issue here is to specify
a pricing rule that incentivizes all agents involved to reveal their actual valuations or costs. In
other words, what price(s) do consumers have to pay and what payment(s) do producers need
to receive to make truth-telling a dominant strategy? To answer this question, we show how one

can apply the pricing rule as specified in Myerson’s Lemma to both sides of the market.

In terms of desirable properties, the proposed mechanism yields an individual rational alloca-
tion with agents engaging in a transaction only when they find it in their interest to do so.

That is, the mechanism satisfies the participation constraints. It also satisfies the incentive-

41t is worth emphasizing that the goal of matching maximization is not only applicable within the context
of essential goods provision. In digital markets, for example, a platform owner may be primarily interested
in maximizing the number of transactions or ‘clicks’ as this gives valuable information that can be exploited
elsewhere.
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compatibility constraints. Truth-telling thus constitutes an equilibrium and the objective of
matching maximization is implementable. A notable drawback of the mechanism is that it is not
budget balanced. A policymaker thus has to look for outside funds when it aims for a maximal

matching.®

Our paper fits to the stream of literature on algorithmic mechanism design. The typical goal here
is to design algorithms for mechanism design problems that satisfy a monotonicity constraint. It
is precisely this monotonicity constraint that guarantees that agents are willing to reveal their
information truthfully. The origins of algorithmic mechanism design date back to Nisan and
Ronen (2001) and Lehmann et al. (2002).° However, not much is known yet about cases as
described above, i.e., situations where both sides of the market hold relevant private informa-
tion. In this type of context, scholars have mainly considered other objectives such as revenue
maximization (e.g., Deshmukhl et al. (2002), Deng et al. (2014)) or budget-balancedness (e.g.,
Colini-Baldeschi et al. (2016)).

Our analysis touches upon the classic efficiency-equity trade-off. While the utilitarian approach
yields an efficient allocation of goods or services, matching maximization carries an egalitarian
flavor. Indeed, as we show formally in Appendix A, the proposed mechanism with an equal-
split of surpluses gives an outcome similar to what one would obtain by applying the egalitarian
rule. This naturally relates to a growing body of recent work that shows how one may use
market design to reach redistributive objectives when there is heterogeneity in marginal values

for money.”

By maximizing the number of buyer-seller matches, the proposed mechanism achieves the social
goal ‘directly’. A policymaker, in principle, can achieve a comparable outcome also ‘indirectly’
through an appropriate (re-)distribution of agents’ (initial) endowments. This, however, may
prove problematic for at least two reasons. First, the information required to determine the
preferred allocation is typically lacking and cannot be elicited truthfully. Second, redistribution
methods (e.g., taxes and subsidies) are in themselves inefficient. Apart from this, experimental
research suggests free market competition to converge to a competitive equilibrium under plau-

sible conditions, which commonly implies a less than maximal matching.® To achieve the latter

5A similar finding is obtained by Myerson and Satterthwaite (1983) in the context of bilateral trade. More
generally, the mechanism design literature is rich in ‘impossibility results’ showing that it is typically impossible
to design a mechanism that meets all desirable properties.

6For a survey of this literature, see Nisan (2015).

7See Dworczak, Kominers and Akbarpour (2021), Akbarpour, Dworczak and Kominers (2022) and Groh and
Reuter (2023).

8See, e.g., Smith (1962), Gode and Sunder (1993), Bosch-Domenech and Sunder (2000) and Lin et al. (2020).
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then requires a central authority to provide the appropriate incentives. Finally, it is worth noting
that indirect routes to maximal matchings may simply not be available due to technical limi-
tations. For example, storing energy still proves challenging in many situations so that energy

suppliers may have to serve their customers instantly and directly.

The next section introduces the modeling framework. Section 3 offers a formal definition of a
maximal matching and presents an algorithm to identify such an allocation. We take up the
issue of implementability in Section 4. Section 5 is devoted to the costs of matching maximiza-
tion. Section 6 concludes. The link to egalitarianism is provided in Appendix A. All proofs are

relegated to Appendix B.

2 The Model

Consider a market comprising a set of M = {1,...,m} consumers and a set of N = {1,...,n}
producers. Each consumer ¢ € M attempts to purchase one unit of a good, which it values at
v; > 0. Each producer j € N can produce one unit of this good at a cost of ¢c; > 0. There is a
social planner which has the objective to meet society’s aggregate preferences regarding welfare
and its distribution. Since information is incomplete, the planner employs a direct mechanism
to reach its goal.” To that end, it asks all consumers and producers to report their valuations
and costs. Let r = (r1,72,...,7y) and s = (s1, S2, ..., Sp) be the vectors of reported valuations
and costs, respectively. Without loss of generality, it is assumed that r; > ro > ... > rp,, and
s1 < 89 <...< 8,. The vector r_; indicates the reported valuations of all consumers other than
i and the vector s_; denotes the reported costs of all producers other than j. Let R and S be
the corresponding sets of all possible reported valuation and cost profiles, respectively. Generic

elements are represented by r,w € R and s,t € S.

A direct mechanism, M = (A, p), consists of an allocation rule A and a payment rule p. An
allocation rule A : (r,s) — A(r,s) = (K, L) takes the profiles of communicated values as input
and produces output A(r,s) = (K, L), where K C M and L C N with |K| < |L| indicate the

buyers and sellers that are involved in a transaction. For each individual consumer and individual

91If information would be complete, then all valuations and costs are common priors. In that case, it is
straightforward to select a mechanism that serves the social planner’s goal. The adjective ‘direct’ refers to the
revelation principle (see, e.g., Gibbard (1973)), which states that for any mechanism equilibrium there exists an
equivalent incentive-compatible direct revelation mechanism.
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producer, the outcome of mechanism A is then, respectively, given by:

(r,s) lifie K
a;\r,8) = ep -
0ifi ¢ K,

and

0if j ¢ L.
For A = (K, L), total utility is defined as the difference between the valuations of all matched

lifjel
aj(r’s):{ IS

consumers and the costs of all matched producers. Formally,
TU(v,c,r,s) = Z v; — ch, where A(r,s) = (K, L).
icK jeL
The payment rule also takes all reported values and costs as an input and uses this information
to specify the amount p;(r,s) that consumer i has to pay and the amount p;(r,s) that producer

J receives.

In what follows, let T C M x N be a matching, where for every i € M, |{j|(¢,j) € T} < 1, and
for every j € N, [{i|(i,4) € T} < 1. Note that an allocation rule only indicates which market
players are involved in a trade, whereas a matching additionally specifies which consumers and

producers are linked together.

We consider voluntary matchings only, i.e., neither consumers nor producers can be forced to take

part in a transaction. To make this concrete, we now introduce three closely related concepts.
Definition 2.1 A match (i,j) € T is value-creating if v; > c;.

Definition 2.2 A maiching T is bilaterally rational if all (i,j) € T are value-creating.

Let Tpr be the set of all bilaterally rational matchings.

Definition 2.3 A mechanism (A,p) is individually rational if for alli € M, j € N, for all

r=(r,...,rm) € Rand s = (s1,...,sn) €S, ri - ai(r,s) 2 pi(r,s) and s; - a;(r,s) < p;(r,s).

Note that bilateral rationality is a necessary condition for a matching to be voluntary. To see this,
suppose there is a matching that is not bilaterally rational. In that case, there is a pair (i, j) for
which it holds that v; < ¢;. If p; > v;, then consumer ¢ does not want to buy. When p; < v; < ¢j,
however, producer j does not want to sell since the payment is insufficient to cover its cost.
Absent bilateral rationality, there is thus no price that allows for voluntary participation by both
buyer ¢ and seller j simultaneously. Finally, individual rationality implies that an agent’s gain
of participating weakly exceeds its gain of not participating for all realizations. An individually

rational mechanism thus induces voluntary participation.



MATCHING-MAXIMIZING MECHANISM 7

3 Matching Maximization

We now employ the above model to examine matching maximization. We start by offering a
precise definition of a matching-maximizing outcome, which we refer to as a maximal matching.
We then present an algorithm to identify such an outcome. We conclude this section by showing
that the proposed algorithm is optimal in the sense that it selects the utility-maximizing matching

among all maximal matchings.

Definition 3.1 A matching T € Tpgr is maximal when
T| = max .
7| = max |Q

The set of all mazimal matchings is given by Tyy.

The next example illustrates these concepts.

Example 3.2 Consider a market with 4 consumers and 4 producers, all of which report their

actual valuationks and costs. Table 2 presents their reports, in an ordered fashion.

™ | T2 | T3 | T4
9 | 8 6 3
S1 | S2 | S3 | S4
4 5 7|11

Table 2: A market with 4 consumers and 4 producers.

Observe that consumer 4 and producer 4 cannot engage in a value-creating transaction and that
this market has a maximum of 3 wvalue-creating pairs. Therefore, |T| = 3 for any mazimal
matching T and A = ({1,2,3},{1,2,3}). Notice, however, that A need not yield 3 value-creating
matches. For example, Ty = {(1,3),(2,2),(3,1)} or To = {(1,1),(2,3),(3,2)} does, but Tz =
{(1,1),(2,2),(3,3)} does not. As a result, Ty, To € Tar and Ts ¢ Tas.

Flip Algorithm
Knowing what maximal matchings look like, a natural next question is how to find them. To
that end, we now introduce the Flip Algorithm, which is an algorithm that identifies a matching

with a maximal number of value-creating pairs.

Recall that the consumers’ reported valuations are in decreasing order, i.e., r1 > 1o > ... > 1y,
and that the producers’ reported costs are in increasing order, i.e., s1 < s9 < ... < s,. The

Flip Algorithm then computes the following matching. Let k be the largest index k such that
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7i > spr1-q for all 1 <4 < k. Match k pairs {(i,k+1—1) | 1 <14 < k}. We denote the resulting

matching by Tr.
The next example gives an illustration.

Example 3.3 We apply the Flip Algorithm to the market as described in Example 3.2 above.
Starting with k = 1, one compares the valuation of the first consumer with the cost of the first
producer. Since ry > s1, we proceed with k = 2. We then reverse the order of the first two
producers in Table 2 and obtain Table 3 below. Since r1 > so and r9 > s1, we proceed with k = 3.
Reversing the order of the first three producers in Table 2 gives the situation as presented in Table
4. Also in this case, the first three pairs are value-creating so that we proceed with k = 4. This
results in the situation as presented in Table 5. Note that with k = 4 valuations fall short of costs

for the first and the forth pair. The Flip Algorithm, therefore, yields A = ({1,2,3},{1,2,3}) and
Tr = {(L 3)’ (27 2)7 (37 1)}

TL | T2 | T3 | T4 L | T2 | T3 | T4
9 8 6 3 9 8 6 3
S92 S1 S3 S4 S3 S92 S1 S4
5 4 7111 7 5 4 |11
Table 3: Valuations and costs when k = 2. Table 4: Valuations and costs when k = 3.

L | T2 | T8 | T4
9 8|6 |3
84 | 83 | S2 | S1
11|75 | 4

Table 5: Valuations and costs when k = 4.

The following result establishes a general property of a matching, which is useful in showing that

the Flip Algorithm yields a matching-maximizing outcome.

Lemma 3.4 Let T be a matching with k matches. If there is a pair (i,j) € T withi+j < k+1,
then there is a pair (i',j') € T with i’ > i and i+ j > k+ 1.

To see that the matching resulting from the Flip Algorithm is indeed maximal, suppose there is
another maximal matching 7' consisting of k& matches. If consumer i is matched with some
producer 5 > k + 1 — i under T, then it can be matched with seller j = k + 1 — i since
Ty > 55 > 841 ;- 1f consumer ¢ is matched with some producer j < k+1—i under T, then there

is a consumer 7/ > i that is matched with a producer j' > k + 1 — i (Lemma 3.4). Therefore,
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r; > Ty > 8y > Sji1_; S0 that consumer 4 can be matched with seller j = k-+1—i. This implies
that it is possible to construct the situation resulting from the Flip Algorithm without reducing
the number of matches. Since T is a maximal matching, so is the matching induced by the Flip

Algorithm. The next theorem summarizes this finding.
Theorem 3.5 The Flip Algorithm yields a matching in Tyr.

Optimal Mazimal Matching

The above theorem shows that the Flip Algorithm identifies a matching-maximizing outcome.
This algorithm does not just select any such matching, however. Indeed, it identifies the optimal
maximal matching in the sense that it selects the matching-maximizing outcome with the highest

total utility.

Theorem 3.6 The Flip Algorithm mazimizes total utility over Tyy.

4 Implementability

The preceding section explains how one can identify an optimal matching-maximizing outcome.
A key question is then whether there exists an incentive-compatible mechanism to attain such
a matching. Is it implementable, that is? In this section, we show that the answer is in the

affirmative.

4.1 Preliminaries

Let us first introduce some concepts that we use to establish implementability. As a starter, we
explain what it means for a mechanism to be dominant strategy incentive compatible (DSIC) in

our setting.

Definition 4.1 A mechanism is DSIC if, for alli € N, r;,w; € Ry andr_; € RTﬁl, it holds
that:

ri - ai(ri, r—i,8) — pi(ri,v—5,8) > 1 - ai(w;, r_;,s) — pi(wi, r_;,s).
And, for all j € M, sj,t; € Ry ands_; € Rffl, it holds that:
pj(8j:8-5,1) — 85 - a;(sj,8-;,1) > pj(t;j,s_5,1) — 85 - a;(tj,s_j,r).

If a mechanism is DSIC, then the net gain of reporting the actual valuation or cost weakly exceeds
the net gain of reporting anything else. This makes reporting truthfully a dominant strategy for

both buyers and sellers. Using this concept, implementability is then defined as follows:
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Definition 4.2 An allocation rule A is implementable if there exists a payment rule p such

that (A, p) is DSIC.

Given the reported valuations of all consumers other than i, we write a;(r;,r—_;,s) as a;(r;) and
a;(w;,r—;,8) as a;(w;), for all r;,w; € Ry. In the same manner, we write p;(r;,r_;,s) and
pi(w;,r_;,8) as p;(r;) and p;(w;), respectively for all r;,w; € R;. We then have the following

basic observation.
Lemma 4.3 Fizr_;. If a mechanism (A, p) is DSIC, then
w; - ai(wi) — wi - ai(ri) 2 pi(wi) — pi(ri) =i - ai(w;) —ri - ai(rs).
This result reveals that when a mechanism is DSIC, the associated allocation rule is monotonic.

Definition 4.4 An allocation rule A is monotonic if for all i, r;,w; € Ry andr_; € RT‘l, it
holds that:

w; - ai(wi) — wj - ai(ri) Z T - al(wz) —T;- ai(ri).

If an allocation rule is monotonic, then a consumer does not receive less when it would raise
its reported valuation. In a similar vein, a producer does not sell less when it would reduce its

reported cost.

We now have all the ingredients available to (re-)state Myerson’s Lemma.

Lemma 4.5 (Myerson’s Lemma (1981)) For a single-parameter environment, the following

three properties hold:
1. An allocation rule A is implementable if, and only if, A is monotonic.

2. If A is monotonic, then there is a unique payment rule such that the mechanism (A, p) is

DSIC.
3. The payment rule in 2 is given by an explicit formula. For each consumer i:
pi(ri,r_;,8) = / zdA(z).
0

Intuitively, consumers pay their ‘switch point’ where they go from ‘not being matched’ to

‘being matched’.
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4.2 Findings

In the following, we apply Myerson’s Lemma to both sides of the market. To facilitate the
analysis, let Ar be the allocation that one obtains by applying the Flip Algorithm and let pp be
the corresponding payment rule. We refer to (A, pr) as the Flip Mechanism. Using the above
introduced concepts and definitions, we will now: (i) prove that the allocation rule associated
with the Flip Algorithm is implementable, (ii) determine the actual payments, and (iii) show

that the Flip Mechanism is individually rational.

To begin, we prove that the allocation rule Ag is monotonic. Once monotonicity is established,

Myerson’s Lemma provides the pricing scheme that implements the allocation rule.

Proposition 4.6 The allocation rule Agr is monotonic and, therefore, implementable.

Remark 4.7 There exist so-called ‘greedy algorithms’ capable of identifying a mazximal matching.
Yet, such algorithms are typically not monotonic and, therefore, not implementable. To illustrate,

consider the following, relatively simple, algorithm:
1. Order all consumers’ reported valuations in a decreasing order.
2. Order all producers’ reported costs in a decreasing order.

3. Starting with consumer 1, match consumer i to the first producer j for which it holds that

r; > s;. Repeat this process, while bypassing any buyer that cannot be matched.

Consider a market with 2 consumers and 2 producers. Table 6 presents their reported valuations

and costs in an ordered fashion. The greedy algorithm matches consumer 1 to producer 1 and

™ | T2
10| 5
S1 | S2
8 6

Table 6: A market with 2 consumers and 2 producers.

then stops. Suppose, however, that producer 2 reports a cost of sh =9 instead. In that case, it

would be matched, which violates monotonicity.

Knowing that Ap is implementable, we now apply Myerson’s lemma to determine the actual

payments. Proposition 4.8 specifies the prices.

Proposition 4.8 The payment rule pr is given by:
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1 If |Tp(r,s)| = [Tr(r—i,s)| = k, then p; = 154

2. If |Tp(r,s)| = [Tp(r—i,s)| + 1 and [Tp(r—i,s)| = [Tp(r—i,s-1)|, then p; = s1.

3. If |Tp(r,s)| = |Tr(r_i,s)| + 1 =k and |Tr(r_;,8)| = |Tr(r_i,s_1)| + 1, then p; = 13.
4. If |Tp(r,s)| = |Tp(r,s_;)| = k, then pj = sp .

5. If |Tr(r,s)| = |Tp(r,s_;)| + 1 and |Tr(r,s—;)| = |Tr(r_1,s_;)|, then p; = 1.

6. If |[Tr(r,s)| = |Tr(r,s_;)| + 1 =k and |Tr(r,s_;)| = [Tr(r_1,5_;)| + 1, then p; = s;.

The next result is implied by the preceding analysis.
Corollary 4.9 The Flip Mechanism (Ap,pr) is individually rational.
Let us conclude this section with an example that illustrates the payment rule.

Example 4.10 Imagine a market with 6 consumers and 6 producers. The communicated valu-
ations and costs are presented in Table 7 below. Notice that |Tr| =5 with and without consumer
1. When this consumer would indeed leave the market, it is replaced by consumer 6 which reports
a valuation of 1.5. Consequently, consumer 1 goes from ‘not being matched’ to ‘being matched’
when reporting a valuation of 1.5, which constitutes its ‘switch point’. In this case, therefore,

consumer 1 pays 1.5.

L | T2 | T3 | T4 [ T5 | T6
9| 8| 7|5 | 4|15
81 | S2 | 83 | S4 | S5 | 36
11236 | 710

Table 7: A market where consumer 1 pays r;,; = 1.5.

Now consider the same market with one notable difference; consumer 6 communicates a valuation
of 0.5 instead of 1.5. Table 8 contains the reported valuations and costs. Notice that |Tr| = 5,
but that |Tr| = 4 without consumer 1. Moreover, |Tr| = 4 without consumer 1 and producer 1.
Since producer 1 has the lowest reported cost among all vacant producers, consumer 1 goes from
‘not being matched’ to ‘being matched’ when reporting a valuation of s1. In this case, therefore,

consumer 1 pays 1.

Finally, consider the same market as depicted in Table 7, but again with one difference; producer

5 now reports a cost of 8.5 instead of 7. Table 9 contains the communicated valuations and costs.
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L | T2 | T3 | T4 [ T5 | T6
918|715 | 4|05
81 | S2 | 83 | S4 | S5 | 36
112 |36 | 710

Table 8: A market where consumer 1 pays s; = 1.

As before, |Tr| = 5, whereas |Tr| = 4 when consumer 1 would leave the market. Moreover,
|Tr| = 3 without consumer 1 and producer 1. Absent consumer 1, the result of the Flip Algorithm
would be such that consumer 5 is matched with producer 1. Hence, consumer 1 goes from ‘not
being matched’ to ‘being matched’ when reporting a valuation of rs. In this case, therefore,

consumer 1 pays 4.

L [ T2 | T3 | T4 | T5 "6
918|715 4 105
S1 S9 S3 S4 S5 S6
1123|685 10

Table 9: Market where consumer 1 pays rj, = 4.

5 The Price of Matching Maximization

Thus far, we have introduced an algorithm to identify the optimal maximal matching and shown
implementability of the associated allocation rule. One may then wonder what it costs to actually

implement it. It is this question that we now turn to.

5.1 Total Utility Maximization: A Benchmark

To evaluate the cost of matching maximization, we use total utility maximization as a benchmark.
The TU-mazximizing Algorithm identifies a matching such that the total utility of all agents is

maximal. It works as follows.

Recall that the reports of all consumers are in decreasing order, i.e., 71 > ro > ... 7y, and that
the reports of all producers are in increasing order, i.e., s1 < s9 < ...S,. Let k be an index such

that r; > s; implies | < k and r; < s; implies | > k. Match k pairs {(¢,7) | 1 <i < k}.

To see that this rule indeed maximizes total utility, note that r; < s; for any [ > k so that
matching k pairs generates (weakly) more utility than matching more than k pairs. Moreover,
r; > s for any I < k so that matching up to k pairs (weakly) increases the total value-created.

Note further that the TU-maximizing Algorithm yields a matching that is bilaterally rational.
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Indeed, since r1 > 19 > ... > 1, and 51 < s < ... < s, and the first k£ pairs are matched, it

holds that r; > ry, > s, > 55, forall i <k and j < k.

Example 5.1 To illustrate, consider the market as described in Example 3.2 above. The reported

valuations and costs are presented in Table 10, which is the same as Table 2. Note that the ‘break-

1 [ T2 | T3 | T4
911816 |3
51 | S2 | 83 | 54
4 15| 7|11

Table 10: A market with 4 consumers and 4 producers.

even point’ is at k = 2 since the reported cost s3 = 7 exceeds the reported valuation rs = 6 for
the third pair. In this example, therefore, A = ({1,2},{1,2}) and the TU-mazimizing Algorithm

yields 2 pairs.

It can be easily verified that a TU-maximizing allocation rule is monotonic and, therefore, imple-
mentable. Hence, it is possible to apply the payment rule as given by Myerson’s Lemma. In fact,
as is well-known, one can use a VCG-mechanism to achieve an allocatively efficient outcome.!?
Yet, this type of mechanism is typically not budget-balanced.!! The next two results confirm

that a VCG-mechanism indeed (almost) always creates a deficit, also in our setting.
Proposition 5.2 If the policymaker adopts a VCG-mechanism, then Y i | p; < Z;nzl Dj-

Proposition 5.3 The VCG-mechanism yields a deficit if, and only if, the allocation rule is

unique.

Taken together, this means that total utility maximization more often than not requires external

funding (e.g., a subsidy).!?

5.2 How (In)efficient is Matching Maximization?

Using the TU maximization results as reference, we now address the question of what it costs to
maximize the number of value-creating matches. We consider two measures of efficiency: (i) the

amount of deficit, and (ii) the number of matches. Let us discuss each in turn.

10V CG-mechanisms are named after the contributions of Vickrey (1961), Clarke (1971) and Groves (1973).
HSee, e.g., Vickrey (1961) and Myerson and Satterthwaite (1983).
12 As shown by McAfee (1992), one way to achieve budget balance is by sacrificing one value-creating match.
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5.2.1 Amount of Deficit

How (in)efficient is matching maximization in monetary terms? The following theorem sheds

some first light on this question.

Theorem 5.4 Consider two implementable allocation rules A and A’ where K O K' and L D L/,
forallr € R ands € S. Denote the corresponding payment rules by p and p’, respectively. Then,

pi < p} for all consumers i and p; > p;- for all producers j.

The implication of this result is that the amount of deficit is (weakly) larger in case of matching
maximization. This is so because an implementable matching-maximizing allocation rule yields
at least the same number of matches as the TU-maximizing allocation rule. Therefore, each
consumer pays less, whereas each producer gets more. The following corollary summarizes this

finding.

Corollary 5.5 The deficit under an implementable matching-maximizing mechanism is at least

as large as under a VCG-mechanism.

It is worth emphasizing that this may hold even when the number of matches is the same under

both mechanisms. This is illustrated by the next example.

Example 5.6 Consider a market with 4 consumers and j producers. Table 11 contains the

reported valuations and costs. Note that both the VCG Mechanism and the Flip Mechanism yield

1 T9 T3 Ta
9|1 8| 7|1
S1 S9 S3 S4
213|410

Table 11: A market with 4 consumers and 4 producers.

8 matches. Under VCG, the deficit is 9 since each matched consumer pays 4 and each matched
producer obtains 7. Under the Flip Mechanism, the deficit is 21 since each matched consumer
pays 2 and each matched producer obtains 9. Hence, the deficit under the Flip Mechanism is
larger than under the VCG Mechanism even though both give rise to 3 matches.

Knowing that matching maximization creates a (larger) deficit, one may wonder about its mag-

nitude. How big can it be? The next proposition provides an upper bound.

Proposition 5.7 Suppose that |Tr| = k. The deficit is at most k - (r1 — s1).
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5.2.2 Number of Matches

An alternative way to assess the (in)efficiency of matching maximization is by analyzing the
difference in the amount of transactions. As the example in the introduction of this paper
illustrates, matching maximization may yield twice the number of transactions in comparison to
TU maximization. As the next proposition shows, however, this is also the maximum ratio that

can be attained.!?

Proposition 5.8 The ratio of the number of matched pairs under matching mazximization to the

number of matched pairs under TU maximization is at most 2.

It is worth noting that this finding extends to an incomplete bipartite graph. To see this, suppose
that potential trading partners face some constraints. For example, a buyer and seller located
far away from each other should perhaps not be matched since transportation costs would be too
high. Imagine, then, an incomplete bipartite graph that indicates all feasible matches. To identify
a maximal matching, one can proceed as follows. Assign flow 1 to each edge between consumer
i’s vertex and producer j’s vertex when r; — s; > 0 and remove the edge when 7, —s; < 0.
A maximal matching on the resulting graph can then be found by applying Ford-Fulkerson’s

algorithm.

To identify a matching that maximizes total utility, one can proceed in a similar fashion. Assign
flow f;; = r; —s; to each edge between consumer i’s vertex and producer j’s vertex when r; —s; >
0 and remove the edge when r; — s; < 0. One can then select the weighted maximum matching
for the resulting graph. Now consider the resulting graph under matching maximization. To add
one more match that maximizes the weight, one has to eliminate at most two matched pairs.
Matching maximization will therefore not yield more than twice the number of matches under

TU maximization.

13This result also follows from known results in graph theory that the size of a maximal matching is at least
half the size of a maximum matching.
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6 Concluding Remarks

In the same year that Adam Smith launched his Wealth of Nations (1776), the prominent British
scholar Jeremy Bentham published A Fragment on Government (1776). It is in this essay that
Bentham formulated what became the fundamental maxim of utilitarianism, namely: “it is
the greatest happiness of the greatest number that is the measure of right and wrong”. Of
course, when taken literally, the constructs ‘greatest happiness’ and ‘greatest number’ need not
be reconcilable and pursuing one may well come at the cost of the other. While welfare economics
has been predominantly concerned with the first by exploring traits and conditions that maximize
the ‘size of the pie’, we focused on the second by asking how to maximize ‘the number of pie

bakers’.

Under the assumption that no market player can be forced to trade, we introduced an algorithm
that identifies a matching with the maximum number of transactions. More specifically, we
showed that this algorithm selects the optimal maximal matching in the sense that it creates the
greatest happiness conditional on the greatest number. Importantly, the objective of matching
maximization is implementable and we presented a mechanism that implements it. Doing so
literally comes at a price, however, because the mechanism does not satisfy the property of
budget balance. A policymaker thus needs to find external funding if it seeks to maximize the

number of matches.
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Appendix A: A Justification for Maximal Matchings

With its focus on maximizing the number of traded goods or services, matching maximization
has an egalitarian flavor. The goal of this appendix is to make this more precise. In what
follows, we consider and compare matchings’ surplus distributions. It is shown that one obtains
the most egalitarian outcome by applying the Flip Algorithm and have each matched pair divide

its value-created equally.
To facilitate the analysis, we start with the following definition.

Definition A.1: Consider a matching T. For each match (i,5) € T, let r; —s; = a; +b;, where
a; and b; are the surplus shares allocated to consumer ¢ and producer j, respectively. Moreover,

a; = 0 for any unmatched consumer and b; = 0 for any unmatched producer.

Clearly, there are potentially many ways in which the value-created can be allocated. In what
follows, let d = (a1,...,Qm,b1,...,b,) be the surplus distribution vector. The ordered surplus

distribution vector of d is d = (du, ..., dm+n), where d; < d; for all 1 <i < j < m + n. Hence,

the elements of d are organized in a nondecreasing order.
To compare ordered surplus distributions, we use the following definition.

Definition A.2: Consider two vectors d,e € R™*™, The vector d is lexicographically equal
to e when d = e. The vector d is lexicographically larger than e when d; > e; fori = min{j €
{1,...,m+n}|d; #e;}. That is, d is lexicographically larger than e when the first coordinate
that differs is higher under d.

Let us now establish the link between matching maximization and the egalitarian rule. Specifi-
cally, we show that the ordered surplus distribution that one obtains by maximizing the minimum
utility is the same as the ordered surplus distribution that one obtains by applying the Flip Al-
gorithm and allocating the resulting surpluses equally.

Proposition A.3 Suppose that r; > s; for all (i,j) € Tr. The ordered surplus distribution that

Ti—S8,

results from the Flip Algorithm Tr(r,s), with a; = b; = =5~ for any (i,j) € Tr, is levicograph-

ically larger or equal than the ordered surplus distribution of any other matching T(r,s).
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Appendix B: Proofs

Proof of Lemma 3.4

Let T be a matching with & matches. Suppose that there is a match (i,7) € T withi+j < k+1
and no match (¢,5) € T with i’ > i and i+ j’ > k+ 1. We show that |T'| < k = 1. Since there is
no match (¢/,5) € T with i’ > ¢ and i+ 5’ > k+ 1, any consumer ¢’ > 4 is matched to a producer
j'" where j' < k—i+ 1. So, j/ < k —i. Hence, there are at most k — 7 matches. Moreover, there
are at most ¢ — 1 matches from the first ¢ — 1 consumers. Taken together, this implies at most

k—1+11—1=Fk— 1 matches. [ ]

Proof of Theorem 3.6

Given (r,s), consider some maximal matching T € Ty; other than T, i.e., T # Tr. Then, there
is a consumer ¢ such that (¢, 7) ¢ T, for all j, but there is a producer j such that (i,5) € T. As
the Flip Algorithm matches the first k pairs, this implies i > k. Moreover, since |Tr| = |T|, there
is a consumer ¢’ such that (i, j) ¢ T, for all j, but there is a producer j’ such that (i’,j’) € Tp.
As the Flip Algorithm matches the first k& pairs, this implies i’ < k. Since i’ < k < 1, it follows
that r;; > r;. A similar argument applies when there is a producer j that is matched under T,

but not under Tr. We conclude that the total utility with TF is weakly larger than with 7. =

Proof of Lemma 4.3

If the true valuation is r; and the mechanism is DSIC, then it holds that:

ri - ai(ry) — pi(ri) > 1 - ai(w;) — pi(wi) <= pi(w;) — pi(rs) > ri - ai(w;) —ri - ai(ry). (1)
Likewise, if the true valuation is w;, then:
pz(wz) —pi(m) < w - ai(wi) — w; 'ai(ri)~ (2)

Combining (1) and (2), one obtains Lemma 4.3. |
Proof of Proposition 4.6
Recall that |Tr| = k and suppose that a;(r;) = 1. Fixing all other valuations and costs, we show

that if consumer 4 reports w; > r; instead, then a;(w;) = 1.

Since a;(r;) = 1, consumer i belongs to the first k& matched consumers. If consumer i would
report w; > 1; instead, then there are at least k& matched pairs. To see this, consider a maximal
matching T' € Tys in which consumer ¢ is matched with producer j. Since all other valuations

and costs remain the same, there still are k — 1 value-creating pairs when consumer ¢ raises its
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reported valuation to w; > 7;. As this consumer is matched when reporting r;, it holds that
r; > s;. Consequently, this consumer can be matched with the same producer when reporting
w; instead, because w; > r; > s;. Therefore, the number of matches does not decrease when a

consumer increases its reported valuation, all else equal.

As consumer i belongs to the first & matched pairs when reporting r;, it also belongs to the
first k matched pairs when reporting w; > r;. Therefore, a;(w;) = 1. A similar logic applies to
the supply side. We conclude that the allocation rule Ap is monotonic. Implementability then

directly follows from Myerson’s Lemma. [ ]

Proof of Proposition 4.8
Suppose that Tr consists of k matches. In the following, we prove cases 1, 2 and 3. A similar

logic applies to the supply side, i.e., cases 4, 5 and 6.

1. A first possibility is that the Flip Algorithm would still yield k transactions when some
matched consumer i leaves the market, i.e., |Tr(r,s)| = [Tr(r_;,s)| = k. Suppose that some
matched consumer i would indeed leave. In that case, it is replaced by consumer k + 1, because
the Flip Algorithm yields k& matches both with and without consumer i. Following Myerson’s
Lemma, a consumer has to pay its ‘switch point’ where it goes from ‘not being matched’ to
‘being matched’. Hence, consumer ¢ has to report a valuation of r;,, to replace consumer kE+1.

In this case, therefore, p; = 15, .

2. A second possibility is that the Flip Algorithm yields k& — 1 transactions when some matched
consumer 4 leaves the market, i.e., |Tr(r,s)| = |Tr(r_;,s)| + 1, and that there are still k — 1
transactions when producer 1 would not be present either, i.e., |Tp(r_;,s)| = |Tr(r—;,s_1)|. If
so, then producer 1 reports the lowest cost among all vacant producers. Hence, consumer ¢ has
to report a valuation of s; to go from ‘not being matched’ to ‘being matched’. In this case,

therefore, p; = s1.

3. A third possibility is that the Flip Algorithm yields & — 1 transactions when some matched
consumer i leaves the market, i.e., |Tr(r,s)| = |Tr(r_;,s)| + 1, and that there are k — 2 trans-
actions when producer 1 would not be present either, i.c., |Tr(r_;,8)| = |Tr(r—;,s_1)| + 1. If
producer 1 is in the market, then it is matched to the K¢, consumer. Hence, consumer 4 has
to report a valuation of r; to go from ‘not being matched’ to ‘being matched’. In this case,

therefore, p; = 3. [ |
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Proof of Corollary 4.9

By Myerson’s Lemma, a consumer that is involved in a transaction has to pay its ‘switch point’
when it goes from ‘not being matched’ to ‘being matched’ and zero otherwise. Consider some
consumer ¢ with reported valuation r; and switch point w;. If a;(r;) = 0, then r; - a;(r;) =0 =
pi(a;(r;)). If a;(r;) = 1, then r; > w; as consumer ¢ is matched. Thus, 7; - a;(r;) = r; > w; =
pi(a;(w;)). Taken together, therefore, it holds that r; - a;(r;) > pi(a;(r;)). A similar argument
applies to the supply side. We conclude that the Flip Mechanism is individually rational. [ |

Proof of Proposition 5.2

Following the generic logic of VCG-mechanisms, consumers pay their externality. To determine
the price for some matched consumer i, suppose that the TU-maximizing Algorithm yields k
matches and is applied again without this consumer. If 71 > sg, then the producer that was
matched with consumer ¢ before will be matched again. In this case, there are still £ matches.
If 741 < sk, then the exclusion of consumer ¢ implies the exclusion of some producer j. In
this case, there are k — 1 matches. Taken together, this means that any matched consumer
pays a price p; = max{rgi1,Sx}. By the same token, each matched producer obtains a price

pj = min{sp41, g}

Since the TU-maximizing Algorithm yields k matches, it holds that sx < ri and rgy1 < Ska1-
Hence, max{ryi1, s} < min{sgy1,7%} and therefore:

m

n
Zpi - ij = k-max{rg;1, sk} —k-min{sg1,7:} <0.

i1 j=1
Consequently, if the policymaker adopts a VCG-mechanism, then 337", pi <327, pj. |

Proof of Proposition 5.3

Suppose that the VCG-mechanism yields & matches. Let us first show that the allocation rule
is unique when there is a deficit. To that end, assume that the allocation rule is not unique. We
derive a contradiction. If the allocation rule is not unique, then there are at least two agents with
rank k or £+ 1 that report the same value. Following the proof of Proposition 5.2, any matched
consumer ¢ pays p; = max{rg4+1, S, } and any matched producer j obtains p; = min{ry, sxy1}.
Using the fact that re11 < rg, 7eg1 < Skt1, Sk < Sgt1, and s, < 1, this effectively leaves two

possibilities.

L If sp < rp = 7Tky1 < Sgp41, then p; = max{ry41, sk} = req1 and p; = min{rg, Sp1} = ri.

Hence, p; = p; for all i € K and j € L. In this case, therefore, there is no deficit.
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2. If i1 < Sp = Spy1 < 7T, then p; = max{ryy1, s} = s, and p; = min{ry, sp41} = Sp41.

Hence, p; = p; for all i € K and j € L. In this case, therefore, there is no deficit.

We conclude that if there is a deficit, then the allocation rule is unique.

Let us now show that there is a deficit when there is a unique allocation rule. Suppose, by
contradiction, that there is a unique allocation rule, but no deficit. By the preceding analysis,
all matched consumers pay max{rg1, st} and all matched producers obtain min{ry, sg+1}. If
max{rg4+1, Sk} = Tk+1, then there is a deficit since 1, > 111 and sg11 > rp41. Hmax{rgi1,sx} =
Sk, then there is a deficit since s < r; by uniqueness and s; < sgr1. We conclude that if the

allocation rule is unique and r; > s, then there is a deficit. [ |

Proof of Theorem 5.4

As A and A’ are implementable, they are monotonic (Myerson’s Lemma). Consider some con-
sumer ¢ with ‘switch point’ r; under A(r,s) and ‘switch point’ w; under A'(r,s). Let us now view
the allocation of consumer ¢ with valuation w; under A(r,s). Since K D K’ forallr € R,s € S,
it holds that a;(w;) > al(w;) and, therefore, w; > r;. Since A is implementable by payment
rule p, each consumer pays its ‘switch point’ where it goes from ‘not being matched’ to ‘being

matched’. Similarly for A’. Therefore, p, = w; > r; = p;.

Now consider some producer j with ‘switch point’ s; under A(r,s) and ‘switch point’ ¢; under
A’(r,s). Let us now view the allocation of producer j with cost t; under A(r,s). Since L O L’ for
allr € R, s € S, it holds that a;(t;) > a/(t;) and, therefore, t; < s;. Since A is implementable by
payment rule p, each producer obtains its ‘switch point’ where it goes from ‘not being matched’

to ‘being matched’. Similarly for A’. Therefore, p’ =t; < s; = p;. [ ]

Proof of Proposition 5.7
The lowest possible price for a matched consumer is s, whereas the highest possible price for a

matched producer is r1. Since there are k matches, the greatest possible deficit is k- (r; — s1). ®

Proof of Proposition 5.8

To begin, note that the example in the introduction of this paper shows that the ratio can be 2.
Let us now show that it cannot be more than 2. To that end, suppose that the TU-maximizing
Algorithm yields k£ matches, which implies r¢1,, < Sgtm for all m > 1. Suppose further that
the Flip Algorithm yields 2k + m matches, where m > 1. We derive a contradiction. If the
Flip Algorithm leads to 2k + m matches, then consumer 1 is matched with producer 2k + m

and consumer 2 is matched with producer 2k + m — 1. Following this logic, consumer k + 1 is
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matched with producer k£ 4+ m, which implies rg11 > Sg4+m > Sk+1. This, however, contradicts

the fact that rr11 < sg41. ]

Proof of Proposition A.3

To begin, note that the ordered surplus distribution with any bilaterally rational matching is
lexicographically larger than the ordered surplus distribution of a matching that is not bilaterally
rational. In case of the latter, there is at least one agent that obtains a ‘negative surplus’, whereas
all agents receive a weakly positive surplus when the matching is bilaterally rational. Hence,
since the Flip Algorithm yields a bilaterally rational matching, the resulting ordered surplus
distribution is lexicographically larger than the ordered surplus distribution of any matching

that is not bilaterally rational.

Next, consider a bilateral matching T, where |T'| < |T|. Since each match has a strictly positive
surplus and unmatched agents receive zero surplus, it follows immediately that the ordered
surplus distribution that results from the Flip Algorithm is lexicographically larger than the

ordered surplus distribution of any matching with strictly fewer matches.

Finally, note that the ordered surplus distribution that results from the Flip Algorithm with an
equal division of surplus is lexicographically larger than the ordered surplus distribution that
results from the Flip Algorithm with an unequal division of surplus. It remains to be shown
that it is also lexicographically larger or equal than the ordered surplus distribution of any other
maximal matching. To that end, consider another maximal matching T' € Tj;. Since both T
and T are maximal matchings the number of unmatched agents is the same. Consider a pair
(i*,7*) € Tr that is least positive value-creating. We claim that there exists a pair (¢/,5') € T
such that either ry =r; and sy = s+, or 1y — 550 <7rje — 5= If (i*,7*) € T, then the claim
is true by setting ¢ = ¢* and j' = j*. If (¢*,5) € T and j > j*, we know that s; < s,-. Hence,
ri« —8j <1 — sj«. Then, take ¢/ =¢* and j' = j. If (i*,j) € T and j < j*, then there is a pair
(i",7") such that i > i* and i* +j > k+ 1 (Lemma 3.4). Since r;+ > 7 and i > sy, it
holds that r;» — s;» < 1« — s;-. Hence, take i’ = i and j/ =j".

If the inequality in the claim applies, we know that the Flip Algorithm with an equal division of
surplus lexicographically maximizes the vector of ordered surplus distributions. Otherwise, we
consider Tp1 = T \ {(4%,7%)} and Ty = T\ {(¢,j")}. We continue the procedure until there
exist a pair (i*,5*) € T, and (¢/,j') € T, where ry — s < 73+ — s+ for some n > 1, or
until T = @. Hence, the Flip Algorithm with an equal division of surplus lexicographically

maximizes the vector of ordered surplus distributions. ]
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